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Missing data estimation based on the chaining technique
in survey sampling

Narendra Singh Thakur', Diwakar Shukla’

ABSTRACT

Sample surveys are often affected by missing observations and non-response caused by the
respondents’ refusal or unwillingness to provide the requested information or due to their
memory failure. In order to substitute the missing data, a procedure called imputation is
applied, which uses the available data as a tool for the replacement of the missing values.
Two auxiliary variables create a chain which is used to substitute the missing part of the
sample. The aim of the paper is to present the application of the Chain-type factor estimator
as a means of source imputation for the non-response units in an incomplete sample.
The proposed strategies were found to be more efficient and bias-controllable than similar
estimation procedures described in the relevant literature. These techniques could also be
made nearly unbiased in relation to other selected parametric values. The findings are
supported by a numerical study involving the use of a dataset, proving that the proposed
techniques outperform other similar ones.

Key words: estimation, missing data, chaining, imputation, bias, mean squared error (MSE),
factor type (F-T), chain type estimator, double sampling.

Mathematical Subject Code: 62D05

1. Introduction

In sample surveys, the auxiliary information is used to improve efficiency of the
estimate [see, Cochran (2005), Sukhatme et al. (1984)]. The use of a ratio estimator is
preferred when the population mean of auxiliary variate is known. However, when it is
unknown then it is not possible to apply the ratio estimator directly and the concept of
two-phase sampling is applied to get a sample-based estimate of population mean.
Sometimes information on one more auxiliary variable highly correlated to earlier
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auxiliary variate is available and easy to access at a lesser cost. This additional
information could be intelligently utilized for obtaining efficient estimates. Chaining is
one such technique, used by Chand (1975), Sukhatme and Chand (1977), which has a
mechanism of combining wisely two auxiliary variates. Kiregyera (1980, 1984)
proposed some chain type ratio and regression estimators whereas Singh et al. (1994)
developed a class of chain type estimators under a double sample scheme. Al-Jararha
and Ahmed (2002) discussed the class of chain type estimators for population variance
using double a sampling scheme. Some other useful contributions are Kumar and Bahl
(2006), Pradhan (2005), Rao and Sitter (1995), Sharma and Tailor (2010), Shukla
(2002), Singh and Espejo (2007), Singh et al. (2009), Singh et al. (1993), Srivastava and
Jhajj (1980), etc.

The use of auxiliary information in the estimation of population values of the study
variate is a common phenomenon in sampling theory of surveys. Auxiliary information
is successfully utilized either at the planning stage or at the design stage or at the
information stage to arrive at improved estimator compared to those not utilizing
auxiliary information. The use of ratio and product strategies in survey sampling solely

_ N
depends upon the knowledge of population mean X=N"'> X, of the auxiliary

i=1
character X. In many situations of practical importance, the population mean X is
unknown before the start of a survey. In such a situation, the usual thing to do is to

estimate it by the sample mean %, = 5 i x, based on a preliminary sample of size m

i=1

_ N
of which 7 is a sub-sample (1 <m). If the population mean Z=N")Z of another

i=1

auxiliary variate Z, closely related to auxiliary variate X but compared to X remotely

. . . . . = - - 7
related to study variate Y is known, it is advisable to estimate X by X =x.=—, where
Zm

Zm=m" ZZ,. , which would provide better estimate of X than x. to the terms of order
i=1

o(n”) if szg—x>0-5 [see, Choudhury and Singh (2012)]. The symbol p,, is the
zZ

coefficient of correlation between X and Z and C,, C, are the coefficient of variation
of X and Z respectively. Chand (1975) and Sukhatme and Chand (1977) proposed
a technique of chaining of the available information on auxiliary characteristics with
the main characteristic. Kiregyera (1980, 1984), Singh et al. (2006) also proposed some
chain type ratio and regression estimators based on two auxiliary variables. Using prior
information on parameters of auxiliary variate some useful contributions are Shukla et
al. (1991), Bose (1943), Kadilar and Cingi (2003), Srivastava et al. (1990),
Srivenkataramana (1980), etc.
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According to Hietjan and Basu (1996), incompleteness in the form of missingness,
censoring or grouping, is a troubling feature of several data sets. A key question is what
one needs to assume to justify ignoring the incompleteness mechanism. Rubin (1976)
addressed this question for Bayes/likelihood and frequentist inferences. Little and
Rubin (1987) recognized for some time that failure to account for the stochastic nature
of incompleteness can spoil inferences.

In brief, Rubin (1976) defined three key concepts: missing at random (MAR),
observed at random (OAR) and Parameter Distinctness (PD). The data are MAR if the
probability of the observed missingness pattern, given the observed and unobserved
data, does not depend on the values of the unobserved data. The data are OAR if, for
every possible value of the missing data, the probability of the observed missingness
pattern, given the observed and unobserved data, does not depend on the values of the
observed data. PD holds if there are no a priori ties between the parameters of the
missingness model and those of the data model. For Bayesian inference this means that
the parameters of the data model and missingness model are a priori independent. For
direct likelihood inference it means that knowledge of one parameter's value does not
place any constraints on the other parameter's value. Ignoring the missingness
mechanism is justified for Bayes/likelihood inference if MAR and PD hold.
The combination of MAR and OAR is called missing completely at random (MCAR).
In what follows missing completely at random (MCAR) by Heitjan and Basu (1996) is
used in this article. Some useful contributions available in the literature are Weeks
(1999), Shukla et al. (2009), Seaman et al. (2013), Bhaskaran and Smeeth (2014), Pandey
et al. (2015), Pandey et al. (2016), Doretti et al. (2018), etc. This manuscript presents
the use of Chain-Type estimator as an imputation source for dealing with missing
observations to estimate the population mean.

1.1. Some existing imputation strategies

A simple random sample S without replacement (SRSWOR), of size n is drawn
from population Q= {I,2,.....,N}with ¥, as i” unit of variable Y under study. Let
y=nN" i y, be the mean of a finite population under estimation. The sample S of n
units contains r responding units (r < n) forming a sub-space R and (n - r) non-
responding with the sub-space (n - r) having symbol RS in the space S. The sub-spaces
Rand Rare disjoint and RUR® =S. The variable Y is of main interest and X is
auxiliary correlated with Y. For every unit ie R, the value y, is observed available.
For units i€R®, the y, values are missing and imputed values are to be derived.
The i” value x, of X could be used as a source of imputation for y,, i € R°. This is to
assume for sample S, the data x, ={x,:ieS} is known and available completely.
Responding units have missing data only for the study variable Y. Under this two
variable set-up, some well-known imputation methods available in the literature are:
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1.1.1. Ratio method of imputation

For y, and x,, define y,, as
Vi if ieR
Yei =9 2 . . c
bx, if ieR

i

(1.1)
A zyi

Where b=4& ==
in Xr

ieR

Using the above, the imputation-based estimator is:

;S :%Zy.,- _%[Zyi +l;zxi‘| —;,[;—nj :;RAT (12)

<

ieS igR i2R¢ r
- 1 - 1 - 1
Where V, ==y, X==2x and x,=—)x
7 ier Fier N ics
1.1.2. Mean method of imputation
For y, define y,, as
Vi if ieR
Y= {— o (1.3)
v, if ieR”
Using the above, the imputation-based estimator of population mean Y is:
—_ 1 —
Y =7Zy,» =y, (1.4)

ieR
1.1.3. Compromised method of imputation

Singh and Horn (2000) proposed a compromised imputation procedure:

(an/r)y, +(1—a)bx, if ieR (15)
Yo = A .
(1 - a)bx,. if ieR
Where « is a suitably chosen constant, such that the resultant variance of the

estimator is minimum. The imputation-based estimator, for this case, is

Ycomp = l:a;r + (1 - a);, all :l (1.6)

Xr

1.1.4. Ahmed methods of imputation

For the case where , denotes the i available observation for the j imputation
method Ahmed et al. (2006) suggested:
Vi if ieR
A = —(xY" - : 1.7
(4) AU I [nyr[_ij —ry,,] if ieR° (1.7)

(n—-r) X
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Under this, the point estimator is:

_ (}Jﬂl
L=y,|= (1.8)

X

n

(B) (=) - c
. ﬁ[ny[;—J —ryllf ieR”

(1.9)
The point estimator is under this set-up:
[z B2
t2 :y,[QJ (1.10)
Xr
Vi if ieR
C = (¥ -
ST NS
(1.11)
The point estimator is:
_ } B3
t} = yr[__} (1'12)
Xr

Terms £, f» and fsare suitably chosen constants, so as to keep the variance of the
resultant estimator minimum. As special cases, when

Bi=1 1y, - 1[% (1.13)
Xr
and  f=-1,14,,, =§,.(’1J (1.14)
X

The last one (1.14) is natural analogue of the ratio estimator called the product
estimator used when an auxiliary variate X has negative correlation with Y.

1.1.5. Factor type methods of imputation
Shukla and Thakur (2008) suggested factor-type imputation procedures as:

yi_ if ieR
(D) (yFTl)r' = (ny:r) [n¢1(k)—r] if ieRC
(1.15)
y, if ieR
(E) (yFTZ)i = ;

(n —’r) [n¢2(k)—r] if ieR®

(1.16)
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Vi if ieR
(F) Fr3)i = y .
R BT VPR R
(n—r)
(1.17)
Where (k)= ATCX+/Bx oy (A+Clio+ fBx o (A+CX+ B,
(4+ fB)X +Cx., (4+ /B)x, +Cx, (4+ fB)X +Cx,

A=(k=1)k-2), B=(k-1)k—-4), C=(k-2)k-3)k—4), f :%, 0<k<oo

Under (1.15), (1.16) and (1.17) point estimators are:
Ter = 7,4,(k)
Tiry = v, (k) (1.18)
Trry = 7,4,(k)
As special cases, when k=1,8, =1 then T,, =¢t, when k=2,8,=-1then T, =t,
when k=4,8,=0then T,,=t,=y.; (1=123)

2. Proposed imputation strategies

Consider a double sampling set-up with three variables Y, X and Z where Y is the
main variable and X, Z are auxiliary variates. The correlation between X and Z is higher
than other two. A specific way of combining X and Z is “chaining”, which generates
chain-type estimators in double sampling, and several authors have used this [see Singh
and Singh (1991), Singh et al. (1994)] to get a series of alternative estimators for
estimating population mean. Singh and Shukla (1987) discussed a family of factor-type
ratio estimator for estimating population mean. In one more contribution, Singh and
Shukla (1993) derived efficient factor-type estimator for estimating the same
population parameter. Using the above contributions Singh et al. (1994) developed
a factor-type-chain estimator, whose application as an imputation tool is the main
source of motivation in this article.

2.1. Preliminaries

Typically, in double sampling, the population mean X of variable X is unknown.
Hence, let S be the preliminary sample drawn from Q={L,2,..,N} by SRSWOR
containing m units with mean x,, z, of X and Z. This implies x,={x,:jes},
z, = {z] . je §'} are known data and at this stage data linked with variable Y are not
known. A sub-sample S of # units (n<m) is drawn from S' by SRSWOR having r
responding units (r<n) forming subspace R, having (n—r) non-responding units with

the sub-space R*. Also, in S,y =1{y,.icR},x, ={x,.ieS}, z ={z.icS} are available,
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whereas y . = {yi,ie RC} is missing and needs to be estimated by an appropriate

imputation technique. As discussed in previous section the sub-spaces R and R are
disjointand RURC =§.

Let us consider Ahmed et al. (2006) point estimator from equation (1.10) ¢, with
B=1:

* Xn
ZZ = yr__1 (*)
Xr

The term x, could be improved by Chaining Technique as suggested by Chand
(1975), Sukhatme and Chand (1977), Singh and Singh (1991) as:

w  — Xm Z

6=y =2 (With z, and Z known) (**)

Xr Zm

Motivated from the above discussion, some proposed imputation strategies using
Singh et al. (1994) are:

y, if ieR

(G) Wer), = (nir) [n‘/ﬁ(k)—’;r] if ieR
(2.1)

y, if ieR

(H) (o) = (nir) [nl/lz(k)—r;r] if ieR
(2.2)

y, if ieR

(D) (yC3)i: (nir) [nl//s(k)—r;,,] if ieR°
(2.3)

Where v k)=, ;m Ej:%—gfigm

(2.4)
v(k)=y, Xn {4+ Chn + /B2, (25)

"% (A+ fB)zw +Cz,
(k)= xn (A+C)Z+ fBz, (2.6)
’ " x, (A+fB)Z+Cz,

Where  A=(k—1fk-2}B=(k-1)k—4)C=(k-2)k-3)k—-4) and O0<k<oo
; P o =L z -1 PR N
is a constant. Also, y,—rZy[,xr—er[,zr rZZ,-,xm mZx[,zm mZZ[,

ieR ieR ieR ieS' ieS'
- 1
Z = W ZZI .
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Under strategies (2.1), (2.2) and (2.3) the point estimators of population mean of
study variable Y are like (2.4), (2.5) and (2.6) respectively.

2.2. Special Cases:

(i) Atk=1;4=0,B=0,C=-6
n Z

- m - m Zm - m Z
w1(1)=yr%;— ; wz(l)=yr%z; ; w3(1)=y,.%? (2.7)
(i) Atk=2A=0,B=-2,C=0
v2)=y E’" 27’"; v, (2)=», ;’" ZZ ; y(2)=y, ; %— (2.8)
(iii) Atk=3;A=2,B=-2,C=0
— xn Z—fzn = Xm Zn—f2r — xnZ—fz
)=y, ——=; 3)=y,=———; 3=y, ——+ 2.9
Wl() yr x (l—f)Z Wz() yr . (l—f)Zm l/IS() yr . (l—f)Z ( )
(iv) Atk=4;A=6,B=0,C=0
v@=y,2  w@=y @)=y (2.10)
Xr Xr Xr

3. Properties of the estimators under proposed strategies

Let B(.) and M(.) be the bias and mean squared error (MSE) of the estimators under
a given sampling design respectively. Let the large sample approximations as n > N
bery, =v(1+6); xr =x(1+68,);5 xn=X(1+8,); z, =2(1+65,) and z,, =Z(1+5,)

Here, |5|<1; i=12345.

Using the concept of two-phase sampling, following Rao and Sitter (1995) and
using the mechanism of MCAR [Heitjan and Basu (1996)], for given r, n and m,
we have:
E(5,)=0; i—12345'E(52):M1Cf; E(2)=mC2: Els2)=m,c2; E(52)=M,C2;
E( ) M Cé’ 55 ) M, pyCy Cy; E(§153):M2pYXCYCX; E(5154)=M1pyzcy Cs
E(s, ) M,py,Cy Cy; E(6,6,)=M, C3 ; (5264):MIPXZCX CZ;E(5265):M2pXZCX Cys
E( 3 4)= 2Px2Cx Cy s (5355)= szzcx Cys E(54§5)=M2 c;

and M, S Y S I M,=M,-M, LR

N N

2
r m r m

Remark 3.1: Define the symbols

. ms . Cc . A4+C . A+fB _ _
¢1_A+fB+C’¢2_A+fB+C’¢3_A+fB+C’¢4_A+.fB+C’(¢l+¢3) (¢2+¢4) 1

C C C
¢:(¢1 _¢z) = _(¢3 _¢4);KYX = Pyx C_Y;KYZ = Pyz C_Y;KXZ pXZ_X
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Theorem 3.1:

[ai] The estimator w, (k) in terms of &,; i=1234,5 up to the first order of
approximation is:

p () =T[1+6, -6, +6, - 8,8, + 6,8, - 6,8, + 62 + §(6. + 5,0, ~ 86,6, + 5,6, —$,62)]  (3.1)
[a;] Biasof v, (k):
Bl (0] = MG 1~ K- Co - K, ) (3.2)
[as] Mean squared error of v, (k):
Ml (0] [, + MCo 126, ) - LC 92K, ) (33)

[a,] Minimum MSE of the estimator y, (k) is when ¢ = —K,, holds and the expression
is:

M[‘//l (k)]mm = ?2 [MIC§ + M3C)2((1 _2KYX)+M2K§ZC§] (3'4)
Proof:
[aI] % (k) :; & (A+C)E_+ fB%m
] ' (4+ ﬂ3)2 +Czm

=Y(+5,)1+5,)" (1+6, )1+, )1+6,5,)"
“Y[146, -8, 45, - 5,8, + 5,0, - 6,6, + 52+ P(5, + 5,8, — 8,5, + 5,5, — 62 )]

[l Bly, ()]= £l (k)] = [ely, ()] 7]
Using (3.1) and taking expectation both sides
Elp k)] =YE[1-6,6,+ 8,6, -8,6, +52 + 45,6, — 5,8, + 5,5, — 9,62 )]
_7[1+MC ( KYX)_¢MC (¢2_ yz)]
[‘//1 k) [MC (1 YX) oM, C ¢2 yz)]

(sl My, ()= Ely, (6)-¥]
EY146,-6,+8,-66,+66,- 56, + 8 + 8, +66, - 56, + 66, 657 T[
[Using (3.1)]
=Y M+ M (1= 2K, ) - M,CE(p+ 2K, )|
[a4] To obtain minimum MSE, let

L wl-0 =Y PLC0p2K,)=0 ==k,

My (k)] =Y [, + MC(1-2K,, )+ MoK
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Theorem 3.2:

[as] The estimator y,(k) in terms of &,; i=1234,5 up to the first order of
approximation is:

Wz(k):7[1+51 8,408, -8,8,+8,6, 6,6, +062 +¢(5, —5,+8,5, - 85,5, — 5,8, + 5,0,

+8,8, = 0,8+ (9~ 9, 0.8, — 9,00 + 9,67 (3.5)
[as] Bias of the estimator y, (k):
B[l//z(k)]: ?M3[C)2( (I_KYX )_¢C§ (¢2 _Kyz +KXZ )] (3-6)
[a;] Mean squared error of y, (k):
M[V/z(k)] = ?Z[Mcg +M3{C)2((1_2KYX)+¢C§(¢+2KYZ _ZKXZ)}] (3-7)
[as] Minimum MSE of v, (k) isat ¢=(-K,, +K,,) :
M[l//z(k)]min :?2 [A/[lc}% +M; {(l_ZKYX )C)Z( _(KYZ Ky )ZC,;}] (3'8)
Proof:
W) [ [
Xr (A+fB)Zm +Cz,
=Y(146J14+.8,)" (146, )1+4,5, + 40, M1+ 4,0, + 4,5)”
=?{1+51 5y 45— 8,8, 48,5, — 8,5, +52 +4lS, — 5 +8,5, — 5,54
—=0,0, +0,05 + 036, — 0,05 +(¢2 — ¢, )5455 - 4,67 +¢4552} }
[ad] By (6)]= Ely (6)-¥] = Ely, ()] -¥

Using (3.5) and taking the expectation both sides,
Elp, k)= YE[1= 6,6, + 5,8, - 8,6, + 52 +8{5,5, = 8,65 — 5,8, + 5,5, + 5,5, — 8,5,
+(p ~ 000,05 - 4,5} +4,02 |
=Vl M3 - K ) - 002 (0, - Ky + K )
Bly, (k)] = Ely, (k)] -
=M Y[C3 (- Ky )-4C2 (6, - Ky +K 1, )|
(3] Ml (]= By (0)-7]
“Y'E[5, -5, +5, )+ 45, -5, ) [Using (3.5)]

M[‘/’z(k)]zyz[Mlcé +M3{C)2((1_2KYX )+¢C§(¢+2KYZ _ZKXZ)}]
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[ag] To obtain minimum MSE, let

d — _
%M[‘//z(k)]zo = ¢=K,-Ky,

and substitution provides
M[l//z (k)]min :?2|:M1C)% +M3 {(l_ZKYX )C)z( _(KYZ _KXZ )2 C; } i|

Theorem 3.3:
[as] The estimator w,(k) in terms of &,; i=12,345 up to the first order of
approximation could be expressed as:
w (k) =T[1+8, -6, +8,- 8,6, + 6,6, — 5,8, + 62+ §(5, + 8,8, - 6,6, +5:5, —,57 |
(3.9)
[a)] Bias of (k) :
Bly ()] = Y[M,C2(1 - Ky )+ 6C2 (M K, — MoK, — M8, (3.10)

[ann] Mean squared error of v, (k) :

M[’/’}(k)] :?Z[Mlc? +M3C)2((1_2KYX)+¢C§(W1 +2M1KYZ _2M3KXZ)] (3-1 1)
[ai2] Minimum MSE of (k) is when ¢ = M;'(M,K,, - M,K,,) and the expression is:
My k)], =7 [MIC,f M- 2K )~ (MK, —M,KYZ)szlcé] (3.12)
Proof:
- ;m (A+C)Z+ fB;r . -] -]
a k)=y,|= ——= =Y+ \1+6,) 1+ N\ +d, \1+60,
o) 522 [ o) (eatiogo ieao)

(146, -8, + 8, -85, 40,0, - 8,0, + 67 + (5, +6,6, 5,5, +6.5, —,52 )
(@il Bl ()]= £l ()-7]
“YE[S, -5, +6,-6,0,+8,6,-5,6,+52 + 46, 46,6, 5,6, +5,6, — $,67 |
V(M€ (- Ky )+ 9O (M Ky MK, Mg
lan] My, ®)]=Ey,6)-F] =7Es, -5, +6, +45,]
=Y [M,C2+ M,C2 ~2M 1, C,C + M, C2
+24(Mp,,C,C, =M, p,,C,.C, )]
SV M, C2 M CE(1-2K,, ) +gC2 (oM, +2M K, —2M (K, )]
[a;2] To obtain minimum MSE, let

%M[W3(k)=0 = ¢:Mfl(M3KXZ_M1Kyz)

and substitution provides

M[Ws (k)]min :?2 [Allcé +M,Cy (I_ZKYX)_(MSKXZ -M Ky, )szlcé]
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4. Comparison of the estimators under proposed imputation strategies

[bI] Dl = M[Wl (k)]min _M[WZ (k)]min
—
=Y Cé[jus(Kyz_sz)2 _MzK)%z] (4.1)
w, (k) is better over (k) if Dy >0
Kyy =~ Kyz S M,

F, >F 1
= K, M, = > F, (let)
[b] D, = Mly, k)], ~ My k)],
-v'ci|mk,, -k, VM -M K2 (4.2)
w, (k)is better over y, (k) if D, > 0
M, + MM
= Ky NI F,>F, (let)
KYZ M3
[bs] D, = M[‘//z (k)]min _M[‘//3 (k)]min
—2 ~
=Y Cé [(M3KXZ _MIKYZ)ZMI 1 -M, (KYZ _KXZ)Z] (4.3)
w, (k) is better than w, (k) if D; >0
o K MMM bR (e

Ky, M, +\M M,

5. Empirical study

For numerical study consider the data as attached in Appendix A, which is
a generated artificial population of size N = 200 containing values of main variable Y
and auxiliary variables X, Z. Parameters of this population are given below:
Y =42.485; X =18.515;Z =20.52 ; S2 =199.0598 ; S = 48.5375; 2 = 45.7684 ;
Py =0.8734; p,, =0.8667;p,, =0.9943;C, =03287; C, =0.3755 ;C, = 0.3296 ;
K,, = 0.8643; K, =1.1326; K, =0.7645

Reddy (1978) proved that x, , x,, , k,, are ratio values and bear very small
change over a span of time. It could be easily guessed or assumed to be known a priori.
Using preliminary large sample of size m = 80 and sub-random sample of size n = 30
with the number of responding units » = 22 and f= 0.15 by SRSWOR. The optimum
values of constants of different estimators at their optimal condition are «=0.2354,
B, =, =B, =0.7646 , k, = 1.5206, k, = 2.4505, k,= 8.9456 for compromised, Ahmed’s
methods and Factor Type F-T Estimators of imputation respectively. By simplifying
optimum conditions of proposed estimators for minimum MSE, the cubic equations
provide the values of constants k as shown in Table 5.1.
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Table 5.1. Optimum k-values for minimum MSE of proposed estimators

. Condition . .
Estimators . Three optimum Values of k on one condition
for Optimum MSE
v, (k) ¢=-K, k =13137 | k,=25180 | & =13.5979
V/z(k) p=Ky —Ky, k, =1.9321 ks == kg =-=mmn
ws (k) p=M(M,K, -MK,) | k=18759 | Kk =32154 ky = 4.0919

Note: ks, ks do not exist because the solution of cubic equations provided no real roots.

The formula for efficiency measurement is @(f): MSE (y) , where 7 is any
MSE \T

estimator under consideration. The steps followed for the simulation procedure are:

Step 1: Draw a preliminary random sample S’ of size m = 80 from the population of
size 200.

Step 2: Again draw a random sub-sample of size n = 30 from S’ drawn in step 1.
Step 3: Drop away 8 units randomly from each sample corresponding to variable Y.

Step 4: Compute and impute the dropped units of Y with the help of existing and
proposed imputation methods.

Step 5: Obtain the estimates of the population mean for existing and proposed
imputation methods.

Step 6: Repeat the above steps (1 to 5) 50,000 times, which provides multiple sample
based estimates 7,,7,, 7,y Tsp000 -

. . . N 1 swo0 ., _
Step 7: The bias of 7 is obtained by B(T): <5000 (T,. -Y ) .
i=1

2

.. . R 1 s, o _
Step 8: The MSE of T is obtained by mse (T ): > (T, - Y) .

50000 '
Following the above procedure bias and MSE of the existing and proposed
estimators are computed based on 50,000 repeated samples drawn by SRSWOR from
population of N = 200. These computations and efficiencies with respect to 3, are

given in Tables 5.2 and 5.3 respectively.

Table 5.2. Bias and MSE of existing estimators

Estimators Optimum Value Bias MSE Efficiency
y, | - -0.3123 9.7252 1
Yer | -0.0996 7.8457 1.2395
¥ conr a=0.2354 -0.0809 6.9649 1.3963
4 £, =0.7646 -0.3983 5.8967 1.6492
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Table 5.2. Bias and MSE of existing estimators (cont.)

Estimators Optimum Value Bias MSE Efficiency
4 B, =0.7646 -0.1871 7.6655 1.2686
f B, =0.7646 -0.2151 3.2967 2.9499

k, = 1.5206 -0.3878 4.8327 2.0123
T ky =2.4505 -0.3736 5.1655 1.8827
ky=8.9456 -0.3961 4.9454 1.9665
k, =1.5206 -0.1071 6.3071 1.5419
Trra k, = 2.4505 -0.0329 6.1072 1.5924
k, = 8.9456 -0.0980 6.0561 1.6058
k, = 1.5206 -0.1826 1.8399 5.2857
Trs ky = 2.4505 -0.1944 2.2685 4.2870
ky=8.9456 -0.1818 1.9894 4.8885

5.1. Numerical computation of proposed estimators

From Section 4.0 we get computational values of conditions on the population

Ky, Ky,

M
given in Appendix A. F, =—% -0.3104; F,= |—> = 04774; F, = Ko -
YZ M3 KYZ

M, +M M, M, +M M,
——————— = 17570 and F;=——————=1.1082
M; M+ M M,
Since F, < F, holds, v, (k) is better than y, (k) for this data set.
Again, F, <F,, which implies (k) is better than y, (k) for the data set, and F, > F;,
which implies w, (k) is better than y, (k)for this data set. Overall y,(k)is the best

estimator.

1.3104; F, =

Table 5.3. Bias and MSE of proposed chain type estimators

Estimator k-optimum Bias MSE Efficiency
k, =1.3137 -0.0030 1.9169 5.0734
w, (k) k, =2.5180 0.0215 1.9328 5.0317
k, =13.5979 -0.0038 1.9409 5.0106
k, =1.9321 0.3534 9.0303 1.0769
v (k) kg = - — — | -
PR _ |
k, =1.8759 0.6036 8.6779 1.1206
v, (k) k, =3.2154 0.6215 8.6360 1.1261
k, = 4.0919 0.5992 8.6621 1.1227
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6. Almost unbiased imputation based chain type estimator

By expression (3.2), (3.6) and (3.10), bias of w, (k) ;i =1, 2, 3 could be made zero

up to the first order of approximation. This provides three equations:

MSC)Z((I_KYX)_¢M2C§(¢2 _Kyz):() (6.1)
C)Z((I_KYX)_¢C§( Z_KYZ+KXZ):O (62)
and Msc)z((l _KYX)+¢C§(M1KYZ -M;Ky, _M1¢2): 0 (6~3)

These equations are cubic or more function of k-values to provide multiple values
of k on which bias is zero. The best choice is to have lowest mean squared error. So, the
proposed estimators bear property of reducing MSE along with being almost unbiased
also. Many similar estimators existing in the literature do not control both bias and
MSE at their optimal level but the proposed estimators have this property. For equation
(6.1), we get two real values ' = 0.3829 and &, =6.5038 and from (6.2) and (6.3) all
values are imaginary, viz. there are no real roots. These results are obtained using the
data set on which the empirical study was performed. The term almost unbiased is used
because biases of proposed estimates y, (k) are obtained only up to the first order of
approximation. The bias By, (k)]=0 holds approximately not completely, therefore

mentioned almost unbiased.

Table 6.1. Almost unbiased comparison of chain type estimators

'//l(k) V/z(k) ‘//3(k)
k-values
Bias MSE Bias MSE Bias MSE
k' =0.3829 0.0005 4.4522 0.0002 15.4062 0.0002 14.4033
kzn =6.5038 0.0004 2.4831 0.0001 7.4559 0.0011 6.4898

7. Discussion and conclusions

In the present article some imputation procedures and their estimators of
population mean are suggested and the expression of their bias, mean squared error
and minimum mean squared error have been derived under large sample
approximations up to the first order. An empirical study has been done over a data set
and the bias and mean squared error have been calculated. Among the existing and
proposed estimators, under Chain-based imputation strategies, i.e. y,(k); (i=1, 2, 3),
the estimator y,(k)is found best. The general perception regarding imputation of
missing data is that it increases the bias of the estimate when MSE is optimized.
In contrary, a key feature of v, (k); (i =1, 2, 3) is that there are many values of the
parameter k on which MSE is optimal. One can choose the value with the lowest bias.
Therefore, suggested strategies are bias-controlled at the optimum level of MSE. Apart
from this, estimators are almost unbiased also over multiple choices of k-values. The
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best selection is to have the lowest MSE by proposed strategies one can get almost
unbiased estimator with lowest possible MSE. Thus, the suggested Chain-based
imputation strategies w,(k); (i = 1, 2, 3) are useful and have advantage over other

similar procedures.
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Appendix

A. Population (N = 200)

N. Singh Thakur, D. Shukla: Missing data estimation

Yi 45 50 39 60 42 38 28 42 38 35
Xi 15 20 23 35 18 12 8 15 17 13
Z; 16 22 26 37 19 14 11 17 18 15
Yi 40 55 45 36 40 58 56 62 58 46
Xi 29 35 20 14 18 25 28 21 19 18
Z; 30 37 23 15 19 27 30 22 21 21
Yi 36 43 68 70 50 56 45 32 30 38
Xi 15 20 38 42 23 25 18 11 09 17
Z; 18 22 39 44 25 26 19 13 12 20
Yi 35 41 45 65 30 28 32 38 61 58
Xi 13 15 18 25 09 08 11 13 23 21
Z; 16 17 19 27 12 10 13 14 24 23
Yi 65 62 68 85 40 32 60 57 47 55
Xi 27 25 30 45 15 12 22 19 17 21
Z; 28 26 33 46 17 15 23 20 19 23
Yi 67 70 60 40 35 30 25 38 23 55
Xi 25 30 27 21 15 17 09 15 11 21
Z; 26 32 30 23 17 18 12 18 14 24
Yi 50 69 53 55 71 74 55 39 43 45
Xi 15 23 29 30 33 31 17 14 17 19
Z; 17 24 30 33 35 32 19 16 19 21
Y: 61 72 65 39 43 57 37 71 71 70
Xi 25 31 30 19 21 23 15 30 32 29
Z; 27 33 32 21 23 25 17 32 33 32
Yi 73 63 67 47 53 51 54 57 59 39
Xi 28 23 23 17 19 17 18 21 23 20
Z; 30 25 24 20 22 20 21 23 26 22
Yi 23 25 35 30 38 60 60 40 47 30
Xi 07 09 15 11 13 25 27 15 17 11
Z; 10 11 18 14 14 26 29 18 20 14
Yi 57 54 60 51 26 32 30 45 55 54
Xi 31 23 25 17 09 11 13 19 25 27
Z; 32 25 27 19 12 13 14 20 27 28
Yi 33 33 20 25 28 40 33 38 41 33
Xi 13 11 07 09 13 15 13 17 15 13
Z; 16 14 9 10 14 17 14 20 17 15
Yi 30 35 20 18 20 27 23 42 37 45
Xi 11 15 08 07 09 13 12 25 21 22
Z; 13 18 11 8 12 16 14 26 24 23




STATISTICS IN TRANSITION new series, December 2022 111
Y: 37 37 37 34 41 35 39 45 24 27
Xi 15 16 17 13 20 15 21 25 11 13
Zi 16 18 19 16 22 18 23 26 14 14
Y: 23 20 26 26 40 56 41 47 43 33
Xi 09 08 11 12 15 25 15 25 21 15
Zi 11 10 14 15 17 26 17 27 22 17
Y: 37 27 21 23 24 21 39 33 25 35
Xi 17 13 11 11 09 08 15 17 11 19
Z; 19 16 13 12 12 11 17 20 13 20
Y: 45 40 31 20 40 50 45 35 30 35
Xi 21 23 15 11 20 25 23 17 16 18
Zi 22 25 18 13 21 27 26 19 17 19
Y: 32 27 30 33 31 47 43 35 30 40
Xi 15 13 14 17 15 25 23 17 16 19
Z; 17 16 16 14 17 28 25 18 18 22
Y: 35 35 46 39 35 30 31 53 63 41
Xi 19 19 23 15 17 13 19 25 35 21
Zi 22 21 24 17 20 15 22 26 36 23
Y: 52 43 39 37 20 23 35 39 45 37
Xi 25 19 18 17 11 09 15 17 19 19
Zi 26 20 20 19 13 12 17 18 21 22




