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Supsim: a Python package and a web-based JavaScript tool to 
address the theoretical complexities in two-predictor  

suppression situations 

Morteza Nazifi1, Hamid Fadishei2 

ABSTRACT 

Two-predictor suppression situations continue to produce uninterpretable conditions 
in linear regression. In an attempt to address the theoretical complexities related to 
suppression situations, the current study introduces two different versions of a software 
called suppression simulator (Supsim): a) the command-line Python package, and b) the 
web-based JavaScript tool, both of which are able to simulate numerous random two-
predictor models (RTMs). RTMs are randomly generated, normally distributed data vectors 
x1, x2, and y simulated in such a way that regressing y on both x1 and x2 results in the 
occurrence of numerous suppression and non-suppression situations. The web-based 
Supsim requires no coding skills and additionally, it provides users with 3D scatterplots of 
the simulated RTMs. This study shows that comparing 3D scatterplots of different 
suppression and non-suppression situations provides important new insights into the 
underlying mechanisms of two-predictor suppression situations. An important focus is on 
the comparison of 3D scatterplots of certain enhancement situations called Hamilton's 
extreme example with those of redundancy situations. Such a comparison suggests that the 
basic mathematical concepts of two-predictor suppression situations need to be 
reconsidered with regard to the important issue of the statistical control function. 

Key words: Supsim, multicollinearity, suppression effects, statistical control function. 

1. Introduction

Two-predictor suppression effects remain among complex and confusing
situations in linear regression (eg. Holling, 1983, Ludlow and Klein, 2014, McFatter, 
1979, Friedman and Wall, 2005). When the inclusion of a second predictor, say x2, 
which is relatively highly correlated with x1, in the regression equation leads to some 
kind of two-predictor suppression effect, possible contradictory results include: 
calculating a negative part of the explained variance in y when partitioning 𝑅  
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(Cohen et al., 2003), finding opposite signs between the second predictor's zero-order 
correlation with y and its regression coefficient in the equation, observing situations in 
which one of the two predictors or both of them get a large regression coefficient in the 
equation despite showing "no or low" zero-order correlation with y, and finally finding 
situations in which 𝑅  𝑟 𝑟  (Hamilton, 1987), where 𝑟  and 𝑟  are the zero-
order correlations between the outcome variable y and x1 or x2. Suppression situations 
have attracted attention for several decades because it is generally believed that such 
situations can increase the predictive validity especially in the context of psychological 
testing (Conger and Jackson, 1972, Horst, 1941, Pedhazur, 1997, Tzelgov and Henik, 
1991, Watson et al., 2013, Friedman and Wall, 2005, Darlington and Hayes, 2017, 
Cohen et al., 2003). Under the condition of 𝑅  𝑟 𝑟 , Hamilton (1987) describes 
an even more challenging two-predictor suppression effect, in which 𝑟  and 𝑟  are 
both close to 0 but 𝑅  and |𝑟 | are both near 1, where 𝑟  is the correlation between x1 
and x2. Given that research on these challenging two-predictor suppression effects 
requires access to some simulation algorithm that can generate three-variable datasets 
showing different suppression and non-suppression situations, the authors develop and 
introduce a computerized algorithm called suppression simulator (Supsim), some 
open-source software (Nazifi and Fadishei, 2021a), made available in two different 
versions: a) the command-line Python package of Supsim, and b) the web-based 
JavaScript tool (see screenshots from the user-interface of the web-based Supsim 
in panel B of Figure 1). This algorithm enables researchers to easily generate numerous 
series of random data vectors x1, x2, and y so that one can generate numerous regression 
models with or without suppression by regressing y on both x1 and x2. The web-based 
Supsim is more user-friendly in that it does not require any coding skills and in addition 
it allows investigators to automatically produce 3D scatterplots of the simulated 
random two-predictor models (RTM's). Elsewhere, the authors explain in a video how 
to install and work with both the command-line Python package and the web-based, 
JavaScript versions of Supsim (Nazifi and Fadishei, 2021b). Before proceeding, 
a comprehensive definition of two-predictor suppression effects is needed to be used as 
a frame of reference.  

Friedman and Wall (2005) provide a comprehensive review of two-predictor 
suppression effects, which incorporates different definitions of suppression situations 
that have been presented so far. Holding arbitrary selected 𝑟  and 𝑟  constant and 
letting 𝑟  vary over its possible limits (see inequality (1) below), Friedman and Wall 
(2005) show that for each fixed pair of 𝑟  and 𝑟 , letting 𝑟  vary, different suppression 
and non-suppression situations can occur. They are illustrated with some graphical 
views showing the variations in 𝑅 , 𝛽  or 𝛽  in response to the variations in 𝑟 . In such 
graphical views the vertical axis represents either 𝑅 , 𝛽  or 𝛽  and the horizontal axis 
represents 𝑟 . Each of the regions in Friedman and Wall's systematic graphs 
corresponds to some suppression or non-suppression situations defined previously by 
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other leading researchers in this field (e.g. see Horst, 1941, Lynn, 2003, Conger, 1974, 
Cohen and Cohen, 1975, Currie and Korabinski, 1984, Shieh, 2001, Sharpe and Roberts, 
1997, Velicer, 1978, Hamilton, 1987, Darlington, 1968). According to Friedman and 
Wall (2005) as long as 𝑟  and 𝑟  are both positive, and 𝑟   𝑟  , as it is common 
in the linear regression research, the regions on the graph, from left to right, are defined 
according to Table 1 (Note that in Table 1, Friedman and Wall's definitions are subtly 
altered to also include situations where 𝑟  and 𝑟  are both negative and 𝑟 𝑟 ). 
It should be noted that in Friedman and Wall’s graphs, when 𝑟  and 𝑟  are of opposite 
signs the order of the regions described above becomes reverse (see Table 2 for more 
details). When the reverse graph is the case, region I covers any positive values of 𝑟  
(all 𝑟 ’s > 0), and regions II, III, and IV all are shifted to the negative side of the 𝑟  
axis. In addition, when 𝑟  = 0, a situation called “classical suppression”, Friedman and 
Wall’s graph has only two regions including, from left to right, region I (enhancement), 
and region IV (enhancement) (see Figure 2 below; also see the application by Brown 
(2005) to be able to generate the graphs). 

Table 1.  Definitions of the Different Suppression and Non-Suppression Situations As Long As 𝒓𝒚𝟏 
and 𝒓𝒚𝟐 are of Similar Signs, and 𝒓𝒚𝟏 𝒓𝒚𝟐  
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■ All 𝑟 ’s < 0 
 
■ 𝛽 𝑟  
 
■ 𝑅  𝑟  𝑟  
 
■ And the signs of 𝛽  and 𝛽  are 
always similar to the signs of 𝑟  
and 𝑟 , respectively. 
 

■ 0 𝑟  𝛾   
 
■ 𝛽 𝑟  
 
■ 𝑅  𝑟  𝑟  
 

■ 𝛾 𝑟     
 
■ 𝛽 𝑟  
 
■ 𝑅  𝑟  𝑟  
 
■ And in which 𝑟  
and 𝛽  are always of 
the opposite signs. 

■ All 𝑟 ′𝑠 >  
 
■ 𝛽 𝑟  
 
■ 𝑅  𝑟  𝑟  
 
■ And in which 𝑟  
and 𝛽  are always of 
the opposite signs. 

Note:  γ   ; and  
  

 
    

 
It should be noted that it is also possible to provide simplified, practical definitions 

of suppression situations. According to such simplified definitions, suppression 
situations occur when each of the following conditions are met: 1) the absolute value of 
the collinearity between the two predictors, x1 and x2, exceeds the ratio of |𝛾|, which 
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means |𝑟 |   (negative suppression); 2) 𝑟  and 𝑟   are of similar signs, while 

the sign of the collinearity between x1 and x2 is negative (i.e. 𝑟 0) (reciprocal 
suppression); and finally 3) 𝑟  and 𝑟  are of opposite signs, while the sign of the 
collinearity between x1 and x2 is positive (i.e. 𝑟 0) (reciprocal suppression).  

 

Table 2.  Definitions of the Different Suppression and Non-Suppression Situations As Long As 𝒓𝒚𝟏 
and 𝒓𝒚𝟐 are of Opposite Signs, and 𝒓𝒚𝟏 𝒓𝒚𝟐  
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■ 𝑟    
 
■ 𝛽 𝑟  
 
■ 𝑅  𝑟  𝑟  
 
■ And 𝑟  and 𝛽  are 
always of the 
opposite signs. 

■ 𝛾 𝑟     
 
■ 𝛽 𝑟  
 
■ 𝑅  𝑟  𝑟  
 
■ And 𝑟  and 𝛽  
are always of the 
opposite signs. 

■ 0 𝑟  𝛾   
 
■ 𝛽 𝑟  
 
■ 𝑅  𝑟  𝑟  
 

■ All 𝑟 ’s > 0 
 
■ 𝛽 𝑟  
 
■ 𝑅  𝑟  𝑟  
 
■ And the signs of 
𝛽  and 𝛽  are always 
similar to the signs of 𝑟  
and 𝑟 , respectively. 
 

Note:  γ   ; and  
  

 
 

 

Friedman and Wall (2005) believe that in order to get an accurate picture of two-
predictor suppression effects each fixed pair of 𝑟  and 𝑟  should be considered 
separately allowing 𝑟  vary over its possible limit. They state that it is not the 𝑟  per 
se but the combination of the three correlations (i.e. 𝑟 , 𝑟  and 𝑟 ) that affects the 
sign change in 𝛽 . The possibility limit of 𝑟 , when a fixed pair of 𝑟  and 𝑟  is given, 
is defined by the following inequality (e.g. Neill, 1973, Sharpe and Roberts, 1997): 

𝑟 𝑟  1  𝑟  1  𝑟   𝑟  𝑟 𝑟  1  𝑟  1  𝑟          1  

The limits were imposed by the fact that the correlation matrix which 𝑟 , 𝑟 , and 
𝑟  come from must be nonnegative, definite (Neill, 1973, Sharpe and Roberts, 1997, 
Friedman and Wall, 2005). The limits defined by inequality (1) imply that the possible 
interval of 𝑟  can become very wide when both 𝑟  and 𝑟  are close to 0 and it can 
also become very narrow when both 𝑟  and 𝑟  are near 1. Concentrating on the 
possible limits of 𝑟  is extremely important in understanding two-predictor 
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suppression effects, because formulas of both 𝑅  and 𝛽  (and 𝛽  as well) are sensitive 
to the values of 𝑟  as it is evident from formula (2) (Cohen et al., 2003) and formula 
(3) below (Cohen et al., 2003, Hamilton, 1987): 

𝛽                                                                    (2) 

𝑅                                                      (3) 

Friedman and Wall's approach, beside its strengths, has an important limitation 
because in their method only arbitrary selected pairs of correlations are used and 
therefore one is completely unaware of the data vectors x1, x2, and y and what the 3D 
scatterplots of each particular regression model looks like. Hamilton (1987) does 
explain a method for generating artificial data vectors x1, x2, and y that are used 
in building regression models in which 𝑅  𝑟  𝑟 , but he uses the data vectors 
x1, x2, and y only in drawing two-dimensional scatterplots and fails to explore 3D 
scatterplots of the resulting two-predictor models. This study shows that comparing 3D 
scatterplots of two-predictor regression models with or without suppression bear 
important new insights into the effects of multicollinearity on the results of linear 
regression models. In addition, in the previous research, little attention has been paid 
to the mechanisms of statistical control in redundancy situations compared to 
suppression situations. Objectives of this study are as follows: 

1- Describing the Supsim and showing how simulation with Supsim works 
(see Section 2). 

2- Generating several examples of RTM's, falling within different suppression and 
non-suppression regions including enhancement, suppression, and redundancy 
(see Section 3) 

3- Generating 3D scatterplots for each simulated RTM to be able to compare them 
with each other. To make this comparison more meaningful, RTM's from 
enhancement or suppression regions are matched with those of redundancy 
regions in terms of either 𝑅  values or zero-order correlations with y 
(see Section 3). 

4- Making new mathematical reasoning with respect to statistical control mechanisms 
(see Section 4). 

5- Discussing the significance and implications of the findings (see Section 5).  

6- Concluding and describing the strengths and weaknesses of this study 
(see Section 6).   
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2. Supsim or the RTM Generation Algorithm 

The idea behind the RTM generation algorithm or "Supsim" is to facilitate the study 
of two-predictor suppression effects by generating numerous random functions  
(i.e. yo = f(x1, x2)) and inserting errors into the outputs of those functions and then fitting 
an OLS regression surface to the resulting noisy data (y). The proposed algorithm is 
illustrated by panel A of Figure (1). This iterative process starts by choosing two 
random vectors x1 and x2 so that the correlation between x1 and x2 (𝑟 ) is set to a desired 
amount. Next, a random function is generated to produce yo as a function of both x1 
and x2 and then a normally distributed noise vector, 𝑒, is added to yo in order to generate 
a noisy data vector y (i.e. 𝑦  𝑦 𝑒 . It should be noted that, before running the 
algorithm, the distribution of the noise vector, 𝑒 𝑁 𝜇 ,𝜎 , is arbitrarily determined 
by the user through selecting an A coefficient where 𝜇 𝐴𝜇  and 𝜎 𝐴𝜎 . Also 
other arbitrary, user-provided constraints can be set to constrain 𝑟 , 𝑟 , 𝑟 , and the 
amount of 𝑅  enhancement before running the Supsim. Otherwise all the required 
constraints are met, the current RTM shall be discarded and the current iteration shall 
be started again. When designing the Supsim algorithm, an important technical 
problem was meeting the constraint imposed on 𝑟  range. If this problem is left 
unresolved, the algorithm would be trapped in an exhaustive search over a very large 
space of all possible RTM’s to find those meeting the desired 𝑟  range. In order to 
overcome this limitation and speed up the simulation process, a specific random 
number generation method is used, which can generate a data vector (x1) that not only 
is random, but also shows a desired amount of correlation with another random data 
vector (x2) (Whuber, 2017).  

The first two steps of the algorithm shown in Figure 1 are designed according to 
the method described by Whuber (2017). The algorithm first chooses a normal random 
vector x1 and then another normal random vector a with the same length, mean, and 
standard deviation as x1 and then applies a transformation to a to calculate b in a way 
that the correlation between b and x1 is set to the desired amount (𝑟 ). Such 
a transformation is described in Equation (4) where d is the vector of residuals resulted 
from regressing a on x1, 𝜎  represents the standard deviation of d, and 𝜎  represents 
the standard deviation of x1, and 𝑟 is the desired amount of correlation between b and 
x1. It should be noted that such a transformation changes the initial distribution of the 
b vector. Therefore, in order to return b to a mean and a standard deviation equal to 
those of x1, the b vector again is transformed into x2 vector by using x2 = mb+n, where 
m = 𝜎 / 𝜎  and n = 𝜇 - m.𝜇 . Now x2 is a random, normal vector, with the same 
length, mean, and standard deviation as x1 , which shows specific amount of correlation 
with x1. 

𝑏 𝑟.𝜎 . 𝑥 𝑑.𝜎 .√1 𝑟                                          (4) 
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2.1. The Simulation Process in Supsim   

After generating RTM's, the regression parameters 𝑅 , 𝛽 , and 𝛽  for each of the 
simulated RTM's are automatically estimated, the simulated RTM's are classified 
according to the definitions by Friedman and Wall, and then the regression parameters 
for each of the simulated RTM's are scattered over four different regions on Friedman 
and Wall’s graphs (see Figure 2, panels A through C). Generated by the Python package 
of Supsim, Figure 2 shows the distribution of the regression parameters of 10,000 
simulated RTM's. As it is shown in Figure 2, the regression parameters of the majority 
of the simulated RTM's fall within the four regions of either the regular graph (in which 
𝑟  and 𝑟  are of similar signs, and 𝑟 𝑟 ) or the reverse graph (in which 𝑟  
and 𝑟  are of opposite signs, and 𝑟 𝑟 ), and only a few of them fall within the 
two regions of the classical graph (representing classical suppression situations). To 
avoid overcrowding, in Figure 2, before running Supsim, the algorithm is constrained 
to plot only the 𝑅  parameters (and not 𝛽 , and 𝛽 ) for each of the simulated RTM's 
(see Figure 2 below) (For more details about the Supsim algorithm please see user's 
guide for Supsim (Nazifi and Fadishei, 2021c)). 

3. Case Studies on Unique RTM’s  

Supsim allows users to constrain the magnitudes of 𝑟 , 𝑟 , 𝑟 , noise, and the 
amount of 𝑅  enhancement to facilitate the production of unique cases of RTM’s with 
desired characteristics that are useful for specific purposes like case studies on unique 
RTM’s. This section is devoted to case studies on unique RTM’s with fixed pairs of 𝑟  
and 𝑟 . The authors primarily focus on the most challenging situation defined by 
Hamilton (1987) in which 𝑟  and 𝑟  are both close to 0 but 𝑅  and |𝑟 | are both near 
1 and then extend the discussion to other suppression situations. 

3.1. Comparing 3D Scatterplots of Different Regions 

After running several simulations by using Supsim, with predetermined 
constraints, resulting in several sets of large number of RTM’s, the authors searched 
among numerous simulated RTM’s to find matched examples of RTM's belonging to 
different suppression or non-suppression regions. The selected RTM's were then 
plotted in Figures 3 and 4. It should be noted that in Figure 3, 𝑅  values are matched 
between the following pairs: panels A and B, panels C and D, panels E and F. In panels 
A, C, and E of Figure 3, RTM's are selected in such a way that x1 and x2 are not correlated 
with y (i.e. the y vectors are orthogonal to both x1 and x2 vectors). In Figure 4, the 𝑅  
values are matched between the following pairs: panels A and B, and panels C and D. 
In Figure 4, the absolute values of the zero-order correlations with y also are matched 
between panels A and C (interested readers can contact the authors to reach datasets 
for Figures 3 and 4). 
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Notes for Panel A: 
   * "e" is a distribution of errors of the same 

length as Yo (or original Y), while mean 
and standard deviation of "e" is 
determined arbitrarily by the user as a 
proportion of mean and standard 
deviation of Yo. "e" enables users to control 
the fit levels of the RTM's. 

  ** arguments (or arg's) are arbitrarily 
selected by the users to limit the 
magnitude of 𝑟 and 𝑟 . By using arg's, 
users control the amount of 𝑟  and 𝑟 . 

 *** There are two kinds of "allowed range" for 
𝑟  in Supsim: first, the default allowed 
range is defined by "𝑟 𝑟

 1  𝑟  1  𝑟   𝑟  𝑟

𝑟  1  𝑟  1  𝑟 "; Second, 

users are allowed to further limit the 
magnitude of 𝑟  by selecting an arbitrary 
range between 0 and 1. 

**** arg's about the amount of 𝑅  
enhancement enable users to arbitrarily 
control the levels of 𝑅  enhancement by 
selecting a proportion between 0 and 1. 

   A: The Iterative Process of Python Package of Supsim 
 

 
   B: Screenshots from the user-interface of the web-based JavaScript version of Supsim 

Figure 1.  Flowchart of the Python package of Supsim and Screenshots from the JavaScript version 
of Supsim  
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A: The 𝑅  values for thousands of RTM's Scattered among Regions of Friedman and Wall’s Regular Graph 

B: The  𝑅  values for thousands of RTM's Scattered among Regions of Friedman and Wall’s Reverse Graph 
 

C: The 𝑅  values for RTM's Scattered among Regions of Friedman and Wall’s Classical Suppression Graph 

Figure 2. Distribution of a Large-Scale Sample of RTM’s (N = 10,000) among The Regions of 
Friedman and Wall’s Graph  
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A: Classical Suppression  
with 0.11 Enhancement 
𝑹𝟐= 0.119,  𝑟 = 0.08, 
𝑟 = 0.008,  𝑟 = -0.965, 
β1= 1.322,  β2= 1.284;  
noise magnitude = 2.00 

C: Region I Situation  
with 0.483 Enhancement 
𝑹𝟐= 0.492,  𝑟 = 0.07,  
𝑟 = 0.065,  𝑟 = -0.981,   
β1= 3.635,  β2= 3.632;  
noise magnitude = 1.00 

E: Classical Suppression  
with 0.995 Enhancement 
𝑹𝟐= 0.999,  𝑟 = -0.056, 
𝑟 = -0.00036,   𝑟 = -0.996, 
β1= -17.674  β2= -17.647;  
noise magnitude = 0.04 
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B: Redundancy  
(RTM without Suppression) 
𝑹𝟐= 0.115,  𝑟 = 0.27, 
𝑟 = -0.21,  𝑟 = -0.212, 
β1= 0.227,  β2= -0.209;  
noise magnitude = 2.00 

D: Redundancy  
(RTM without Suppression) 
𝑹𝟐= 0.49,  𝑟 = 0.688, 
𝑟 = 0.657,  𝑟 = 0.86,   
β1= 0.47,  β2= 0.253;  
noise magnitude = 1.00 

F: Redundancy  
(RTM without Suppression) 
𝑹𝟐= 0.998,  𝑟 = -0.856, 
𝑟 = -0.548,  𝑟 = 0.056, 
β1= -0.837,  β2= -0.501;  
noise magnitude = 0.04 

 

Figure 3.  Matched Scatterplots from Enhancement Regions Compared to Redundancy Regions 
 (Matched for 𝑹𝟐) 
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A: Region I Situation with 0.121 Enhancement 
𝑹𝟐= 0.128,  𝑟 = -0.07,  𝑟 = -0.03, 
𝑟 = -0.956,  β1= -1.215,  β2= -1.194;  
noise magnitude = 2.0 

C: Region I Situation with 0.99 Enhancement 
𝑹𝟐= 0.997,  𝑟 = 0.07,  𝑟 = -0.03,   
𝑟 = 0.994,  β1= 9.48,  β2= -9.46;  
noise magnitude = 0.05 
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B: Region III: Suppression 
𝑹𝟐= 0.128,  𝑟 = -0.349,  𝑟 = -0.116, 
𝑟 = 0.523,  β1= -0.396,   β2= 0.091;  
noise magnitude = 2.0 

D: Region III: Suppression 
𝑹𝟐= 0.997,  𝑟 = 0.901,  𝑟 = 0.801,  
𝑟 = 0.981,  β1= 3.07,  β2= -2.211;  
noise magnitude = 0.05 

 

Figure 4.  Matched Scatterplots of Enhancement Situations Compared to Region III Suppression 
(Matched for 𝑹𝟐or Zero-Order Correlations) 

 
To obtain the best image quality, the 3D scatterplots in Figure 3 and Figure 4 are 

generated manually by entering x1, x2 and y vectors into the NCSS software and then 
drawing the 3D scatterplots. However, the entire process of drawing 3D scatterplots 
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like those in Figure 3 and Figure 4 can be performed automatically by a few clicks using 
the web-based version of Supsim (Nazifi and Fadishei, 2021c). 

For all three enhancement situations in panels A, C, and E of Figure 3, the values 
of x1 and x2 are almost independent from the values of y, which is evident from the 
scattered dots being almost orthogonal to the plane spanned by x1 and x2 in all the three 
scatterplots (it is also evident from the zero-order correlations with y in Figure 3 panels 
A, C and E that all of them are smaller than |0.08|). Indeed, for panels A, C, and E while 
x1 and x2 are highly sensitive to each other’s variability (i.e. all |𝑟 |’s 0.965  they are 
almost indifferent to the variability in y. Surprisingly, however, not only the three 𝑅  

parameters in panels A, C, and E of Figure 3 are not near 0 but also they are considerably 
different from each other as a function of different |𝑟 | values (estimated 𝑅  values are 
0.119, 0.492, and 0.997 respectively for panels A, C, and E of Figure 3). Consider, for 
example, the scatter plot in Figure 3, panel E, where the possibility interval of 𝑟  is -
0.99841 to 0.99845, and the regression surface is almost parallel to the y axis and 
orthogonal to the plane spanned by x1 and x2. However, again the estimated value of 𝑅  

is 0.999 (i.e. near 1). Although apparently the estimated 𝑅  as large as 0.999 in panel E 
is calculated correctly, because the residuals are near 0, and it is well known that 𝑅  has 
been defined as a function of residuals in some texts (Kvalseth, 1985, Alexander et al., 
2015), but this situation needs more explanations.  

Panel E in Figure 3 is an extreme example of what first was described by Hamilton 
(1987), a suppression situation with 𝑅  𝑟 𝑟  in which 𝑟  and 𝑟  are both close 
to 0 but 𝑅  and |𝑟 | are both near 1. Hamilton (1987) shows that under the condition 
of 𝑅  𝑟 𝑟  whenever 𝑅  = 1 and 𝑟  = 0 the following equality can be derived 
from formula (3) above: 

𝑟 1  𝑟                                                              (5) 

Note that by moving the  𝑟  to the left side of the equality (5) the following 
equality can be obtained: 

𝑅 𝑟 𝑟 1                                                     (6) 

Readers see that under a set of conditions defined by Hamilton (1987) including 
𝑅  𝑟 𝑟 , 𝑅  = 1, and 𝑟 0, if 𝑟  is also approximately close to 0, as it is the 
case in panel E of Figure 3, formula (3) tends to approximately substitute the value of 
𝑟  for the value of 𝑅 . It is possible to generate countless cases of Hamilton's extreme 
examples in which 𝑟  constitutes the major part of 𝑅  (for another instance see panel 
C of Figure 4). However, it is an obvious mistake to consider 𝑟  as the largest part of 
𝑅  since it is only a proportion of inter-correlation between x1 and x2 themselves. One 
might argue that Hamilton's extreme examples never occur in real empirical studies, 
and therefore such a mistake would never occur in the real world. However, the authors 
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show in the next sections that substituting a proportion of 𝑟  for the value of 𝑅  is not 
limited to Hamilton's extreme examples, but this phenomenon occurs in all different 
suppression situations.  

When Hamilton's extreme example is the case, the slop of the regression surface 
also cannot be considered as a correct slop, because it causes an incorrect replacement 
of 𝑅  with a proportion of 𝑟  by allocating inflated regression coefficients (IRC) to 
both x1 and x2 in the equation. IRC can be seen when one compares a regression model 
affected by high multicollinearity with an equivalent model with the same values of 𝑟  
and 𝑟  but 𝑟 = 0. 

Readers know that in a two-predictor model in which 𝑟 = 0, then 𝑟 𝛽  and 
𝑟 𝛽 , while in cases where 𝑟  ≠ 0 both 𝛽  and 𝛽  deviate from the respective 
𝑟  and 𝑟  values. Also it is well known that both 𝛽 coefficients and zero-order 

correlations (𝑟 ) are standardized measures. By using these principles, the authors 
suggest quantifying the severity of IRC by a novel index that hereafter is referred to as 
absolute beta-to-correlation ratio (or |𝐵𝐶|). The |𝐵𝐶| is defined as follows: 

|𝐵𝐶|
the standardized regression coefficient

the respective zero-order correlation with "y"                 7  

In Figure 3, panel E, the |𝐵𝐶| for 𝛽  equals 315.61 and it means that 𝛽  is more 
than 315 times greater than 𝛽  in an equivalent model with 𝑟  = 0. And the |𝐵𝐶| for 
𝛽  in panel E equals 49019.45 and it means that 𝛽  is more than 49000 times greater 
than 𝛽  in an equivalent model with 𝑟  = 0. In contrast, scatterplots from redundancy 
regions (panels B, D, and F in Figure 3) show no sign of IRC, because all |𝐵𝐶| ratios 
1 . For example, in panel F of Figure 3, relatively large values of 𝑟  and 𝑟 , but not 
necessarily a large value of 𝑟 , are needed to obtain a 𝑅  value as large as 0.998. In fact, 
the |𝐵𝐶| ratios for those RTM's drawn from redundancy regions are always equal to or 
smaller than 1 indicating the absence of IRC as it is evident from panels B, D, and F in 
Figure 3.   

The scatterplots in Figure 4 help further explain the issue of IRC in enhancement 
regions compared to region III (suppression). Note that panels A and B as well as panels 
C and D are matched for 𝑅  values in Figure 4. Panels A and C also are matched for 
zero-order correlations with y. The possible interval of 𝑟  in both panels A and C of 
Figure 4 is between -0.995 and 0.9992. A comparison between the two enhancement 
situations in panels A and C reveals that to obtain a 𝑅  value of 0.128, a |𝑟 | 0.956 
is needed (see panel A of Figure 4). And then in panel C only a 0.038 increase in |𝑟 | 
is needed to obtain a 𝑅  value of 0.997. Again, y is almost independent from both x1 
and x2 in both panels A and C. But in panel A, the value of |𝑟 | 0.956 is not strong 
enough to produce an orthogonal regression surface through generating a large IRC to 
obtain a 𝑅  value near 1. Indeed, panel A needs only a 0.038 increase in |𝑟 | value to 
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perform as well as panel C of Figure 4 in enhancing the 𝑅  up to 0.997. The |𝐵𝐶| ratios 
are 17.36 and 39.8 respectively for 𝛽  and 𝛽  in panel A of Figure 4 compared to 135.43 
and 315.34 respectively for 𝛽  and 𝛽  in panel C of Figure 4.  

Similarly, IRC is always present in RTM’s drawn from region III (suppression) (see 
panels B and D in Figure 4). For instance, the |𝐵𝐶| ratios for panel B of Figure 4 are 
1.135 and 0.784 respectively for 𝛽  and 𝛽 , while they are more sever for panel D of 
Figure 4 as they are 3.41 and 2.76 respectively for 𝛽  and 𝛽 .  

So far the readers have seen that IRC may not occur in two-predictor models falling 
within redundancy regions while it is always present in models falling within region III 
(suppression), region I or region IV (enhancement). These conclusions have already 
been verified by the definitions presented by Friedman and Wall (2005) for each of the 
four regions on their graphs.  

By referring to the important issue of statistical control in two-predictor linear 
regression, the next section presents the results of further case studies on RTM's, which 
call on researchers to be more cautious about the issue of IRC in suppression situations. 

4. New Mathematical Reasoning: The Statistical Control Function 

In this section the authors show that comparing the mechanisms of statistical 
control between regression models affected by suppression effects with those not 
affected can provide important new insights into the effects of multicollinearity on the 
results of two-predictor regression models. When a second predictor x2 is entered into 
the regression equation, multicollinearity between x1 and x2 raises the issue of statistical 
control. To better understand the effects of multicollinearity the authors suggest 
equality (8) that can be derived from formula (3) by moving the terms 1 𝑟  from the 
denominator to the left side of the equation, multiplying them by 𝑅  and then moving 
the term 𝑅 . 𝑟  to the right side: 

𝑅  𝑟 𝑟 2 𝑟 𝑟 𝑟  𝑅 𝑟                               (8) 

Of course, equality (8) is not an optimum way for calculating 𝑅 , but it is still 
important because it helps figure out the role of multicollinearity by partitioning 𝑅  
into two parts: a) the sum of the first two terms (i.e. 𝑟 𝑟 ) which we call the 
collinearity-independent part (CIP), and b) the sum of the second two terms (i.e. 

2 𝑟 𝑟 𝑟  𝑅 𝑟 ), which we call the collinearity-dependent part (CDP). It should 
be noted that when calculating 𝑅 , the terms 2 𝑟 𝑟 𝑟  𝑅 𝑟  or CDP are added 
to the terms 𝑟 𝑟  or CIP in order to control for the common variance explained 
jointly by x1 and x2 in cases where multicollinearity is present. However, if 𝑟  = 0, then 
the sum of the terms 2 𝑟 𝑟 𝑟  𝑅 𝑟  is equal to 0, but 𝑟  is usually non-zero 
and accordingly the sum of the terms 2 𝑟 𝑟 𝑟  𝑅 𝑟  is usually non-zero. The 
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terms 2 𝑟 𝑟 𝑟  𝑅 𝑟  here should be regarded as a proportion of 𝑟  because 𝑟  
and 𝑟  are held constant to study the effects of variations in 𝑟 . Indeed, equality (8) 
shows that when redundancy is the case, the 𝑅  formula tends to subtract some 
proportion of 𝑟  from 𝑟 𝑟  to prevent the estimated value of 𝑅  from containing 
any part of the common variance explained jointly by x1 and x2. Therefore, the terms 

2 𝑟 𝑟 𝑟  𝑅 𝑟  hereafter are called the statistical control part (SCP) that usually 
subtracts some proportion of 𝑟  from 𝑟 𝑟 . However, there is evidence that under 
the enhancement conditions, especially those described by Hamilton (1987), the SCP 
can become positive (see Table 3 below).  

By obtaining equality (8) from formula (3) for the first time, Hamilton (1987) 
argues that in cases where 𝑅  𝑟 𝑟 , 𝑟 = 0, and 𝑅  1, then the equality (5) 
can be derived from formula (3). In fact, by suggesting equality (5), Hamilton (1987) 
has been first to show that in extreme cases under the condition of 𝑅  𝑟 𝑟 , 
whenever 𝑅  1, 𝑟 = 0, and 𝑟  is also approximately near 0, then formula (3) tends 
to approximately substitute the value of 𝑟  for the value of 𝑅 . Generally, when 
enhancement is the case, the SCP is always positive (see Table 3 below) adding some 
proportion of 𝑟  to the value of 𝑟 𝑟 , which in turn leads to the condition of 𝑅
 𝑟 𝑟 .  

So far it is evident that there is a statistical control function inherent in formula (3), 
which if carefully quantified can help explain why suppression situations occur. 
Readers know that if 𝑟  = 0, then 𝑅  = 𝑟 𝑟 , while in cases where 𝑟  ≠ 0, then the 
value of 𝑅  deviates from the value of 𝑟 𝑟  (see Table 3 below). This explains why 
many texts (e.g. Cohen et al., 2003, Darlington and Hayes, 2017) suggest the following 
formulas: 

𝑅 .  𝑟  𝑠𝑟                                                           (9) 

𝑠𝑟  
 

                                                          (10) 

where 𝑠𝑟  is the semipartial correlation of x2 with y, and 𝑠𝑟  is its squared value 
representing a proportion of the total variance in y explained by x2 over and above the 
variance explained by x1. In fact, when calculating 𝑅 , 𝑠𝑟  is used instead of 𝑟  to 
prevent 𝑅  from including the common variance explained jointly by x1 and x2 in cases 
of multicollinearity (i.e. when 𝑟  ≠ 0). Here, again, if 𝑟  = 0, then 𝑠𝑟  = 𝑟 , while if 
𝑟  ≠ 0 then 𝑠𝑟  deviates from 𝑟 . Indeed, 𝑠𝑟  in formula (9) can be divided into two 
parts: 

𝑠𝑟  𝑟 𝑆𝐶𝑃                                                           (11) 

And formula (9) can be rewritten as follows: 

𝑅 .  𝑟  𝑟 𝑆𝐶𝑃                                                (12) 
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Therefore, equality (11) gives another simple method for quantifying the SCP:   

𝑆𝐶𝑃 𝑠𝑟  𝑟                                                             (13) 

As a result when 𝑟 , 𝑟  and 𝑟  are known, the statistical control part (SCP) also 
can be defined as a function of the combination of three correlations: 

𝑆𝐶𝑃 𝑓 𝑟 , 𝑟 , 𝑟  
 

 𝑟                       (14) 

Readers see that the first term in function (14) is equal to 𝑠𝑟 , and therefore 
function (14) is identical to equality (13). 

As the readers may guess, there is also a collinearity-dependent part (CDPB) in both 
𝛽  and 𝛽  formulas, which help explain the reason why regression coefficients become 
inflated in suppression situations. The following equalities can be derived from 
formulas of 𝛽  and 𝛽  (see formula (2) above): 

𝛽 𝑟 𝑟 𝑟  𝛽 𝑟                                                  (15) 

𝛽 𝑟 𝑟 𝑟  𝛽 𝑟                                                  (16) 

Similarly, equalities (15) and (16) each partition the respective standardized 
regression coefficients into two parts: a) the first term, which is the zero-order 
correlation with y (𝑟  or 𝑟 ), is called the collinearity-independent part (CIPB) and b) 
the sum of the next two terms (i.e. 𝑟 𝑟  𝛽 𝑟  in equality (15) and 𝑟 𝑟
 𝛽 𝑟  in equality (16)) is called the collinearity-dependent part (CDPB). The authors 
suggest using CDPB1 as the collinearity-dependent part in 𝛽  and CDPB2 as the 
collinearity-dependent part in 𝛽 . Here, again, the aim of adding CDPB terms to each 
zero-order correlations is to penalize the regression coefficients for multicollinearity. 
However, the term "penalty" can be used strictly for CDPB1 and CDPB2 values as long as 
no kind of two-predictor suppression exists in the model, because only and only over 
the redundancy regions the signs of CDPB1 and CDPB2 are constantly opposite to the 
signs of 𝑟  and 𝑟 , making them to produce 𝛽  and 𝛽  values smaller than or equal 
to 𝑟  and 𝑟  (see Table 3 below). In contrast, in region III (suppression) as well as 
both region I and region IV (enhancement), the sign of CDPB1 is always similar to the 
sign of 𝑟  adding progressively greater proportions of 𝑟  to 𝑟  to produce more and 
more inflated 𝛽  values as |𝑟 | increases to its maximum value (see Table 3 below). 
Interestingly, over both the region III (suppression) and the region IV (enhancement), 
always |𝐶𝐷𝑃 |  𝑟  and the signs of 𝐶𝐷𝑃 's are always opposite to the signs of the 
respective 𝑟 's making them to produce inflated 𝛽  values of the opposite signs 
compared to 𝑟 . Therefore, over the region III (suppression) and the region IV 
(enhancement) situations, CDPB2 subtracts progressively larger proportions of 𝑟  from 
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𝑟  as |𝑟 | increases to its maximum value (see Table 3 below). Finally, in region I 
(enhancement) the sign of CDPB2 values is always similar to the sign of 𝑟  adding 
progressively larger proportions of 𝑟  to 𝑟  to produce inflated 𝛽  values as |𝑟 | 
increases to its maximum value (see Table 3 below). 

To verify these observations, consider, for example, an arbitrary, fixed pair of 𝑟  
and 𝑟  letting 𝑟  vary over its possible limit. This arbitrary pair can be (-0.6, -0.5). 
Variations in the regression parameters in response to the variations in 𝑟  for the pair 
(-0.6, -0.5) are shown in Table 3. To further discuss the mechanisms of statistical 
control, also for the pair (-0.6, -0.5), all the values of 𝑅 , 𝛽 , and 𝛽  are plotted against 
different values of 𝑟  in panels A through C of Figure 5. 

Table 3.  Variations in the regression parameters according to the variation in 𝑟  for the pair 
 𝑟 0.6, 𝑟 0.5,𝑛 25 

γ = 0.833333333 Lower limit of 𝒓𝟏𝟐 = -0.39282 
𝟐𝜸 𝟏 𝜸𝟐⁄  = 0.983606557 Upper limit of 𝒓𝟏𝟐 = 0.9928203 
Range* of 

𝒓𝟏𝟐 
𝑹𝟐 𝜷𝟏 𝜷𝟐 𝒔𝒓𝟐

𝟐 SCP CDPB1  CDPB2  𝐒𝐄𝛃's 

Max=0.992820323 1.000 -7.240 6.688 0.640 0.390 -6.640 7.188 0.000 
0.99 0.80402 -5.28 4.72 0.444 0.194 -4.68 5.22 0.669 

ratio=0.983606557 0.610 -3.327 2.773 0.250 0.000 -2.727 3.273 0.738 
0.90 0.36842 -0.79 0.21 0.008 -0.241 -.189 0.710 0.389 

γ = 0.833333333 0.360 -0.600 0.000 0.000 -0.250 0.000 0.500 0.309 
0.80 0.36111 -0.56 -0.06 0.001 -0.249 0.044 0.44 0.284 
0.70 0.37255 -0.49 -0.16 0.013 -0.237 0.11 0.34 0.236 
0.60 0.39063 -0.47 -0.22 0.031 -0.219 0.131 0.28 0.208 
0.50 0.41333 -0.47 -0.27 0.053 -0.197 0.133 0.23 0.189 
0.40 0.44048 -0.48 -0.31 0.080 -0.17 0.123 0.19 0.174 
0.30 0.47253 -0.49 -0.35 0.113 -0.137 0.105 0.148 0.162 
0.20 0.51042 -0.52 -0.40 0.150 -0.099 0.079 0.10 0.152 
0.10 0.55556 -0.56 -0.44 0.196 -0.054 0.044 0.055 0.143 
0.00 0.61000 -0.60 -0.50 0.250 0.000 0.000 0.000 0.133 
-0.10 0.67677 -0.66 -0.57 0.317 0.067 -0.056 -0.065 0.122 
-0.20 0.76042 -0.73 -0.65 0.400 0.15 -0.129 -0.146 0.106 
-0.30 0.86813 -0.82 -0.75 0.508 0.258 -0.224 -0.247 0.081 

Min=-
0.392820323 1.000 -0.942 -0.870 0.640 0.390 -0.342 -0.370 0.000 

-0.40 1.01190 -0.95 -0.88 0.652 0.4 -0.352 -0.381 - 
-0.50 1.21333 -1.13 -1.07 0.853 0.6 -0.533 -0.567 - 
-0.60 1.51563 -1.41 -1.34 1.156 0.9 -0.806 -0.844 - 
-0.70 2.01961 -1.86 -1.80 1.660 1.4 -1.26 -1.304 - 
-0.80 3.02778 -2.78 -2.72 2.668 2.41 -2.17 -2.22 - 
-0.90 6.05263 -5.53 -5.47 5.693 5.44 -4.92 -4.97 - 
-0.99 60.50251 -55.03 -54.97 60.143 59.9 -54.89 -54.48 - 

Note: SCP = statistical control part; CDPB1 = collinearity-dependent part of 𝛽 ; CDPB2 = collinearity-dependent 
part of 𝛽 ; 𝑆𝐸𝛽's = standard errors of 𝛽's; Min = minimum allowed value of 𝑟 ; Max = maximum allowed value 
of 𝑟 ; ratio = 2𝛾 1 𝛾⁄ ; *: The possibility interval of 𝑟  is highlighted in gray in 𝑟  column. Note that only the 
highlighted area on the table falls within the allowed range of 𝑟 . 
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A:  Changes in 𝑅  According to 
Changes in Both 𝑟  and SCP 

a: Region I: Enhancement:  
When calculating the 𝑅  value, 
SCP adds progressively greater 
proportions of 𝑟  to 𝑟 𝑟  
as 𝑟  approaches its minimum 
value.  
b: Region II: Redundancy:  
SCP penalizes 𝑅  for 
multicollinearity by subtracting 
progressively greater proportions 
of 𝑟  from 𝑟 𝑟  as 𝑟  
approaches 𝛾.  
c: Region III: Suppression:  
SCP subtracts progressively 
smaller proportions of 𝑟  from 
𝑟 𝑟  as 𝑟  approaches 

2𝛾 1 𝛾⁄  until the penalty level 
against multicollinearity reaches 0 
by 𝑟  = 2𝛾 1 𝛾⁄ .  
d: Region IV: Enhancement: 
When calculating the 𝑅  value, 
SCP adds progressively greater 
proportions of 𝑟  to 𝑟 𝑟  
as 𝑟  approaches its maximum 
value. 

B: Changes in 𝛽  According to 
Changes in Both 𝑟  and CDPB1 

a: Region I: Enhancement:  
When calculating 𝛽 , CDPB1 adds 
progressively greater proportions 
of 𝑟  to 𝑟  to create inflated 𝛽  
values as 𝑟  approaches its 
minimum value. The signs of 
CDPB1 and 𝑟  are always similar 
in this region.  
b: Region II: Redundancy:  
the CDPB1 penalizes 𝛽  for 
multicollinearity by subtracting 
different proportions of 𝑟  from 
𝑟  when calculating 𝛽 . When 𝑟  
= 0.00 or 𝑟  = 𝛾 the penalty level 
against multicollinearity always is 
0 and this explains why 𝛽  = 𝑟 . 
The CDPB1 and the 𝑟  are always 
of the opposite signs in this 
region.  
c: Region III: Suppression:  
CDPB1 adds progressively greater 
proportions of 𝑟  to 𝑟  to create 
inflated 𝛽  values as 𝑟  
approaches 2𝛾 1 𝛾⁄ . The signs 
of  CDPB1 and 𝑟  are always 
similar in this region.  
d: Region IV: Enhancement: 
CDPB1 adds progressively greater 
proportions of 𝑟  to 𝑟  to create 
inflated 𝛽  values as 𝑟  
approaches its maximum value. 
The sign of CDPB1 and 𝑟  are 
always similar in this region. 

C: Changes in 𝛽  According to 
Changes in Both 𝑟  and CDPB2 
a: Region I: Enhancement:  
When calculating 𝛽 , CDPB2 adds 
progressively greater proportions 
of 𝑟  to 𝑟  to create inflated 𝛽  
values as 𝑟  approaches its 
minimum value. The signs of 
CDPB2 and 𝑟  are always similar 
in this region. 
b: Region II: Redundancy:  
CDPB2 penalizes 𝛽  for 
multicollinearity by subtracting 
progressively greater proportions 
of 𝑟  from 𝑟  as 𝑟  approaches 
 𝛾. CDPB2 and 𝑟  are always of 
opposite signs in this region. 
c: Region III: Suppression: 
Always |CDPB2| > |𝑟 |, CDPB2 and 
𝑟  are always of opposite signs in 
this region, and CDPB2 subtracts 
progressively greater proportions 
of 𝑟  from 𝑟  as 𝑟  approaches 
2𝛾 1 𝛾⁄ . Therefore, CDPB2 

creates inflated 𝛽  values of the 
opposite sign with respect to 𝑟 . 
d: Region IV: Enhancement: 
Always |CDPB2| > |𝑟 |, CDPB2 and 
𝑟  are always of opposite signs in 
this region, and CDPB2 subtracts 
progressively greater proportions 
of 𝑟  from 𝑟  as 𝑟  approaches 
its maximum value. CDPB2 creates 
inflated 𝛽  values of the opposite 
sign  with respect to 𝑟 . 

Figure 5.  Comparing the Statistical Control Mechanisms Among Suppression and Non-Suppression 
Situations  
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The possibility interval of 𝑟  for the pair (-0.6, -0.5) is -0.39282 ≤ 𝑟  ≤ 0.9928203. 
Table 3 and panels A through C in Figure 5 show that when the minimum allowed value 
of 𝑟  is used (i.e. 𝑟  = -0.39282) then the calculations indicate that 𝑅  = 𝑟  𝑠𝑟 = 

0.6 0.64 = 1, 𝛽  0.942, 𝛽  0.87, 𝑠𝑟 = -0.8, 𝑠𝑟  0.64, SCP = 𝑠𝑟
 𝑟 = 0.64 – 0.25 = 0.39, CDPB1 = -0.342, CDPB2 = -0.37. Because this is a region I 
situation (enhancement) (see the definitions in Table 1), therefore, the sign of the SCP 
is positive and the signs of CDPB1 and CDPB2 are both similar to the signs of 𝑟  and 𝑟 , 
respectively. Such conditions in region I (enhancement) cause SCP playing a role 
opposite to statistical control mechanism, because CDPB1 and CDPB2 in region I 
(enhancement) add some proportions of 𝑟  to both 𝑟  and 𝑟 , instead of penalizing 
them for multicollinearity, a mechanism that causes inflation in 𝛽  and 𝛽  values. 
Therefore, it can be seen that 𝛽  and 𝛽  values for the pair (-0.6, -0.5), are 
respectively 1.57 and 1.74 times greater than 𝛽  and 𝛽  in an equivalent model with 
𝑟  = 0 (see Table 3). Panel A in Figure 5 also shows that, in examples where the 
minimum allowed 𝑟  is used, 𝑆𝐶𝑃 1 𝑟  𝑟 0.39.  

In contrast, Table 3 shows that if 𝑟  = 0 then 𝑅  = 𝑟  𝑠𝑟  𝑟  𝑟 = 
0.6 0.5  = 0.61, 𝛽 𝑟 0.6, 𝛽  𝑟 0.5, 𝑠𝑟  𝑟  = -0.5, 

𝑠𝑟  𝑟  = 0.25, SCP = 𝑠𝑟  𝑟 = 0.25 – 0.25 = 0, CDPB1 = 0, CDPB2 = 0 (see also 
panels A through C in Figure 5). Obviously, when 𝑟  = 0 the 𝑅  value cannot exceed 
the value of 𝑟  𝑟 .  

Now, consider a condition in which 𝑟 𝛾
.

.
 0.833333333. In such 

a condition Table 3 shows that 𝑅  = 𝑟  𝑠𝑟 = 0.6 0 = 0.36, 𝛽  0.6, 𝛽
 0, 𝑠𝑟 = 0, 𝑠𝑟  0, SCP = 𝑠𝑟  𝑟 = 0 – 0.25 = – 0.25, CDPB1 = 0, CDPB2 = 𝑟
0.5. These results show that 𝑟 𝛾 is the end-point of the redundancy region, in which 
the statistical control function removes the entire part of x2 by estimating 𝛽  0 and 
𝑆𝐶𝑃  𝑟 . Accordingly, panel A in Figure 5 shows that under such a condition 
𝑆𝐶𝑃 0.25. In fact, when 𝑟  = 𝛾, linear regression model assumes that any 
explained variance in y related to x2 is in common with x1 and therefore x2 has no 
specific contribution to add to the explained variance in y.  

And for the pair (-0.6, -0.5), if 𝑟  =  = 0.983606557 then 𝑅  = 𝑟  𝑠𝑟  
𝑟  𝑟  = 0.6 0.5  = 0.61, 𝛽 3.327, 𝛽  2.773, |𝑠𝑟 |  𝑟  

0.5,  𝑠𝑟  𝑟  = 0.25, SCP = 𝑠𝑟  𝑟 = 0.25 – 0.25 = 0, CDPB1 = -2.727, CDPB2 = 
3.2726 (also see panels A through C in Figure 5). Although in the latter case, SCP is 0 
and again 𝑅  = 𝑟  𝑟 , contrary to situations where 𝑟  =0, CDPB1 and CDPB2 here 
are quite large creating inflated 𝛽  and 𝛽  with 𝛽  being 5.545 times greater than 
𝛽  in an equivalent model with 𝑟  = 0 and 𝛽  being 5.546 times greater than 𝛽  

in an equivalent model with 𝑟  = 0. Another important insight here is that as |𝑟 | 
increases beyond the value of |𝛾| the statistical control mechanism is weakened 
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gradually so that by |𝑟 | =  the penalty level against multicollinearity reaches 0 
(i.e. SCP = 0; see panels A through C in Figure 5).  

Finally, if the maximum allowed value of 𝑟  is used (i.e. 𝑟  = 0.992820323) then 
𝑅  = 𝑟  𝑠𝑟 = 0.6 0.64 = 1, 𝛽  7.24, 𝛽  6.6881, 𝑠𝑟 = 0.79999861, 
𝑠𝑟  0.64, SCP = 𝑠𝑟  𝑟 = 0.64 – 0.25 = 0.39, CDPB1 = -6.64, CDPB2 = 7.1881. Again, 
here, 𝑆𝐶𝑃 1 𝑟  𝑟 0.39, but both CDPB1 and CDPB2 show that the IRC is 
much more sever compared to the case where the minimum allowed value of 𝑟  is used. 
In this case, 𝛽  and 𝛽  are respectively 12.07 and 13.376 times greater than 𝛽  and 
𝛽  in an equivalent model with 𝑟  = 0. 

5. Discussion 

The concept of two-predictor suppression effects has been the subject of debate 
over terminology (Friedman and Wall, 2005), definition, and interpretation 
(Mendershausen, 1939, Horst, 1941, Meehl, 1945, Conger and Jackson, 1972, Conger, 
1974, Tzelgov and Henik, 1991, Velicer, 1978, Cohen and Cohen, 1975, Lynn, 2003, 
Sharpe and Roberts, 1997, Shieh, 2001) for decades. However, one point of agreement 
has been the approach chosen by some researchers who agree that a suppressor variable 
showing “no or low” correlation with the criterion variable y but is correlated with 
another significant predictor x1, can be included in the regression equation to increase 
the predictive validity of x1 and it explains why they consider suppressor variables useful 
and even desirable for situations where the purpose of the study is prediction (Conger 
and Jackson, 1972, Horst, 1941, Pedhazur, 1997, Tzelgov and Henik, 1991, Watson et 
al., 2013, Friedman and Wall, 2005, Darlington and Hayes, 2017, Cohen et al., 2003). 
On the other hand, some texts have warned researchers against multicollinearity and 
suggest some “rules of thumb” to limit the magnitude of multicollinearity between 
predictor variables, especially when the purpose of the study is "theoretical explanation" 
(e.g. Cohen et al., 2003). They argue that highly correlated predictor variables, when 
simultaneously included in the regression equation, cause “instabilities” in different 
meanings: first, increased standard errors, as a function of high multicollinearity, may 
cause “instability” in estimating the regression coefficients (Cohen et al., 2003, Fox, 
1997, Neter et al., 1996); second, computational inaccuracies are more likely to occur 
in calculating the inverses of matrices with highly correlated variables (Cohen and 
Cohen, 1983); and third, high levels of 𝑟  can lead to rapid increase in 𝛽 , a condition 
in which “the interpretation of regression coefficients may become problematic”  
(Cohen et al., 2003). Friedman and Wall (2005) argue against the latter texts by 
presenting evidence that show the standard errors (SE's) of regression coefficients do 
not increase steadily with increasing multicollinearity and there are cases in which low 
standard errors are coincident with high multicollinearity and that SE's of regression 
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coefficients always become 0 when the multicollinearity for each given pair of 𝑟  and 
𝑟  reaches its absolute maximum values (see Table 3). They also argue that the issue of 
computational accuracy is no longer problematic for the latest generations of regression 
algorithms (Friedman and Wall, 2005). And finally, Friedman and Wall (2005) 
conclude that when regressing y on two predictors there are no limits on 
multicollinearity except those warranting a nonnegative definite matrix. Although 
Friedman and Wall's observation concerning SE's of regression coefficients is quite 
correct, their final conclusion, which assumes no limits should be imposed on 
multicollinearity except nonnegative, definiteness limitation is incorrect. Similarly, as 
Cohen et al. (2003) observed, it is true that there is a rapid increase in 𝛽  at high levels 
of 𝑟 , but their agreement to use the suppressor variables in order to increase 𝑅  in 
cases where the main purpose of the study is increasing the predictive validity is 
misleading. As noted earlier in the introduction section, two important aspects of two-
predictor suppression effects have been overlooked in the previous studies that have led 
researchers to misleading conclusions: first, failure to compare 3D scatterplots of 
suppression and non-suppression situations; and second, insufficient attention to the 
important issue of statistical control mechanisms in non-suppression compared to 
suppression situations. Taking into consideration these two important aspects, this 
study achieved significant findings as follows. 

First, a closer look at the integral terms in 𝑅 , 𝛽 , and 𝛽  formulas indicates that 
these formulas consist of two separate parts (see Equalities 8, 15 and 16 above): the 
collinearity-independent part (CIP) and the collinearity-dependent part (CDP). The 
CDP terms in 𝑅 , 𝛽 , and 𝛽  formulas are associated with statistical control 
mechanisms, and therefore should be quantified and examined separately. 

Second, the CDP terms in 𝑅  formula act differently in redundancy and 
suppression regions in terms of statistical control mechanisms (see Figure 5 panel A). 
While the SCP is always negative in redundancy regions penalizing 𝑅  for 
multicollinearity, the penalty level of SCP decreases progressively in region III 
(suppression), which in turn causes SCP to subtract progressively smaller proportions 
of 𝑟  from 𝑟  as 𝑟  approaches 2𝛾 1 𝛾⁄ . At 2𝛾 1 𝛾⁄  point, the penalty level of 
SCP against multicollinearity reaches 0. Beyond the 2𝛾 1 𝛾⁄  ratio, in region IV 
(enhancement), SCP becomes positive and adds progressively greater proportions of 
𝑟  to 𝑟  as 𝑟  approaches its absolute maximum value. As mentioned earlier, 
according to the definitions in Table 1 and Table 2, when 𝑟  and 𝑟  have similar signs, 
the region covering all 𝑟 's < 0 create the "region I" (enhancement) (or reciprocal 
suppression), but when 𝑟  and 𝑟  are of opposite signs, the region covering all 𝑟 's > 
0 produces the "region I" (enhancement) (another type of reciprocal suppression). It 
should be noted that SCP is positive in both types of "region I" situations, adding 
progressively greater proportions of 𝑟  to 𝑟  as 𝑟  approaches its absolute maximum 
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values. For example, for the pair (-0.6, -0.5), panel A in Figure 5 shows that SCP is 
positive and equal to 1 𝑟  𝑟  both at the upper limit and at the lower limit of 
𝑟 , whereas in cases where 𝑟  = 0, also SCP = 0; if 𝑟  = γ, SCP = 𝑟 ; and if 𝑟  = 
2𝛾 1 𝛾⁄ , SCP = 0.  

According to these findings, the authors suggest renaming the regions suggested by 
Friedman and Wall (2005) in terms of their statistical control functioning. Therefore, 
the following labels are suggested: "region I: statistical anti-control", "region II: 
statistical control", "region III: statistical de-control", and "region IV: statistical anti-
control", respectively for "region I: enhancement", "region II: redundancy", "region III: 
suppression", and "region IV: enhancement". In fact, the aim of these "relabelling" is to 
show that all different two-predictor suppression effects are different kinds of 
"dysregulations in statistical control" and that the "correct statistical control" can occur 
only and only in "region II: redundancy". The authors emphasize that no proportions 
of 𝑟  can replace the 𝑅  value, and therefore the results produced by two-predictor 
suppression effects are completely erroneous and misleading.   

Third, the CDP terms in formulas of both 𝛽  and 𝛽  also function differently in 
redundancy and suppression regions (see Figure 5, panels B and C). The signs of both 
CDPB1 and CDPB2 values in redundancy regions are always opposite to the signs of 𝑟  
and 𝑟  and they always subtract different proportions of 𝑟  from 𝑟  and 𝑟  to 
penalize the resulting 𝛽  and 𝛽  values for multicollinearity and to produce 𝛽  and 𝛽  
values, which are always smaller than or equal to 𝑟  and 𝑟 , respectively. In contrast, 
in region III (suppression) the signs of CDPB1 values are always similar to the sign of 
𝑟 , adding progressively greater proportions of 𝑟  to 𝑟  to produce inflated 𝛽  values 
as 𝑟  approaches 2𝛾 1 𝛾⁄ , whereas the signs of CDPB2 values are always opposite to 
the sign of 𝑟  in region III (suppression), but always |𝐶𝐷𝑃 |  𝑟  in this region, a 
condition in which  CDPB2  produces inflated 𝛽  values of the opposite sign compared 
to 𝑟 . Similarly, in region IV (enhancement) the signs of CDPB1 values are always 
similar to the sign of 𝑟 , creating inflated 𝛽  values as 𝑟  approaches its absolute 
maximum value, whereas the signs of CDPB2  values again are always opposite to the 
sign of 𝑟 , but always |𝐶𝐷𝑃 |  𝑟  in this region, a condition that cause CDPB2 to 
produce inflated 𝛽  values of the opposite sign compared to 𝑟 . In contrast, in region 
I (enhancement), the signs of both CDPB1 and CDPB2 values are always similar to the 
signs of 𝑟  and 𝑟  adding gradually greater proportions of 𝑟  to the zero-order 
correlations to create progressively more inflated 𝛽  and 𝛽  values as 𝑟  approaches its 
absolute maximum value. These findings show that the statistical control mechanisms 
can correctly adjust the slope of the regression surface only and only in redundancy 
regions, while the slope of the regression surface unjustifiably increases in all the three 
suppression regions in such a way that geometrically speaking the regression surface 
sharply cuts the plane spanned by both x1 and x2; a condition that can be called "slope 
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dysregulation" (see Figure 3 and Figure 4). Again, the authors emphasize that no 
proportions of 𝑟  can be added to the values of regression coefficients, and therefore 
the slope regulations affected by two-predictor suppression effects are completely 
erroneous and misleading. 

6. Conclusion 

This study depicts a clear picture of the performance of the statistical control 
function in different suppression and non-suppression situations, and provides 
a mathematical proof indicating that the statistical control function does not work 
correctly in suppression situations. These findings provide evidence that the regression 
parameters affected by suppression effects should be regarded as incorrect estimations. 
This study also introduces an algorithm that can generate numerous simulated datasets 
showing all different kinds of suppression and non-suppression situations known so 
far, and therefore they help resolve the theoretical complexities related to two-predictor 
suppression situations by expanding the pervious knowledge in this field. Based on 
these results, researchers are strongly recommended to examine their linear regression 
models to make sure that their results are not affected by suppression effects. These 
findings also provide important implications for the issue of "effect size" in linear 
regression and can change the educational contents and materials of the topic of two-
predictor suppression effects in linear regression.   

Like any other research, this study also involves important limitations. First, the 
case studies and examples include only models with two predictors. Second, only 
continuous quantitative variables are included, and further investigation on regression 
with categorical variables or a combination of continuous and categorical variables 
remains to be carried out. The implications of these findings for the issue of "effect size" 
in linear regression also need to be investigated in the future. Future research should 
focus on providing researchers with other applied algorithms or packages to help them 
detect suppression effects in their actual datasets for regression models with two or 
more predictors. Finally, an important question is how these findings and tools can be 
best incorporated into educational contents and materials.  
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