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Abstract
This paper presents an efficient solution method for solving stochastic overlapping gen-
erations (S-OLG) models. We use the Chebyshev parameterized expectation algorithm
(C-PEA) developed by Christiano and Fisher (2000) to solve the life cycle block of S-OLGs.
The method is well suited for this family of models, capable of handling nonlinearities inher-
ent in the life-cycle aspect of S-OLGSs, and occasionally binding constraints associated
with borrowing constraints. We carefully examine practical considerations and describe
how to efficiently implement this method. To illustrate the method’s effectiveness, we apply
it to solve a standard S-OLG model with idiosyncratic risk and two permanent types. We
calculate Euler equation errors throughout the life cycle and measure computational time
to demonstrate that C-PEA can perform well under these computational challenges with
reasonable accuracy and efficiency. Our results show that, together with its scalability
to higher dimensional problems, C-PEA can be a valuable tool for policy analysts and
researchers working with S-OLG models.

JEL CLASSIFICATION C63 Computational Techniques; Simulation Modeling
C68 Computable General Equilibrium Models
E2: Consumption, Saving, Production, Employment, and
Investment

KEYWORDS Chebyshev interpolation; Parameterized expectations;
Overlapping generations models
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Executive summary
Recently, there has been a growing emphasis on understanding how economic policies
impact not only economic efficiency but also the distribution of benefits and costs across
society. Similarly, one of the New Zealand Treasury’s top priorities is the development
and integration of the living standards framework (LSF) and He Ara Waiora into its policy
advice. These frameworks center on considering the well-being of different generations
when evaluating policies and aim to improve our understanding of how policies affect
different groups within society.

Stochastic overlapping generations (S-OLG) models are key tools for analyzing policies
that have repercussions for various generations and groups. As part of a broader spectrum
of structural models, S-OLG models enable us to conduct counterfactual policy experi-
ments and comprehensive analyses that take into account interactions and responses
from various parts of the economy under general equilibrium conditions.

However, even the simplest structural models involve significant mathematical complexity,
and even for most basic versions, it is not possible to pin down the equilibrium outcomes
and conduct policy analysis with paper and pencil, or spreadsheet methods, without
resort to numerical approximation and computational techniques. These complexities are
known to be particularly challenging for S-OLG models. While the availability of more
comprehensive and detailed micro data has enabled the refinement of these models
using real-world information, the primary challenge in using S-OLG models lies in the
computational difficulties associated with solving them to reach equilibrium outcomes and
conduct policy experiments.

This research aims to contribute to these issues by providing an efficient method for solving
complex S-OLG models and support the Treasury’s efforts to incorporate the LSF and
He Ara Waiora into our policy analysis. This tool will bolster our capacity to assess and
enhance macroeconomic policy advice, especially concerning the sustainability of fiscal
policy, superannuation, taxes, transfers, demographics, and more.

Currently, one of the work agendas of the Treasury’s Modelling and Research Team aims
to analyse the intergenerational implications of alternative pension policies. The solution
approach developed and documented in this paper constitutes one of the core methods to
solve the overlapping generations model built under this research agenda.

In the following sections, we demonstrate the application of Chebyshev polynomials in
conjunction with the Parameterized Expectations Algorithm (C-PEA) as a solution method
for S-OLG models. We offer a comprehensive guide on implementing C-PEA for these
models and present the outcomes of its application to a basic S-OLG model, including
details on runtime and accuracy. We also discuss some key decisions that need to be
made when using these algorithms. Our findings indicate that C-PEA is a robust solution
method that maintains a good balance between accuracy and speed. Furthermore, C-
PEA requires fewer parameters than most alternative methods, showing promise for its
application to more complex and higher-dimensional problems in the future.
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Solving Stochastic OLG
Models Using Chebyshev
Parameterized Expectations

1. Introduction

Stochastic overlapping generations models (S-OLGs) are a core tool for economic policy
analysis. These models offer a far richer and more realistic framework than those with
a representative agent. The recent increased emphasis on the distributional effects of
economic policy alongside traditional efficiency concerns has elevated interest in these
models. Among the most salient aspects of heterogeneity is intergenerational variation,
to which S-OLG models speak directly. The greater availability of microdata has also
facilitated a more data-driven calibration of these models. Perhaps the main limiting factors
to wider use of S-OLG models are the computational challenges of solving them.

This paper presents an efficient method for solving high-dimensional, policy-oriented
S-OLG models. It aligns with New Zealand Treasury’s strategic priorities, specifically the
development and integration of the living standards framework (LSF) and He Ara Waiora
into its policy advice. These frameworks emphasise an intergenerational approach to
well-being and seek to enhance our understanding of the distributional impacts of policies.
Stochastic OLG models are well-suited for intergenerational policy analysis, and this
research supports the Treasury’s efforts to incorporate both the LSF and He Ara Waiora
in our analysis and macroeconomic policy advice on the sustainability of fiscal policy,
superannuation, taxes, transfers, and demographics among others.1

We demonstrate the use of Chebyshev polynomials together with the Parameterized
Expectations Algorithm, C-PEA for short, as a method to compute the stationary equilib-
rium of S-OLGs.2 We provide a comprehensive explanation of how to implement C-PEA
for S-OLG models. We then document the run time and accuracy of using C-PEA to
solve a simple S-OLG model, and discuss some of the decisions that have to be made
when implementing these algorithms. We find that C-PEA is a robust solution method
that produces a good mix of accuracy and speed. Further, C-PEA requires much fewer
parameters than most methods and thereby offers promise for generalization to higher
dimensional problems.

A variety of aspects contribute to the computational challenges of S-OLGs. One is that in
S-OLGs the endogenous state displays considerable variation across age cohorts. The
life-cycle structure implies that individuals typically start life with zero or a low level of
assets and accumulates assets up to a certain point in their life cycle after which the
assets are entirely consumed until the end of life (in the absence of a bequest motive).
Hence we need to be careful about where accuracy is being concentrated while solving
such models; in practice this means we use an expanded Chebyshev grid, which we
describe in more depth later. Idiosyncratic shocks also contribute to the dispersion of
agents in S-OLGs. S-OLGs also involve an endogenous borrowing constraint, as well
as non-negativity constraints for choice variables, which may become binding within the
individual state space.

1 For fundamental concepts and mechanisms of a workhorse OLG model, see Binning et al. (2024).
2 The methods presented in this paper can be readily applied to solving transitional dynamics, although

our focus in this paper does not include the study of transitions.
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This paper uses C-PEA to solve stochastic overlapping generations models. Chebyshev
polynomials are used to parameterize the conditional expectations term in the Euler equa-
tions, known as the parameterized expectations approach (PEA). Previous applications
of Chebyshev polynomials to dynamic general equilibrium models have used them to
approximate the policy function (Krueger and Kubler 2004, Malin, Krueger and Kubler
2011, Judd, Maliar, Maliar and Valero 2014) or the value function (Cai, Judd, Lontzek,
Michelangeli and Su 2017).3 But Chebyshev polynomials work better when approximat-
ing smooth functions (Judd, 1998), and for the life-cycle problems in OLG models it is
well known that periodically-binding constraints can lead to kinks in the policy and value
functions. In contrast, the integral underlying the conditional expectation term that we
approximate is likely to be smoother, and thus the Chebyshev polynomials can provide
a better fit in principle. Our approach builds on two papers: first, Christiano and Fisher
(2000), who introduced Chebyshev polynomials and numerical integration into the original
parameterized expectations algorithm by den Haan and Marcet (1990), and second, Binder
et al. (2000), who introduced the Chebyshev parameterized expectations algorithm to a
life cycle model. Our main contribution is to provide guidelines for the implementation of
C-PEA for an S-OLG model, along with evidence of its performance.

In the rest of this article we first turn to an explanation of the C-PEA approach to solving
S-OLG models, including how to compute the value function as this is not part of the
solution itself when using C-PEA. We then describe a simple S-OLG and document the
results of applying C-PEA to this model in terms of run times and accuracy. We look
at how the order of the Chebyshev polynomials, a decision that has to be made when
implementing the code, influences the run times and accuracy.

2. Solving S-OLGs with Chebyshev-PEA

The steady-state general equilibrium solution of a typical S-OLG model follows the steps
outlined in Figure 1.

In step 1, the individual decision rules are solved for agents in each generation and each
permanent type if the model features ex-ante heterogeneity.

In step 2, the decision rules obtained in step 1 are used to compute the distribution of
agents for each permanent type, each generation, and each initial point of idiosyncraticity.

In step 3, these distributions are used to compute aggregate variables, prices, and
endogenous parameters (typically taxes or transfers). The model is then resolved with the
updated prices and endogenous parameters until they converge to satisfy all aggregate
accounting identities such as resource and budget constraints.

3 On the theory side Munos and Szepesvari (2008) prove that fitted value function iteration using Chebyshev
polynomials in combination with random state space sampling will converge as the order of the Chebyshev
polynomials goes to infinity.
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Figure 1 Steps for solving an S-OLG model

Binder et al. (2000) advocate using weighted residual methods in life cycle models as an
efficient approach that can account for the effects of uncertainty on household decisions.
Our approach is similar, as we employ Chebyshev-PEA in step 1 and use Chebyshev
polynomials in step 2 of the solution process. Specifically, we use Chebyshev regressions,
and time iterations as inner loops of Step 1, which, as we demonstrate later, are very fast
and efficient in the finite horizon case. We provide a detailed implementation guide for this
method and document its accuracy and computational costs. Our analysis demonstrates
that using Chebyshev-PEA in a baseline S-OLG model offers a highly efficient algorithm,
showing promise for handling complex S-OLG models effectively.

Next, we explain how the Chebyshev-PEA method can be used to solve individual decision
rules in step 1 of the solution process.

2.1 Solving the agents’ problem

Many problems in economics admit the recursive representation,

V (u, z) =max
x

{
U(x, u, z) + β E

[
V
(
u′, z′

)
| u, z

]}
s.t. z′ = ζ (z) + ε′,

u′ = ϕ (x, u, z) .

(1)

Above, V (·) is the value function, which is essentially the optimal value of lifetime utility. E
denotes the expectation operator, aggregating the next period’s value under all possible
probabilistic outcomes. x ∈ X ⊆ Rnx is a set of control variables, u ∈ U ⊆ Rnu is a set
of endogenous state variables, z ∈ Z ⊆ Rnz are exogenous state variables, ε are i.i.d.
shocks, β is a discount factor, and primes indicate next period values.

Under certain conditions the problem above yields the following optimality conditions:

∂U (x, u, z)

∂x
+
∂ϕ (x, u, z)

∂x
β E

[
∂U (x′, u′, z′)

∂u′
+
∂ϕ (x′, u′, z′)

∂u′
−∂U(x′,u′,z′)

∂x′

∂ϕ(x′,u′,z′)
∂x′

∣∣∣∣∣u, z
]
= 0 (2)

Hence, we can characterize the solution to the problem as a system of stochastic difference
equations. Denote the expression in the expectation operator above as a function ψ (·)
that maps X × U × Z to a set H ⊂ Rnx+nu+nz . Then we can denote the overall system
defining the equilibrium by a function Υ given by the equation below:

Υ
[
E
[
ψ
(
x′, u′, z′

)∣∣u, z] , u′, x, u, z] = 0 (3)

The recursive nature of the problem in an infinite horizon setting implies that there is a
time-invariant conditional expectation function, Ψ∗ (u, z), that solves equation (3).
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2.1.1 Parameterized expectations algorithm

The parameterized expectations algorithm (PEA) by den Haan and Marcet (1990) involves
approximating the expectational function E [ψ (x′, u′, z′)|u, z] in (3) with a function g (u, z; Λ).
This approximation requires determining the parameters Λ̂ such that

Υ
[
g
(
u, z; Λ̂

)
, u′, x, u, z

]
= 0 (4)

The PEA employs Monte-Carlo simulations to compute Λ̂. In the first step of the algorithm,
a large number of innovations to z are generated. Subsequently, the model is solved
forward from the initial values of u and z (typically the steady state values), using a guess
for the parameters, Λ̂0. Specifically, the approximating function g

(
· ; Λ̂0) yields values for

the control variables, x, and the next period’s endogenous states, u′ through (4).

In the final step, the data generated on ψ
(
·
)

are regressed on g
(
· ; Λ̂0

)
to obtain an

updated estimate of Λ, Λ̂1. This iterative process continues until convergence is achieved.4

As highlighted by Christiano and Fisher (2000), the original PEA of den Haan and Marcet
(1990) is a fragile and inefficient algorithm, in terms of convergence and accuracy, due to
two underlying problems: First, ordinary polynomials of varying degrees are multicollinear.
As a result, higher-order polynomials become impractical to increase the accuracy of the
solutions. Second, the simulations lead to the concentration of simulations around highly
probable areas of the invariant distribution of the state variables leading to an inferior global
solution. Christiano and Fisher (2000) introduce Chebyshev regressions and numerical
integration to the original PEA to remedy these problems, which we turn to next.

2.1.2 Chebyshev regressions

The idea behind Chebyshev regressions is similar to ordinary least squares in economet-
rics. Suppose we want to approximate a function y = f (x) where x ∈ Rk, using m data
points on x. The least squared approximation of f(x) with functions ϕj (x) involves finding
parameters a1, · · · , an that satisfy

min
{a1,...,an}

m∑
i=1

(a1ϕ1(xi) + · · ·+ anϕn(xi)− yi)
2. (5)

If the least squares method is used in a statistical exercise. the points xi are given by the
empirical data set. Also, most of the time we are restricted to a small set of functions due
to concerns about degrees of freedom. Consequently, in statistical exercises, we do not
have control over the errors, yi − f̂(xi).

In numerical applications, on the other hand, the points xi, · · · , xm, the functions ϕ(·),
and the polynomial degree n can all be hand-picked to construct good approximations,
as explained in detail in Judd (1998). A specific kind of polynomials, orthogonal poly-
nomials, have particular importance in numerical applications, because any polynomial
approximation of a function can be expressed in terms of orthogonal polynomials. Further,
orthogonal polynomials can be evaluated fast and efficiently because they obey certain
recursion relations.

4 For further details and an illustrative application, refer to den Haan and Marcet (1990). For a textbook
discussion, see also Heer and Maussner (2009).
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Chebyshev polynomials are a special family of orthogonal polynomials and have partic-
ularly desirable properties for numerical approximation, as described in two theorems
reported in Judd (1998).5 The first theorem states that the least squares approximation of
a smooth function with Chebyshev polynomials converges uniformly when the polynomial
degree is increased. The second theorem establishes that, for such an approximation, the
Chebyshev coefficients must drop off rapidly. Hence, the quality of a solution can be judged
by inspecting the Chebyshev coefficients. Furthermore, Chebyshev least squares approx-
imation has the near-minimax property,6 which implies that Chebyshev approximations
provide near best polynomial approximations in L∞ norms as well.

In practice, least squares approximations require integrals that cannot be evaluated exactly.
They can be approximated at a finite set of points but that can be costly. Therefore, Cheby-
shev polynomials are mostly used as interpolating polynomials in practical applications.
Judd (1998) provides two further theorems,7 which establish that interpolation of smooth
functions with Chebyshev polynomials at zeros of these polynomials attain the minimum
possible upper bound for the interpolation error.

Chebyshev regressions combine Chebyshev least squares approximation and Chebyshev
interpolation. The algorithm we use in this study is described below, and is essentially the
same as Algorithm 6.2 in Judd (1998).8

Definition: Chebyshev regression algorithm

Purpose: Approximate function f(x) with Chebyshev polynomials:

f̂(x) =

n∑
k=0

λkφk(x),

where φk (·) is Chebyshev polynomial of degree k.

1. Choose the number of interpolation nodes, m, and the polynomial degree,
n.

2. Create interpolation nodes, z, which are the zeros of degree m Chebyshev
polynomials.

3. Transform z from the Chebyshev domain, [−1, 1], into [a, b] using the formula

z̄ =
z + 1

2
(b− a) + a.

4. Create an m×n regression matrix Ψ. The rows are Chebyshev polynomials
of degree 1 to n evaluated at z.

5. Get n× 1 coefficients Λ:

Λ =
(
Ψ′Ψ

)−1
Ψ′ f(z̄).

2.1.3 Chebyshev parameterized expectations algorithm (C-PEA)

C-PEA is a modification of the original PEA method introduced by den Haan and Marcet
(1990). C-PEA replaces the nonlinear regression step in PEA with Chebyshev regressions,

5 See Theorems 6.4.2 and 6.4.3 in Judd (1998).
6 See Theorem 6.5.4 in Judd (1998).
7 See Theorems 6.7.1 and 6.7.2 in Judd (1998).
8 For information on common families of orthogonal polynomials and their recursion formulas, refer to

Section 6.3 in Judd (1998).
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which are known for their ability to approximate smooth functions accurately. This modifi-
cation was proposed by Christiano and Fisher (2000), who recognized the limitations of
the original PEA and the advantages of using Chebyshev polynomials.

The use of Chebyshev polynomials in C-PEA provides several benefits. First, Chebyshev
polynomials are more powerful in approximating smooth functions compared to other
methods, such as polynomial or spline approximations. This makes them well-suited for
approximating expectational functions in economic problems, which are often smooth.
In contrast, policy functions may have kinks or discontinuities, making them harder to
approximate accurately using traditional methods.

Second, C-PEA improves the accuracy and efficiency of approximating expectations
compared to Monte Carlo simulations used in the original PEA. Monte Carlo simulations
involve random simulations and averaging the outcomes, which can be computationally
inefficient because the simulations have a mass on frequently visited areas of the state
space. In contrast, C-PEA uses numerical integration and Chebyshev regressions, which
provide more precise and efficient approximations of expectational functions. Chebyshev
polynomials used as regressors in C-PEA have the advantage of orthogonality, which
means that each successive, higher degree polynomial represents an independent source
of information without duplicating information already captured by lower order polynomials.
This leads to a more efficient representation of the underlying function being approximated
compared to other regression methods.

Going back to the problem in (3), the C-PEA amounts to approximating E [ψ (x′, u′, z′)|u, z]
using Chebyshev polynomials as basis functions and the zeros of Chebyshev polynomials
as the interpolation nodes. Let us assume that u and z are one-dimensional for expositional
brevity. The C-PEA involves the following steps:

1. Choose a degree of Chebyshev polynomials for each state variable: pu and pz.

2. Choose a number of interpolation points for each state variable: mu and mz.

3. Choose upper and lower limits for u and z that will be used in the approximation
process.

4. Construct the interpolation nodes, ū and z̄.

• Use mu zeros of the Chebyshev polynomials of degree mu, say ru for u and mz

zeros of Chebyshev polynomials of degree mz, say rz for z.
• The nodes for u are ū = τ (ru) and the nodes for z are z̄ = τ (rz), where the

operator τ (·) transforms Chebyshev zeros to the domain of the model variables.

5. Construct the function, g (u, z; Λ) to approximate E [ψ (x′, u′, z′) |u, z].

(a) Choose a starting value for Λ, Λ0 with elements λ0ij , i = 1, ..., pu , and j =
1, ..., pz.

(b) Set the approximating function as:

g
(
u, z; Λ0

)
=

pu∑
i=0

pz∑
j=0

λ0ijTi
[
τ−1 (ū)

]
Tj

[
τ−1 (z̄)

]
.

where Ti (·) denotes the Chebyshev polynomial of degree i.

6. Require g
(
u, z; Λ0

)
to equal to E [ψ (x′, u′, z′) |u, z] exactly at collocation points. In

other words,
Υ
[
g
(
u, z; Λ0

)
, u′, x, u, z

]
= 0
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7. Solve for the control variables x and the endogenous state variables u′ using the
condition above.

8. Let the next period’s value for the exogenous state be z′.

(a) Construct g
(
u′, z′; Λ0

)
. Require that:

Υ
[
g
(
u′, z′; Λ0

)
, u′′, x′, u′, z′

]
= 0

(b) Solve for x′ using the condition above.

9. Calculate the implied value of E [ψ (x′, u′, z′) |u, z] under Λ0, denoted Φ
(
Λ0

)
. Note

that
Φ
(
Λ0

)
=

∫ ∞

−∞
ψ
(
x′, u′, z′

)
f
(
z′ | z

)
dz.

10. Run an OLS regression of Φ
(
Λ0

)
on

∑pu
i=0

∑pz
j=0 Ti

[
τ−1 (ū)

]
Tj

[
τ−1 (z̄)

]
to get the

guess for the updated vector of parameters, Λ1.

11. If
∥∥Λ1 − Λ0

∥∥ < ϵ , for ϵ being very small, stop and set Λ∗ = Λ1 . Then we have
the solution for the expectational function, Ψ∗ (u, z) = g (u, z; Λ∗). If

∥∥Λ1 − Λ0
∥∥ > ϵ,

continue iterations returning to step 5(b).

Note that the integral in step (9) needs to be evaluated numerically. If the exogenous state
variable follows a discrete process, the integration is done using the Markov transition
matrix. If the exogenous state variable is a continuous process usual tools of numerical
integration apply, typically this will involve discretizing the continuous process using, e.g.,
the Tauchen, Rouwenhorst, or Farmer-Toda methods. For normal shocks, quadrature
methods tailored for purpose, such as Gauss-Hermite quadrature, are particularly powerful
and lead to highly accurate results with minimal computational burden.

2.1.4 Extension to finite horizon

Binder et al. (2000) provide a comprehensive treatment for using Chebyshev parameterized
expectations in a finite horizon context. The main difference from the infinite horizon is
that the optimal conditional expectation function, Ψ∗ (u, z), is no longer time-invariant. As
a result the approximation functions also depend on time. That is, at any time s of the life
cycle

gs (· ; Λs) ̸= gs+1
(
· ; Λs+1

)
.

Step 6 of C-PEA then becomes:

Υ
[
gs (u, z; Λs) , u′, x, u, z

]
= 0. (6)

And step 8 of C- PEA becomes:

Υ
[
gs

′
(
u′, z′; Λs′

)
, u′′, x′, u′, z′

]
= 0.

Like other OLG solution methods, we need to start from the last decision period by imposing
a terminal condition for the endogenous state variables u and iterating backwards. The
solution to the individual problem involves an array of coefficients that vary along the life
cycle: Λ∗1,Λ∗2, . . . ,Λ∗S−1, where S is the number of generations.

Solutions to the problem depend on the life cycle, which means the individual problem
needs to be solved repeatedly for each generation, unlike infinite horizon problems. As a
result, the efficiency of the solution method becomes crucial as computational costs can
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accumulate significantly. However, due to backward induction, the coefficients for the next
period are given, leading to faster convergence compared to infinite horizon problems that
require finding a fixed point.

One other difference that often separates OLG models from infinite horizon problems is
the presence of a retirement period, during which a fixed income is available to agents.
They also face a terminal decision period where they consume all the remaining capital
and next period’s assets are zero. This non-linearity creates a challenge for Chebyshev
polynomials, but can be handled easily by ramping up the polynomial degree.9 For models
without idiosyncratic risk during retirement periods, increasing the polynomial degree is
virtually costless in terms of computation.

We make an additional adjustment to the Chebyshev parameterized expectations algorithm
when applying it to finite horizons. This modification involves utilizing an expanded
Chebyshev grid. By employing this grid, we are able to include the value of zero in our
interpolation grid. The points zi on the expanded Chebyshev grid can be found using the
formula below:10

zi = sec
( π

2m

)
cos

(
2i− 1

2

π

m

)
, i = 1, . . . ,m.

2.1.5 Inequality constraints

Overlapping generations models typically involve a borrowing constraint where assets
cannot fall below a certain threshold. Further, certain models require checking if control
variables become negative when they should not. Inequality constraints do not pose an
additional challenge under our method, once the Kuhn-Tucker conditions are written to
involve relevant Lagrange multipliers associated with the inequality constraints within (3).
One can then approach the problem in a typical way. First, the problem can be solved by
imposing that the inequality constraints are not binding. If the solution implies that the
constraints are binding, then the decision variables can be revised accordingly and the
values of slack variables are implied by the system of equations (3).11

2.1.6 Policy and value functions under C-PEA

C-PEA is far from the only method of solving life-cycle models. Most other methods involve
solving for the value function and/or the policy function and returning this as the ’solution’.
While C-PEA returns the conditional expectation as the solution, the policy functions at
any given point in the state space) can easily be found from the same first-order conditions
in (3) using the approximated conditional expectation.

Certain problems, such as welfare comparisons, require value functions to be computed.
Once the solution is found by C-PEA, the value functions can be computed in one step.
Suppose, for generation s, the C-PEA solution yields Ψ∗

s (u, z) = gs (Λ
∗
s, u, z) for the

solution to the expectational function, where, as before, u and z are endogenous and
exogenous state variables. The value function rule for generation s can be obtained via
the steps below:

9 See Figure 8 in the appendix.
10 See Judd (1998, p. 222).
11 An easier, and computationally less demanding way to deal with inequality constraints is to replace the

Kuhn-Tucker conditions with what is known as the Fisher-Burmeister equation. See Maliar et al. (2021)
for details.
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1. Choose polynomial degrees nV and grid size mV , over which the Value function is
approximated.12

2. Create interpolation nodes r for the state variables as zeros of Chebyshev polynomi-
als.

3. Transform r to the Chebyshev domain of [−1, 1] using the same bounds [a, b] used
for approximating the expectational function.

r̄ =
r + 1

2
(b− a) + a.

4. Create an mv × nv regression matrix Ψ. The rows are Chebyshev polynomials of
degree 1 to n evaluated at r.

5. For (u, z) ∈ r̄, use the optimal rule gs (u, z; Λ∗
s) in (6) to obtain the values for optimal

control variables, x∗.

6. Calculate the value, V s, given next period’s value V s+1:13

V s (ui, zi) = U (x∗) + βV s+1
(
u′, z′

)
.

7. Obtain coefficients Λs∗
V by regressing V s on Ψ.

The procedure above does not involve any iteration. As a result, the computational costs
are negligible. Once, Λs∗

V are obtained, we can evaluate the value function anywhere in
the state space.

2.2 Computing the distribution of agents

There are then two standard approaches we could use to compute the distribution of
agents: (i) Monte Carlo simulations, or (ii) iteration on the agent distribution. We choose to
follow the iteration approach.14

We discretize the agent distribution on a grid. Because the optimal expectational function
does not take values on this grid, we interpolate it onto the grid points below and above
the value of the policy function, with linear weights used to assign probabilities.15 In this
way the policy function and the transition matrix on exogenous shocks can be combined to
generate a transition matrix on the agent distribution (for each age, as the policy differs by
age). Starting from an initial agent distribution at age 1, µ1, we can then simply multiply by
the transition matrix on the agent distribution iteratively to get the full agent distribution.
This method of linear interpolation to create a transition matrix on a discretized agent
distribution is entirely standard.

12 These can be different from the polynomial degree and the grid size used for approximating the expecta-
tional function.

13 The value for the next period, V s+1, has already been computed, as a result of backward induction.
14 For a one endogenous state model, as here, iteration tends to be faster and more accurate. Iteration is

also more memory intensive and this becomes problematic in higher-dimensional models.
15 If x is the value of the policy function and x0 the grid point below, and x1 the grid point above, then

the probability of the lower grid point is (x− x0)/(x1 − x0) and the probability of the upper grid point is
(x1 − x)/(x1 − x0).
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2.3 Model aggregates and general equilibrium

Evaluating model aggregates, such as aggregate capital, is straightforward because the
agent distribution has been discretised. We simply evaluate the approximated expecta-
tional functions on this grid and calculate model’s endogenous variables, and then take a
weighted sum, where the weights are from the agent distribution.

Since the agent distribution has been discretized evaluating model aggregates, such as
aggregate capital, is a simple matter of evaluating a function on this grid, and then taking
a weighted sum (with weights coming from the agent distribution).

We compute general equilibrium using a shooting-algorithm by updating the prices and
endogenous parameters using the general equilibrium conditions. This is a standard
and widely used approach. Computing model aggregates and finding general equilibrium
when using C-PEA is the same as with many other standard algorithms for solving S-OLG
models.

3. Example application

To demonstrate the use of C-PEA in solving S-OLG models we solve the model from
page 536 of Heer and Maussner (2009). A period in the model corresponds to a year.
The model features overlapping generations of households that perform consumption-
savings and consumption-leisure decisions in the face of idiosyncratic productivity shocks.
The production side of the economy consists of perfectly competitive markets and a
representative firm with a Cobb-Douglas production function. The government uses taxes
to fund pensions and general government spending and maintains a balanced budget.

Generations: There are S = 70 generations at a given time t.

Retirement: Households work for the first Tw = 45 periods of their lifetime, and
retire at the age of Tw + 1. When they retire, they earn a pension b̄.

Efficiency adjusted wages: During their working years, households earn the basic
wage rate, w0

t , adjusted by their efficiency level:

wt = w0
t ȳ

sϵizt i = 1, . . . , θ, s = 1, . . . , Tw.

The worker has a permanent efficiency type, ϵi, to accommodate features of
ex-ante heterogeneity. There is also a idiosyncratic productivity shock, zt, that
follows a Markov process. Additionally, wages have an age-based profile, ȳs.

Government: The government collects taxes at a rate τw on wage income to finance
total pension payments.

Pensions: The pension is equal to a fraction (replacement rate) ζ of the average
wage income at the non-stochastic steady state: b̄ = ζwn̄.

Households’ problem: Households enjoy consumption, cst , and leisure, lst . They
save by accumulating capital, kst . They maximise lifetime utility when they are
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at age 1 with respect to their lifetime budget constraints.

max
{cts,lts,k

t+1
s+1}Ss=1

Et

S∑
s=1

βs−1

((
cst+s−1

)γ (
lst+s−1

)1−γ
)1−η

− 1

1− η

s.t. ks+1
t+1 + cst ≤ (1 + rt)k

s
t + (1− τwt )wtϵizj,tȳ

snst , s = 1, . . . , Tw.

ks+1
t+1 + cst ≤ (1 + rt)k

s
t + b̄t, s = Tw + 1, . . . , S.

kt+1
s+1 ≥ 0, s = 1, ..., S

nts + lts = 1, s = 1, ..., S
(7)

The total time endowment is 1, and is either spent on leisure, or employment, n.
After retirement, n = 0, and a pension payment of b̄ is received. Note that the
leisure decision is trivial in retirement.

Production: There are a continuum of competitive firms with constant-returns-to-
scale Cobb-Douglas production functions. Hence output in this economy is
given by a representative firm with a Cobb-Douglas production function,

Yt = AtK
α
t N

1−α
t ,

where Yt is output, At is technology, Kt is capital and Nt is effective labor
supply. In general equilibrium the factor prices follow from the representative
firm’s profit maximisation:

wt = (1− α)AtN
−α
t Kα

t ,

rt = αAtN
1−α
t Kα−1

t − δ,
(8)

where, δ denotes the capital depreciation rate, wt is wage, and rt is the interest
rate.

Aggregation: Aggregate variables are given by the following:16

Kt =
S∑

s=1

θ∑
i=1

∫
k

∫
z
f(s, ϵi, k, z) dz dk,

Ct =
S∑

s=1

θ∑
i=1

∫
k

∫
z
c(s, ϵi, k, z) f(s, ϵi, k, z) dz dk,

Nt =

Tw∑
s=1

θ∑
i=1

∫
k

∫
z
n(s, ϵi, k, z) ϵizȳ

sf(s, ϵi, k, z) dz dk.

Bt = b̄t
S − Tw

S
,

(9)

where Ct is consumption, and Bt is total pension spending. Notice that Nt is
the supply of effective labor units, not the aggregate fraction of time worked.

16 We will later set z, the markov shock, to be finite-valued. So the integrals over z become sums.
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3.1 Stationary equilibrium

At the stationary equilibrium, there is no aggregate uncertainty, At = 1, and the following
conditions hold:

1. Households’ solve the household problem given in (7).

2. The distribution function F (s, ϵ, k, z) associated with densities f(s, ϵ, k, z) are con-
stant and consistent with the dynamics:

F (s+ 1, ϵi, k
′, z′) =

∫
z

∫
k′=k′(s,ϵi,k,z)

g(z′|z)F (s, ϵi, k, z) dk dz.

3. Aggregate variables are given by conditions (9) and the below aggregate resource
constraint holds:

C + δK = Y.

4. Factor prices are given by equations (8).

5. The government budget constraint is balanced:

B = τw wN.

3.2 Calibration

The model is calibrated according to Heer and Maussner (2009). The idiosyncratic shock is
assumed to follow a two-state Markov process, such that zj,t = [0.727, 1.273] with transition
matrix:

p =

[
0.98 0.02
0.02 0.98

]
.

The age-specific component of worker efficiency, ȳs, is taken from Hansen (1995), interpo-
lated across generations, and centered around 1.

The other parameters are calibrated as in Table 1.

Table 1 Calibration

Parameter Explanation Value
β Discount factor 0.99
γ Weight of consumption 0.28
η Risk aversion 2
δ Depreciation rate 0.08
α Weight of capital 0.35
ζ Replacement rate 0.30
ϵ Efficiency types [0.57 1.43]
Tw Working years 45
S Lifespan 70

We also assume that there are no bequests so that K71 = 0, and the agents start their life
with no assets. Further, an equal measure of agents are born each period with efficiency
ϵizj . Therefore, the distribution for an age-1 household with type ϵizj has a mass 1

4×70 at
k = 0 and z = zj .
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3.3 Solution

We implement two C-PEA solutions for the model of the previous section. The solutions
differ in terms of their solution parameters as summarised in Table 2. Our aim is to show
that C-PEA can achieve a good mix of speed and accuracy by choosing the solution
parameters according to the problem at hand.

Table 2 Solution parameters, fast and slow solutions

Solution 1 Solution 2
Polynomial degree, working agents 7 70
Polynomial degree, retired agents 70 70
Distribution grid size 25 200
Homotopy parameter, individual problem 0.9 0.9

The solutions differ in terms of polynomial degree and the size of the distribution grid.
In the first and second solutions, the polynomial degree is set to 7 and 70, respectively,
for all generations. Another distinction between the two solutions lies in the scale of the
distribution grid. In the second solution, the distribution grid is set at 200 points, which is
about three times the number of generations in the model. This follows the conventional
approach in the literature on modelling heterogeneous agents. However, in solution 2,
the distribution grid is kept at a smaller size of 25 points. We later demonstrate that this
coarser grid can yield comparable accuracy under C-PEA if the grid points are selected
thoughtfully. Using this coarser grid speeds up the computation process.

For the current example, we divide the asset space into two sub-spaces, [0, 0.5] and
[0.505, 9] for the first permanent type, and [0, 1] and [1.055, 16] for the second permanent
type. The first interval, in which the borrowing constraint binds more frequently compared
to the second interval, comprises 10 of the 25 grid points for each permanent type.

3.3.1 Run times

Table 3 reports the run times associated with these solutions.17,18 The first solution
delivered a general equilibrium solution in under 3 seconds. The second solution provided
a more accurate solution still with considerable speed.

Table 3 Run times in seconds

Solution 1 Solution 2
Life cycle permanent type 1 0.05 0.36
Life cycle permanent type 2 0.03 0.29

Distribution one step 0.08 2.49
General equilibrium 2.78 13.48

Note: Refer to Table 2 for solution parameters.

17 Computer specifications: Intel(R) Core(TM) i5-10310U CPU @ 1.70GHz 2.21 GHz, 16GB of RAM.
18 In these examples, We started directly with the highest desired polynomial degree. For models where the

individual problem is more complicated, it might be necessary to start with a low degree and increase the
polynomial degree to the maximum desirable degree gradually by using coefficients from lower degrees
as starting values.
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The run-time results suggest that the C-PEA offers a plausible alternative to existing
methods. Also, C-PEA offers the possibility of solving higher dimensional problems where
other approaches might break down.

In the preceding examples, we simplified the first-order conditions to expedite compu-
tations, circumventing the need for a nonlinear equation solver. While this approach
generally holds true across various solution methods, its impact is particularly pronounced
in our specific method. Our iterative process involves solving the system of first-order
conditions numerous times- both in the life cycle problem and during distribution steps.
Employing a nonlinear equation solver for these solutions can significantly increase time
costs. In our experiments, using a nonlinear solver would have increased the time required
to find the general equilibrium by over 25-fold, averaging over 80 seconds per solution
under Solution 1.

In more complex models, we advocate for using an economized distribution grid similar
to Solution 1. Another effective strategy involves employing varying polynomial degrees,
with a focus on problematic regions in the life cycle problem where borrowing constraints
frequently bind. While we did not implement starting from good initial guesses for general
equilibrium parameters in our examples, doing so in more demanding models could
substantially reduce runtime.

An additional option to mitigate time costs is parallel computing. However, given that
the solution to life cycle allocations relies on time iterations, any parallelization must
occur within age groups. One potential approach is to parallelize across the Chebyshev
grid, though we found that this method is often burdened by overhead costs, resulting in
comparable runtimes. This observation may not hold true for more intricate models with
multiple state variables. Alternatively, parallelizing the solution process across permanent
types- particularly in models involving ex-ante heterogeneity like ours can yield almost
linear reductions in runtime across permanent types, as expected.

As shown in Table 2, solutions 1 uses a compact yet uneven distribution grid, whereas
solution 2 employs a standard grid size. While the effectiveness of the small distribution
grid size is evident from Table 3 and Figure 3 as it maintains high accuracy with substantial
speed gains, its benefits are likely to be more significant in more complicated models.

3.4 Comparison of aggregate and intergenerational variables
in the stationary equilibrium

The values of aggregate variables are presented in Table 4 for the two solutions. The fast
solution slightly overestimates aggregate capital stock and the real wage, albeit by a small
margin. All other variables remain indistinguishable up to the fourth digit. Variables along
the life cycle paint a similar picture. As seen in Figure 2, the two solutions are difficult to
differentiate with the naked eye.

We conclude that the solution with a seventh degree polynomial degree and a compact
distribution grid of size 25 performs comparably to the solution with a seventieth degree
polynomial and a larger distribution grid, while reducing computation time to achieve
general equilibrium by a factor of 5.19

19 An alternative approach could be to utilise an element grid, following the examples outlined in the
appendix.
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Table 4 Aggregate variables in general equilibrium

Solution 1 Solution 2
C 0.3039 0.3038
K 1.7765 1.7728
N 0.2119 0.2118
n 0.2041 0.2040
Y 0.4460 0.4456
r 0.0079 0.0080
w 1.3680 1.3673
τw 0.0935 0.0935

Earnings 0.2899 0.2896
b̄ 0.0759 0.0758

Note: Refer to Table 2 for solution parameters.

Figure 2 Key variables across the life cycle
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3.5 Accuracy according to Euler equation errors

We compare the accuracy of the solutions by calculating the associated Euler equation
errors in the spirit of Christiano and Fisher (2000). The errors are calculated on a simulated
path as well as on a circle similar to Juillard and Villemot (2011).

3.5.1 Accuracy on a simulated path

Definition: Euler equation errors

1. Collect Chebyshev polynomial parameters Λ∗
s from the C-PEA solution to
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the lifecycle block of the stochastic OLG model.

Υ [E [ψ (xs+1, us+1, zs+1)|us, zs] , us+1, xs, us, zs] = 0

2. Draw a series of idiosyncratic shocks z of size S × 1.
3. Starting from s = 1, compute x∗s and u∗s+1 from model’s system of equations:

Υ
[
g (us, zs; Λ

∗
s) , u

∗
s+1, x

∗
s, us, zs

]
= 0.

4. Calculate the implied value of the next period’s expectational function under
Λ∗
s, denoted Φ (u∗s, zs). Note that

Φ (u∗s, zs) =

∫ ∞

−∞
ψ
(
x∗s+1, u

∗
s+1, zs+1

)
f (zs+1 | zs) dz,

where x∗s+1 solves

Υ
[
g
(
u∗s+1, zs+1; Λ

∗
s+1

)
, u∗s+2, x

∗
s+1, u

∗
s+1, zs+1

]
= 0.

5. Define the residual R as:

Υ
[
Φ (u∗s, zs) , u

∗
s+1, x

∗
s, us, zs

]
+R = 0.

6. Define the Euler equation error, E , as the consumption compensation that
sets R = 0.

In practice, we initially construct a 70 × 1000 matrix of shocks. Subsequently, for each
column of this matrix, we simulate the model forward from ages 1 to 70 using the approxi-
mated expectational function. At each age, we determine the next period’s expectational
function for each possible realisation of the shock, using the approximated function for
the subsequent period. Finally, we compute the compensating variation in consumption,
denoted as E , necessary to equate the Euler equation to zero. In our simplified model, we
arrive at the following expression for Es:

Es =

[
βΦ∗

s+µ∗
s

γ(1−n∗
s)

(1−γ)(1−η)

] 1
γ(1−η)−1

c∗s
− 1. (10)

Above, µ∗s is the slack variable for the borrowing constraint. For the model at hand,
Φ∗(z, k∗,s) =

∑2
j=1 pj(1 + r)Ωs+1

(
z′j , k

∗,s+1
)
, where Ω denotes the Lagrange multiplier on

the budget constraint.

Our definition of Euler equation errors differs slightly from that in Christiano and Fisher
(2000). In their framework, the non-negativity constraint is applied to investment, making it
sensible to compute Euler equation errors while keeping Tobin’s q constant. However, this
approach would be arbitrary in our case. We have verified that our Euler equation errors
differ only negligibly from those calculated according to their definition.

The Euler equation errors are reported in Figure 3. Both solutions yield reasonably
accurate results. The average errors obtained by the faster Solution 1 are comparable to
Solution 2, which employs a greater polynomial degree.
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Figure 3 Euler equation errors along a simulated path
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Note: Refer to Table 2 for the solution parameters.

We can observe from Figure 3 that our solutions exhibit visibly higher maximum errors
occurring between generations 8-21. This is attributable to two factors. First, the borrowing
constraint binds more frequently at these ages because agents accumulate wealth at an
aggressive rate. This non-linearity impacts the Chebyshev-PEA. The second reason is
associated with the distribution of grid points. The distinctive life cycle nature of overlapping
generation models implies that the capital stock spans different ranges at different ages.
Using a single wide grid for all ages means that certain grid points are located in regions
where agents never choose to allocate capital.20 We hypothesize that using a Chebyshev
grid with lower and upper limits varying across ages could further enhance solution
accuracy by more efficiently allocating grid points. However, this would increase code
complexity, particularly in computing distributions. We defer this task to future research.

20 We achieved improved solution accuracy by employing an expanded Chebyshev grid that includes a
capital stock of zero as the first element of the grid.
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3.5.2 Accuracy on a circle

Our second measure of accuracy evaluates the performance of solutions when the model
deviates from the steady state. To achieve this, we generate 1000 random asset values
for each age, where these asset values deviate from the steady state on average by
radius× 100 percent. Figure 4 presents the average errors, defined in equation (10), for
radius ∈ 0.01, 0.05, 0.10, 0.25, 0.40, 0.50..

Figure 4 Average Euler equation errors on a circle
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Note: Refer to Table 2 for the solution parameters.
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Figure 5 Maximum Euler equation errors on a circle
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Note: Refer to Table 2 for the solution parameters.

Figure 4 illustrates the global nature of the solutions. Since we solve the model on a
sufficiently wide grid where capital never exceeds the upper bound at any age, the solution
does not significantly deteriorate as we move away from the steady state. The maximum
errors depicted in Figure 5 confirm the findings from Figure 3 that the solutions exhibit
higher maximum errors for ages 8-21.

3.6 Comparison to pure discretization solution

Next, we re-solve the model using pure discretization methods (implemented in VFI
Toolkit).21 We report the C-PEA solution again in the first column of Table 5. The
second and third columns report the difference between the C-PEA solution and the pure
discretization solution measured as the percent difference and as the absolute difference.22

For the life-cycle profiles, which are a number for each age, we report the maximum across
21 See https://www.vfitoolkit.com.
22 The percentage difference is reported as a percentage of the pure discretization solution.
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Table 5 Table of model values and differences from pure discretization solution

Model % Difference Absolute difference
General equilibrium
Interest rate (r) 0.0080 -13.21 -0.0012
Wage (w) 1.3672 0.74 0.0100
Tax rate (τw) 0.0935 -12.07 -0.0128
Wage (b̄) 0.0758 -11.38 -0.0097
Aggregates
Consumption (C) 0.3037 0.79 0.0024
Capital Stock (K) 1.7728 2.89 0.0498
Effective Labor Supply (N) 0.2118 0.76 0.0016
Output (Y) 0.2040 1.50 0.0066
Life-Cycle Profiles (max difference over ages)
Consumption - 2.53 0.0083
Assets - 5.00 0.2078
Earnings - 3.75 0.0177
Lorenz curves (max difference over percentiles)
Earnings - 0.50 0.0012
Assets - 7.97 0.0068

Notes: The second and third columns report on accuracy, measured as the percentage
absolute difference and absolute difference between our solution and a pure discretization
solution of the same model using 101 points for labor and 1301 points for assets.

the ages of each of these two difference measures. In general, the different solution
methods yield very similar values, particularly in absolute terms, and the solutions have
very similar life-cycle properties. The life cycle profiles of key variables are depicted in
Figure 6.

We also computed Lorenz curves and report the maximum across the percentiles of each
of these two difference measures.23 As can be seen the differences between the two
solutions are small enough to be of no concern; while 3% may sound non-trivial it is very
demanding in this context and smaller than the most accurate of the fourteen papers
replicated in Kirkby (2022), so seems sufficiently accurate in practice.

23 Pure discretization has known convergence properties for this class of models and so, as long as a
sufficiently large grid is used, is known to give the correct solution. See Kirkby (2022) for detailed
discussion of this issue.
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Figure 6 Comparison to pure discretization
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Note: “Chebyshev-PEA, Fast” refers to Solution 1 in Table 2.

4. Conclusion

While S-OLGs are arguably the most appropriate tools to investigate distributional and
intergenerational consequences of fiscal policies, solving these models for policy analysis
remains a highly challenging task. The lifecycle block of these models must be solved
numerous times to reach a general equilibrium solution24 under significant nonlinearities
due to the finite lifetime nature of the model and the presence of borrowing constraints. In
practice, this necessitates constraining the dimensionality of the model, such as limiting
the number of generations, facets of ex-ante heterogeneity, and endogenous states.
Consequently, policy analysts are often limited to using simpler S-OLG models with fewer
features and less realism.

In this paper, we demonstrate that employing C-PEA for solving S-OLGs can be a highly
efficient approach. We provide a detailed explanation of the method and illustrate its
practical application in solving a prototypical S-OLG model.

Our model application demonstrates that the computational requirements are low and
the run times are fast using C-PEA. While Chebyshev polynomials are more suitable
for approximating smooth functions, the method can handle nonlinearities in S-OLGs
reasonably well by increasing the polynomial degree. This approach is feasible in a finite
lifetime setting because the decision rule is not time-invariant, eliminating the need to find
a consistent decision rule that remains unchanged between two time periods. Instead,
we leverage backward induction, making it efficient to find decision rules via Chebyshev
regressions since the next period’s decision rule is simply taken as given.

The real strength of using Chebyshev-PEA to solve S-OLGs lies in the ability of Chebyshev
24 Or even greater number of time to compute transitional dynamics.
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polynomials to scale to higher dimensional problems (Judd, Maliar, Maliar and Valero
2014). This is a promising avenue considering the significant challenge of solving S-OLGs
with multiple endogenous state variables. How well this can be exploited by C-PEA to
solve multi-dimensional S-OLGs is a question for future research.

Appendix: Chebyshev regression algorithm in
practice

The discussion above implies that Chebyshev polynomials are particularly suitable for
approximating smooth functions. They can also do a reasonably good job for approximating
functions with kinks, as reported in Judd (1998).25 This is particularly important in the
context of OLG models, because such models can display significant nonlinearities at the
beginnings and ends of life cycles, and around the date of retirement.

In this section, we demonstrate the Chebyshev regression algorithm for approximation two
functions, f(x) = ex, and f(x) = |x|. The former is a smooth function, and the latter is a
function with a kink. Admittedly, this exercise is much simpler than solving the dynamic and
stochastic problems that we face in economics. Nevertheless, it will help us demonstrate
a few important points about the Chebyshev regression algorithm, which is at the core of
our solution method.

We approximate f(x) = exp(x) in Figure 7. As suggested by the discussion so far,
Chebyshev polynomials approximate this smooth function with great success with just 5
interpolation nodes, and using Chebyshev polynomials up to degree 5.

Figure 7 Approximation of ex with Chebyshev regression algorithm
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Next we approximate the function f(x) = |x|. This function has a kink at x = 0. In the
northwest panel of Figure 8, the function is approximated with Chebyshev polynomials of
degree 5 using their zeros as the interpolation grid as we did in Figure 7. As expected,
the results of this exercise are much less accurate. In the northeast panel, the size of the
grid is increased, while the polynomial degree is held constant. As seen in the figure, this
helps by improving the approximation along the edges but does not help around the kink.
If anything, the maximum error becomes greater.

Next, we increase the polynomial degree along with the grid. As seen in the south-

25 See Table 6.4 and Figure 6.9 therein.
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west panel of Figure 8, Chebyshev polynomials are able to approximate this function
successfully. The approximation is still very fast26 and efficient.

For the problems we face in economics modelling, however, the time costs can increase
drastically. First, it might not be possible to increase the polynomial degree to the levels
observed in Figure 8 when the dimensionality of the problem increases. Second, depend-
ing on the complexity of the problem at hand, it might be necessary to start from a lower
polynomial degree and increase it gradually using solutions from lower degrees as an
initial guess. Third, in OLGs in particular, the solution needs to be repeated for each
generation and as a result, computation costs may add up. In the southeast panel of
Figure 8, we demonstrate applying an element grid to the Chebyshev regression. Here,
we divide the solution space into three sub-intervals: [−1,−0.2], (−0.2, 0.2), and [0.2, 1].
In the middle, narrower sub-interval, which includes the kink, we choose n = m = 8. In
the other sub-intervals, which span less-problematic regions, we choose n = m = 3. The
approximation is quite good despite the fact that only 14 interpolation nodes are chosen
and the polynomial degrees are not very high. Although we have not yet faced a problem
that requires its application in our C-PEA algorithm, we have demonstrated a case with
element grids to indicate that they are good alternatives when the problem displays a
difficult kink.

Figure 8 Approximation of |x| with Chebyshev regression algorithm
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26 The approximation takes less than a hundredth of a second.
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