
Deng, Xun et al.

Working Paper

Analysis of DeFi oracles

Bank of Canada Staff Discussion Paper, No. 2024-10

Provided in Cooperation with:
Bank of Canada, Ottawa

Suggested Citation: Deng, Xun et al. (2024) : Analysis of DeFi oracles, Bank of Canada Staff Discussion
Paper, No. 2024-10, Bank of Canada, Ottawa,
https://doi.org/10.34989/sdp-2024-10

This Version is available at:
https://hdl.handle.net/10419/301927

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.34989/sdp-2024-10%0A
https://hdl.handle.net/10419/301927
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Bank of Canada staff discussion papers are completed staff research studies on a wide variety of subjects relevant to
central bank policy, produced independently from the Bank’s Governing Council. This research may support or
challenge prevailing policy orthodoxy. Therefore, the views expressed in this paper are solely those of the authors and
may differ from official Bank of Canada views. No responsibility for them should be attributed to the Bank.
DOI: https://doi.org/10.34989/sdp-2024-10 | ISSN 1914-0568 ©2024 Bank of Canada

Staff Discussion Paper/Document d’analyse du personnel—2024-10

Last updated: July 9, 2024

Analysis of DeFi Oracles
by Xun Deng,1 Sidi Mohamed Beillahi,1 Cyrus Minwalla,2 Han Du,2
Andreas Veneris1 and Fan Long1

1University of Toronto
xun.deng@mail.utoronto.ca, sm.beillahi@utoronto.ca,
veneris@eecg.toronto.edu, fanl@cs.toronto.edu

2Information Technology Services
Bank of Canada
CMinwalla@bankofcanada.ca, HDu@bankofcanada.ca

Canadian Economic Analysis Department
Bank of Canada
bankofcanada.ca

mailto:xun.deng@mail.utoronto.ca
mailto:sm.beillahi@utoronto.ca
mailto:veneris@eecg.toronto.edu
mailto:fanl@cs.toronto.edu
mailto:CMinwalla@bankofcanada.ca
mailto:HDu@bankofcanada.ca

i

Acknowlegements
We thank ICSE 2024 anonymous reviewers for their insightful comments on an early version of this
paper. This work was supported by Mitacs through the Mitacs Accelerate program.

ii

Abstract
This paper presents OVer, a framework designed to automatically analyze the behaviour of
decentralized finance (DeFi) protocols when subjected to a "skewed" oracle input. OVer firstly
performs a symbolic analysis on the given contract and constructs a model of constraints. Then, the
framework leverages a satisfiability modulo theory solver to identify parameters that allow its secure
operation. Furthermore, guard statements can be generated for smart contracts that may use the
oracle values, thus effectively preventing oracle manipulation attacks. Empirical results show that
OVer can successfully analyze all 10 benchmarks collected, which encompass a diverse range of DeFi
protocols. Additionally, this paper illustrates that current parameters used in the majority of
benchmarks are inadequate to ensure safety when confronted with significant oracle deviations. It
shows that existing ad-hoc control mechanisms such as introducing delays are often insufficient or
even detrimental to protect the DeFi protocols against the oracle deviation in the real world.
Moreover, this paper delves into the design considerations of price oracles within a potential
blockchain-based digital currency.

Topics: Central bank research, digital currencies and fintech, payment clearing and settlement systems

JEL codes: G, G1, G15, E4, E42, E5, E51, O, O3, O31

Résumé
Cette étude présente OVer, un cadre conçu pour analyser automatiquement le comportement des
protocoles de finance décentralisée lorsqu’ils sont soumis à un oracle « biaisé ». OVer effectue
d’abord une analyse symbolique d’un contrat donné et construit un modèle de contraintes. Ensuite,
le cadre s’appuie sur un solveur de satisfiabilité modulo des théories pour définir les paramètres qui
permettent son fonctionnement sûr. De plus, des mesures de sauvegarde peuvent être générées pour
les contrats intelligents qui peuvent utiliser les valeurs de l’oracle, empêchant ainsi les attaques par
manipulation de ce dernier. Les résultats empiriques montrent qu’OVer peut analyser avec succès les
dix protocoles de référence sélectionnés, qui englobent une gamme variée de protocoles de finance
décentralisée. En outre, l’étude montre que les paramètres actuels utilisés dans la majorité des
protocoles de référence ne permettent pas de garantir la sécurité en cas de divergences importantes
portées par l’oracle. Elle montre également que les mécanismes de contrôle ad hoc existants, comme
l’introduction de délais, sont souvent insuffisants, voire nuisibles, pour protéger les protocoles contre
de telles déviations dans le monde réel. Enfin, l’étude examine les considérations relatives à la
conception des oracles de prix dans le cadre d’une éventuelle monnaie numérique basée sur la chaîne
de blocs.

Sujets : Monnaies numériques et technologies financières; Recherches menées par les banques
centrales; Systèmes de compensation et de règlement des paiements

Codes JEL : G, G1, G15, E4, E42, E5, E51, O, O3, O31

1 INTRODUCTION
Blockchains offer decentralized, programmable, robust ledgers on

a global scale. Smart contracts, which are programs deployed on

blockchains, encode transaction rules to govern these blockchain

ledgers. This technology has been adopted across a wide range

of sectors, including financial services, supply chain management

and entertainment. A notable application of smart contracts is in

the management of digital assets to create decentralized financial

services (DeFi). As of April 1, 2023, the total value locked (TVL) in

1,417 DeFi contracts had reached $50.15 billion (Llama Corporation

n.d.(a)).

As the assets managed by smart contracts continue to grow, en-

suring their correctness has become a critical issue. In response,

researchers have developed numerous analysis and verification

tools to detect errors in contract implementation. However, beyond

the typical software challenges posed by implementation errors,

the correctness of many DeFi smart contracts often depends on

the oracle values (Adler et al. 2018). These are external values that
capture the vital environmental conditions under which the con-

tracts operate. For instance, a collateralized DeFi lending contract

requires updated trading prices of various digital assets to ensure

that the value of the collateral asset always exceeds the value of

the borrowed asset for each user.

Smart contracts periodically receive updates to their oracle val-

ues from other contracts or external databases and application

programming interfaces. Deviations in these oracle values from

their true values can lead to deviations in the intended operations

of the contracts (Adler et al. 2018; Cai et al. 2021). In the real world,

such deviations are common, often stemming from inaccuracies

in the value source or delays in transmission. DeFi protocols tradi-

tionally use a variety of empirical strategies to mitigate the risks

associated with oracle deviations and potential corruptions. For

instance, a leveraged DeFi protocol might set a safety margin for

user positions, liquidating a position if its asset price dips below a

specific threshold. Alternatively, a protocol might aggregate mul-

tiple oracle inputs from varied sources, calculating a median or

average for computational purposes. However, these mechanisms

and their parameters are often ad-hoc and arbitrary. The adequacy

and efficacy of these control mechanisms in real-world scenarios

remain uncertain.

This paper presents OVer, the first sound, automated tool for

analyzing oracle deviation and verifying its impact in DeFi smart

contracts. Given the source code of a smart contract protocol and

the deviation range of specific oracle values in the contracts, OVer

automatically analyzes the source code to extract a summary of the

protocol. For a safety constraint of the protocol, OVer then uses

the extracted summary to determine how to appropriately set key

control parameters in the contract. This ensures that the resulting

contract continues to satisfy the desired constraint, even in the face

of oracle deviations.

One of the key challenges OVer faces is the sophisticated con-

tract logic of DeFi protocols. DeFi contracts often contain multiple

loops that iterate over map-like data structures. Each iteration typi-

cally contains up to a hundred lines of code to handle the protocol

logic for one kind of asset or one user account. Such code patterns

are typically intractable for standard program analysis techniques,

which would often have to make undesirable over-approximations

or bound the number of loop iterations, leading to inaccurate or

unsound analysis results.

OVer tackles this challenge with its innovative loop summary

algorithm. Since the essence of loop computations in DeFi pro-

tocols consists of accumulators applied to map data structures,

OVer operates with a predefined sum operator template for loops.

OVer extracts the summary formula of each iteration and then uses

a template-based approach to convert the extracted expressions

into an instantiation of the sum operator template to represent

the summary of the entire loop. Distinct from previous loop sum-

mary algorithms that struggle with complex if-else branching or

multifaceted folding operations with interdependencies (Mariano

et al. 2020), the OVer algorithm adeptly manages these prevalent

complexities in popular DeFi contracts.

We evaluate OVer on a set of nine popular DeFi protocols and one

fictional protocol in our experiments. OVer successfully analyzes

all the protocols, each taking less than nine seconds. In comparison,

a prior state-of-the-art loop summary algorithm can only handle

none of seven benchmarks that have loops.

With OVer, we study the oracle deviation history in real-world

blockchains. We investigate how oracle deviation would affect the

behavior of popular DeFi contracts and whether existing ad-hoc

mechanisms are sufficient to neutralize oracle deviations. Our re-

sults show that for six out of the seven benchmark protocols, the

control mechanism was insufficient to handle oracle deviations for

at least a certain period of time, leading to temporary exploitable

vulnerabilities. Our results also surprisingly show that existing

ad-hoc mechanisms often exacerbate the security issue caused by

oracle deviations. For example, to protect against potentially ma-

licious oracle value providers, several DeFi protocols introduce

delays when using oracle value inputs in their calculations (e.g.,
using the reported asset price one hour ago as the current oracle

price). When the digital asset price fluctuates, such mechanisms

fail to reflect the current market and artificially inject deviations,

which may make the resulting protocols more vulnerable.

Furthermore, the blockchain is a compelling choice for imple-

menting central bank digital currency (CBDC) systems. Ensuring

the security and reliability of interactions between smart contracts

and oracles is paramount for supporting financial activities on

blockchain-based digital currency platforms. In our research, we

conduct a thorough security analysis of seven prominent price or-

acle systems and simulate the impact of different time-weighted

filters under volatile market conditions. Our findings provide valu-

able implications for designing secure oracles, enhancing the overall

integrity of financial services with blockchain-based CBDCs and

fostering their adoption.

In summary, this paper makes the following contributions.

• OVer: OVer is the first sound analysis and verification tool

for analyzing oracle deviation in DeFi protocols.

• Loop summary algorithm: A novel loop summary algorithm

is proposed to enable the analysis of sophisticated loops in

DeFi smart contract source codes.

• Results: A systematic evaluation of OVer is presented. This

is also the first study of oracle deviation on popular DeFi

protocols. Our results show that the existing ad-hoc control

mechanisms are often insufficient or even detrimental to

1

protect DeFi protocols against oracle deviations in the real-

world.

• Discussions: In our study, we conduct a comparative analysis

of existing price oracle solutions, benchmark diverse pricing

functions and filters, and derive design considerations for

blockchain-based CBDC price oracles, based on the results.

The remainder of the paper is organized as follows. Sections 2

and 3 introduce the study’s technical background and a motivating

example. Section 4 presents the design of OVer. In Section 5, we

study past oracle deviations and evaluate OVer. We analyze existing

price oracle solutions in Section 6. We discuss related work and

threats to the validity in Section 7. And we conclude in Section 8.

2 BACKGROUND
Blockchains and smart contracts. Blockchains operate as decentral-

ized distributed systems, offering a formidable architecture for

resilient, programmable ledgers. Numerous blockchain infrastruc-

tures, with Ethereum as a prime example, provide support for smart

contracts. These are coded agreements, residing on a blockchain,

established to administer transaction rules integral to ledger op-

erations. Commonly scripted in sophisticated languages such as

Solidity (ethereum 2023), these smart contracts are later compiled

into a lower-level machine language like Ethereum Virtual Machine

bytecode (Buterin 2014). For consistent enforcement of these trans-

action rules, all participating nodes within the blockchain network

execute the bytecode of a contract in a consensus-oriented fashion.

Decentralized finance protocols.A substantial application of block-

chain technology is visible in the form of DeFi protocols. These

deploy smart contracts to manage digital assets, enabling an array

of financial services encompassing trading, lending and investment,

all within a decentralized context. Predominantly, DeFi applications

consist of automatic market makers (AMMs) and lending protocols,

with AMMs being a frequent component of decentralized exchanges

(DEXes).

Contrasting traditional exchanges that utilize order books for

trading operations, AMMs implement a mathematical model, which

is contingent on the asset’s volume in the liquidity pool, to ascertain

an asset’s price. Furthermore, the majority of DeFi lending protocols

mandate borrowers to provide over-collateralization, instigating liq-

uidation if a borrower’s position descends to under-collateralization.

To maintain functional efficiency, lending protocols integrate key

parameters such as collateralization or liquidation ratios.

Blockchain oracles.Oracles provide real-world data to blockchains,
as blockchains are tightly closed systems and agnostic to such infor-

mation. Thus, oracles are critical for the smooth operation of DeFi

protocols. Specifically, price oracles furnish indispensable informa-

tion that has direct implications for smart contract execution and

their results. For instance, lending protocols use exact collateral

asset prices to gauge user risk profiles, and outdated or imprecise

data may precipitate financial losses.

In relation to oracle inputs, two distinct types of deviations can

occur: accuracy and latency. An accuracy deviation emerges when

a value deviates from its actual or true value, while a latency devia-

tion is identified when an outdated value is reported, a phenomenon

that can, in turn, influence accuracy. These deviations can originate

from various sources such as intentional manipulation of oracles

1 function borrowAllowed(address cToken , address bwr , uint
brwAmt) external returns (uint) {

2 ...

3 uint surplus = hypotheticalLiquid(bwr ,cToken ,0,brwAmt);

4 require(surplus > 0, "INSUFFICIENT_LIQUIDITY");

5 ...

6 return uint(Error.NO_ERROR); }

7

8 function hypotheticalLiquid(address acct , CToken cToken ,

uint redTok , uint brwAmt) internal returns (uint) {

9 AccountLiquidityLocalVars memory v;

10 // Iterate over each asset in the acct

11 CToken [] memory assets = accountAssets[acct];

12 for (uint i = 0; i < assets.length; i++) {

13 CToken asset = assets[i];

14 (, v.cTokenBal , v.brwBal , v.exchRt) =

15 asset.getAccountSnapshot(acct);

16 // Fetch asset price from oracle

17 v.oraclePrice = oracle.getUnderlyingPrice(asset);

18 v.collFact = markets[address(asset)]. collFact;
19 v.tokensToDenom= v.collFact*v.exchRt*v.oraclePrice;

20 v.sumColl = v.sumColl+ v.tokensToDenom* v.cTokenBal;

21 v.sumBrwEfct= v.sumBrwEfct+ v.oraclePrice* v.brwBal;

22 if (asset == cToken) {

23 v.sumBrwEfct= v.sumBrwEfct+ v.tokensToDenom*redTok;

24 v.sumBrwEfct= v.sumBrwEfct+ v.oraclePrice*brwAmt ;}}

25 return v.sumColl - v.sumBrwEfct; }

Figure 1: Compound protocol borrow logic simplified

to report distorted values, or unintentional data adjustments em-

bedded within smart contracts. Irrespective of their origins, such

deviations can result in incorrect operations within smart contracts.

Complexity of DeFi smart contracts. Smart contracts implement-

ing DeFi protocols, such as lending, DEXes, and derivatives (dydx-

protocol 2021; aave n.d.; euler-xyz 2023a), can be complex, since

they generally include loops that iterate through data structures

representing various asset types or accounts managed by the pro-

tocols and calculate a sum, for example, total assets or debt. This

work highlights that a typical Solidity contract tends to include

one loop per 250 lines of code and over 60% of loops perform an

accumulation (Mariano et al. 2020).

3 EXAMPLE AND OVERVIEW
Wepresent amotivating example of applying OVer to analyze oracle

deviation in Compound (compound-finance 2020). Figure 1 presents

a simplified code snippet from Compound smart contracts. Com-
pound is a decentralized borrowing and lending protocol operating

on the Ethereum blockchain. To borrow assets from Compound, a
user deposits assets as collateral. The total value of the collateral

must be significantly greater than the value of the borrowed assets

at any time. Whenever a user attempts to borrow assets, Compound
calls borrowAllowed (line 1 in Figure 1) to enforce this policy. The

function borrowAllowed in turn calls hypotheticalLiquid (line
8) to calculate the difference (i.e., surplus at line 4) between the

adjusted value of the collateral assets (i.e., v.sumColl at line 20) and
the total value of the borrowed assets (i.e., v.sumBrwEfct at line 21)
for the given account, acct. In the function, Compound computes

these two values with the loop at lines 12-24. Each iteration of the

loop handles one kind of asset in Compound and updates the two

variables. Specifically, the loop computes v.sumColl as follows:

2

keywordskeywords keywords1

∑
𝑎∈𝑎𝑠𝑠𝑒𝑡𝑠 (𝑐𝑜𝑙𝑙𝐹𝑎𝑐𝑡𝑎 ∗ 𝑒𝑥𝑐ℎ𝑅𝑡𝑎 ∗ 𝑝𝑎 ∗ 𝑐𝑇𝑜𝑘𝑒𝑛𝐵𝑎𝑙𝑎) − (

∑
𝑎∈𝑎𝑠𝑠𝑒𝑡𝑠 (𝑏𝑟𝑤𝐵𝑎𝑙𝑎 ∗ 𝑝𝑎 + 𝑐𝑎 ∗ (𝑝𝑏𝑟𝑤 ∗ 𝑏𝑟𝑤𝐴𝑚𝑡 + 𝑐𝑜𝑙𝑙𝐹𝑎𝑐𝑡𝑟 ∗ 𝑒𝑥𝑐ℎ𝑅𝑡𝑟 ∗ 𝑝𝑟))) > 0

Figure 2: Compound analysis summary∑︁
𝑎∈𝑎𝑠𝑠𝑒𝑡𝑠

(𝑐𝑜𝑙𝑙𝐹𝑎𝑐𝑡𝑎 ∗ 𝑒𝑥𝑐ℎ𝑅𝑡𝑎 ∗ 𝑝𝑎 ∗ 𝑐𝑇𝑜𝑘𝑒𝑛𝐵𝑎𝑙𝑎) (1)

where exchRt𝑎 is the exchange rate of the collateral asset 𝑎, 𝑝𝑎
is the price of asset 𝑎 fetched from an external oracle contract

(v.oraclePrice at line 20), cTokenBal𝑎 is the balance of asset 𝑎

and collFact𝑎 is a control variable that is smaller than one and

determines the enforced over-collateralization ratio for the asset.

The loop also computes v.sumBrwEfct as follows:∑︁
𝑎∈𝑎𝑠𝑠𝑒𝑡𝑠

(𝑏𝑟𝑤𝐵𝑎𝑙𝑎∗𝑝𝑎+𝑐𝑎∗ (𝑝𝑏𝑟𝑤 ∗𝑏𝑟𝑤𝐴𝑚𝑡+𝑐𝑜𝑙𝑙𝐹𝑎𝑐𝑡𝑟 ∗𝑒𝑥𝑐ℎ𝑅𝑡𝑟 ∗𝑝𝑟 ∗𝑟𝑒𝑑𝑇𝑜𝑘)) (2)

where 𝑝𝑏𝑟𝑤 is the price of the asset, brw, the user wants to borrow; r
is the asset the userwants towithdraw from its collateral; brwBal𝑎 is
the already borrowed balance of the asset, 𝑎; brwAmt is the amount

of asset brw a user wants to borrow and redTok is the amount of as-

set 𝑟 a user wants to redeem. 𝑐𝑎 = 𝐼𝑛𝑡 (𝑎 == 𝑐𝑇𝑜𝑘𝑒𝑛) is a binary rep-
resentation of the condition at line 22, where 𝑐𝑎 = 1 when the asset,

𝑎, is 𝑐𝑇𝑜𝑘𝑒𝑛 and 𝑐𝑎 = 0 otherwise. Because hypotheticalLiquid
can be invoked when a user borrows assets or redeems collateral,

there are two different cases. The second term corresponds to the

borrowing case, while the last term corresponds to the redeem case.

Oracle values in Compound. The correctness of Compound de-

pends on the accuracy of the fetched oracle price of each asset

(line 17). Like many other DeFi protocols, Compound fetches ora-

cle prices from multiple sources, including centralized oracle ser-

vice providers such as Chainlink (Chainlink Foundation n.d.) and

the trading price of the assets in decentralized protocols such as

Uniswap (Uniswap Labs 2023). However, the values from these

sources may deviate from their ground truths. In fact, when a digi-

tal asset price is volatile, it is typically impossible to obtain an asset’s

fair price. For instance, if the prices in equation 1 are inaccurately

reported as high, the value of the users’ collateral would increase,

potentially leading the protocol to execute borrowing transactions

even when the users are not sufficiently collateralized.

To tackle this issue, Compound enforces additional margins for

the positions of each collateral asset and collFact determines

the margin sizes. Compound empirically sets the collateral factor

value lower to enforce a larger margin on more-volatile assets

and sets the factor higher on less-volatile assets. Many other DeFi

protocols have similar ad-hoc control mechanisms to protect against

oracle deviations. But there is a difficult trade-off in how to set

these control parameters appropriately. On one hand, setting the

parameters too relaxed would make the contracts vulnerable when

facing oracle deviations. On the other hand, setting the parameters

too restrictive would place an additional collateral burden on users

and make the protocol unattractive.

Utilizing OVer.Wenow showhowwe applyOVer to analyzeCom-
pound to determine the optimal control parameter values such as the

collateral factor. The user first identifies the interested operations

in the source code. In our example, we identify borrowAllowed
as the entry point and hypotheticalLiquid, which does critical

checks and computations when performing borrowing actions.

Code analysis. OVer first analyzes the source code in Figure 1

to generate a symbolic expression for all of the variables in the

constraint at line 4. It starts with the entry function, replacing

intermediate variables with their computed expressions. For exam-

ple, surplus is the returned value of hypotheticalLiquid. This
is computed by subtracting v.sumBrwEfct from v.sumColl. The
expressions extracted by OVer for v.sumColl and v.sumBrwEfct
correspond to the mathematical formulas in Equations 1 and 2,

respectively.

OVer then generates the final symbolic expression for the safety

constraint at line 4 in Figure 2. Note that the terms in the final expres-

sion are either loaded contract states (for example, v.brwBal) or the
return values of external function calls (for example, getUnderlyin-
gPrice).

Loop summarization. OVer handles the loop from lines 12 to 26

as follows. With the observation that most loops in DeFi contracts

perform fold operations, particularly accumulations, OVer summa-

rizes the loop by identifying all of the accumulations performed

and replacing the loop with either one or multiple compact ex-

pression(s). By replacing the variables and the loops with compact

expressions, the code summary module returns a set of constraints

to represent the smart contract’s logic. Constraints that are not

affected by oracles will be ignored. In this example, the constraint

at line 4 in Figure 1 will be extracted as the summary shown in

Figure 2. Note that, in this summary, there are five vector variables

and three scalar variables.

Formal model generation. The analysis results in Figure 2 are then
used to construct a sound model of the safety constraint. Suppose

we want to investigate the behaviour of the borrowing function in

Compound and identify the price deviation limit when using the

default collateral factor (cf) 0.7 and a target collateral factor (cf ′)
0.75. Note that because of the deviation, the target value is always

greater than the one configured in the contract. From the expression

in Figure 2, we can derive the following simplified model:

min

𝛿
𝛿

s.t. ∀ 𝐶,𝐷,𝑏, 𝑃, 𝑝, 𝑃𝑏 , 𝑝𝑏 > 0,
|𝑃𝑖 − 𝑝𝑖 |

𝑃𝑖
< 𝛿,

|𝑃𝑏 − 𝑝𝑏 |
𝑃𝑏

< 𝛿,

𝑐 𝑓 ∗
𝑙𝑒𝑛∑︁
𝑖

(𝐶𝑖 − 𝐷𝑖) ∗ 𝑝𝑖 − 𝑝𝑏 ∗ 𝑏 > 0⇒ 𝑐 𝑓 ′ ∗
𝑙𝑒𝑛∑︁
𝑖

(𝐶𝑖 − 𝐷𝑖) ∗ 𝑃𝑖 − 𝑃𝑏 ∗ 𝑏 > 0

In this model, the variables C, D and b represent CollBal, brwBal
and brwAmt, respectively. P and Pb stand for the ground truth

values, while p and pb stand for the values reported by the oracle.

Note that because we are analyzing the borrowing case, the redeem

amount is always zero, and therefore the redeem-related terms are

simplified away.

Formal solution using satisfiability modulo theory. Finally, we pass
the model to the optimizer, which iteratively calls a satisfiability

modulo theory (SMT) solver to prove the constraint specified in the

model above. Following this, it returns the optimal 𝛿 if one is found.

Then we can insert proper require statements into the source code

to ensure correct behaviour, for instance, by restricting the oracle

deviation to be less than the value found.

3

Extract
Functions
 Module

Dependency
Analysis

Function
Summary

Loop & IfElse
Summary

if encounter loops
or IfElse constructs

Code Summary Module

Model Building
Module

Optimizer
Module

Optimal Parameters

Extract
Constraints

Source
Code

Figure 3: Overview of the proposed framework

4 DESIGN
We begin by introducing a simplified Solidity language to help

present our proposed analysis framework. The language, shown in

Listing 1, captures variable declarations, assignments, control-flow

structures and function calls.

Contract, state and function. A contract class has an identifier

(id) of the String type (line 1 in Listing 1). The contract class en-

compasses a set of global states and functions. Each global state

has a type and an identifier. We specify a function with its name,

parameters and body, which is constituted of a sequence of state-

ments. The statements dec and assign (line 8), respectively, allow

a local variable to be declared and for a value to be assigned to it.

The statement load allows a contract’s state to be read.

Control-flow structures. Conditional branches are represented

by the IfThenElse construct. A for loop is constituted of the loop

iterator i, the upper bound n (for simplicity we omit the lower

bound) and a sequence of statements representing the loop body.

A phi instruction, denoted as 𝜙𝑖𝑑 , is used to select values based on

the control flow for a static single-assignment (SSA) smart contract

and can only appear at the beginning in a loop body or after an

IfThenElse construct. The require statement enforces smart contract

constraints, and the logic behind these constraints, and is crucial

in our analysis.

Function calls. Function calls are represented by the statement

call(𝑓 , E∗, 𝑖𝑑∗), where f identifies the function, E∗ denotes the set
of parameters and id∗ represents the names of the return values.

Some function calls represent queries of the states and the oracle. In

our optimization problem, we consider these as free variables. Table

1 shows examples of statements from the Compound protocol.

1 Contract C ::= contract(𝑖𝑑 ,𝑆𝑡∗,F∗)
2 State 𝑠𝑡 ::= state(𝑡𝑦,𝑖𝑑)

3 Func F ::= func(𝑓 ,𝑖𝑑∗,S∗)
4 Type 𝑡𝑦 ::= Int|Bool|Struct|Map|Array|Bytes|Address

5 Id 𝑖𝑑 ::= String| 𝑓 ,𝑖 ∈ Id

6 Const 𝑐 ::= 𝑛 ∈ Int|Bool|Bytes|Address

7 𝑂𝑝 ::= + | - | × | / | >= | > | < | <= | =

8 Stmt S::= dec(𝑡𝑦,𝑖𝑑) | assign(𝑖𝑑 ,E) |

9 load(𝑖𝑑 ,𝑠𝑡) | require(E) |

10 phi(𝑖𝑑0,𝑖𝑑1,...) |

11 if(E𝑐)then{S∗
1
}else{S∗

2
}Φ∗ |

12 for(𝑖,𝑛){S∗} |

13 call(𝑓 ,E∗,𝑖𝑑∗) | return(E∗)
14 Expr E ::= 𝑐 | 𝑖𝑑 | 𝑖𝑑 [E] | 𝑖𝑑.𝑖𝑑 | ¬E | E1 𝑂𝑝 E2

Listing 1: Simplified solidity language

4.1 Code summary overview
Figure 3 presents an overview of the proposed framework. The

high-level procedure for the framework is shown in Algorithm 1.

The first step is to preprocess and simplify the source code to the

SSA form, using the module ExtractFunc. In ExtractFunc, we identify

the entry point of our analysis. Note that the entry point function

must be a public function. In the case of Compound, this entry point
is the borrowAllowed function. Furthermore, the extracted functions

are pure functions, and they are invoked through the call mecha-

nism.
1
Then the CodeSummary module extracts concise summaries,

including summaries of the loops and the conditionals, and returns

a list of constraints. Next, the BuildModel module constructs an

optimization model from the list of constraints for an SMT solver.

Lastly, the SolveOpt module solves the optimization model, using

the SMT solver.

Algorithm 1 Main procedure takes in the source code, 𝑠𝑐 , of the bench-

mark

1: procedure SummaryAnalysis(𝑠𝑐)
2: 𝐹𝑢𝑛𝑐𝑂𝑏 𝑗 ← ExtractFunc(𝑠𝑐)
3: 𝐶𝑜𝑛𝑠𝑡𝐿𝑠𝑡 ← CodeSummary(𝐹𝑢𝑛𝑐𝑂𝑏 𝑗)
4: 𝑀 ← BuildModel(𝐶𝑜𝑛𝑠𝑡𝐿𝑠𝑡)
5: 𝑂𝑝𝑡𝑉𝑎𝑟 ← SolveOpt(𝑀)
6: return𝑂𝑝𝑡𝑉𝑎𝑟

4.2 Code summary module
The main tasks of the code summary module are loop and oracle

dependencies analysis, extraction of symbolic expressions for vari-

ables and constraints extraction. To compute a concise symbolic

expression that can be passed to a solver, we summarize the loops’

bodies, using the accumulation operator. To achieve our goal, we

introduce a domain-specific language (DSL), shown in Listing 2.

1 aop ::= +, -, *, / ; bop ::= >, >=, <, <=, =

2 Id, i ::= String ; lb, ub ::= Int

3 Const ::= Int | Bool | Bytes | Address

4 Val V ::= Id | Const | i | index(V1,V2) | V1(V2) |

5 V1 aop V2 | ret(V2, i)

6 Acc ::= sum(E, i, ub)

7 Expr E ::= Acc | V | E aop E

8 Constr C::= True | E bop E | ¬C

Listing 2: Code summary DSL

The two main components of our DSL are E for expressions and
C for Boolean constraint expressions. The E type can be either an

accumulation value (Acc), a value (V) or an arithmetic operation

between two expressions. The C type can be either the constant

Boolean value True, a comparison operation between two expres-

sions or a negation of another constraint.

Indexing and member access.We use the index operator, index(V1,
V2), to represent accessing an element from the array or the map

V1 with the key V2. The type of V1 must be either an array or a

map and the type of V2 must be the same as the key’s type of V1.
This definition of the index operator allows nested indexing. The

member-access operator, V1(V2), is used to represent accessing the
field, V1, of the struct variable V2.

Accumulation value. To represent a loop’s summary in our DSL,

we use the accumulation operator sum(E, i, ub), where i is the iter-
ator and ub is the upper bound. The complexity of the summation

is captured in the term E, which can be a complex mathematics

formula involving multiple index and member-access operators.

1
In our implementation, we parse the abstract syntax tree (AST) of smart contracts and

perform analysis on the nodes in the extracted AST to identify the pure functions. Pure

functions are functions that have no side effects, i.e., that do not modify a contract’s

global states.

4

Table 1: Example statements from Compound smart contracts in Solidity and Simplified Solidity

Solidity code require(surplus > 0, "INSUFFICIENT_LIQUIDITY") v.oraclePrice = oracle.getUnderlyingPrice(asset)

Simplified solidity require(surplus > 0) call(oracle.getUnderlyingPrice, asset, v.oraclePrice)

Return values of function calls.We utilize ret(V, i) to indicate that
V is the return value of a pure function that reads global states.

WhenV is loop-dependent, i represents the loop iterator; otherwise,
i is null. For example, at line 18 in Figure 1, v.oraclePrice gets the
value from the function oracle.getUnderlyingPrice and the function

is loop-dependent because of the argument asset. The generated
summary is ret(oraclePrice(v), i).

4.2.1 Dependency Analysis. To determine the expressions and state-

ments to include in our optimization model, we need to find which

variables depend on the oracle price. To this end, we propose a set

of rules O1-O4 to infer this dependency and introduce the rule O5
to find the guard statements that are oracle-dependent. Moreover,

to compute the loop summary, we need to find which variables

inside a loop body depend on the loop iterator in order to account

for them in the accumulation operator of our DSL. Thus, we also

propose the set of rules L1-L4 to infer loop dependency.

OD denotes the set of expressions and statements that are oracle-

dependent. We do not distinguish between the two in OD. The
union operation for sets is denoted as ⊎.
O1: If a pure function reads from an oracle state, then the identifier

it reads to is oracle-dependent. If S := call(f, E, id) and Identifier(f)
= oracle, where the helper function Identifier checks whether the
function is annotated as an oracle state-getter, then id ∈ OD.

S := 𝑐𝑎𝑙𝑙 (𝑓 , E, 𝑖𝑑), 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 (𝑓) = 𝑜𝑟𝑎𝑐𝑙𝑒
𝑂𝐷 = 𝑂𝐷 ⊎ {𝑖𝑑, S}

O2: If a statement reads from a global state that is oracle-dependent

and if a statement assigns an expression that is oracle-dependent

to a variable, then the variable is oracle-dependent.

S := 𝑙𝑜𝑎𝑑 (𝑖𝑑, 𝑠𝑡), 𝑠𝑡 ∈ 𝑂𝐷
𝑂𝐷 = 𝑂𝐷 ⊎ {𝑖𝑑,S}

S := 𝑎𝑠𝑠𝑖𝑔𝑛(𝑖𝑑, E), E ∈ 𝑂𝐷
𝑂𝐷 = 𝑂𝐷 ⊎ {𝑖𝑑, S}

O3: For arithmetic and comparison expressions, if one of the

operands is oracle-dependent, then the result is oracle-dependent.

E = E1 𝑜𝑝 E2, E1 ∈ 𝑂𝐷 ∨ E2 ∈ 𝑂𝐷
𝑂𝐷 = 𝑂𝐷 ⊎ {E}

O4: For a function f, if its parameter E or one of its statements is

oracle-dependent, then the return value id is oracle-dependent.

S := 𝑐𝑎𝑙𝑙 (𝑓 , E, 𝑖𝑑), 𝑓 := 𝑓 𝑢𝑛𝑐 (𝑓 ,, S′∗), E ∈ 𝑂𝐷 ∨ S′∗ ∈ 𝑂𝐷
𝑂𝐷 = 𝑂𝐷 ⊎ {𝑖𝑑, S}

O5: A require statement is oracle-dependent if its expression is

S := 𝑟𝑒𝑞𝑢𝑖𝑟𝑒 (E), E ∈ 𝑂𝐷
𝑂𝐷 = 𝑂𝐷 ⊎ {S}

We use L𝑖 to denote a for loop, with iterator i, and that corresponds
to S = for(i, n, S∗). LD𝑖 is the set of expressions that depend on L𝑖 .
L1: If an expression with an index that corresponds to the loop iter-

ator or is loop-dependent, then the expression is loop-dependent.

E = 𝑖𝑑 [E], E = 𝑖 ∨ E ∈ 𝐿𝐷𝑖

𝐿𝐷𝑖 = 𝐿𝐷𝑖 ⊎ {E}

𝑝𝑐 (𝑓) := require E or 𝑝𝑐 (𝑓) := return E, S(𝑓) =⊥,E := 𝐶𝑜𝑛𝑣𝐷𝑆𝐿 (E)
S = S[𝑓 ↦→ E]

𝑝𝑐 (𝑓) := 𝑎𝑠𝑠𝑖𝑔𝑛 (𝑖𝑑, E), S(𝑓) = {E},E′ := E[𝑖𝑑/𝐶𝑜𝑛𝑣𝐷𝑆𝐿 (E)]
S = S[𝑓 ↦→ E′]

𝑝𝑐 (𝑓) := 𝑐𝑎𝑙𝑙 (𝑓 ′, E, 𝑖𝑑), S(𝑓) = E,E′ := E[𝑖𝑑/S(𝑓 ′ (E))]
S = S[𝑓 ↦→ E′]

𝑝𝑐 (𝑓) := 𝑓 𝑜𝑟 (𝑖, 𝑛) {S∗},E′ := 𝐿𝑝𝑆𝑚 (𝑖, 𝑛, S∗, S(𝑓))
S = S[𝑓 ↦→ E′]

𝑝𝑐 (𝑓) := 𝑖 𝑓 (E𝑐)𝑡ℎ𝑒𝑛{S∗
1
}𝑒𝑙𝑠𝑒 {S∗

2
},E′ := 𝐼 𝑓 𝑆𝑚 (E𝑐 , S∗

1
, S∗

2
,Φ∗, S(𝑓))

S = S[𝑓 ↦→ E′]
Figure 4: Function summary extraction rules

L2: For arithmetic and comparison expressions, if one of the

operands is loop-dependent, then the result is loop-dependent.

E = E1 𝑜𝑝 E2, E1 ∈ 𝐿𝐷𝑖 ∨ E2 ∈ 𝐿𝐷𝑖

𝐿𝐷𝑖 = 𝐿𝐷𝑖 ⊎ {E}
L3: If a statement assigns an expression to a variable and this

expression is loop-dependent, then the variable is loop-dependent.

S := 𝑎𝑠𝑠𝑖𝑔𝑛(𝑖𝑑, E), E ∈ 𝐿𝐷𝑖

𝐿𝐷𝑖 = 𝐿𝐷𝑖 ⊎ {𝑖𝑑}
L4: If a statement invokes a function, f, with a parameter, E, that
is loop-dependent, then the return value, id, is loop dependent.

S := 𝑐𝑎𝑙𝑙 (𝑓 , E, 𝑖𝑑), E ∈ 𝐿𝐷𝑖

𝐿𝐷𝑖 = 𝐿𝐷𝑖 ⊎ {𝑖𝑑}
4.2.2 Symbolic value extraction. We now present a set of rules to

generate a function summary, shown in Figure 4. We use Extract-
Summary to refer to those rules. Specifically, ExtractSummary takes

a statement S and an expression E. It applies the effect of S on E
and returns the updated expression E′. We use S to map a function

f to its summary. Our approach uses a bottom-up algorithm that

begins from a return or a require statement. This algorithm adds the

return expression E of a function f to the initially empty summary

S(𝑓).
For an assignment, id = E, we convert E to its DSL, using the

procedure ConvDSL. We substitute all occurrences of id in S(f) = E
with its computed DSL value, denoted as E[𝑖𝑑/𝐶𝑜𝑛𝑣𝐷𝑆𝐿(E)].

For a function call, call(f’, E, id), we generate a summary of f’(E),
denoted as S(f’(E)), and replace the symbol id with S(f’(E)).

The more-involved summarizations of the loops and if-else state-

ments are handled in the LpSm and IfSm procedures that we describe

next.

Loop summary. In Algorithm 2, we present the procedure LpSm.

LpSm attempts to generate summaries for the symbols in the ex-

pression E, in the form of accumulation or nested accumulation.

For each symbol, we analyze the for loop body in a bottom-up man-

ner and perform symbolic substitution using ExtractSummary. We

enumerate the symbols following their order of dependency (line 4).

For instance, in Listing 3, since acc1 depends on acc we enumerate

acc1 before acc. We use ps to denote the "partial summary" of the

symbol’s value at an iteration, i.
5

1 acc: acc_0 + sum(index(A, j),j,b)

2 acc1: acc1_0 + sum(acc_0 + sum(index(A, j),j,k),k,b)

3 for (i = 0; i < b; i ++) {

4 acc' = phi(acc_0 , acc𝑖−1)
5 acc1' = phi(acc1_0 , acc1𝑖−1)
6 acc𝑖 = acc' + A[i]

7 acc1𝑖 = acc1' + acc𝑖 }

Listing 3: Loop summary example

Wepatternmatch accumulation operationswithin ps at line 9 and
check whether a 𝜙𝑚 statement appears in the right-hand side (rhs)

precisely once. We also confirm that the rest of the expression, E𝑠 , is
loop-dependent using the loop-dependency set computed at line 8. If

E𝑠 depends onm, which means that the loop violates the properties

of an accumulation operation, then we halt our execution.

For handling nested summations, we consider every computed

symbol m1 with a summary v. We perform substitutions into the

current summary ps and adjust the inner sum’s upper bound at

lines 18–20. We also adjust the previous summaries computed on

line 22.

Ifm is an accumulator (findSum is True), we remove assignments

to m from S∗ so that no substitution is performed for already com-

puted symbols (lines 25–26). Finally, to compute the full summary

at the end of the loop, we set the upper bound of the outermost

summation to match the loop’s upper bound (line 28).

In Listing 3, we show an example of a nested sum and the com-

puted complete summaries for both acc and acc1.

Algorithm 2 LpSm procedure. It takes loop parameters and an expression

E and returns an expression E′. M stores symbols of E, ordered based on

S∗. V stores summaries of symbols in M. LD_i stores expressions that are
loop-dependent. ApplyLDRules updates LD_i using loop-dependency rules.

1: procedure LpSm(𝑖, 𝑛, S∗,E)
2: 𝑉 ← {}, 𝐿𝐷𝑖 ← {}
3: E′ ← E
4: for each𝑚 ∈ 𝑀 in their order of dependency
5: 𝑝𝑠 ←𝑚

6: for each 𝑠𝑡𝑚𝑡 ∈ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (S∗)
7: 𝑝𝑠 ← ExtractSummary(𝑠𝑡𝑚𝑡, 𝑝𝑠)
8: 𝐿𝐷𝑖 ← ApplyLDRules(𝑠𝑡𝑚𝑡, 𝐿𝐷𝑖) using the rules L1-L4
9: if 𝑝𝑠 ≡ ”𝜙𝑚 + E𝑠 ” ∧ E𝑠 ∈ 𝐿𝐷𝑖

10: if (E𝑠 depends on𝑚)
11: exit
12: else
13: 𝑖′ ← NewIndex()
14: 𝑝𝑠 ←𝑚0 + 𝑠𝑢𝑚 (E𝑠 [𝑖/𝑖′], 𝑖′, 𝑖)
15: 𝑓 𝑖𝑛𝑑𝑆𝑢𝑚 ← 𝑇𝑟𝑢𝑒

16: for each (𝑚1, 𝑣) ∈ 𝑉
17: if 𝑝𝑠 ≡ “𝑚0 + 𝑠𝑢𝑚 (E𝑠 , 𝑘, 𝑖)” ∧𝑚1 ∈ E𝑠∧ 𝑣 ≡ “𝑣0 + 𝑠𝑢𝑚 (E𝑣 , 𝑗, 𝑖)”
18: 𝑝𝑠 ← 𝑝𝑠 [𝑚1/𝑣 [𝑖/𝑘]]
19: if 𝑝𝑠 ≡ “𝑚0 + 𝑠𝑢𝑚 (E𝑠 , 𝑘, 𝑖)” ∧ 𝜙𝑚1 ∈ E𝑠∧ 𝑣 ≡ “𝑣0 + 𝑠𝑢𝑚 (E𝑣 , 𝑗, 𝑖)”
20: 𝑝𝑠 ← 𝑝𝑠 [𝜙𝑚1/𝑣 [𝑖/𝑘 − 1]]
21: for each (𝑚1, 𝑣) ∈ 𝑉
22: if 𝑝𝑠 ≡ “𝑚0 + 𝑠𝑢𝑚 (E𝑠 , 𝑘, 𝑖)” ∧ 𝜙𝑚 ∈ 𝑣

23: 𝑉 [𝑚1] ← 𝑣 [𝜙𝑚/𝑝𝑠 [𝑖/𝑖 − 1]]
24: 𝑉 [𝑚] ← 𝑝𝑠

25: if 𝑓 𝑖𝑛𝑑𝑆𝑢𝑚
26: 𝐴← 𝐴 \ 𝑎𝑠𝑠𝑖𝑔𝑛 (𝑚, _)
27: for each𝑚 ∈ 𝑀
28: 𝑣 ← 𝑉 [𝑚] [𝑖/𝑛]
29: E′ ← E′ [𝑚/𝑣]
30: return E′

Handling conditional branches.To account for the different branches
of an IfThenElse construct, our summarization includes the con-

dition in IfThenElse. Algorithm 3 describes the procedure used to

summarize the effects of the IfThenElse construct. Similar to the

loops, we enumerate the symbols in their order of dependency

(line 4). We then handle the statements in reverse order and gener-

ate a summary for each symbol. To combine the summaries from

both branches, we follow the phi instruction and take the branching
condition into account (line 11).

1 for(uint i = 0; i < b; i++) {

2 if (D[i]) { a1 = a1 + A[i] * B[i]; }

3 else { a2 = a2 + A[i] * C[i]; } }

Listing 4: If-else branch example

In the example shown above, we generate the following summaries.

keywordskeywords keywords1 a1=a10+sum(index(A,j)*index(B,j)*Int(index(D,j)),j,b)

keywordskeywords keywords2 a2=a20+sum(index(A,k)*index(C,k)*(1-Int(index(D,k))),k,b)

The expressions in the if branch are multiplied by the Boolean

flag, D[i], while the ones in the else branch are multiplied by its

complement.

4.2.3 Constraint extraction. Our optimization model consists of a

set of constraints that are oracle-dependent or constraints over sym-

bols that appear in oracle-dependent constraints. The first set of con-

straints corresponds to guard (require) statements that are flagged

as oracle-dependent, using oracle-dependency-analysis rulesO1-O5.
The second set of constraints corresponds to the guard statements

that only contain symbols that appear in the set of oracle-dependent

constraints.

Algorithm 3 IfSm procedure. This takes IfThenElse parameters and an

expression E and returns an expression E′ . 𝑝𝑡 and 𝑝𝑒 represent the partial

summary for the two branches. 𝑀1 and 𝑀2 store the symbols of E. Sum-

maries of the symbols in𝑀1 and𝑀2 are stored in V.

1: procedure IfSm(E𝑐 , S∗
1
, S∗

2
,Φ∗,E)

2: 𝑉 ← {}
3: E′ ← E
4: for each𝑚1 ∈ 𝑀1,𝑚2 ∈ 𝑀2 in their order of dependency
5: 𝑝𝑡 ←𝑚1, 𝑝𝑒 ←𝑚2

6: for each 𝑠𝑡𝑚𝑡𝑡 ∈ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (S∗
1
), 𝑠𝑡𝑚𝑡𝑒 ∈ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (S∗

2
)

7: 𝑝𝑡 ← ExtractSummary(𝑠𝑡𝑚𝑡𝑡 , 𝑝𝑡)
8: 𝑝𝑒 ← ExtractSummary(𝑠𝑡𝑚𝑡𝑒 , 𝑝𝑒)
9: 𝑉 [𝑚1] ← 𝑝𝑡 ,𝑉 [𝑚2] ← 𝑝𝑒
10: for each 𝜙𝑖𝑑 ≡ 𝑝ℎ𝑖 (𝑖𝑑1, 𝑖𝑑2) ∈ Φ∗
11: 𝑉 [𝑖𝑑] ← 𝑉 [𝑖𝑑1] × 𝐼𝑛𝑡 (E𝑐) +𝑉 [𝑖𝑑2] × (1 − 𝐼𝑛𝑡 (E𝑐))
12: for each𝑚 ∈ 𝑀
13: E′ ← E′ [𝑚/𝑉 [𝑚]]
14: return E′

Algorithm 4 BuildModel procedure. This takes in a list of constraints

𝐶𝑜𝑛𝑠𝑡𝐿𝑠𝑡 and returns a model𝑀 for the SMT solver.

1: procedure BuildModel(𝐶𝑜𝑛𝑠𝑡𝐿𝑠𝑡)

2: 𝐶𝑣, 𝑆𝑑, 𝑅𝑒,𝑈𝑏 ← ExtractVars(𝐶𝑜𝑛𝑠𝑡𝐿𝑠𝑡)
3: 𝐶𝑣, 𝑆𝑣, 𝑅𝑒,𝐺𝑡,Δ← InitVar(𝐶𝑣, 𝑆𝑣, 𝑅𝑒)
4: 𝐶0,𝐶1← InitConst(𝐶𝑣, 𝑆𝑣, 𝑅𝑒,𝐺𝑡,Δ)
5: 𝐶 ← [𝐶0,𝐶1]
6: for each 𝑐𝑜𝑛𝑠𝑡 ∈ 𝐶𝑜𝑛𝑠𝑡𝐿𝑠𝑡
7: [𝐶𝑅𝑒 ,𝐶𝐺𝑡] ← ConvertZ3(𝑐𝑜𝑛𝑠𝑡, 𝑅𝑒,𝐺𝑡,𝐶𝑣, 𝑆𝑣,𝑈𝑏)
8: append(𝐶, [𝐶𝑅𝑒 ,𝐶𝐺𝑡])
9: return𝑀 (Δ,𝐶𝑣, 𝑆𝑣, 𝑅𝑒,𝐺𝑡,𝐶,𝑈𝑏)

6

4.3 Model generation
We build a model, M, from the extracted list of constraints. M has 7

parameters: Oracle price values (Re), ground truth price values (Gt),
oracle deviation deltas (Δ), the DeFi protocols control variables (Cv)
such as margin ratios, state variables (Sv), loop upper bounds (Ub)
and the set of constraints extracted C.

To generate M from the guard statements, we first extract and

initialize the variables (lines 2 and 3 in Algorithm 4). We also add

two additional constraints, C0 and C1, to all of the models (lines 4

and 5). C0 states that Sv, Re, Gt are greater than zero. C1 states that
Re deviates from Gt by at most Δ. For each guard statement, we

generate two constraints, one evaluated with ground truth values,

and the other, with oracle values (lines 6-8).

4.4 Optimization
Ideally, we are interested in finding some oracle deviations (Δ), or
control variables (Cv), such that the smart contracts always behave

"correctly". In other words, for all inputs, given the deviated oracle

price, the smart contracts should exhibit the same behaviour as

when given the ground truth price. For example, if we have the

require statement require(a > b), the corresponding constraint is a >
b, and we assume that one or both of the variables a, b are functions
of the oracle inputs. We need to prove the following:

𝑎 (𝑅𝑒) > 𝑏 (𝑅𝑒) ⇒ 𝑎 (𝐺𝑡) > 𝑏 (𝐺𝑡) (3)

𝑎 (𝑅𝑒) <= 𝑏 (𝑅𝑒) ⇒ 𝑎 (𝐺𝑡) <= 𝑏 (𝐺𝑡) (4)

Since we focus on the inputs when the transaction is not reverted,

we only need to prove Equation 3 (the require statement will revert

the transaction if the lhs of Equation 4 holds).

Algorithm 5 SolvOpt procedure. This takes in a model,𝑀 , and returns

the optimum parameters, if found.

1: procedure SolvOpt(𝑀)

2: 𝐶𝑜𝑛𝑠𝐿𝑖𝑠𝑡 ← simplifyConstraints(𝑀)
3: while Stop condition not met
4: 𝑟𝑒𝑠 ← Solv(𝐶𝑜𝑛𝑠𝐿𝑖𝑠𝑡)
5: 𝑂𝑝𝑡𝑉𝑎𝑟 ← Update(𝑟𝑒𝑠)
6: return𝑂𝑝𝑡𝑉𝑎𝑟

Several optimization problems can be derived from the con-

straints. For example, we can solve for the maximum oracle de-

viation the protocol can tolerate, given some control parameters,

Cv, and Ub (Equation 5). That is, we maximize the oracle deviation

delta such that for all inputs satisfying a > b, we are also given some

predetermined control parameters. We can also give the model

an expected delta and solve the optimization problem to find the

optimum control parameters (Equation 6). In Algorithm 4, we give

the procedure SolvOpt that takes a model M and iteratively queries

a solver to find the optimum parameters, or the procedure reaches

a timeout.

max

Δ
Δ

s.t. ∀ 𝑆𝑣 > 0,
|𝑃𝑖 − 𝑝𝑖 |

𝑃𝑖
< 𝛿𝑖 ,

𝑎 (𝑅𝑒, 𝑆𝑣,𝐶𝑣) > 𝑏 (𝑅𝑒, 𝑆𝑣,𝐶𝑣) ⇒

𝑎 (𝐺𝑡, 𝑆𝑣,𝐶𝑣′) > 𝑏 (𝐺𝑡, 𝑆𝑣,𝐶𝑣′)

(5)

min

𝐶𝑣′
𝐶𝑣′

s.t. ∀ 𝑆𝑣 > 0,
|𝑃𝑖 − 𝑝𝑖 |

𝑃𝑖
< 𝛿𝑖 ,

𝑎 (𝑅𝑒, 𝑆𝑣,𝐶𝑣) > 𝑏 (𝑅𝑒, 𝑆𝑣,𝐶𝑣) ⇒

𝑎 (𝐺𝑡, 𝑆𝑣,𝐶𝑣′) > 𝑏 (𝐺𝑡, 𝑆𝑣,𝐶𝑣′)

(6)

5 EVALUATION
In this section, we evaluate the performance and effectiveness of

OVer and present the evaluation results. Specifically, we aim to

answer the following research questions:

RQ1: Are current control parameters of the DeFi protocols safe

under large oracle deviations?

RQ2: Can OVer efficiently analyze the various DeFi protocols that

use oracles?

RQ3: Can OVer help developers design safe DeFi protocols that

use oracles?

5.1 Implementation and benchmarks
We implement OVer based on the Slither static analysis tool (crytic.
n.d.) with 1, 160 lines of code in Python for Solidity-based smart

contracts. To solve the optimization problems, we leverage the SMT

solver, Z3 (de Moura and Bjørner 2008). Note that the constructs of

the programming language in Listing 1 that we used to present the

main components of OVer’s design are commonly found in other

programming languages. Thus, OVer’s implementation can also be

extended to handle smart contracts written in other programming

languages such as Vyper (Vyper Team n.d.).

We evaluate OVer on 9 DeFi protocols: Aave, Compound, Euler,
Solo, Warp, dForce, Morpho, Beefy and xToken. Notably, this bench-
mark suite contains not only widely used DeFi protocols according

to theDeFi industry databaseDeFiLlama (LlamaCorporation n.d.(a))

but also the protocols that fell victim to oracle manipulation attacks.

To the best of our knowledge, Aave, Compound, Solo, Morpho and
Beefy have not been victims of oracle manipulation attacks. The

protocols that were victims to these attacks are dForce, Warp, Euler
and xToken. We cover a wide range of protocols, including different

types of lending protocols, yield aggregators, margin trading and

liquidity managers. We exclude several DeFi protocols, for example,

Inverse Finance, CheeseBank, JustLend, Venus, Benqi and Radiant,
which were forked from protocols in our benchmarks, for example,

Compound and Aave. We also evaluate OVer on a fictional DeFi

protocol (calvwang9 2022), developed to demonstrate oracle ma-

nipulation, and we call it TestAMM. All of our experiments are run

on an AWS EC2 m5.2xlarge instance machine with 8vCPU, 32 GB

memory and 8TB SSD storage.

5.2 Protocols’ response to oracle deviations
To motivate OVer and to answer RQ1, we examine how oracle devi-

ations impact the correctness of the DeFi protocols. Specifically, we

study historical oracle price deviations and the maximum tolerance

of each protocol with their default control parameter settings.

To narrow the scope of our study, we focus on the oracle price

of ETH, the native token of the Ethereum network. We gather price

updates for ETH/USD, USDT/ETH, USDC/ETH and the DAI/ETH

pair on Chainlink and the ETH/USDT pair onUniswap, where USDT,
USDC and DAI are stable coins that are issued in Ethereum and

that stay closely one-to-one with the US dollar. We select Chainlink
and Uniswap because they are very widely used oracles among the

DeFi protocols (Llama Corporation n.d.(b)), as highlighted in the

oracle column of Table 2.

Because, empirically, oracle deviations often occur when a digital

asset is highly volatile, we study updates during the most volatile

7

Table 2: Code summary module execution time

Protocol #requires #loops CompileTime (s) TotalExecTime (s) #vectorVars #otherVars Branch Dependency Oracle

Aave (borrow) 3 1 1.0558 1.0572 6 4 ✓ ✓ Chainlink

Aave (liquidation) 1 1 0.6313 0.6350 5 1 ✓ ✓ Chainlink

Compound 1 1 4.8403 4.8413 5 5 ✓ ✓ OpenPriceFeed

Euler 1 1 2.4056 2.4063 5 2 ✓ ✓ Uniswap

Solo 2 1 0.4704 0.4714 5 2 ✓ ✓ Chainlink

Warp 1 2 1.5149 1.5156 4 2 ✓ ✓ Uniswap

dForce 1 2 1.3724 1.3746 6 2 ✓ ✓ Chainlink

Morpho 1 2 8.5961 8.6002 7 1 ✓ ✓ Chainlink

TestAMM 1 0 0.1989 0.1992 0 4 X ✓ AMM-based

xToken 0 0 1.7244 1.7247 0 4 X ✓ multiple source

Beefy 0 0 0.6730 0.6750 0 4 X ✓ depends on vault

days of ETH for the two pairs between June 2020 and September

2022. We compute the deviation as the difference between two

consecutive updates on Uniswap. The rationale is that in normal

settings, the ground truth of an asset price is bounded by the values

of two consecutive updates. On Chainlink, we look for deviations

within 33 minutes or a window of 155 blocks.

Table 3 shows the top five deviations found. The first and third

columns give the block number when the deviation is observed

on Chainlink and Uniswap, respectively. The second and fourth

columns give the exact values of the deviations.

Moreover, we study the maximum deviation allowed by each

protocol. Since the lending protocols require over-collateralization

to cover borrowed or leveraged positions, we define a failure as

occurring when the user’s borrowed value is greater than their

collateral value. For Aave, Morpho, Warp, dForce, Euler, xToken and

Beefy, we use the default control parameters of each protocol.

Table 4 shows the maximum tolerance of each protocol. Specifi-

cally, the first column gives the name of the protocol. The second

column specifies the parameter used in the experiment. The last

column presents the maximum oracle deviation found.

Table 3: Top deviations observed on Chainlink and Uniswap

Chainlink Deviation Uniswap Deviation

11631223 0.1390 10314022 0.4248

11631215 0.1293 10314022 0.3351

11631215 0.1260 10326501 0.2368

11631226 0.1159 10314022 0.2356

11631248 0.0994 10326310 0.1948

Table 4: Deviation limit given specific control variables

Protocol CV delta

Compound cf = 0.7 0.17

Aave lth=0.85, ltv= 0.83 0.08

Solo mp= 0.15, mr = 0.1 0

Morpho ltv = 0.83 0.09

Warp cr = 2/3 0.20

dForce bf = 1, cf = 0.85 0.08

Euler bf = 0.91, cf = 0.9 0.09

testAMM cr = 0.7 0.42

xToken fee = 0.02 0.02

Beefy fee = 0 0

Answer to RQ1: We surprisingly found that the default control

parameters of the investigated protocols are not enough to protect

these protocols against oracle deviation, based on the history of

these occurrences. Specifically, protocols relying on the Chainlink
price feed, for example, Aave and dForce, with deviation limits of

0.08, will suffer from under-collateralization, given the greatest de-

viation in Table 4. Morpho would encounter safety issues in certain

cases. Solo is consistently at risk, given the specific control pa-

rameters. Compound’s open price feed module relies on Chainlink
to update the price and verify it by comparing it with Uniswap’s
average price. Thus, with a tolerance of 0.17, in some extreme

cases, Compound would execute incorrectly. Warp and Euler use
Uniswap as the price oracle and testAMM relies on AMM-based

oracles. Deviations on Uniswap are more significant, reaching a

maximum value of 0.4248. While testAMM would not suffer from

under-collateralization in most cases, given the specific parameter,

neitherWarp nor Euler is safe, given the oracle deviations.

This finding means that the oracle deviation caused these proto-

cols, at least temporarily, to violate basic safety constraints such

as over-collateralization. One consequence, for example, is that a

malicious attacker could send timely transactions, during the devia-

tion, to borrow or redeem assets with insufficient collateral, thereby

extracting profits at the cost of the protocol investors.

In the case of xToken and Beefy, where the protocol does not
mandate over-collateralization, any price deviation leads to an im-

mediate loss. The protocol charge fees for most operations are

proportional to the transaction amount. xToken charges a maxi-

mum fee of 2%, while there is no deposit or withdrawal fee in Beefy
vaults. Consequently, if we employ a fee as a control parameter, the

maximum oracle deviation the protocol can tolerate will correspond

to the percentage of the fee. Furthermore, in some cases, fees can

be exploited in an attack. An example is the fee adjustment from

0.5% to 0%, contributing to the Yearn attack in 2021 (yearn 2021;

Yearn [yDai] Exploiter 2021).

Effect of introducing a delay. Introducing a delay is a widely rec-

ommended approach to counteracting oracle manipulation. An

example of this strategy can be found in MakerDao’s OSM layer,

which implements a one-hour delay for price updates. This ap-

proach naturally introduces a deviation to the reported oracle price.

To evaluate this method, we conduct simulations using Chainlink
data and calculate the deviation from the current timestamp when

a one-hour delay is introduced. For instance, for the block with a

deviation of 0.1260, this strategy effectively reduces the deviation

to 0.0779.

8

However, it is important to note that relying on a delayed price

does not guarantee a consistently smaller deviation. It may intro-

duce additional deviations due to the delay, therefore, making the

underlying protocols more vulnerable. For instance, during the

period from block 11541949 to block 11596096, after applying the

delay method, we notice an increase in the maximum deviation

from 0.0329 to 0.1525. This would make the deviation surpass the

tolerable thresholds of the five benchmark protocols, Aave,Morpho,
dForce, Euler and xToken shown in Table 4. This finding underscores
the complexity of defending against oracle manipulation and shows

that existing ad-hoc control mechanisms, such as introducing de-

lays, are often insufficient or even detrimental to protecting the

DeFi protocols against an oracle deviation in the real world.

5.3 Effectiveness of OVer
To answer RQ2 and assess the performance of OVer, we run OVer

to analyze the collected benchmarks. For the Aave protocol, we ap-
ply OVer to the safety constraint in both borrowing and liquidation

scenarios, which are listed in rows one and two, respectively, in

Table 2. Notably, both the Compound and Warp protocols share the

same set of constraints for their borrowing and liquidation opera-

tions. For Solo, we apply OVer on the safety constraint that verifies

whether a user’s position is adequately collateralized. The corre-

sponding check is utilized in all operations, including liquidation,

within the protocol. For Euler, we focus on the safety constraint that
is responsible for checking the liquidity in actions such as minting

and withdrawal. As for dForce, Morpho and TestAMM, we analyze

the safety constraint of the borrowing action. For xToken and Beefy,
we focus on the constraint of the mint/deposit and burn/withdraw

actions.

Table 2 presents the results of the experiment. The second and

third columns present the number of "require" statements extracted

and the occurrences of loops, respectively. We also include Slither’s
compilation time in column 4 and the total execution time in column

5. Moreover, we measure the number of vector variables and other

variables (scalar) in the constraints (columns 5 and 6). We also

present the features of each benchmark, including branching and

dependent statements.

Answer to RQ2:Our results highlight the capability of OVer. It suc-
cessfully analyzed all of the protocols and their safety constraints

in less than 10 seconds. We manually validate all of the generated

symbolic expressions. For 8 of the 11 cases, the contract code con-

tains loops with dependencies or branch conditions. For 7 cases, the

code contains more than one loop. Although the code structures

are difficult for standard analysis techniques, our loop summary

algorithm enables OVer to handle all of them successfully. Our

loop summary algorithm is also fast; for example, the majority of

the execution time is consumed by Slither to parse the code and

generate the AST.

5.4 Case study analysis
To answer RQ3 and show how OVer can help developers to design

safe protocols, we present case studies that apply OVer on the nine

benchmark protocols. For each case, we show how a user can use

the symbolic expressions obtained by OVer to construct models to

determine appropriate values of control parameters when facing

different degrees of oracle deviations.

The timeouts are set to be two minutes each throughout the

experiments.

Compound relies on the open price feed module to access and

retrieve price information that is critical to its operations. As dis-

cussed in Section 3, the protocol implements a one-side risk control

mechanism. For example, it uses a single control variable to govern

its behaviour. Specifically, the control variable is known as the col-

lateral factor. Normally, cf is set to a value smaller than 1, ensuring

that the user’s collateral value exceeds their borrowed value. When

cf is greater than 1, the protocol allows under-collateralization, a

situation generally considered undesirable for lending protocols.

We set the cf to be 0.7 in the experiment and consider three dif-

ferent oracle deviations. We run the search algorithm with a step

size of 0.01 for Ub=1 and 0.05 for Ub=2. The results are shown in

Table 5. The effective cf achieved, that is, cf ′, is given in the second

column. The first column lists the parameter assignments, the third

column counts the number of free variables in the constraint and

the optimization time is shown in the last column. We time out

when we set the bound=1, 𝛿=0.1, and when we increase the bound

Ub to 3. We observe that the result would be the same if we were to

use the same step size. Furthermore, it is reasonable to argue that

the same cf ′ would be optimal for Ub=3 as the search result should

be independent of the loop bounds.

Based on the results, if we expect an oracle deviation of 0.1 and

set cf = 0.7 (equivalent to a 30% safety margin), the actual margin

would be around 14%, that is, cf ′ = 0.86. If there were no oracle

deviation, we would achieve the exact margin specified in the pro-

tocol. This insight allows developers to understand how oracle

deviations can impact safety margins and offers guidance on pa-

rameter settings accordingly. Furthermore, developers can add the

corresponding constraint on the oracle inputs, thus guaranteeing

correctness.

Table 5: Compound borrowing with cf = 0.7 and ex = 1

Variables cf
′

NumVars Time (s)

𝛿 = 0.1, 𝑏𝑜𝑢𝑛𝑑 = 1 0.8600 5 4.5486

𝛿 = 0.01, 𝑏𝑜𝑢𝑛𝑑 = 1 0.7200 5 0.1194

𝛿 = 0.001, 𝑏𝑜𝑢𝑛𝑑 = 1 0.7100 5 0.0794

𝛿 = 0.1, 𝑏𝑜𝑢𝑛𝑑 = 2 NA 9 TO

𝛿 = 0.01, 𝑏𝑜𝑢𝑛𝑑 = 2 0.7150 9 0.3535

𝛿 = 0.001, 𝑏𝑜𝑢𝑛𝑑 = 2 0.7050 9 0.2316

Solo project (dydxprotocol 2021) is a marginal trading protocol of

dXdY, which uses Chainlink as a price oracle. A desired property in

the Solo protocol is that for all operations, accounts remain in collat-

eralized positions. Besides, for liquidation operations, the protocols

may not want to execute unnecessary liquidations, thus verifying

that the accounts being liquidated are indeed under-collateralized

before proceeding with the actions. Protocol developers employ

two control parameters to safeguard these operations: the margin

ratio (mr) and the margin premium (mp). For liquidation to safely

occur, the following constraint (simplified), extracted by OVer, must

be met:

𝑠𝑝𝑙𝑦𝑉𝑎𝑙

(1 −𝑚𝑝) < 𝑏𝑟𝑤𝑉𝑎𝑙 ∗ (1 +𝑚𝑝) ∗ (1 +𝑚𝑟)

9

where splyVal represents the total collateral and brwVal represents
the total borrowed amount. These two variables are in the form of

a summation and are functions of the oracle price input.

In the experiment, we set mr to 0.1 and mp to 0.15. The results

are shown in Table 6, similar to Table 5, except that columns 2

and 3 present the mp and mr achieved. When the bound Ub is 1,

we achieve the margin that is set in the protocol. However, as Ub
is increased to 2, the mr achieved, denoted as mr′, also increases,
resulting in a looser control effect. The experiment encounters a

timeout when the Ub is further increased to 3.

Table 6: Solo liquidation with mp = 0.15 and mr = 0.1

Variables mp
′

mr
′

NumVars Time (s)

𝛿 = 0.1, 𝑏𝑜𝑢𝑛𝑑 = 1 0.15 0.10 5 0.0280

𝛿 = 0.01, 𝑏𝑜𝑢𝑛𝑑 = 1 0.15 0.10 5 0.0281

𝛿 = 0.001, 𝑏𝑜𝑢𝑛𝑑 = 1 0.15 0.10 5 0.0281

𝛿 = 0.1, 𝑏𝑜𝑢𝑛𝑑 = 2 0.15 0.35 10 1.1197

𝛿 = 0.01, 𝑏𝑜𝑢𝑛𝑑 = 2 0.15 0.13 10 0.1454

𝛿 = 0.001, 𝑏𝑜𝑢𝑛𝑑 = 2 0.15 0.11 10 0.0888

dForce (dforce-network 2021) is also a pool-based lending proto-

col and uses Chainlink as a price oracle. While dForce also mandates

over-collateralization, different from Compound, dForce designers
enforce two-sided risk control, using two control variables: the

collateral factor (cf) and the borrow factor (bf). OVer identifies
the following safety constraint (simplified) in the smart contract to

ensure collateralization:

𝑐 𝑓 ∗
𝑐𝑙∑︁
𝑐=0

(𝑐𝑏 [𝑐] ∗ 𝑝𝑐 [𝑐]) >
𝑏𝑙∑︁
𝑏=0

(𝑏𝑏 [𝑏] ∗ 𝑝𝑏 [𝑏])
𝑏𝑓

(7)

where cb and bb represent the collateral and loan balances, and

pc and pb represent the oracle prices. The constraint contains two
summations, where the bounds are represented by cl and bl, respec-
tively.

While for most assets the protocol does not use bf (bf=1), we
set cf =0.5 and bf =0.7 for the purposes of our experiment. As there

are two control variables to optimize, we fix one and search for the

optimal value for the other. Table 7 shows the experiment results.

Columns cf ′ and bf ′ show the cf and bf achieved. We observe that

the results obtained are independent of the bounds for all cases

where cl > 1, bl > 1.
xToken (sNXS 2020) serves as a liquidity manager protocol and

was the victim of an oracle manipulation attack. Specifically, the

attacker was able to arbitrage because the protocol utilizes different

price sources. The common attack vector involves three steps: first,

minting or depositing the token; second, inflating the price of the

minted token; and, finally, withdrawing or burning the token. Other

protocols such as yield aggregators are susceptible to such attacks.

Tomitigate these attacks, we propose an interface that compares the

price at the time of withdrawal to the price at the time of minting.

The equation we suggest for this comparison is as follows:

|𝑝𝑟𝑖𝑐𝑒𝐴𝑡𝑊 𝑖𝑡ℎ𝑑𝑟𝑎𝑤 − 𝑝𝑟𝑖𝑐𝑒𝐴𝑡𝐷𝑒𝑝𝑜𝑠𝑖𝑡 |
𝑝𝑟𝑖𝑐𝑒𝐴𝑡𝐷𝑒𝑝𝑜𝑠𝑖𝑡

≤ tol (8)

Many existing protocols rely on a fixed tolerance ratio, but this

is ineffective when a big volume of tokens is traded. Thus, it is

crucial to parameterize the variable tol to take the amount of to-

kens traded into consideration. For example, we can parameterize

tol as 𝑝𝑟𝑜 𝑓 𝑖𝑡𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒

𝑡𝑜𝑘𝑒𝑛𝑉𝑜𝑙𝑢𝑚𝑒
, which restricts the profits from a single

transaction.

Table 7: dForce borrow with cf = 0.5 and bf = 0.7

Variables cf
′

bf
′

NumVars Time (s)

𝛿 = 0.1, 𝑐𝑙 = 1, 𝑏𝑙 = 0 0.5 0.7 3 0.0264

𝛿 = 0.01, 𝑐𝑙 = 1, 𝑏𝑙 = 0 0.5 0.7 3 0.0265

𝛿 = 0.001, 𝑐𝑙 = 1, 𝑏𝑙 = 0 0.5 0.7 3 0.0263

𝛿 = 0.1, 𝑐𝑙 = 1, 𝑏𝑙 = 1 0.5 0.8560 6 3.8853

𝛿 = 0.01, 𝑐𝑙 = 1, 𝑏𝑙 = 1 0.5 0.7150 6 0.3996

𝛿 = 0.001, 𝑐𝑙 = 1, 𝑏𝑙 = 1 0.5 0.7020 6 0.1091

𝛿 = 0.1, 𝑐𝑙 = 1, 𝑏𝑙 = 1 0.6120 0.7 6 2.7787

𝛿 = 0.01, 𝑐𝑙 = 1, 𝑏𝑙 = 1 0.5110 0.7 6 0.3082

𝛿 = 0.001, 𝑐𝑙 = 1, 𝑏𝑙 = 1 0.5020 0.7 6 0.0892

𝛿 = 0.1, 𝑐𝑙 = 2, 𝑏𝑙 = 1 0.5 0.8560 9 7.1360

𝛿 = 0.01, 𝑐𝑙 = 2, 𝑏𝑙 = 1 0.5 0.7150 9 0.4700

𝛿 = 0.001, 𝑐𝑙 = 2, 𝑏𝑙 = 1 0.5 0.7020 9 0.0875

𝛿 = 0.1, 𝑐𝑙 = 2, 𝑏𝑙 = 1 0.6115 0.7 9 3.8853

𝛿 = 0.01, 𝑐𝑙 = 2, 𝑏𝑙 = 1 0.5110 0.7 9 0.3996

𝛿 = 0.001, 𝑐𝑙 = 2, 𝑏𝑙 = 1 0.5020 0.7 9 0.1091

𝛿 = 0.1, 𝑐𝑙 = 2, 𝑏𝑙 = 2 0.5 0.8560 12 9.0215

𝛿 = 0.01, 𝑐𝑙 = 2, 𝑏𝑙 = 2 0.5 0.7145 12 0.3842

𝛿 = 0.001, 𝑐𝑙 = 2, 𝑏𝑙 = 2 0.5 0.7015 12 0.1010

𝛿 = 0.1, 𝑐𝑙 = 2, 𝑏𝑙 = 2 0.6115 0.7 12 1.8996

𝛿 = 0.01, 𝑐𝑙 = 2, 𝑏𝑙 = 2 0.5105 0.7 12 0.6305

𝛿 = 0.001, 𝑐𝑙 = 2, 𝑏𝑙 = 2 0.5015 0.7 12 0.1676

We use OVer to examine mint, burn, deposit and withdraw, and

automatically extract the expression that approximates the price

at withdrawal and deposit, shown in Table 8. The price at deposit

is approximated as the value transferred to the protocol and the

token minted. Similarly, the withdrawal price is represented by the

value transferred to the user divided by the token burned.

Table 8: Expressions extracted for xToken

Protocol mint burn NumVars Time (s)

𝑥𝑇𝑜𝑘𝑒𝑛 𝑒𝑡ℎ𝑒𝑟𝐶𝑜𝑛𝑡𝑟
𝑚𝑖𝑛𝑡𝐴𝑚𝑡

𝑣𝑎𝑙𝑇𝑜𝑆𝑒𝑛𝑑
𝑡𝑜𝑘𝑇𝑜𝑅𝑒𝑑𝑒𝑒𝑚

4 1.7247

TestAMM (calvwang9 2022) implements a simple lending proto-

col, which allows deposits of USDC and loans in ETH. It employs

an AMM as a price oracle and uses a single risk control parameter

named the collateralization ratio (cr). The simplified constraint for

the borrowing action takes the form

𝑎𝑚𝑜𝑢𝑛𝑡 ≤ (𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑠 ∗ 𝑝𝑟𝑖𝑐𝑒) ∗ 𝑐𝑟 (9)

The result of applying OVer with cr set to 0.7 is shown in Table

9. In this case, the price is computed using the constant product

formula X * Y = K. Substituting the price with 𝑋/𝑌 yields identical

outcomes.

Table 9: testAMM borrow with cr = 0.7

Variables cr
′

NumVars Time (s)

𝛿 = 0.1 0.770 3 0.2403

𝛿 = 0.01 0.710 3 0.0569

𝛿 = 0.001 0.705 3 0.0423

Aave (aave n.d.) is one of the most popular pool-based lending

protocols. Chainlink is employed as the primary price oracle, with

a fallback oracle serving as backup when queries to Chainlink fail.

Aave enforces strict risk-control mechanisms using two control

variables, namely, the liquidation threshold, lth, and the loan-to-

value ratio, ltv. For our borrowing action experiment, we set lth=0.7
10

and ltv=0.5. The simplified constraints for this action are shown in

Equations 10 and 11:∑
𝑐∈𝑎𝑠𝑠𝑒𝑡𝑠 (𝑝𝑐 [𝑐] × 𝑐𝑏 [𝑐] × 𝑙𝑡ℎ)∑

𝑏∈𝑎𝑠𝑠𝑒𝑡𝑠 (𝑝𝑏 [𝑏] × 𝑏𝑏 [𝑏])
≥ 1 (10)

∑︁
𝑏∈𝑎𝑠𝑠𝑒𝑡𝑠

(𝑝𝑏 [𝑏] × 𝑏𝑏 [𝑏]) + 𝑝𝑎 × 𝑎𝑚𝑡 ≤
∑︁

𝑐∈𝑎𝑠𝑠𝑒𝑡𝑠
(𝑝𝑐 [𝑐] × 𝑐𝑏 [𝑐] × 𝑙𝑡𝑣)

(11)

where cb and bb represent the collateral and loan balances, and pc
and pb represent the oracle prices. pa and amt represent the price
and the amount of the asset the user wishes to borrow.

The constraint for liquidation is the same as in Equation 10 ex-

cept the comparator changes to less than. We initially set the loop

bound to one. When we increase the loop bound to two, the number

of variables in the equations increases to 11, causing z3 to time

out. The experiment for the liquidation call gives a similar result. A

timeout occurs when we increase the loop bound to two.

Table 10: Aave borrow with lth = 0.7, ltv = 0.5 and bound = 1

Variables lth
′

ltv
′

NumVars Time (s)

𝛿 = 0.1 0.7 0.612 7 22.2926

𝛿 = 0.01 0.7 0.511 7 2.5755

𝛿 = 0.001 0.7 0.502 7 0.2063

Table 11: Aave liquidation with lth = 0.7 and bound = 1

Variables lth
′

NumVars Time (s)

𝛿 = 0.1 0.7 5 0.0331

𝛿 = 0.01 0.7 5 0.0321

𝛿 = 0.001 0.7 5 0.0359

Warp (warpfinance 2020) enables liquidity provider(LP) token-

based borrowing and uses Uniswap V2 as a price oracle. The valida-

tion logic in the Warp protocol includes two loops, also appearing

in the constraint, with their respective bounds represented by cl
and bl. The control variable, namely the collateralization ratio, cr,
is hard-coded to be two-thirds within the protocol. The experiment

result is shown in Table 12. When we increase the bound cl to two,

the number of variables reaches nine, resulting in a timeout.

Table 12: Warp borrow with cr = 2/3 and ex = 1

Variables cr
′

NumVars Time (s)

𝛿 = 0.1, 𝑐𝑙 = 1, 𝑏𝑙 = 0 0.815 6 3.6597

𝛿 = 0.01, 𝑐𝑙 = 1, 𝑏𝑙 = 0 0.681 6 0.3280

𝛿 = 0.001, 𝑐𝑙 = 1, 𝑏𝑙 = 0 0.670 6 0.0330

𝛿 = 0.1, 𝑐𝑙 = 1, 𝑏𝑙 = 1 0.815 9 6.8087

𝛿 = 0.01, 𝑐𝑙 = 1, 𝑏𝑙 = 1 0.681 9 0.4758

𝛿 = 0.001, 𝑐𝑙 = 1, 𝑏𝑙 = 1 0.670 9 0.0467

Morpho is a lending optimizer that implements a peer-to-peer

layer over pool-based protocols such as Aave and Compound. We

study Aave’s V3-based implementation (morpho-org 2023). The

simplified constraint is shown in Equation 12, where cb and bb
represent the collateral and loan balances, and pc and pb represent
the oracle prices. The constraint contains two summations, where

the bounds are represented by cl and bl, respectively. There is

only one control variable in Morpho, ltv, which is set to 0.7 in the

experiment. In addition, we assume that the two bounds are equal.

The result is shown in Table 13. However, a timeout occurs when

we increase the bound to two.

𝑐𝑙∑︁
𝑐=0

(𝑐𝑏 [𝑐] ∗ 𝑝𝑏 [𝑐] ∗ 𝑙𝑡𝑣) ≥
𝑏𝑙∑︁
𝑏=0

(𝑏𝑏 [𝑏] ∗ 𝑝𝑐 [𝑏]) (12)

Table 13: Morpho borrow with ltv = 0.7

Variables ltv
′

NumVars Time (s)

𝛿 = 0.1, 𝑏𝑜𝑢𝑛𝑑 = 1 0.860 6 0.7198

𝛿 = 0.01, 𝑏𝑜𝑢𝑛𝑑 = 1 0.715 6 0.0947

𝛿 = 0.001, 𝑏𝑜𝑢𝑛𝑑 = 1 0.705 6 0.0478

𝛿 = 0.1, 𝑏𝑜𝑢𝑛𝑑 = 2 N/A 12 TO

𝛿 = 0.01, 𝑏𝑜𝑢𝑛𝑑 = 2 0.715 12 1.1773

𝛿 = 0.001, 𝑏𝑜𝑢𝑛𝑑 = 2 0.705 12 0.1006

The Euler protocol (euler-xyz 2023a) a pool-based lending proto-

col, shares the same control variables as the dForce protocol, but
the Euler only has one loop in its validation logic. This protocol

enforces two-sided risk control. In the experiment, we set the con-

trol variables, the collateral factor cf to 1 and the borrowing factor

bf to 0.7. By fixing cf ′ at 1, we perform a search for the achieved

value of bf. The results of the experiment align with those of the

dForce protocol, as expected.

Table 14: Euler borrow with bf = 0.7, cf = 1

Variables bf
′

NumVars Time (s)

𝛿 = 0.1, 𝑏𝑜𝑢𝑛𝑑 = 1 0.7 4 0.0312

𝛿 = 0.01, 𝑏𝑜𝑢𝑛𝑑 = 1 0.7 4 0.0311

𝛿 = 0.001, 𝑏𝑜𝑢𝑛𝑑 = 1 0.7 4 0.0311

𝛿 = 0.1, 𝑏𝑜𝑢𝑛𝑑 = 2 0.860 8 0.4572

𝛿 = 0.01, 𝑏𝑜𝑢𝑛𝑑 = 2 0.715 8 0.4570

𝛿 = 0.001, 𝑏𝑜𝑢𝑛𝑑 = 2 0.705 8 0.2674

Table 15: Expressions extracted for Beefy

Protocol mint burn NumVars Time (s)

𝐵𝑒𝑒 𝑓 𝑦
_𝑎𝑚𝑜𝑢𝑛𝑡
𝑠ℎ𝑎𝑟𝑒𝑠

𝑟
𝑠ℎ𝑎𝑟𝑒𝑠

4 0.675

Beefy is a yield aggregator protocol, and we analyze its curve-

kava-3pool (Kavascan 2022). Similar to xToken, OVer helps analyze
the mint/deposit and burn/withdraw functions and approximate

the price at withdrawal and the price at deposit. The extracted

expressions are shown in Table 15.

Answer to RQ3: Our study shows that the analysis results of OVer
can soundly capture the logic of the target safety constraints for

various kinds of DeFi protocols. Given an oracle deviation ratio cap,

a user can use the results of OVer to construct models to find optimal

control parameters to guarantee the desired safety property.

6 PRICE ORACLE DESIGN FOR THE CBDC
PLATFORM

In this section, we delve into various pricing algorithms and the

design of popular price oracles. Our evaluation centers around

three critical attributes: accuracy, timeliness and security. Accuracy

11

refers to the deviation of the reported value from ground truths.

It measures how closely the oracle’s reported price aligns with

actual market values. An accurate price oracle provides reliable data

for financial systems, ensuring precise calculations and informed

decision making. Timeliness relates to the latency in updating the

value on the blockchain. Swift and up-to-date information is crucial

for real-time financial applications. A timely price oracle ensures

that the most recent market data is reflected promptly, minimizing

delays in transaction execution. Security considerations revolve

around the resources needed to manipulate the oracle.

6.1 Security analysis of existing price oracles
6.1.1 Aggregation- and liquidity-based price oracles. We catego-

rize price oracles based on their data sources: aggregation-based or

liquidity-based. Each type has distinct trade-offs regarding accu-

racy, timeliness and security. An aggregation-based oracle gathers

trading information from various platforms and reports an aggre-

gated answer. One notable example is Chainlink. Aggregating the

answers from independent nodes often yields high accuracy, time-

liness and security. However, it is crucial to note that if an attacker

gains control over half of the nodes, the security properties become

compromised.

A liquidity-based oracle typically employs its own asset pricing
function to determine the asset’s price. For instance AMMs, such

as Uniswap, are commonly utilized as price oracles. Due to their

reliance on mathematical formulas and the number of tokens in

the pool, they are susceptible to manipulation in the liquidity pool,

for example, through a flash loan. Another example is seen in yield

protocols, where the share price upon deposit is calculated as the

ratio of the total supply and total shares of the asset. Careless

implementation may allow price manipulation through re-entrance

or donation-based attacks. Thus, this type of oracle often offers

high timeliness and accuracy but at the cost of low security.

Both aggregation- and liquidity-based oracles tend to employ

filters, such as weighted averages and medians, to remove outliers

and prevent one- or multi-block price manipulations. In particular,

Uniswap uses time-weighted average prices (TWAP) with arith-

metic means in V2 and upgrades to geometric means in V3. Chain-

link employs volume-weighted average prices (VWAP) when ag-

gregating the trading data. Additionally, median filtering is widely

used across both types of oracles. Selecting the middle value from

a sorted list of prices filters out extreme outliers. Variations have

been developed to further preprocess the data points and calculate

a refined average. For example, Euler introduced the time-weighted-

median (TWM) method.

6.1.2 Aggregation and asset pricing algorithms. Table 16 summa-

rizes the key characteristics of widely used price aggregation al-

gorithms and asset pricing functions. Specifically, the first column

gives the name of the algorithm. The second column specifies

whether the algorithm uses single or multiple data sources. The

third column indicates if it is an aggregation method. The last

column indicates where the algorithm is usually deployed.

𝑃𝑉𝑊𝐴𝑃 =

∑𝑉
𝑖=1 𝑣𝑖 ∗ 𝑝𝑖∑𝑉

𝑣𝑖
𝑣𝑖

(13)

unsorted

sorted by price

mid-point

Figure 5: Illustration of the time-weighted-median
algorithm

𝑃𝑇𝑊𝐴𝑃 =

∑𝑇
𝑖=1 𝑡𝑖 ∗ 𝑝𝑖∑𝑇

𝑡𝑖
𝑡𝑖

(14)

The VWAP aggregates price information frommultiple exchange

services or nodes. In Equation 13, 𝑣𝑖 , 𝑝𝑖 represent the volume and

price of the trade and 𝑉 represents the total number of trades. The

VWAP considers both the trading volume and the price, providing a

robust average that reflects market dynamics. By incorporating the

volume, the VWAP minimizes the impact of extreme trades (Chain-

link Foundation 2023). Conversely, the TWAP and its variants, such

as the exponential moving average price (EMAP), typically rely

on a single source (Pyth Network 2024). Equation 14 shows the

arithmetic mean version of the TWAP, where𝑇 represents the time

window and 𝑝𝑖 represents the price at time 𝑡𝑖 . As an aggregation

method, the median can be applied both to a single source in the

time domain and across different sources at specific time stamps.

The TWM represents a variation of the median and the time av-

erage. The TWM first sorts the prices from low to high and then

selects the price at the median of the time window (euler-xyz 2023b).

The algorithm is illustrated in Figure 5. To manipulate the TWM,

an adversary must control the price for at least half of the time

window. This effectively removes outliers over time and thereby

enhances security.

If aggregation happens on-chain, the cost of gas is an important

aspect to consider during implementation. While the VWAP is often

implemented off-chain, the TWAP is often implemented on-chain

along with the DEX protocol.

The last three rows in Table 16 present asset pricing algorithms.

The implementations are on-chain, as the primary use of these

algorithms is found in the AMM protocols.

𝐾 = Π𝑁
𝑖 𝑥𝑖 (15)

𝐶 =

𝑁∑︁
𝑖

𝑥𝑖 (16)

Although constant product AMMs (CPAMMs) are relatively

straightforward to implement and have gained popularity in decen-

tralized exchanges, they may encounter challenges in maintaining

accuracy, particularly during volatile market conditions. In Equa-

tion 15, 𝑥𝑖 represents the asset volume in the pool and 𝐾 is a prede-

termined constant. The CPAMM model assumes that the product

of the asset quantities remains constant. As trades occur, the pool

rebalances automatically. The Constant SUM + Constant product

(CSCP) AMM is a variation of the CPAMM, introduced by Curve

for stable swap pools (Egorov 2019; Port and Tiruviluamala 2022).

12

This variant addresses certain limitations of the CPAMM, providing

a more balanced pool and stable peg. The CSCP combines a con-

stant sum, shown in Equation 16, and a constant product, achieving

better stability for stablecoin swaps. The logarithmic market scor-

ing rule (LMSR) has wide applications in prediction and auction

markets (Hanson 2003a; Hanson 2003b). It determines the cost of

providing liquidity, based on the logarithmic function. However,

the LMSR can be susceptible to compromise, primarily due to its

lack of sensitivity to liquidity.

It is important to note that these algorithms are building blocks

of price oracles and aggregation algorithms can be combined with

other pricing methods as filters. In the following section, we show

how these algorithms are used in existing oracles.

Table 16: Examples of aggregation and asset pricing
algorithms

Algorithm Sources Aggregated On-chain/off-chain

VWAP multiple Yes off-chain

MEDIAN multiple / single Yes on-chain

TWAP single Yes on-chain

TWM single Yes on-chain

EMAP single Yes on-chain

CPAMM single DEX No on-chain

CSCP single DEX No on-chain

LMSR single DEX No on-chain

6.1.3 Existing oracle systems. Table 17 presents the algorithm(s)

used by popular oracle systems and analyzes each oracle’s secu-

rity, timeliness and accuracy. Chainlink is a decentralized network

where nodes employ off-chain VMAP algorithms to calculate aver-

age prices across multiple trading platforms. Subsequently, the data

reported by these nodes is aggregated using a median approach.

Chainlink has high security as attackers need to control 51% of

the nodes to manipulate the price data. It also offers high timeli-

ness and accuracy, as the price is continuously updated based on

the deviation and elapsed time. However, Chainlink also faces a

potential single point of failure. For instance, the Venus Protocol

once suffered from a price suspension for Luna on the Chainlink

platform, receiving incorrect, hard-coded price data. Uniswap is a

representative protocol of TWAP-based oracles and CPAMMs. Here,

we observe a trade-off between security and accuracy/timeliness.

While price updates can occur after each transaction within the pro-

tocol, a lagging effect exists in the reported price, due to the use of

TWAP. TWAP contributes to the security of AMM-based oracles, yet

it remains feasible to manipulate the oracle through meticulously

crafted transactions. Chronicle aggregates prices from trusted ora-

cles and computes the median of the reported data. It shares similar

properties with Chainlink. The difference is that Chainlink utilizes

multiple layers of aggregation and Chronicle employs a single layer.

Pyth employs a unique cost function that calculates a confidence-

weightedmedian and an inversely confidence-weighted exponential

moving average. While this approach effectively eliminates out-

liers, the accuracy and timeliness of the data may be influenced by

a fixed time window, potentially underestimating confidence levels

by assuming correlated errors. Two other noteworthy protocols are

DIA and Euler. DIA provides a range of filters to preprocess trading

data and allows for the customization of update intervals. On the

other hand, Euler implements an oracle using the TWM algorithm,

serving as a backup for Uniswap V3.

6.2 Simulation of TWAP and TWM in volatile
periods

As discussed in the previous subsection, protocols employ various

filters to enhance security, with certain systems allowing users to

customize the filters. We emphasize the importance of filters in

oracles with single sources, such as AMMs, which are more sus-

ceptible to manipulation. Thus our evaluation focuses on assessing

the impact of TWAP and TWM on AMMs. The simulation utilizes

trading data from the Uniswap ETH/USD pair during the most

volatile days. We next describe the settings of our simulation.

Price of an asset.We derive the price of an asset by considering

the ratio between the number of tokens in the liquidity pool. An

alternative approach would involve using the trading price, which

is calculated based on changes in token quantities. Additionally, we

assume that the oracle reports a price once per block.

Price sampling. While it is feasible to apply medium, mean or

VWAP filters to aggregate all of the trades in one block, the dif-

ferences among these filters are minimal in typical scenarios. We

follow Uniswap’s implementation, which samples the price once

per block. Specifically, we use the first update as the reference price
in the subsequent discussions.

Simulation results. Figure 6 shows the simulation results of the

price changes on May 24, 2021, from block 12494000 to block

12500999. We employ a 144-block time window, corresponding

to approximately 30 minutes on the Ethereum network. The blue

line represents the reference price, which reverses as a baseline.

It reflects the raw price data without any additional filtering. The

orange dashed line represents the TWM filter. Notably, the TWM

exhibits noticeable price-level jumps, indicating its sensitivity to

rapid changes. The green line depicts the TWAP with an arithmetic

mean. The TWAP provides a smoother trajectory compared with

the TWM, minimizing abrupt fluctuations.

Figure 7 illustrates the deviations observed across different meth-

ods, calculated as the changes between consecutive updates. No-

tably, similar spikes in prices are evident with no filters and the

TWM. In contrast, deviations are considerably smaller when em-

ploying the TWAP method.

Table 18 summarizes the mean square error (MSE) with respect

to the reference price and the realized volatility (standard deviation)

of the price series. The first three rows demonstrate that employing

the mean or median to aggregate trades in one block yields results

that are comparable to directly sampling the price series. When we

utilize the TWAP and TWM filters, the volatility of the time series

decreases. Yet, this reduction in volatility comes at the cost of a

lagging effect, as reflected in the MSE values.

13

Table 17: Analysis of popular oracles

Examples Algorithm Security Timeliness Accuracy

Chainlink VWAP+MEDIAN high high high

Uniswap V2 TWAP(arithmetic) + CPAMM medium medium medium

Uniswap V3 TWAP(geometric) + CPAMM medium meidum medium

Chronicle MEDIAN(multiple oracles) high high high

Pyth CWM + ICW-EMAP high medium medium

DIA filter + MEDIAN high high medium

Euler TWM + CPAMM high medium medium

Figure 6: Reference price, TWAP and TWM on May 24th,
2021

Figure 7: Deviations resulting from TWAP and TWM on
May 24, 2021

We extend our simulation to more-recent blocks, specifically

from blocks 18752500 to blocks 18759499 (December 10, 2023), rep-

resenting normal day behaviour. Figure 8 shows the reference price

and prices after applying the TWM filter and the TWAP filter. De-

spite a delay in price updates, the filtered values closely track the

reference prices. Figure 9 shows the deviations between consecu-

tive price updates. The TWAP exhibits the least deviation, while

significant deviations persist with the TWM. Table 18 summarizes

the MSE and volatility values for the different filtering methods.

Table 18: Mean square error and volatility

May 24, 2021 Dec 10, 2023

MSE Volatility MSE Volatility

Reference 0 192.33845 0 8.5340

Mean 0.5407 192.3212 0.00312 8.5352

Median 0.5081 192.3209 0.0032 8.5350

TWAP144 528.2182 189.8173 5.0364 8.4912

TWM144 700.3281 189.6743 6.1557 8.5915

Figure 8: Reference price, TWAP and TWM on Dec 10, 2023

6.3 Oracle design for a digital currency system
We next discuss considerations when designing a price oracle for

blockchain-based CBDCs. We envision two types of assets within

the digital currency platform, that is, CBDC-native and non-native
assets. CBDC-native assets are exclusive to the digital currency

platform, andwe assume the availability of exchange services, either

order-book or AMM-based, for these assets on the digital currency

14

Figure 9: Deviations Resulting from TWAP and TWM on
Dec 10, 2023

platform. Non-native assets are assets that exist in the outside

world. Examples include fiat money and crypto assets from external

blockchain networks. The system’s overview is shown in Figures 10

and 11. As various services on the digital currency platform will

use the price oracle, the design needs to be manipulation resistant.

Configurations such as the update frequency could be customizable

and may depend on the deviation and the time elapsed.

AMM/
Order book

Market
manipulation

Attacks

Price recover function

Configuration

Anomaly detection

Oracle module

Trading data

Discrete-time
Application

protocol

CBDC platform

Figure 10: Oracle system overview for CBDC-native assets

Trading
data Existing oracles

Attacks

Market
manipulation Oracle

manipulation

Price aggregation
function

Configuration

Anomaly detection

Oracle module

Application
protocol

CBDC platform

Figure 11: Oracle system overview for non-native assets

CBDC-native assets. The oracle module retrieves trading data

from the exchange services on the digital currency system and

recovers the asset price through the price recovery function. We

believe the VWAP is a good choice for order-book-based assets,

as it captures market demand and supply dynamics. Applying the

VWAPwith some filters will smooth the price curve and increase the

cost of potential manipulation attacks. Similarly, for AMM-based

assets, we propose using a TWAP filter. This approach mitigates

abrupt fluctuations and provides a more stable price representa-

tion. Developing anomaly detection techniques may stop potential

manipulation and enhance security. Adversaries can potentially

manipulate the output of the oracle module by manipulating the

AMMs or the order books. Detecting trades with huge volumes

or updates significantly deviating from previous updates can help

identify potential attacks. Further research is necessary to establish

robust criteria for anomalies, taking into account factors such as

asset type and trading frequency.

The oracle module will likely be implemented on-chain, so the

cost of gas is a critical factor. The Euler’s implementation of the

TWM offers a more cost-effective alternative compared with the

TWAP. Reducing the number of bits to represent prices contributes

to this efficiency. This consideration underscores the importance

of optimizing not just for accuracy but also for efficiency in the

implementation.

Non-native assets. For assets that exist outside the system, the

oracle is responsible for aggregating pricing information from di-

verse sources and bringing it into the digital currency system. Here,

we assume that our oracle module aggregates the prices reported

by existing oracles external to the digital currency platform. Thus,

attacks on external sources may induce oracle deviations in the digi-

tal currency system. For this reason it is necessary to use the VWAP

or the median to fortify the accuracy and resilience of the oracle

system. These methods provide robustness against extreme outliers

and ensure a more reliable representation of external asset prices.

Implementing a reputation system for data providers adds an addi-

tional layer of safety. Furthermore, deploying anomaly detection

mechanisms, for example, identifying abnormal price fluctuations

or sudden deviations, can help prevent malicious attacks on the

oracle.

7 RELATEDWORK
Automatic analysis. A significant body of research has been dedi-

cated to the automatic auditing of smart contracts, utilizing classic

methods such as fuzzing (Choi et al. 2021; Jiang, Liu and Chan 2018;

Nguyen et al. 2020; Shou, Tan and Sen 2023; Wang et al. 2020.),

symbolic executions (Consensys 2023; Liu et al. 2020; Luu et al.

2016; Mossberg et al. 2019; Zheng, Zheng and Luo 2022) and static

analysis (Feist, Grieco and Groce 2019; Kalra et al. 2018; Tikhomirov

et al. 2018; Tsankov et al. 2018) to identify various vulnerabilities.

Researchers have also built verification tools that use formal mod-

els to describe the intricate nature of these protocols and their

interactions (Bernardi et al. 2020; Sun and Yu 2020; Tolmach et al.

2021). All of the above work focuses on eliminating or nullifying

implementation errors in smart contracts. Furthermore, runtime

validation techniques are adopted to enforce security constraints

during the execution of smart contracts (Ellul and Pace 2018; Li,

Choi and Long 2020; Rodler et al. 2018). In contrast, we focus on

the oracle deviation issue, which is the input aspect of the contract.

We propose the first sound analysis tool to analyze oracle deviation

in DeFi protocols.

Bartoletti et al. (2022) propose a simulation-based approach for

lending protocols, searching for optimal parameters to minimize

nonrepayable loans. In contrast, OVer works with existing require

15

statements in the code, eliminating the need for explicit safety

property specifications.

Oracle design and runtime mechanisms. Extensive research has

been conducted on DeFi protocols and the associated attacks, with

recent emphasis on flash loan attacks (Chen, Beillahi and Long 2022;

Deng, Zhao et al. 2023; Qin et al. 2021). Additionally, the manipula-

tion of oracles and price manipulation attacks have been extensively

discussed. For instance, the work of Mackinga, Nadahalli and Wat-

tenhofer (2022) demonstrates the vulnerability of lending protocols

that employ TWAP oracles to under-collateralized loan attacks. Xue

et al. (2022) suggest monitoring token changes in liquidity pools to

detect anomalous transactions and propose using front-running as

a defense mechanism against such attacks. Wu et al. (2021) propose

a framework for detecting oracle manipulation attacks through

semantics recovery. An algorithmic model is designed to estimate

the safety level of DEX-based oracles and to calculate the cost as-

sociated with initiating price manipulation attacks (Aspembitova

and Bentley 2022).Wang et al. develop a tool that detects price ma-

nipulation vulnerabilities by mutating states (Wang et al. 2021).

Several works focus on the design of robust oracles and proving

the properties of price oracles (Dave, Sjöberg and Sun 2021). While

previous research primarily concentrated on the design of robust

oracles and the detection of price manipulation attacks, our work

proposes promising analysis tools for smart contracts to help devel-

opers mitigate oracle deviation caused by such attacks, operating

under the assumption that oracles are unreliable.

Loop Summary. The loop-summary component of our work is

closely related to a previouswork (Mariano et al. 2020) that proposes

a DSL containing map, zip and fold operations and their variants to

summarize Solidity loops. They use a type-directed search with an

enumeration approach. However, after multiple experiments, we

are not able to use their tool, Solis, to implement the loop-summary

component of our work since it does not handle loops that contain

if-else branches that require introducing Boolean flags in the

summary. Furthermore, during our experiments, we faced some

loops that are without if branches and require composition that

cannot be handled using Solis. For example, the following loop

requires composing the fold and zip operators on a single statement

which, according to Section 4.3 in Mariano et al. (2020), is not

supported in Solis.

1 for (uint i = 0; i < len ; i ++) {

2 total += arr1[i] * arr2[i]; }

Also, as presented in Section 4.3 in the same source, Solis first
generates a summary for a single statement and concatenates sum-

maries through the sequence operator. Thus, it fails to handle de-

pendent statements.

1 for (uint i = 0; i < len ; i ++) {

2 arr[i] * = 5; // S1

3 total += arr[i]; //S2 depends on S1 }

In DeFi protocols, most loops perform fold operations and in-

clude complex mathematical expressions. Therefore, we develop a

new loop summarization algorithm that is tailored to DeFi smart

contracts to address the above issues.

8 CONCLUSION
The integrity of decentralized finance protocols is frequently con-

tingent on the precision of crucial oracle values, such as the prices

of digital assets. In response to this, we introduce OVer, the first

sound analysis tool that aids developers in constructing formal mod-

els directly from contract source code. Our findings demonstrate

that OVer has the ability to analyze a broad spectrum of prevalent

DeFi protocols. Intriguingly, with the assistance of OVer, we dis-

cover that many existing DeFi protocols’ control mechanisms, even

with default parameters, fall short in safeguarding these protocols

against historical oracle deviations. This revelation underscores

the indispensable role of tools like OVer and advocates for more-

methodical strategies in the design of DeFi protocols. Additionally,

we conduct comprehensive assessments of widely utilized algo-

rithms within price oracles, examining their potential integration

into blockchain-based CBDC systems. Our analysis encompasses

diverse considerations aimed at enhancing the precision and ro-

bustness of the oracle system, thereby securing smart contracts on

blockchain-based CBDC platforms.

9 DATA AVAILABILITY
Our artifact includes the implementation of OVer, source code

for benchmark protocols and the experiment data. It is publicly

accessible on Zenodo (Deng, Beillahi et al. 2023). Furthermore, this

report is an extended version of a paper accepted at the International

Conference on Software Engineering 2024 (Deng et al. 2024).

16

17

REFERENCES

aave. n.d. “protocol-v2.” Accessed April 23, 2023. https://github.com/aave/protocol-v2/tree/master.

Adler, J., R. Berryhill, A. Veneris, Z. Poulos, N. Veira and A. Kastania. 2018. "Astraea: A Decentralized
Blockchain Oracle." In 2018 IEEE International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), 1145–1152. Doi: 10.1109/Cybermatics_2018.2018.00207.

Aspembitova, A. T. and M. A. Bentley. 2022. “Oracles in Decentralized Finance: Attack Costs, Profits and
Mitigation Measures.” Entropy 25 (1): 60.

Bartoletti, M., J. Chiang, T. Junttila, A. L. Lafuente, M. Mirelli, and A. Vandin. 2022. “Formal Analysis of
Lending Pools in Decentralized Finance.” In Proceedings of the 11th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation, Part III, 335–355.
https://doi.org/10.1007/978-3-031-19759-8_21.

Bernardi, T., N. Dor, A. Fedotov, S. Grossman, N. Immerman, D. Jackson, A. Nutz, L. Oppenheim, O., N.
Rinetzky, N. Sagiv, M., Taube, M. and Wilcox, J. R. 2020. “WIP: Finding bugs automatically in smart
contracts with parameterized invariants.” In 4th Stanford Blockchain Conference 2020.

Buterin, V. 2014. “Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform.”
White paper.

Cai, Y., N. Irtija, E. E. Tsiropoulou and A. Veneris. 2021. “Truthful Decentralized Blockchain Oracles.”
International Journal of Network Management 32 (3): e2179.

calvwang9. 2022. “oracle-manipulation.” Accessed July 15, 2023. https://github.com/calvwang9/oracle-
manipulation.

Chainlink Foundation. 2023. “TWAP vs. VWAP Price Algorithms.” https://chain.link/education-hub/twap-
vs-vwap.

Chainlink Foundation. n.d. “ChainlinkClient API Reference.” Accessed August 1. 2023.
https://docs.chain.link/any-api/api-reference/.

Chen, Z., S. M. Beillahi and F. Long. 2022. “FlashSyn: Flash Loan Attack Synthesis via Counter Example
Driven Approximation.” arXiv preprint, arXiv:2206.10708.

Choi, J., D. Kim, S. Kim, G. Grieco, A. Groce and S. K. Cha. 2021. “SMARTIAN: Enhancing Smart
Contract Fuzzing with Static and Dynamic Data-Flow Analyses.” In Proceedings—2021 36th IEEE/ACM
International Conference on Automated Software Engineering, 227–239.
https://doi.org/10.1109/ASE51524.2021.9678888.

compound-finance. 2020. “compound-protocol.” Accessed April 23, 2023. https://github.com/compound-
finance/compound-protocol/releases/tag/v2.8.1.

Consensys. 2023. “mythril.” Accessed July 6, 2023. https://github.com/Consensys/mythril.

crytic. n.d. “slither.” Accessed July 28, 2023. https://github.com/crytic/slither.

https://github.com/aave/protocol-v2/tree/master
https://doi.org/10.1007/978-3-031-19759-8_21
https://ethereum.org/en/whitepaper/
https://github.com/calvwang9/oracle-manipulation
https://github.com/calvwang9/oracle-manipulation
https://chain.link/education-hub/twap-vs-vwap
https://chain.link/education-hub/twap-vs-vwap
https://docs.chain.link/any-api/api-reference/
https://doi.org/10.1109/ASE51524.2021.9678888
https://github.com/compound-finance/compound-protocol/releases/tag/v2.8.1
https://github.com/compound-finance/compound-protocol/releases/tag/v2.8.1
https://github.com/Consensys/mythril
https://github.com/crytic/slither

18

Dave, K., V. Sjöberg and X. Sun. 2021. “Towards Verified Price Oracles for Decentralized Exchange
Protocols.” In 3rd International Workshop on Formal Methods for Blockchains (FMBC 2021), Open
Access Series in Informatics (OASIcs), Vol. 95, edited by B. Bernardo and D. Marmsoler, 1:1–1:14.
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.FMBC.2021.1.

de Moura, L. and N. Bjørner. 2008. “Z3: An Efficient SMT Solver.” In Tools and Algorithms for the
Construction and Analysis of Systems, edited by C. R. Ramakrishnan and J. Rehof, 337–340. Berlin,
Germany: Springer.

Deng, X., S. M. Beillahi, C. Minwalla, H. Du, A. Veneris and F. Long. 2023. “Artifact for OVer:
Safeguarding DeFi Smart Contracts against Oracle Deviations.” Zenodo. Accessed December 27, 2023.
https://doi.org/10.5281/zenodo.10436720.

Deng, X., Z. Zhao, S. M. Beillahi, H. Du, C. Minwalla, K. Nelaturu, A. Veneris and F. Long. 2023. “A
Robust Front-Running Methodology for Malicious Flash-Loan DeFi Attacks.” In 2023 IEEE International
Conference on Decentralized Applications and Infrastructures (DAPPS), 38–47.
https://doi.org/10.1109/DAPPS57946.2023.00015.

Deng, X., S. M. Beillahi, C. Minwalla, H. Du, A. Veneris and F. Long. 2024. “Safeguarding DeFi Smart
Contracts against Oracle Deviations.” In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, Article 171, 1–12. https://doi.org/10.1145/3597503.3639225.

dforce-network. 2021. “LendingContractsV2.” Accessed July 16, 2023. https://github.com/dforce-
network/LendingContractsV2/tree/master/contracts.

dydxprotocol. 2021. “solo.” Accessed July 18, 2023.
https://github.com/dydxprotocol/solo/releases/tag/v0.41.0.

Egorov, M. 2019. “StableSwap—Efficient Mechanism for Stablecoin Liquidity.” Self-published, Curve
Finance. https://curve.fi/files/stableswap-paper.pdf.

Ellul, J. and G. J. Pace. 2018. “Runtime Verification of Ethereum Smart Contracts.” In 2018 14th European
Dependable Computing Conference, 158–163. IEEE. DOI 10.1109/EDCC.2018.00036.

ethereum. 2023. “solidity.” Accessed August 1. 2023. https://github.com/ethereum/solidity.

euler-xyz. 2023a. “euler-contracts.” Accessed December 20, 2023. https://github.com/euler-xyz/euler-
contracts.

euler-xyz. 2023b. “median-oracle.” Accessed January 15, 2024. https://github.com/euler-xyz/median-
oracle.

Feist, J., G. Grieco and A. Groce. 2019. “Slither: A Static Analysis Framework for Smart Contracts.” In
2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB), 8–15. DOI:10.1109/WETSEB.2019.00008.

Hanson, R. 2003a. “Combinatorial Information Market Design.” Information Systems Frontiers 5 (1):
107–119.

https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.FMBC.2021.1
https://doi.org/10.5281/zenodo.10436720
https://doi.org/10.1145/3597503.3639225
https://github.com/dforce-network/LendingContractsV2/tree/master/contracts
https://github.com/dforce-network/LendingContractsV2/tree/master/contracts
https://github.com/dydxprotocol/solo/releases/tag/v0.41.0
https://curve.fi/files/stableswap-paper.pdf
https://github.com/ethereum/solidity
https://github.com/euler-xyz/euler-contracts
https://github.com/euler-xyz/euler-contracts
https://github.com/euler-xyz/median-oracle
https://github.com/euler-xyz/median-oracle
http://dx.doi.org/10.1109/WETSEB.2019.00008

19

Hanson, R. 2003b. “Logarithmic Markets Coring Rules for Modular Combinatorial Information
Aggregation.” The Journal of Prediction Markets 1 (1): 3–15.

Jiang, B, Y. Liu and W. K. Chan. 2018. “ContractFuzzer: Fuzzing Smart Contracts for Vulnerability
Detection.” In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 259–269. https://doi.org/10.1145/3238147.3238177.

Kalra, S., S. Goel, M. Dhawan and S. Sharma. 2018. “Zeus: Analyzing Safety of Smart Contracts.” In
Network and Distributed Systems Security (NDSS) Symposium 2018, 1–12.
http://dx.doi.org/10.14722/ndss.2018.23082.

Kavascan. 2022. “Beefy Vault Contract.” Accessed July 16, 2023.
https://kavascan.com/address/0xC3821F0b56FA4F4794d5d760f94B812DE261361B?t=code.

Li, A., J. A. Choi and F. Long. 2020. “Securing Smart Contract with Runtime Validation.” In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, 438–453.
https://doi.org/10.1145/3385412.3385982.

Liu, Y., Y. Li, S.-W. Lin and R. Zhao. 2020. “Towards Automated Verification of Smart Contract
Fairness.” In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 666–677.
https://doi.org/10.1145/3368089.3409740.

Llama Corporation. n.d.(a). “DeFi Dashboard.” Accessed April 1, 2023. https://defillama.com/.

Llama Corporation. n.d.(b). “Oracles Dashboard.” Accessed April 1, 2023. https://defillama.com/oracles.

Luu, L., D.-H. Chu, H. Olickel, P. Saxena and A. Hobor. 2016. “Making Smart Contracts Smarter.” In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 254–269.
https://doi.org/10.1145/2976749.2978309.

Mackinga, T., T. Nadahalli and R. Wattenhofer. 2022. “TWAP Oracle Attacks: Easier Done than Said?” In
2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 1–8.
https://doi.org/10.1109/ICBC54727.2022.9805499.

Mariano, B., Y. Chen, Y. Feng, S. K. Lahiri and I. Dillig. 2020. “Demystifying Loops in Smart Contracts."
In ASE '20: Proceedings of the 35th IEEE/ACM International Conference on Automated Software
Engineering, 262–274. https://doi.org/10.1145/3324884.3416626.

morpho-org. 2023. “morpho-aavev3-optimizer.” Accessed July 17, 2023. https://github.com/morpho-
org/morpho-aave-v3/releases/tag/v1.0.0.

Mossberg, M., F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brunson and A. Dinaburg.
2019. “Manticore: A User-Friendly Symbolic Execution Framework for Binaries and Smart Contracts.” In
2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), 1186–1189.
DOI:10.1109/ASE.2019.00133.

Nguyen, T. D., L. H. Pham, J. Sun, Y. Lin and Q. Tran Minh. 2020. “sFuzz: An Efficient Adaptive Fuzzer
for Solidity Smart Contracts.” In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, 778–788. https://doi.org/10.1145/3377811.3380334.

https://doi.org/10.1145/3238147.3238177
https://kavascan.com/address/0xC3821F0b56FA4F4794d5d760f94B812DE261361B?t=code
https://doi.org/10.1145/3385412.3385982
https://doi.org/10.1145/3368089.3409740
https://defillama.com/
https://defillama.com/oracles
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/ICBC54727.2022.9805499
https://doi.org/10.1145/3324884.3416626
https://github.com/morpho-org/morpho-aave-v3/releases/tag/v1.0.0
https://github.com/morpho-org/morpho-aave-v3/releases/tag/v1.0.0
http://dx.doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1145/3377811.3380334

20

Port, A. and N. Tiruviluamala. 2022. “Mixing Constant Sum and Constant Product Market Makers.”
arXiv:2203.12123 [q-fin.TR]

Pyth Network. 2024. “EMA Price Aggregation.” https://docs.pyth.network/price-feeds/how-pyth-
works/ema-price-aggregation.

Qin, K., L. Zhou, B. Livshits and A. Gervais. 2021. “Attacking the DeFi Ecosystem with Flash Loans for
Fun and Profit.” In Financial Cryptography and Data Security: 25th International Conference, Revised
Selected Papers, Part 1, 3–32. https://doi.org/10.1007/978-3-662-64322-8_1.

Rodler, M., W. Li, G. O. Karame and L. Davi. 2018. “Sereum: Protecting Existing Smart Contracts Against
Re-entrancy Attacks.” In Network and Distributed Security Symposium 2019 Accepted Papers.
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-
entrancy-attacks/.

Shou, C., S. Tan and K. Sen. 2023. “ItyFuzz: Snapshot-Based Fuzzer for Smart Contract.” In Proceedings
of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, 322–333.
https://doi.org/10.1145/3597926.3598059.

sNXS. 2020. “xToken Victim Contract.” Etherscan. Accessed December 28, 2022.
https://etherscan.io/address/0x04bef870de607519c91d16a23434ad5745f62a63#code.

Sun, T. and W. Yu. 2020. “A Formal Verification Framework for Security Issues of Blockchain Smart
Contracts.” Electronics 9 (2): 255. DOI:10.3390/electronics9020255.

Tikhomirov, S., E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko and Y. Alexandrov. 2018.
“SmartCheck: Static Analysis of Ethereum Smart Contracts.” In Proceedings of the 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain, 9–16.
https://dl.acm.org/doi/10.1145/3194113.3194115.

Tolmach, P., Y. Li, S.-W. Lin and Y. Liu. 2021. “Formal Analysis of Composable DeFi Protocols.” In
Financial Cryptography and Data Security FC 2021 International Workshops: CoDecFin, DeFi, VOTING,
and WTSC, Revised Selected Papers 25, 149–161. https://doi.org/10.1007/978-3-662-63958-0_13.

Tsankov, P., A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli and M. Vechev. 2018. “Securify:
Practical Security Analysis of Smart Contracts.” In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 67–82. https://doi.org/10.1145/3243734.3243780.

Uniswap Labs. 2023. “Uniswap Protocol.” https://uniswap.org/.

Vyper Team. n.d. “Vyper.” Accessed July 26, 2023. https://vyper.readthedocs.io/en/stable/.

Wang, H., Y. Liu, Y. Li, S.-W. Lin, C. Artho, L. Ma and Y. Liu. 2020. “Oracle-Supported Dynamic
Exploit Generation for Smart Contracts.” In IEEE Transactions on Dependable and Secure Computing 19,
1795–1809. DOI:10.1109/tdsc.2020.3037332.

Wang, S.-H., C.-C. Wu, Y.-C. Liang, L.-H. Hsieh and H.-C. Hsiao. 2021. “ProMutator: Detecting
Vulnerable Price Oracles in DeFi by Mutated Transactions.” In 2021 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW), 380–385.

https://docs.pyth.network/price-feeds/how-pyth-works/ema-price-aggregation
https://docs.pyth.network/price-feeds/how-pyth-works/ema-price-aggregation
https://doi.org/10.1007/978-3-662-64322-8_1
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/
https://doi.org/10.1145/3597926.3598059
https://etherscan.io/address/0x04bef870de607519c91d16a23434ad5745f62a63#code
http://dx.doi.org/10.3390/electronics9020255
https://dl.acm.org/doi/10.1145/3194113.3194115
https://doi.org/10.1007/978-3-662-63958-0_13
https://doi.org/10.1145/3243734.3243780
https://uniswap.org/
https://vyper.readthedocs.io/en/stable/

21

warpfinance. 2020. “Warp-Contracts.” Accessed July 16, 2023. https://github.com/warpfinance/Warp-
Contracts/releases/tag/v2.0-production-contracts.
Wu, S., D. Wang, J. He, Y. Zhou, L. Wu, X. Yuan, Q. He and K. Ren. 2021. “DeFiRanger: Detecting Price
Manipulation Attacks on DeFi Applications.” arXiv:2104.15068 [cs.CR]

Xue, Y., J. Fu, S. Su, Z. A. Bhuiyan, J. Qiu, H. Lu, N. Hu and Z. Tian. 2022. “Preventing Price
Manipulation Attack by Front-Running.” Advances in Artificial Intelligence and Security Communications
in Computer and Information Science: 309–322. https://doi.org/10.1007/978-3-031-06764-8_25.

yearn. 2021. “yearn-security.” Accessed July 16, 2023. https://github.com/yearn/yearn-security/blob/
master/disclosures/2021-02-04.md.

Yearn (yDai) Exploiter. 2021. “Transaction Details.” Etherscans. Accessed December 28, 2022.
https://etherscan.io/tx/0xf6022012b73770e7e2177129e648980a82aab555f9ac88b8a9cda3ec44b30779.

Zheng, P., Z. Zheng and X. Luo. 2022. “Park: Accelerating Smart Contract Vulnerability Detection via
Parallel-Fork Symbolic Execution.” In Proceedings of the 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis, 740–751. https://doi.org/10.1145/3533767.3534395.

https://github.com/warpfinance/Warp-Contracts/releases/tag/v2.0-production-contracts
https://github.com/warpfinance/Warp-Contracts/releases/tag/v2.0-production-contracts
https://doi.org/10.1007/978-3-031-06764-8_25
https://github.com/yearn/yearn-security/blob/master/disclosures/2021-02-04.md
https://github.com/yearn/yearn-security/blob/master/disclosures/2021-02-04.md
https://etherscan.io/tx/0xf6022012b73770e7e2177129e648980a82aab555f9ac88b8a9cda3ec44b30779
https://doi.org/10.1145/3533767.3534395

	SDP Minwalla et al template_1.pdf
	Acknowlegements
	Abstract
	Résumé

	oracle_analysis_boc_version_June (1).pdf
	Abstract
	1 Introduction
	2 Background
	3 Example and Overview
	4 Design
	4.1 Code summary overview
	4.2 Code summary module
	4.3 Model generation
	4.4 Optimization

	5 Evaluation
	5.1 Implementation and benchmarks
	5.2 Protocols' response to oracle deviations
	5.3 Effectiveness of OVer
	5.4 Case study analysis

	6 Price Oracle Design for the CBDC platform
	6.1 Security analysis of existing price oracles
	6.2 Simulation of TWAP and TWM in volatile periods
	6.3 Oracle design for a digital currency system

	7 Related Work
	8 Conclusion
	9 Data Availability

	Reference list for Minwalla Ho et al. SDP_access dates added_final.pdf

