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1. Introduction

Economic situations simultaneously involving risk and time pervade most spheres

of everyday life, and heterogeneity of behavior is the rule. In this paper, we develop

a model for the treatment of heterogeneous risk and time preferences. For standard

experimental design environments, we establish the model’s predicted choice prob-

abilities and show that it has intuitive comparative statics. We also demonstrate

that it is easily implementable in practice, and that it accounts remarkably well

for the observed heterogeneity of choice in two key experimental designs. Over-

all, we provide a well-founded and convenient novel framework for the analysis of

heterogeneous risk and time preferences.

Our stochastic model is based on a probability distribution over a given collection

of utility functions. This enables us to establish a direct link between preference

and choice heterogeneity. We adopt the most standard family of utilities for the

treatment of risk and time, namely, discounted expected utilities and thus name

the model random discounted expected utility (RDEU). We study it under the

two main experimental risk and time elicitation mechanisms: double multiple price

lists (DMPL) and convex budgets (CB). The sharp contrast between these two

mechanisms, one involving binary choices and the other a continuous choice space,

enables us to show that the model is very flexible.

The adoption of this type of random utility models (RUM) with multiple prefer-

ence parameters in empirical applications has been slow partly due to their computa-

tional complexity. The computation of choice probabilities in these models involves

numerical integration over multiple variables. In the case of discounted expected

utility, this demands integrating the joint distribution of two variables: the discount-

ing factor and the curvature of the monetary utility function. We show, however,

that this curse of dimensionality does not apply to the RDEU model. Given any

curvature of the monetary function, we prove that there is always an ordered struc-

ture linking discounting and choices. Thus, the conditional choice probabilities for

any given curvature can be computed straightforwardly and then easily aggregated,

rendering the model theoretically and empirically convenient.

Using the above conditional choice probability approach, we then establish, for

the first time, the stochastic comparative statics of the RDEU. We analyze shifts and
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spreads of the probability distribution over the two main components of discounted

expected utility: curvature and discounting. Although the theoretical treatment of

comparative statics involving more than one parameter is challenging, the results are

consistent with common understanding. First, we find that a shift in the probabil-

ity distribution towards higher discounting has an effect only in problems involving

time, where it shifts choices towards earlier options. Second, a shift in the proba-

bility distribution towards larger curvatures has an effect in all types of problems:

generating choice shifts (i) towards safer options in multiple price lists involving risk,

(ii) towards earlier options in multiple price lists involving time, and (iii) towards

smoother consumptions in convex sets. Furthermore, a wider spread in any variable

in the probability distribution leads to higher choice stochasticity. These results are

fundamental in providing the economic literature with a well-founded framework for

the proper interpretation and estimation of the variables of interest, i.e., discounting

and curvature.

All the former results are for general discounted expected utility representations

and unrestricted probability distributions. We then discuss the implications of these

results for standard parameterizations. Following common practice in the literature,

we consider constant relative risk aversion (CRRA) monetary utility functions, which

are determined by a parameter r describing the curvature.1 Hence, every utility is

characterized by a pair of parameters (r, δ), where δ captures discounting. To give

further intuition of the properties of the model, its identification, and empirical

implementation, we also consider the standard special case where r and δ follow a

bivariate normal distribution. This added parametric structure further accentuates

the convenience of the model: the choice computation requires the evaluation of

conditional and marginal distributions of a bivariate normal, which are themselves

normal distributions. It follows that the parametric assumption reduces the dimen-

sionality of the numerical problem, making the computation of choice probabilities

routine. Moreover, shifts and spreads in the probability distribution are the result of

1The literature contemplates a variety of formulations of this utility function, some of which
have perverse implications after introducing time considerations. In Section 2.1, we discuss the
necessary conditions for the appropriate use of a CRRA family in an environment involving both
risk and time.
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variations in the first two moments of the distribution, facilitating the identification

in the parametric case.

After establishing the theoretical grounds of the model, we illustrate its empirical

advantages with a structural estimation exercise using data from two major exem-

plars of the type of elicitation mechanisms considered: Andersen,Harrison, Lau, and

Rutstrom (2008) (hereafter AHLR) and Andreoni and Sprenger (2012b) (hereafter

AS). We compare the aggregate and individual-level estimates of the RDEU model

with those obtained using the empirical strategies employed in the respective papers

and subsequent literature.

The literature has often used iid-additive RUMs to analyze DMPL experimental

designs, where decision problems are binary, involve only risk or time considerations,

and a single-dated lottery defines alternatives. Theoretically, implementing this ap-

proach with standard representations of discounted expected utility could lead to

paradoxical predictions and perverse comparative statics properties (Wilcox, 2011;

Apesteguia and Ballester, 2018), thus hindering a thorough understanding of risk

and time preferences. Moreover, we show empirically that the RDEU model offers a

better overall fit. It also performs better than recent iid-additive RUM implementa-

tions using Wilcox’s (2011) correction. There are stark differences across models at

the individual level: the RDEU model delivers reasonable estimates of risk and time

preferences, which are highly correlated with commonly used estimates obtained

from decision switching within risk and time tasks in DMPL designs.2 On the con-

trary, the iid-additive RUMs are only weakly correlated with these semi-parametric

estimates and take implausible values for a specific subset of individuals that we

identify.

In CB experimental designs, menus are continuous, involve risk and time consid-

erations, and each alternative grants a pair of dated lotteries. For this experimental

design, the literature has often relied on estimating risk and time preferences using

non-linear least squares, assuming a unique discounted expected utility. To do so,

researchers introduce randomness by perturbing the first-order condition of a con-

strained utility-maximization problem. The randomness introduced in this approach

lacks a behavioral foundation in that it does not explicitly connect heterogeneity of

2See, for instance, Holt and Laury (2002).
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choice with heterogeneity of preferences. Moreover, this approach is not well suited

to understanding the large heterogeneity in choices observed in the data. Another

approach in the analysis of CB datasets uses, as in the case of DMPLs, iid-additive

RUMs. Empirically, this multinomial extension tends to deliver estimated utility

functions that are convex as a way to explain the pervasive share of corner solutions

observed in CB settings, at the cost of leaving unexplained the large fraction of

choices in the intermediate range of budget sets. In contrast to these approaches,

we show how RDEU empirically accounts for the observed prevalence of corner and

interior choices while delivering plausible estimates of discounting and the curvature

of the utility function.

To conclude, the theoretical results and empirical applications illustrate the use-

fulness of the RDEU model as a robust and unifying framework for estimating risk

and time preferences with experimental data while accounting for the large hetero-

geneity in choices between and across individuals. The entire exercise of the paper is

related to recent methodological literature on preference estimations in a variety of

settings (see, e.g., DellaVigna, 2018; Cattaneo et al., 2020; Dardanoni et al., 2020;

Aguiar and Kashaev, 2021; Barseghyan et al., 2021). Our paper stands apart from

this literature in that it focuses on risk and time preferences and establishes the

comparative statics of the model.

2. Random Discounted Expected Utility

A lottery is a finite collection of monetary prizes and associated probabilities,

i.e., a vector of the form l = [p1, . . . , pn, . . . , pN ;x1, . . . , xn, . . . xN ], with pn ≥ 0,∑N
n=1 pn = 1, and xn ≥ 0. A dated lottery (l, t) is formed by a lottery and a

moment in time t ≥ 0, in which the resulting prize is awarded.3

Discounted expected utility (DEU) is the most commonly-used deterministic model

of behavior for the study of risk and time preferences. We consider a family {ur}r∈R
of continuous and strictly increasing utility functions over money, that are normal-

ized to satisfy ur(ω) = 0 at a baseline wealth level ω > 0. We impose three basic

assumptions on the family of monetary utilities. First, it must include the linear

3When necessary, we denote the prizes, payoffs, and the number of outcomes of dated lotteries
j = 1, . . . , J as xj

n, p
j
n, and Nj . We also assume, as it is typically done, that the awarded monetary

prizes are consumed on reception.
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monetary utility, that we denote by r = 0. Second, the family is strictly ordered

by concavity, i.e., r < r′ means that ur′ is strictly more concave than ur.
4 Third,

convexity and concavity are unbounded when r tends to −∞ and +∞, respectively.

Many families satisfy these basic requirements, including the widely used CRRA or

Constant Absolute Risk Aversion (CARA). The discount factor of the individual is

denoted by e−δ with δ ∈ R.5 Given parameters (r, δ) ∈ R2, the DEU evaluation of

a sequence of dated lotteries (l1, t1), . . . , (lJ , tJ) is:

(2.1) DEUr,δ((l
1, t1), . . . , (lJ , tJ)) =

J∑
j=1

e−δtj
Nj∑
n=1

pjnur(ω + xj
n).

We are now in a position to define the stochastic model that we analyze in the

paper, that we call Random Discounted Expected Utility (RDEU) model. Let f be

a measurable density with full support over R2, capturing the prevalence of each

possible DEU preference. At the moment of choice from a decision problem, param-

eters (r, δ) are realized with probability f(r, δ), and the alternative that maximizes

DEUr,δ within the decision problem is selected.6

We now describe formally the decision problems involved in the two settings an-

alyzed in this paper. One of the most prominent settings in the experimental lit-

erature involves the use of the so-called double multiple price lists (DMPLs) as

in Andersen et al. (2008), where decision problems are binary, involve only either

risk or time considerations, and alternatives are defined by a single dated lottery.7

In a risk decision problem, each of the two alternatives corresponds to a single

two-state contingent lottery with prizes awarded in the present. That is, given

x1
1 > x0

1 > x0
2 > x1

2 and p ∈ (0, 1), the associated risk menu is AR = {0R, 1R} where

4More formally, u is strictly more concave than u′ if there exists an increasing and strictly
concave function g such that u′(x) = g(u(x)) for every x. As a result, utilities with r > 0 (resp.,
r < 0) represent risk aversion (resp., risk loving).

5Hence, δ > 0 (resp., δ < 0) represents impatience or delay aversion (resp., delay loving). We
write the discount factor in this way for convenience; it allows us to use a simple bivariate normal
in the parametric estimation. Note that, alternatively, we could simply write 1

1+d = e−δ ∈ R++

with d representing the discount factor in the positive reals.
6Given that f is assumed to be measurable, indifferences between maximal alternatives are

inessential, and will be obviated in the paper.
7See also Burks et al. (2009), Dohmen et al. (2010), Tanaka et al. (2010), Benjamin et al.

(2013), Falk et al. (2018) or Jagelka (2021). In Appendix B we study a hybrid version, where both
risk and time considerations are simultaneously active. (see, Ahlbrecht and Weber (1997), Coble
and Lusk (2010), Baucells and Heukamp (2012) and Cheung (2015)).
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0R = ([p, 1−p;x0
1, x

0
2], 0) and 1R = ([p, 1−p;x1

1, x
1
2], 0).

8 In a time decision problem,

each of the two alternatives is composed by a unique dated degenerate lottery. That

is, given t0 < t1 and x0 < x1, the associated time menu is AT = {0T , 1T } where

0T = ([1; x0], t0) and 1T = ([1; x1], t1). Given the binary nature of risk and time

menus, the RDEU choice probabilities in any decision problem are determined by

the choice probability of one of the two alternatives in the menu, say 0R in a risk

menu and 0T in a time menu. Denote by Γ(0R, AR) ⊆ R2 (resp., Γ(0T , AT ) ⊆ R2)

the collection of all parameter combinations (r, δ) for which the maximizer ofDEUr,δ

within menu AR (resp., AT ) is 0R (resp., 0T ). The f -measures of these sets describe

the choice probabilities:

Pf (0R, AR) =

∫
Γ(0R,AR)

f(r, δ)d(r, δ),

Pf (0T , AT ) =

∫
Γ(0T ,AT )

f(r, δ)d(r, δ).

In an alternative setting pioneered by Andreoni and Sprenger (2012a,b), subjects

are faced with the so-called convex menus.9 These menus are continuous, involve

risk and time considerations, and each alternative grants a pair of dated lotteries.

Formally, given x0 ≤ x1, t0 < t1 and p0, p1 ∈ (0, 1], the associated convex menu is

AC = [0, 1] where alternative a ∈ AC is defined by the sequence of two dated lotteries

([p0, 1− p0; (1− a)x0, 0], t0), ([p1, 1− p1; ax1, 0], t1). Given the continuous nature of

convex menus, the RDEU choice probabilities are determined by the cumulative

choice probability of selecting alternatives below any given value a ∈ [0, 1]. Denote

by Γ([0, a], AC) ⊆ R2 the collection of all parameter combinations (r, δ) for which

the maximizer of DEUr,δ within menu AC is an alternative below a. The f -measures

of these sets describe the choice probabilities:

Pf ([0, a], AC) =

∫
Γ([0,a],AC)

f(r, δ)d(r, δ).

2.1. Parametric Version. All our theoretical results are for general discounted

expected utility representations and unrestricted probability distributions. However,

8Sometimes, p ∈ {0, 1} is considered. These cases are trivial since one of the two lotteries is
dominated and, hence, predicted a zero probability of choice by RDEU.

9Convex menus are being used extensively for the study of a variety of economic preferences.
See, e.g., Choi et al. (2007), Fisman et al. (2007), Augenblick et al. (2015), Carvalho et al. (2016),
Alan and Ertac (2018), and Kim et al. (2018).
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specific parameterizations are often times useful, both as an illustration of the main

insights of a theoretical result and as a practical tool in an estimation exercise.

We illustrate the intuition of every theoretical result using CRRA monetary utility

functions.

Given parameter r ∈ R, the CRRA utility evaluation of an extra prize x ≥ 0 is:

ucrra
r (ω + x) =


(ω+x)1−r − ω1−r

1− r
whenever r ̸= 1;

log(ω + x)− logω otherwise.

Let us briefly comment on the rationale behind the constants chosen for the CRRA

family, since the literature contemplates many different formulations and not all of

them are appropriate when both risk and time are involved. First, as in the case

of the study of risk preferences alone, parameter r can be assumed to belong to R,

but note that this necessitates the baseline wealth assumption ω > 0. Otherwise,

monetary utilities {ucrra
r }r≥1 would not be well-defined for null prizes. Second,

we then need to guarantee that all monetary utilities are strictly increasing and,

hence, the raw power function (ω + x)1−r must be re-scaled with the constant 1
1−r

.

Third, since this re-scaling creates negative utilities whenever r > 1, the addition

of the constant −ω1−r

1−r
guarantees positive utilities, makes ucrra

r (ω) = 0, facilitating

the analysis of lotteries involving null prizes, and implies the standard continuity

property limr→1 u
crra
r (ω + x) = ucrra

1 (ω + x).10

When focusing on the parametric case, we will also impose some restrictions on

the probability distribution f . The computational methods discussed in Appendix

C allow the efficient estimation of the model for any distribution characterized by

a finite vector of parameters θ ∈ Θ.11 We illustrate with the case where (r, δ)

follows a bivariate normal distribution, so that θ ≡ (µr, σr, µδ, σδ, ρ), where µz and

σz are the corresponding mean and standard deviation of parameter z ∈ {r, δ},

and ρ is the correlation coefficient between r and δ. This assumption provides a

natural benchmark to compare the model and the empirical results in the following

sections to other models in the literature. As we show below, it also allows for simple

expressions of the choice probabilities in the model, which we will exploit to provide

conditions allowing the identification of θ in each experimental setting.

10A discussion on the role of wealth ω in CRRA utilities can be read in Appendix E.
11We illustrate an example with truncated normal and beta distributions in Appendix D.
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3. Double Multiple Price Lists: Theory

3.1. Risk Menus. Given that in these decision problems all the action takes place

in the present, the discount parameter δ plays no role. Moreover, the type of lotteries

at stake always creates an intuitive, ordered, structure of choices for parameter r.

For every risk menu AR we show below that there is a real-value constant K(AR)

such that alternative 0R is chosen if and only if r ≥ K(AR). Hence, the choice

probability of alternative 0R is the f -measure of the rectangular set Γ(0R, AR) =

{(r, δ) : r ≥ K(AR)}, that can be conveniently computed by using the marginal

CDF of r, denoted F r.

Moreover, comparative statics related to shifts and spreads of parameter r follow

immediately, and are in full alignment with our most basic intuitions. When the

mass of the marginal distribution of r is shifted towards larger values, the choice

probability of the safer alternative is guaranteed to strictly increase. When the

mass of the marginal distribution of r is brought away from its median, the choice

probability of both alternatives strictly approaches one half, i.e., behavior becomes

strictly more stochastic.12

To formalize these ideas, we need to define standard domination and expansion

notions using CDFs. Formally, let F and G be two CDFs over the random variable z,

with domain in an open interval, and denote by med(F ) the median of distribution

F . Then, we say that: (i) F dominates G if F (z) < G(z) holds for all values of z

and (ii) F expands G if med(F ) = med(G), F (z) > G(z) whenever z < med(F ) and

F (z) < G(z) whenever z > med(F ).13

Proposition 1. For every pair of RDEUs, f and g, and every menu AR:

(1) Pf (0R, AR) = 1− F r(K(AR)).

(2) If F r dominates Gr, Pf (0R, AR) > Pg(0R, AR).

(3) If F r expands Gr with K(AR) ̸= med (F r), then

|Pf (0R, AR)− 1
2
| < |Pg(0R, AR)− 1

2
|.

12There is an obvious exception to this principle when choice stochasticity is already maximal,
with both alternatives being chosen with the same probability 1/2. This happens when the median
of F r coincides with the separating threshold K(AR).

13The proof of every proposition is available in Appendix A.
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3.2. Time Menus. When time is at stake, understanding behavior is slightly more

complicated because the discount parameter δ, on its own, is hardly informative

about behavior.

Example 1. Let two DEU–CRRA individuals with ω = 100 and preference pa-

rameters (r1, δ1) = (0.95, 0.094) and (r2, δ2) = (0, 0.105). Although δ1 < δ2 (or

equivalently e−δ1 = 0.91 > 0.9 = e−δ2) may suggest that individual 1 is more patient,

it is immediate to see that she is indeed the only one that prefers ([1; 71.5], 0) to

([1; 80], 1).

The joint consideration of both parameters is then required to fully understand

the predictions of DEU, and consequently, the RDEU choice probabilities would

now require to compute a double integration. Fortunately, we show below that the

analysis renders again simple after conditioning on parameter r, because this always

generates an intuitive, ordered, structure of choices over the discounting parameter

δ. For any given time menu AT and any value of r, we show below that there exists

a menu-dependent constant K(AT |r) ∈ R+ such that the earlier alternative 0T is

selected if and only if δ ≥ K(AT |r), i.e., Γ(0T , AT ) = {(r, δ) : δ ≥ K(AT |r)}. As

a result, the choice probability of alternative 0T can be conveniently expressed by

means of the choice probabilities conditional on parameter r. In short, we evaluate

the conditional CDFs of parameter δ on parameter r, that we denote by Fδ|r, at

the corresponding threshold K(AT |r), and then aggregate across values of r using

its marginal density, that we denote by f r. Proposition 2 builds upon this ordered

structure, showing that the thresholds {K(AT |r)}r∈R are strictly decreasing in r,

and constitute a bijection from R to R++, which can thus be inverted.14 Hence,

comparative statics of shifts are immediate, as keeping constant the marginal distri-

bution of r (resp., δ), and shifting upwards the conditional distributions of δ (resp.,

r) guarantee an increase in the choice probability of the earlier alternative 0T . Sec-

ond, with respect to spreads, we can again show that keeping constant the marginal

14In other words, conditioning on δ also renders ordered choices over parameter r. Whenever
δ ≤ 0, 1T is always chosen. Whenever δ > 0 there is a menu-dependent constant K(AT |δ) ∈ R
such that 0T is chosen if and only if r ≥ K(AT |δ).
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distribution of one parameter, an expansion of the conditional distributions of the

other always creates more stochasticity.15

Proposition 2. For every pair of RDEUs, f and g, and every menu AT :

(1) Pf (0T , AT ) = 1−
∫
r
Fδ|rK(AT |r)f r(r)dr = 1−

∫
δ>0

Fr|δK(AT |δ)f δ(δ)dδ.

(2) (a) If F r = Gr, and for all r Fδ|r dominates Gδ|r, Pf (0T , AT ) ≥ Pg(0T , AT ).

(b) If F δ = Gδ, and for all δ Fr|δ dominates Gr|δ, Pf (0T , AT ) ≥ Pg(0T , AT ).

(3) (a) If F r = Gr, and for all r Fδ|r expands Gδ|r with K(AT |r) ̸= med(Fδ|r),

|Pf (0T , AT )− 1
2
| < |Pg(0T , AT )− 1

2
|.

(b) If F δ = Gδ, and for all δ Fr|δ expands Gr|δ with K(AT |δ) ̸= med(Fr|δ),

|Pf (0T , AT )− 1
2
| < |Pg(0T , AT )− 1

2
|.

3.3. Implications for the Parametric Version. The general results of Propo-

sitions 1 and 2 have the following implications when using the particular case of

CRRA and the bivariate normal. In the case of CRRA, the thresholds described

in Proposition 1 simply correspond to the unique value of r that solves the equa-

tion 1−p
p

=
(ω+x1

1)
1−r−(ω+x0

1)
1−r

(ω+x0
2)

1−r−(ω+x1
2)

1−r . In the bivariate normal, the marginal distribution

of parameter r is normally distributed, with parameters µr and σr. Putting both

things together, part 1 states that the analysis of choice probabilities in RDEU is

a straightforward computational exercise. Moreover, dominating shifts and expan-

sions of F r are the result of an increase in, respectively, µr and σr. Hence, parts 2

and 3 inform the analyst that straightforward intuitions are in place. An increase in

the median of parameter r creates always a larger probability of choice for the safer

alternative, while an increase in the variance of parameter r generates more choice

stochasticity.

Similarly, we can read Proposition 2 from the parametric point of view. With

CRRA, the threshold map can be written as K(AT |r) = 1
t1−t0

log
[
(ω+x1)1−r−ω1−r

(ω+x0)1−r−ω1−r

]
.

With the bivariate normal, all conditionals Fδ|r are also normal, with mean µδ +

σδ

σr
ρ(r− µr) and standard deviation

√
1− ρ2 · σδ. This, combined with the already-

mentioned normality of f r makes the computation of probabilities a straightforward

exercise. Moreover, considering z, z′ ∈ {r, δ} with z ̸= z′, an increase of µz leaves

15As in the case of risk, the median of each conditional distribution Fδ|r must be different to
the corresponding threshold K(AT |r) when expansions of δ are considered, with an analogous
expression for the case of r.
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unaffected the marginal F z′ while generating a dominating shift in all conditionals

Fz|z′ . Hence, part 2 states that, by increasing either the mean of δ or the mean of r,

we generate a larger choice probability for the earlier alternative. Third, increasing

σz leaves unaffected the marginal F z′ and, under the appropriate correction of the

covariance, it generates the expansion of all conditionals Fz|z′ . Hence, part 3 states

that an increase of the variance of either r or δ, with the appropriate correction of

the covariance, will produce more choice stochasticity.

Propositions 1 and 2 set the basis for the non-parametric identification of the

model. We now study the identification of parameters θ, under the assumption

that (r, δ) follows a bivariate normal distribution. Consider a DMPL dataset O

consisting of a set of observations of the choice of a subject, or group of subjects,

when presented with a risk or time menu. Assume that the dataset has M of such

menus, denoted as Am for m = 1, . . . ,M . The following proposition shows that

two risk menus and three time menus, with properties commonly found in existing

experimental datasets, are sufficient to identify θ.

Proposition 3. Suppose that the dataset O contains:

(a) Two risk menus {AR,a, AR,b} such that K (AR,a) ̸= K (AR,b).

(b) Three time menus {AT ,c, AT ,d, AT ,e} differing in one of three dimensions:

(i) the delay t1m − t0m (ii) the current prize x0
m (iii) the future prize x1

m.

Then, θ is identified.

Intuitively, the proof of Proposition 3 shows that we can use variation in the

indifference thresholds K (AR) across risk menus to identify the parameters (µr, σr)

characterizing the marginal distribution of r. Conditional on (µr, σr), we can use

the variation in the delay across time menus offering the same prizes to recover

(µδ, σδ, ρ). Alternatively, one can use variation in the implicit return rate across

time menus (that is, variation in (x0, x1)) to replace variation in delays.

Under standard regularity conditions, identification of θ implies the consistency of

maximum likelihood estimators of this parameter vector. This property guarantees

that an analyst can recover the population value of θ with a large enough sample

of observations. Nevertheless, one may be concerned about the behavior of these
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estimators with small experimental samples. The following result shows that the

true parameters can be inferred with as few as five menus, alleviating these concerns.

Proposition 4. For any θ ∈ Θ, there exist five DMPL menus that allow to infer

its value exactly.

In experimental settings, risk and time menus are usually tailored to include vari-

ation that allows researchers to infer a set of values of risk aversion and discounting

under the assumption that subjects have deterministic preferences and maximize

their discounted expected utility. As discussed in the next section, researchers use

switches in choices across menus with different indifference thresholds to estimate

an interval containing the point value of a subject’s risk aversion coefficient (assum-

ing a CRRA utility function) or her discount rate, given a value of the risk aversion

coefficient. Proposition 3 shows that the same type of variation allows researchers to

infer the parameters of RDEU representation under parametric assumptions. More-

over, Proposition 4 shows that researchers can also tailor the DMPL menus of an

experimental design to maximize their ability to infer a set of parameter values. We

conclude the discussion with an example.16

Example 2. Let ω → 0 and (µr, σr, µδ, σδ, ρ) = (0.7, 0.7, 0.05, 0.02,−0.5). Consider

first risk menus. The choice probability of ([0.5, 0.5; 50, 40], 0) versus ([0.5, 0.5; 68, 25], 0)

is approximately 1 − Φ(0) = 0.5, and since the threshold of this problem is 0.7, we

have µr = 0.7. The choice probability of ([0.5, 0.5; 50, 40], 0) versus ([0.5, 0.5; 95, 25], 0)

is 1−Φ(1) = 0.16, and since the threshold of this problem is 1.4, σr = 1.4−0.7 = 0.7.

Consider now time menus. As argued in the proof of Proposition 4, when ω → 0

the threshold map becomes the piece-wise linear map min{0, K(AT )(1 − r)}, which

can be approximated by the linear map K(AT )(1 − r) that passes through the point

(1, 0) and has slope −K(AT ). Then, consider the choice probability of ([1; 59], 0)

versus ([1; 70], 1) which is approximately 0.5, and since the constant of this menu

is approximately 0.5
3
, we have µδ = 0.5

3
(1 − 0.7) = 0.05. Now, consider the choice

probability of ([1; 70 − ϵ], 0), with ϵ small, versus ([1; 70], 1) that is equal to 0.99.

This corresponds to two and a half standard deviations of the normal, and since the

16Following the standard convention, we let Φ(·) and ϕ(·) denote the CDF and PDF of the
standard normal distribution.
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constant in this case is 0, it follows that µδ

σδ
= Φ−1(0.99) = 2.5, and hence σδ = 0.02.

Finally, the time menu involving ([1; 68], 0) and ([1; 70], 1) has constant 0.029, which

is equal to the ratio of standard deviations. Hence, since the choice probability of the

earlier option is approximately 0.98 (which corresponds to two standard deviations

of the normal), it must be ρ = 1
2

[ −0.3
0.7

+2.5

2

]2
− 1 which is approximately −0.5.

4. Double Multiple Price Lists: Empirical Illustration

In this section, we illustrate the empirical application of the RDEU model to

DMPL datasets by estimating the parametric version of the model and comparing

its results to those obtained employing alternative structural models previously used

in the literature. For this purpose, we use data from AHLR. In this experimental

study, the authors presented a sample 253 individuals representative of the Danish

population with four risk tasks. Each task was comprised of up to ten risk menus.

The monetary prizes of the safe and risky alternative, (x0
1, x

0
2, x

1
1, x

1
2), varied between

each task. All menus shared the same prizes within a given task but differed in the

payoff probabilities (p0, p1). An example of such a task is shown in Table 7. The

experiment also presented each individual with six time tasks of up to 10 time menus

which shared the same early prize x0. All menus in a given time task also shared

the same payoff delay k but varied in the value of the delayed prize x1. The delay

k and payoff dates (t0, t1) changed across tasks. Table 8 shows an example of such

a task. Following these authors, we also assume the integrated average daily wealth

value ω is common across individuals and equal to 118 Danish kroner (DKK) in

2003, equivalent to approximately 30 USD that year.

We are interested in estimating risk aversion and discounting at both population

and individual levels. For this reason, we restrict the analysis to a subsample from

the original dataset, satisfying the following restrictions: first, we discard observa-

tions corresponding to four risk menus and six time menus containing dominated

lotteries.17 Second, we drop from the sample individuals reporting indifference be-

tween the two alternatives in some tasks. Finally, we focus on individuals whose

17We do this for expositional purposes. Extending the model by adding a tremble probability to
include menus with dominated alternatives is straightforward. See, for instance, Apesteguia and
Ballester (2018) and Jagelka (2021).
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choice switches from the safe lottery to the risky one in at least one of the four risk

tasks and also switch from the early lottery to the delayed one in at least one of

the six time tasks. In other words, we drop from the sample individuals who made

the same choice in all the risk or time tasks.18 These restrictions leave us with an

estimation sample of 202 individuals, each facing up to 36 risk menus and up to 54

time menus.

Before discussing the methodology for estimating the structural models, we present

the results from a semi-parametric estimator based on an elicitation procedure fre-

quently used in the literature. These estimates provide a useful benchmark and will

give a first picture of the degree of heterogeneity in preferences within and across

individuals in the dataset.

4.1. Semi-Parametric Estimation. Employing multiple price lists to produce in-

terval estimates of r and δ is common. In a given risk task, one can identify the two

adjacent menus where a subject’s decision switches from the safe lottery to the risky

one. The indifference threshold K(AR) of these menus provides a lower and upper

bound of the interval of values of r consistent with this switch. The mid-point of

this interval is frequently used as a point estimate of r. Using this procedure in the

AHLR dataset results in four estimates for each subject, which we can interpret as

draws from the individuals’ distribution of r. We can thus compute estimates of µr

and σr for each individual from the average and standard deviation of the elicited

draws. We can also compute population estimates of these parameters by pooling

all individual draws.

Conditional on a value of r, we can follow a similar procedure to obtain draws of

δ from the indifference thresholds K(AT |r) from the adjacent menus in a time task

where the choice of the individual switches from the early to the delayed lottery.

We repeat this procedure across the six time tasks using each of the four draws of

r obtained for this individual, obtaining 24 draws of δ for each individual. We use

these draws to compute individual and population estimates of µδ and σδ as before.

We also compute estimates of ρ from the sample correlation of these draws. We

18This restriction is not necessary to compute estimates at the population level. However, it
is necessary to obtain comparable estimates across individuals and models. The reason is that,
in all models we consider here, variation in choices is required to point-identify the parameters
associated with the coefficient of risk aversion and the discount rate of an individual. If choices
are the same in all menus, we can only set-identify these parameters.
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label these as semi-parametric estimates (SPE) of θ since they are obtained under

parametric assumptions of the utility function but do not specify any particular

distribution for (r, δ).

The last column of Table 1 shows the estimated parameters obtained using the

previous procedure and pooling all individual draws. Three results are worth noting.

First, the average risk aversion coefficient is 0.715, which aligns with estimates in the

experimental literature and the structural estimates reported in AHLR. Similarly,

the average (annual) discount rate is 13.8%, which is higher than the one estimated

by AHLR but is still on the lower end of estimates obtained from experimental

datasets.

Second, there is a large degree of heterogeneity in preferences. The standard de-

viation of all the draws of r and δ in the sample is 0.833 and 0.165, respectively.

Notably, a large fraction of this variation corresponds to heterogeneity within sub-

jects. To see this, we compute the summary statistics of the estimates of (µr, µδ)

at the individual level and report them in Table 2.19 The standard deviation of µr

across individuals is 0.608, implying that almost half the variance in r comes from

variation between subjects. Similarly, the standard deviation of µδ across individu-

als is 0.111, indicating that around 44% of the variance in δ comes from variation

between subjects.

Finally, there is a large and negative correlation between r and δ. The estimated

correlation coefficient, -0.761, is very similar to the correlation between the individ-

ual estimates (µr, µδ), which is -0.807. As discussed in Proposition 2, higher values

of r and lower values of δ generate a larger choice probability of the earlier alterna-

tive in time menus. Hence, the negative correlation between r and δ is consistent

with the observed behavior in the time menus of the dataset.

4.2. Structural Estimation. We now turn to the structural estimation of θ using

the parametric RDEU model and, for the sake of comparison, two other structural

alternatives. Our dataset contains a collection of menus {Am}Mm=1 and a set of N

observations for i = 1, . . . , I individuals, which we denote as O. The observation

(i,m) records the choice of individual i on menu m as an indicator function Yi,m that

19Table 4 in the Appendix reports the corresponding summary statistics for the individual
estimates of (σr, σδ).

15



takes a value of zero when the individual chooses the early/safe lottery in the menu

(denoted as 0m), and takes a value of one otherwise. To compute the population

estimates, we follow the literature and assume preferences admit a representative

agent so that Pθ(0m, Am) is independent of i. Under this assumption, we can write

the log-likelihood function of the data, conditional on parameter vector θ, as:

logL (θ|O) =
1

N

∑
i,m

[
(1− Yi,m) logPθ(0m, Am) + Yi,m log(1− Pθ(0m, Am))

]
.

We compute the maximum-likelihood estimator of θ by numerically maximizing

the previous log-likelihood. This estimator is consistent and asymptotically normal

under standard regularity conditions as long as θ is identified. We compute robust

standard errors of the estimates clustered at the individual level and estimate pref-

erence parameters by subject similarly using the subsample of O corresponding to

each individual.

All that is left is to specify Pθ(0m, Am). Propositions 1 and 2 give the choice

probabilities of the RDEU model.20 Finally, note that the AHLR dataset satisfies the

conditions discussed in Proposition 3. It follows that the RDEU model is identified,

and our estimates are consistent and asymptotically efficient.

We also consider two alternative models previously used in the literature. The

first model assumes that there is a unique underlying preference (that is, r = µr and

δ = µδ) subject to iid-additive noise, where choices are given by the following rule:

(4.1) Pθ(0m, Am) =
DEUr,δ(0m)

1
σ

DEUr,δ(0m)
1
σ +DEUr,δ(1m)

1
σ

,

with DEUr,δ(0m) and DEUr,δ(1m) denoting, respectively, the discounted expected

utility of the early/safe lottery and the late/risky lottery in Am, as defined in equa-

tion (2.1). This probability rule follows Luce (1959) and was introduced to the

estimation of risk preferences by Holt and Laury (2002). It corresponds to the

specification used in AHLR to compute population estimates of risk aversion and

discounting with their data. Following these authors, we specify ur(x) = (x+ω)1−r

1−r

and allow the noise parameter σ to differ between risk and time tasks so that the

model is characterized by four parameters: (µr, σr, µδ, σδ). We label this model as

20Appendix C describes the numerical method used to evaluate these probabilities efficiently by
exploiting the assumption that r and δ follow a bivariate normal distribution.
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LUCE. It is important to emphasize that this model has several theoretical prob-

lems that complicate the interpretation of estimates. First, as shown in Apesteguia

and Ballester (2018), the presence of iid-additive shocks makes Pθ(0m, Am) a non-

monotonic function of (r, δ).21 Consequently, the model is potentially not identified

since different values of these parameters may rationalize the same observed prob-

ability. Second, the functional form used in the monetary valuations generates the

sort of problems discussed in Section 2.1. In particular, valuations are negative when

r > 1, which in turn generates further problems in the power expression of equa-

tion (4.1) involving imaginary numbers and leading to smaller choice probabilities

of better alternatives.22

The second model also assumes deterministic preferences but considers instead

the following specification of the probability of choosing the early/safe lottery and

the late/risky lottery in menu Am:

(4.2) Pθ(0m, Am) = Φ

(
DEUr,δ(0m)−DEUr,δ(1m)

νmσ

)
,

where νm is a menu-specific normalizing constant and σ is a noise parameter taking

different values in risk and time tasks. This model is based on the “contextual error”

specification proposed by Wilcox (2011) and applied empirically by Andersen et al.

(2014) and Harrison et al. (2020). Following these authors, we assume νm = 1 for

menus in time tasks and set νm equal to the maximum utility across prizes in Am

minus the minimum utility across prizes in the same menu.23 The model is thus

characterized by the parameters (µr, σr, µδ, σδ), and we label it as WILCOX.24

21Notice that, as discussed in Apesteguia and Ballester (2018), the non-monotonicities are driven
by the non-linearity of the utility representations; the standard use of mixed-logit models does not
share these problems since they typically assume a latent utility that is linear on the parameters
of interest.

22Some of these theoretical problems also apply to the next alternative model and to the iid-
additive RUM used in the empirical analysis of CB settings. In what follows, we will focus on the
empirical comparisons with RDEU.

23Unlike these authors, we use the CDF of a normal distribution instead of a logistic distribution
to map the latent index to probabilities. This difference is not important for the results.

24The literature has also considered the use of random coefficient models, or mixed-logit models,
for structurally estimating risk and time preferences (see, for instance, Andersen et al. (2008) and
Andersen et al. (2014)). These models are very flexible and allow two levels of variation, one
at the individual level and one at the population level. At the individual level, they are akin to
the iid-additive RUM model above. At the population level, they allow variability in both r and
δ across individuals. However, they share some of the theoretical problems of the two previous
models, so we do not consider them here.
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4.3. Population Estimates. We begin by reporting the estimated parameters at

the population level in Table 1. The second, third, and fourth columns show the

estimates of the RDEU, LUCE and WILCOX models, respectively.

The estimated average risk aversion coefficient µr under the RDEU model is 0.781,

slightly higher than that obtained from the SPE. On the other hand, the estimated

value of σr is 0.895, which is very similar to the one obtained using the SPE esti-

mates. The estimated mean discount rate is 12.5%, which is also close but slightly

lower than the 13.8% from the SPE. The estimated σδ is slightly lower but close in

magnitude to the standard deviation from the SPE. Finally, the estimated correla-

tion of -0.958 is large in magnitude and negative, consistent with the results from

the SPE estimates and the comparative statics of the RDEU model discussed in the

previous section. The close relationship between the semi-parametric estimates and

parametric estimates from the RDEU model illustrates the intuitive and close map-

ping of the parameters in the RDEU model to the variation in choices and menus

in the dataset.

Comparing the results of RDEU model with those of LUCE and WILCOX, we

can see that the population estimates of µr and µδ are very similar across models and,

in the case of µr, we cannot reject the hypothesis that these are statistically equal.

However, the estimated values of σr and σδ are quite different across models. In the

case of the RDEU model, both parameters have a direct mapping to the variance of r

and δ in the SPE. On the other hand, the LUCE and WILCOX models treat these

as noise parameters related to the volatility of the utility shocks. For this reason,

their mapping to the data is less straightforward. Comparing the log-likelihoods of

the estimated models, we can see that the RDEU model has a slightly better fit

to the data than the other two models due to a greater ability to explain choices

in time menus. This is unsurprising since the RDEU model allows for correlation

between r and δ, providing an extra parameter to fit the data. Nevertheless, the

differences in fit are small, and the estimated values of average risk aversion µr and

discounting µδ are similar across the three structural models.

4.4. Individual Estimates. We now turn attention to the estimates at the indi-

vidual level. Table 2 shows summary statistics of the estimated values of µr and µδ

for each individual under the corresponding structural model. The last three rows
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of Table 2 report the Pearson correlation coefficient, the Kendall rank correlation

coefficient, and the Spearman rank correlation coefficient between the individual

estimates under each structural model and the corresponding SPE.

The moments of the individual estimates are very similar in the RDEU and SPE

models. In particular, the mean and standard deviation of µr and µδ across individ-

uals are remarkably close to their corresponding population estimates. In addition,

we see that all three measures of correlation are positive and very large, providing

further evidence of the tight relationship between the semi-parametric and RDEU

estimates, both qualitatively and quantitatively.

In contrast, the mean and standard deviation of the individual estimates obtained

using the LUCE and WILCOX models differ substantially from their SPE and pop-

ulation counterparts. The mean risk aversion coefficient in both models is negative,

and the standard deviation is an order of magnitude larger than the population

estimate. Similarly, the mean and standard deviation of the individual estimates of

µδ presents implausible large values under the two alternative models. The Pearson

correlation with the SPE in both cases is close to zero, although the rank correla-

tion measures are higher in comparison. This suggests that the puzzling results are

driven by a share of individuals for which the models estimate implausible values of

µr and µδ. Looking at the quantiles of the distribution of µr and µδ under LUCE

and WILCOX, we can see that the presence of a large mass of atypical values in the

tails of the distribution provokes the unexpected values for the mean and standard

deviation.

To understand the differences in performance across structural models, Figure 1

displays scatterplots of the estimated values of µr and µδ against the corresponding

value obtained using the semi-parametric estimates. The latter provides a good

benchmark of the values of the risk-aversion coefficient and the discount rate we

would expect from each individual, given their choices across tasks.

The first row shows the corresponding plots for the RDEU model. We can see

that each dot in both scatterplots is close to the 45-degree line, confirming the

close relationship between the RDEU and SPE estimates observed in the summary

statistics of Table 2. Table 4 and Figure 2, in the appendix, show that this close

relationship also holds for the individual estimates of σr and σδ.
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The second row in Figure 1 shows the corresponding scatterplots for the LUCE

model. Three things are worth highlighting. First, there is a stark upper bound

in the estimates of µr obtained using this model. This bound follows from the

problems mentioned above when r > 1. This is not an issue on the population

estimates, given that, for this particular dataset, the average risk aversion coefficient

across individuals is below the threshold, as suggested by the SPE. However, it is a

problematic restriction for individual estimates. According to the SPE, around 36%

choices in risk menus are consistent with r > 1, and one-third of the sample subjects

have µr > 1. Second, the estimated µδ tracks, on average, the corresponding SPE.

For low values of µδ, the LUCE estimate is higher than the corresponding SPE.

This is a consequence of the upper bound on µr: suppose a subject with r > 1

chooses the delayed lottery over the early one in many time menus. This behavior

is consistent with having large values of r, low values of δ, or both. However, the

upper bound makes the model underestimate the risk aversion coefficient of this

individual. Consequently, it has to over-estimate this subject’s δ to rationalize her

choices in time menus. Finally, note that there are several individuals for which the

LUCE model estimates extremely low values of r. Similarly, the model estimates

implausible large or negative discount rates for many subjects in the sample.

At first glance, this behavior is disconnected from their choices as it seems un-

correlated with their SPE. To understand the source of this erratic behavior, we

distinguish two groups of subjects in each scatterplot. In the left column of Figure

1, the first group (plotted in blue circles) corresponds to 103 subjects who switched

from the safe to the risky lottery in all four risk tasks. The remaining 99 subjects

(shown in orange) compose the second group. These subjects did not switch in at

least one of the four risk tasks. The right column of Figure 1 shows in blue circles

the 112 subjects who switched from the early lottery to the delayed lottery in all

six time tasks. Finally, we show in purple the remaining 90 subjects that did not

switch in at least one of the six time tasks. We can see a clear pattern: the subjects

for which the LUCE model estimates implausible values of µr and µδ are usually

subjects who did not switch in at least one of the tasks. These subjects display rel-

atively extreme preferences together with some degree of choice stochasticity, which
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the LUCE model is unable to capture. Importantly, these subjects are not simple

outliers as they compose almost half of the sample in this experimental setting.

The corresponding results for the WILCOX model are shown in the third row of

Figure 1. Compared to the LUCE model, the model does a better job capturing the

heterogeneity in µr and µδ reflected in the SPE estimates. However, it also delivers

implausibly large values of µr for a large part of the sample. The scatterplot shows

that these large estimates are usually obtained for subjects who did not switch in at

least one of the risk tasks. Consequently, the model also estimates values of µδ close

to zero for many subjects with both low and large SPE. As discussed before, with

large values of r, the individual is more likely to choose delayed lotteries. Suppose

this individual chooses the early lottery in many of the time menus in the dataset.

In that case, the model needs to compensate the large value of r with extremely low

values of δ to rationalize her choices. Finally, the model also estimates implausible

large values of µδ for subjects who did not switch in at least one of the time tasks.

The results suggest that two alternative approaches to structurally estimate risk

and time preferences, the LUCE and WILCOX models, are not well suited to cap-

ture the large heterogeneity in preferences between and within subjects on DMPL

datasets. In contrast, the RDEU model offers a flexible framework with solid theo-

retical foundations, clear identification restrictions, and an intuitive connection with

choices in DMPL data both at the population and individual levels.

5. Convex Menus: Theory

Although convex menus may seem more convoluted, the analysis can be analo-

gously simplified by conditioning again on parameter r. This creates an intuitive,

ordered structure of choices for parameter δ. Having fixed r, each a ∈ [0, 1) has an

associated threshold K(a,AC|r) ∈ (0, 1], such that the choice is below a if and only

if the value of parameter δ lies above the threshold. That is, Γ(a,AC) = {(r, δ) : δ ≥

K(a,AC|r)}. In the case of convex monetary utilities, r ≤ 0, the threshold is unique,

independent of a, as only corner solutions have non-null probability. In the case of

strictly concave monetary utilities, r > 0, the threshold K(a,AC|r) corresponds to

the unique value of δ for which the first-order condition holds for alternative a, i.e.,

to the value of δ for which the derivative of DEUr,δ(a) with respect to a is equal to

21



zero. The computation of the choice probabilities follows, again, from the weighted

consideration of all conditional distributions Fδ|r.

The comparative statics of shifts in parameter δ are the continuous analogous of

the case of AT . To understand the case of shifts in r, we now show that whenever

r > 0, the map {K(a,AC|r)}r∈R is strictly increasing in r if and only if a > ē =

x0

x0+x1 , and strictly decreasing whenever a < ē. The value ē is no coincidence, as it

describes the allocation that equalizes the two prizes, and hence the two wealths,

across periods t0 and t1. Hence, we can show that fixing the marginal distribution

of δ and shifting upwards the conditional distributions of r, we generate a larger

probability of choice for any neighborhood of ē, i.e., choices become more balanced.

This comparative statics exercise neatly reflects the role of r > 0 in AC as inter-

temporal substitution.

The comparative statics of spreads of the parameters are similar to the case of AT ,

simply accounting for the continuity of the choice variable. In the binary case of AT

the trade-off between earlier versus future prizes does necessarily involve the choice

of alternative 0T versus alternative 1T . In the current continuous case, this trade-off

has alternative ē as the critical value. Alternatives below (resp., above) ē allocate a

larger potential prize to the earlier period (resp., later period). We now show that,

keeping constant the marginal distribution of one parameter, an expansion of the

conditional distributions of the other parameter always brings the cumulative choice

probability Pf ([0, ē], AC) closer to 1/2. That is, the probabilities of choices below

and above ē become closer, implying that behavior is now more stochastic.

Proposition 5. For every pair of RDEUs, f and g, and every menu AC:

(1) Pf ([0, a], AC) = 1−
∫
r
Fδ|r(K(a,AC|r))f r(r)dr.

(2) (a) If F r = Gr, and for all r Gδ|r dominates Fδ|r, Pf ([0, a], AC) ≥ Pg([0, a], AC)

for every a ∈ [0, 1).

(b) If F δ = Gδ, and for all δ Fr|δ dominates Gr|δ, Pf ([0, a], AC)−Pf ([0, a], AC) ≥

Pg([0, a], AC)− Pg([0, a], AC) for every 0 < a < ē < a < 1.

(3) (a) If F r = Gr, and for all r Fδ|r expands Gδ|r with K(ē, AC|r) ̸= med

F (δ|r), |Pf ([0, ē], AC)− 1
2
| < |Pg([0, ē], AC)− 1

2
|.

(b) If F δ = Gδ, and for all δ Fr|δ expands Gr|δ with K(ē, AC|δ) ̸= med

F (r|δ), |Pf ([0, ē], AC)− 1
2
| < |Pg([0, ē], AC)− 1

2
|.
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5.1. Implications for the Parametric Version. The implications of Proposition

5 for the parametric case of the CRRA and the bivariate normal are in line with

the general discussion. With convex utilities, the unique relevant threshold for δ

separates the choice of a = 0 and a = 1 and it corresponds toK(AC|r) = 1
t1−t0

log p1

p0
+

K(AT |r) = 1
t1−t0

log p1

p0
+ 1

t1−t0
log
[
(ω+x1)1−r−ω1−r

(ω+x0)1−r−ω1−r

]
. In the concave part, the threshold

for δ determining a choice below a can be obtained from the first-order condition, and

corresponds to K(AC|r) = 1
t1−t0

log p1

p0
+ 1

t1−t0
log x1

x0 + 1
t1−t0

r log
[
(1−a)x0+ω

ax1+ω

]
. There

are three terms in the expression; the first term is the same than the first term

of the convex case and depends on the probabilities, the second term is the limit

when r → 0 of the second term of the convex case, and the third term is unique

to the concave case. The latter one shows that solutions are a linear function of

r. Moreover, solutions are in general interior, and whenever ω tends to 0, they

are always interior. Since the choice probabilities are again built on the basis of

the conditional probabilities that are normally distributed, computation is routine.

Ceteris paribus, an increase in the median of δ generates larger choice probabilities

for alternatives allocating more resources to the earlier period. Given the convex

nature of the menu, increasing the median of r has mostly a smoothing effect,

equalizing the prizes across the two time periods. As before, increasing either the

variance of δ or of r leads to more choice stochasticity.

As in the case of DMPLs, Proposition 5 sets the basis for the identification of

the model. We now study the identification of θ under parametric assumptions.

Consider a convex budget dataset O consisting of a set of observations of the tokens

allocated by an individual, or group of individuals, when presented with a set of

convex menus AC,m indexed by m = 1, . . . ,M . The following result shows that

variation in pay-off delay and variation in either the payoff probability or the return

rate implicit across convex menus is sufficient to identify θ.

Proposition 6. Suppose that the dataset O contains five convex menus with rel-

atively large payoffs, such that ω/x1 → 0 and ω/x0 → 0, satisfying the following

conditions:

(a) Two of the menus {AC,a, AC,b} are such that (i) t1a − t0a = t1b − t0b and (ii)

p1a/p
0
a ̸= p1b/p

0
b or x1

a/x
0
a ̸= x1

b/x
0
b .
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(b) The three other menus {AC,c, AC,d, AC,e} differ in one of three dimensions:

(i) the delay t1m − t0m (ii) the current prize x0
m (iii) the future prize x1

m.

Then, θ is identified.

Intuitively, the proof of Proposition 6 shows that one can use two moments of the

data to identify the distribution of r: the share of interior choices and the elasticity of

the response of token allocations to either payoff probabilities or return rates. Using

these moments to identify (µr, σr), one can then focus on identifying (µδ, σr, ρ) from

the corner solutions in the data. Specifically, when r < 0, the problem of the subject

is analogous to the discrete choice in time menus studied in DMPL settings. We can

thus use the same conditions used to identify θδ in Proposition 3 to identify these

parameters from the predicted behavior at corner allocations.

As in the case of DMPL lotteries, it is also possible to infer θ using a small number

of convex menus.

Proposition 7. For any θ ∈ Θ, there exist five convex menus that allow to infer its

value exactly.

Example 3. Consider again the case where ω → 0 and parameters (µr, σr, µδ, σδ, ρ) =

(0.7, 0.7, 0.05, 0.02,−0.5). Take first the convex problem defined by probabilities

p0 = 1 and p1 = 0.8, payouts x0 = 15 and x1 = 20, and timings t0 = 0 and

t1 = 0+ ϵ, with ϵ small. The choice probability of a = 1 corresponds to one negative

standard deviation, and hence µr

σr
= 1. The risk aversion level above which the choice

is below a = 0.48 is 0.7. Since the cumulative choice probability at a = 0.48 is 0.5, we

learn that µr = 0.7, and from the above expression, σr = 0.7. We can now consider

the convex version of the time problems described in Example 1 by fixing p1 = p0,

and reproduce the analysis there with a hypothetical discrete choice problem in which

we aggregate all observed probabilities of options below 1/2 and options above 1/2.

6. Convex Menus: Empirical Illustration

We now illustrate the empirical application of the RDEU model to convex budgets

using data from the experimental design in AS. In this study, the authors present

80 subjects with 84 convex menus. In each menu, the subject receives 100 tokens
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and decides how many to allocate between two dates: t0 and t1. Every token

allocated in t0 is transformed into dollars at a rate q0 so that x0 = 100q0. Similarly,

every token allocated in t1 is exchanged into dollars at a rate q1 so that x1 =

100q1. The prizes x0 and x1 are rewarded with probabilities p0 and p1, respectively.

Otherwise, the subject received nothing. All menus fixed t0 to 7 days, and q0 to 0.20

USD per token, while varying the remaining menu characteristics. Consequently,

the empirical design satisfies the conditions for identification of the RDEU model

discussed in Proposition 6.

The dataset records the share of tokens a ∈ [0, 1] allocated in t1 by each subject

i when presented with each menu in {Am}Mm=1. Since tokens are not divisible, the

experimental implementation discretizes the choice set in S equidistant options α1 =

[a1, a2], α2 = [a2, a3], . . . , αS = [aS, aS+1], with a1 = 0 and aS+1 = 1. In the

data, 93% of the choices correspond to token allocations that are a multiple of 5.

Consequently, we set S = 21, so that a2 = 0.025, a3 = 0.075, . . . aS = 0.975. As a

result, the dataset O contains a collection of M = 84 convex menus faced by I = 80

individuals, for a total of N = 6720 observations. The observation (i,m) records

the choice of individual i on menu m as an indicator function Yi,m(s) taking a value

of one when the token allocation is contained in αs, and zero otherwise. In what

follows, we set ω = 5 USD, consistent with the participation payment in AS.

6.1. Structural Estimation. To estimate the RDEU model, we use our paramet-

ric restrictions and follow a representative agent approach where the probability

that am ∈ αs, denoted as Pθ([as, as+1], Am), is independent of i and given by Propo-

sition 5. We can thus write the log-likelihood function of the data, conditional on

parameter vector θ, as:

logL (θ|O) =
1

N

∑
i,m

∑
s

[
Yi,m(s) logPθ([as, as+1], Am)

]
.

As before, maximization of the previous log-likelihood yields a consistent and asymp-

totically normal estimator of θ under standard regularity conditions. We compute

robust standard errors of the estimates clustered at the individual level and compare

the estimates of the RDEU model with two alternative methods.

The first alternative method follows AS in estimating r and δ from the first order

condition associated with the convex budget problem using non-linear least squares
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(NLS) to minimize the distance between predicted and observed allocation of to-

kens. This method leads to the estimation of two preference parameters, µr and µδ,

without an explicit account for their heterogeneity.25

The second alternative method employs an iid-additive RUM to estimate risk and

time preferences in convex budgets (see Harrison et al. (2013) and Cheung (2015)).

In this model, the probability of choosing alternative a in menu Am is given by:

Pθ([as, as+1], Am) =
eDEU(αs)

eDEU(0) + eDEU(α2) + . . .+ eDEU(1)
,

with α1 = 0, αS = 1, and αs = (as + as+1)/2 for s = 2, . . . , S − 1. As in the NLS

approach, this model assumes preferences are deterministic so that µr and µδ are the

only two parameters to be estimated. However, choice in this model is stochastic

and thus potentially consistent with the large heterogeneity in allocations observed

in this type of data.

Table 3 presents the estimated parameters under each model. Regarding risk

aversion, the RDEU model estimates µr = 0.207 and σr = 0.752. Note that these

are lower than estimates from DMPL designs, probably due to the fact that here the

curvature r represents both, risk aversion and intertemporal substitution. However,

it is positive and statistically different from zero. This contrasts with the estimates

from the iid-additive RUM. The reason for these differences is simple: around 48%

of the observations in the dataset correspond to extreme allocations a = 0 or a = 1.

To explain the large presence of corner solutions, the iid-additive RUM requires

estimating convex utility functions. The additional flexibility of the RDEU model

allows it to match the large fraction of corner solutions with a slightly concave utility

function.26

As for the distribution of δ, we estimate an average annual discount rate of ap-

proximately 34%. This estimate is close to the 26% estimated using NLS and is

25Notice that the NLS method imposes larger penalties to larger deviations from the first-order
conditions, which may be read as larger penalties to larger deviations from the mean values of the
underlying parameters. RDEU formalizes this principle in terms of behavioral variation, allowing
to produce explicit probabilistic predictions.

26One advantage of having the whole distribution of r is that we can estimate additional mo-
ments of interest and compute their corresponding standard errors using the delta method. For
example, one could be interested in E[r|r > 0], which provides information about the average cur-
vature of the utility function inferred from interior allocations. Given our estimates and parametric
assumptions, we estimate the value of this moment to be 0.68, with a standard error of 0.067.
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almost half the annual rate estimated using the iid-additive RUM. This difference

may be explained by the larger concavity of utility estimated in the RDEU model,

which is a substitute for a larger discount factor to explain choices between a = 0

and a = 1 at the corners. Finally, we estimate a large variability in the discount fac-

tor, with a standard deviation of 1.8 and a negative correlation coefficient of -0.16,

lower than the one obtained using DMPL data.

The difference in population estimates and log-likelihoods present an incomplete

picture of the differences across models. Figure 3 shows the distribution of a across

all observations in the data and compares it with the corresponding distribution of

choice predicted by the model.

The first thing to note is that the fit of the RDEU model in the full sample is

quite good. The model does a good job matching both the share of corner solutions

and the presence of interior choices distributed around a = 0.5. The iid-additive

RUM, on the other hand, misses both a large share of the corner allocations and

the share of interior choices around a = 0.5. Finally, since the NLS model does not

specify how choice stochasticity emerges, we cannot provide an explicit account for

the choice heterogeneity in a given menu. Instead, we can show the choices given

by the estimated parameters, both at the menu level and across menus. The second

column of Figure 3 shows the observed and predicted frequency of each share choice

for a single menu in the dataset, for the three models under consideration.27 It

can be seen that the RDEU model matches the choice patterns observed in convex

budgets both in the full sample and for particular menus.

The RDEU model does a good job explaining the overall patterns of choice fre-

quency across all menus in the dataset. This is not to say that the RDEU model

is thus able to rationalize any data. The model inherits many of the weaknesses of

the assumptions of expected utility and exponential discounting. One example is

the common ratio property discussed in AS. Figure 4 in the Appendix shows the

predicted choice distribution across tasks sharing the same payoff probabilities. We

can see that the distribution is identical across menus with the same ratio p0/p1,

which is inconsistent with the observed choice patterns in the data. Nevertheless,

27Figure 3 reports on menu (x0, x1, p0, p1, t0, t1) = (20, 20, 0.4, 0.5, 7, 45). Analogous conclusions
are obtained for any one of the 84 menus. The graphs for all the menus can be found in the
supplementary material to this paper.
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the tools we introduce can be used to extend the model to account for these and

other behavioral considerations. In Appendix D, we illustrate by estimating a small

extension of the model assuming β − δ preferences as in AS. We leave a theoretical

analysis of this and other extensions for future research.

7. Final Remarks

In this paper we have studied preference heterogeneity in the context of the most

standard treatment of risk and time preferences, and we have proposed and studied

the random discounted expected utility model. By using the ordered structure that

links parameters and choice, we have shown that the model is computationally

convenient, and well founded in terms of comparative statics. In addition, we have

applied the model to two very different datasets, and shown that the model accounts

behavior remarkably well in both cases. We believe that this is a promising approach

to the treatment of heterogeneity when multiple parameters are involved, such as

in the study of social preferences, ambiguity, limited attention, and other relevant

behavioral considerations and their applications.
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Appendix A. Proofs

Proof of Proposition 1: Consider a menuAR = {0R, 1R} = {([p, 1−p;x0
1, x

0
2], 0), ([p, 1−

p;x1
1, x

1
2], 0)}, such that x1

1 > x0
1 > x0

2 > x1
2 and p ∈ (0, 1). Consider r < r′. Con-

struct the affine transformations vr, vr′ of ur, ur′ satisfying vr(ω+x1
2) = vr′(ω+x1

2) =

0 and vr(ω + x0
2) = vr′(ω + x0

2) = 1. By strict monotonicity of the original utility

functions, it must be vr(ω + x0
1) > 1 and vr′(ω + x0

1) > 1. We now claim that

vr′(ω + x0
1) < vr(ω + x0

1) must hold, and this will be proved by contradiction. As-

sume that vr′(ω + x0
1) ≥ vr(ω + x0

1) > 1. In this case, we can consider the lotteries

[p∗, 1 − p∗;x0
1, x

1
2] and [1;x0

2], with
1

vr′ (ω+x0
1)

≤ p∗ ≤ 1
vr(ω+x0

1)
. It is immediate to see

that the expected utility constructed upon vr leads to, at least, weakly prefer lottery

[1;x0
2] while the expected utility constructed upon vr′ leads to, at least, weakly prefer

lottery [p∗, 1 − p∗;x0
1, x

1
2]. This contradicts the fact that vr′ , being a strict concave

transformation of vr, must have a strictly lower certainty equivalent for the second,

riskier lottery and hence, we have proved that vr′(ω + x0
1) < vr(ω + x0

1).

We now claim that vr′(ω + x1
1) − vr′(ω + x0

1) < vr(ω + x1
1) − vr(ω + x0

1) must

hold, and prove it by contradiction. If it were not true, given that we already

proved vr′(ω+x0
1) < vr(ω+x0

1), we would have
vr′ (ω+x1

1)−vr′ (ω+x0
1)

vr′ (ω+x0
1)

>
vr(ω+x1

1)−vr(ω+x0
1)

vr(ω+x0
1)

.

Considering the lotteries [p′, 1−p′;x1
1, x

1
2] and [1; x0

1], with
vr′ (ω+x1

1)−vr′ (ω+x0
1)

vr′ (ω+x0
1)

> 1−p′

p′
>

vr(ω+x1
1)−vr(ω+x0

1)

vr(ω+x0
1)

, the expected utility constructed upon vr would lead to the choice

of [1;x0
1] while the expected utility constructed upon vr′ would lead to the choice of

[p′, 1− p′;x1
1, x

1
2]. This is again a contradiction with the concavity assumption, and
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concludes the argument; it must then be vr′(ω + x1
1) − vr′(ω + x0

1) < vr(ω + x1
1) −

vr(ω + x0
1).

We now claim that for every (r, δ) and (r′, δ′) such that r′ > r, if DEUr,δ(0R) ≥

DEUr,δ(1R), thenDEUr′,δ′(0R) > DEUr′,δ′(1R). To see this, suppose thatDEUr,δ(0R) ≥

DEUr,δ(1R). This is equivalent to claim that the expected utility of lottery [p, 1 −

p;x0
1, x

0
2] is greater than the expected utility of lottery [p, 1−p;x1

1, x
1
2] when the mone-

tary utility ur is used. That is equivalent to claim that the expected utility of lottery

[p, 1− p;x0
1, x

0
2] is greater than the expected utility of lottery [p, 1− p;x1

1, x
1
2] when

the monetary utility vr is used, and can be written as 1−p
p

≥ vr(ω+x1
1)−vr(ω+x0

1)

vr(ω+x0
2)−vr(ω+x1

2)
=

vr(ω + x1
1) − vr(ω + x0

1). From our previous claims, we know that it must be

1−p
p

> vr′(ω+x1
1)−vr′(ω+x0

1) =
vr′ (ω+x1

1)−vr′ (ω+x0
1)

vr′ (ω+x0
2)−vr′ (ω+x1

2)
, which implies that the first lottery

is strictly preferred to the second using vr′ or, alternatively, using ur′ . This implies

DEUr′,δ′(0R) > DEUr′,δ′(1R) and concludes the argument. With the unbounded

curvature assumption, the certainty equivalent of both lotteries must converge to

the maximum and minimum payout when r tends to −∞ and +∞, respectively.

That is, there are values of r for which 0R and 1R are preferred. As a result, there

must be a unique K(AR) ∈ R such that alternative 0R is preferred if and only if

r ≥ K(AR) which leads to Claim 1 in the proposition. For Claim 2, note that when-

ever F r dominates Gr, it must be Pf (0R, AR) = 1−F r(K(AR)) > 1−Gr(K(AR)) =

Pg(0R, AR). For Claim 3, notice that the assumption requires us to consider two

cases, med(F r) > K(AR) or med(F r) < K(AR). In the first case, since F r expands

Gr, it must be F r(K(AR)) > Gr(K(AR)) > 1/2, while in the second case, it must

be that F r(K(AR)) < Gr(K(AR)) < 1/2, concluding the proof. ■

Proof of Proposition 2: Consider a menuAT = {0T , 1T } = {([1;x0], t0), ([1;x1], t1)}

such that t0 < t1 and x0 < x1. From the definition of DEU , it follows immediately

that

DEUr,δ(0T ) ≥ DEUr,δ(1T ) ⇔ δ ≥ K(AT |r) =
1

t1 − t0
log

ur(ω + x1)

ur(ω + x0)
.

Strict monotonicity of ur guarantees that this threshold is always a positive real

value and, hence, the first expression in Claim 1, and Claim 2a, follow immediately.
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We now claim that the threshold map {K(AT |r)}r∈R is strictly decreasing in r. To

see this, notice that scalar transformations leave DEU decisions unaffected. Hence,

we can select the scalar transformation vr of ur for which vr(ω+ x1) = 1 holds and,

then, we are only required to show that − log vr(ω+x0)
t1−t0

is strictly decreasing in r or,

equivalently, that vr(ω + x0) is strictly increasing in r. Suppose by contradiction

that this is not the case, i.e., vr(ω + x0) ≥ vr′(ω + x0) with r < r′. By considering

the lotteries [p∗, 1−p∗;ω, ω+x1] and [1;ω+x0], where vr(ω+x0) ≥ p∗ ≥ vr′(ω+x0),

it is immediate to see that the expected utility, using vr, is larger for the first lottery

than for the second, while the expected utility, using vr′ , is larger for the second

lottery than for the first, a contradiction with the strict concavity assumption. The

threshold map is thus strictly decreasing in r.

The unbounded curvature assumption also proves that the map is onto for R++

and hence, it is a bijective map between R and R++. Thus, it can be inverted to

obtain the strictly decreasing thresholds {K(AT |δ)}δ∈R++ , such that, for a given

δ > 0, alternative 0T is chosen if and only if r is above this threshold. For δ ≤ 0 al-

ternative 1T is always chosen. Hence, Pf (0T , AT ) =
∫
r
(1−Fδ|r(K(AT |r)))f r(r)dr =∫

δ>0
(1− Fr|δ(K(AT |δ)))f δ(δ)dδ, where f δ is the marginal density of δ. The second

expression in Claim 1, and Claim 2b, follow.

For Claim 3a, we just need to reproduce the logic of Proposition 1, expanding

separately each of the conditional distributions Fδ|r. This always creates a strictly

larger conditional stochasticity. From there, we need to prove that the argument

extends to the weighted aggregation of all these conditional distributions. To see

this, notice that the continuity of the map {K(AT |r)}r∈R guarantees that all con-

ditional medians of δ lie on the same side of the threshold map. As a result, the

same alternative, either 0T or 1T , is chosen more often in each of the conditionals,

and the expansion argument extends to the aggregation. For Claim 3b, a similar

argument holds by expanding the conditionals Fr|δ and using the continuity of the

inverse map. ■

Proof of Proposition 3: We start by showing that θr ≡ (µr, σr) is identified.

Assume, on the contrary, that this is not the case: there exist θ′r and θ∗r in Θr such

that θ′r ̸= θ∗r and Pθ′ (1R, AR) = Pθ∗ (1R, AR). Using Proposition 1, we can write
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this equality as:

Pθ′r (r ≤ K (AR)) = Φ

(
K (AR)− µ′

r

σ′
r

)
= Φ

(
K (AR)− µ∗

r

σ∗
r

)
= Pθ∗r (r ≤ K (AR)) .

Since the Φ (·) is a strictly monotonic function, the last equality implies that:

(A.1) −µ∗
r

σ∗
r

+
1

σ∗
r

K (AR) = −µ′
r

σ′
r

+
1

σ′
r

K (AR) ,

for every menu AR. Now, since θ′r ̸= θ∗r , there are three possible cases: µ′
r ̸= µ∗

r and

σ′
r = σ∗

r ; µ
′
r = µ∗

t and σ′
r ̸= σ∗

r ; and µ′
r ̸= µ∗

r and σ′
r ̸= σ∗

r . In the first case, equation

(A.1) implies µ′
r = µ∗

r, leading to a contradiction. Consider now the second and

third cases where σ′
r ̸= σ∗

r . Evaluating (A.1) for AR,a and AR,b and combining the

resulting expressions yields:

(A.2)

(
1

σ∗
r

− 1

σ′
r

)(
K
(
AR

b

)
−K

(
AR

a

))
= 0.

Since K (AR,a) ̸= K (AR,b) by assumption (a), it must be the case that σ′
r =

σ∗
r , arriving to a contradiction. We thus conclude that θr is identified. The next

step is to show that θδ ≡ (µδ, σδ, ρ) is identified. Fix (µr, σr) and assume, on the

contrary, that θδ is not identified: there exist θ′δ and θ∗δ in Θ such that θ′δ ̸= θ∗δ

and Pθ′δ
(0T , AT ) = Pθ∗δ

(0T , AT ). Using Proposition 2, the equality of probabilities

implies:∫ ∞

−∞

{
Φ

(
K (AT |r)− µ′

δ|r

σ′
δ|r

)
− Φ

(
K (AT |r)− µ∗

δ|r

σ∗
δ|r

)}
ϕ

(
r − µr

σr

)
dr = 0,

with µδ|r = µδ + ρσδv (r), σδ|r = σδ

√
1− ρ2, and ν (r) ≡ r−µr

σr
. The term in brackets

in the previous expression is bounded in [−1, 1]. By the continuity and monotonicity

of ϕ (·) and Φ (·), there exists rm ∈ R for each one of the menus {AT ,c, AT ,d, AT ,e}

such that:

(A.3) − µ′
δ

σ′
δ|r

−α′v (rm)+
1

σ′
δ|r

K (AT ,m|rm) = − µ∗
δ

σ∗
δ|r

−α∗v (rm)+
1

σ∗
δ|r

K (AT ,m|rm) ,

where α ≡ ρ/
√

1− ρ2 and we use the fact that σδ|r is independent of rm. Now,

any of the three conditions in Assumption (b) implies K (AT ,c|r) ̸= K (AT ,d|r) ̸=

K (AT ,e|r) ̸= K (AT ,c|r) for any r ∈ R. Using this result and the Implicit Function

Theorem, we conclude that that rc ̸= rd ̸= re ̸= rc. Setting m = c in (A.3) and
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subtracting the corresponding expression for m = d, we get:

(A.4) [α′ − α∗] (v (rc)− v (rd)) +

[
1

σ′
δ|r

− 1

σ∗
δ|r

]
(K (AT ,c|rc)−K (AT ,d|rd)) = 0.

Repeating this procedure for menus AT ,c and AT ,e, we get:

(A.5) [α′ − α∗] (v (rc)− v (re)) +

[
1

σ′
δ|r

− 1

σ∗
δ|r

]
(K (AT ,c|rc)−K (AT ,e|re)) = 0.

Using (A.5) to replace
[
1/σ′

δ|r − 1/σ∗
δ|r

]
in (A.4), we get:

(A.6) [α′ − α∗] [rc − rd]

[
1−

(
rc − re
rc − rd

)(
K (AT ,c|rc)−K (AT ,d|rd)
K (AT ,c|rc)−K (AT ,e|re)

)]
= 0.

Since K (AT ,c|rc) ̸= K (AT ,d|rd) ̸= K (AT ,e|re) ̸= K (AT ,c|rc), equation (A.6) im-

plies that α′ = α∗, which in turn implies ρ′ = ρ∗. This result and equation (A.5)

implies that σ′
δ|r = σ∗

δ|r, so that σ′
δ = σ∗

δ . Using equation (A.3), we conclude that

µ′
δ = µ∗

δ , arriving to a contradiction. This concludes the proof. ■

Proof of Proposition 4: To simplify the presentation of the result and provide

neat intuitions, we use two relatively mild assumptions: (i) the probability of the

event {r > 1, δ < 0} is small and (ii) there are two time menus AT1 and AT2 with

the same payouts where the probabilities of selecting options 0T1 and 1T2 are greater

than 1
2
. To motivate (i), notice that δ < 0 already corresponds to the rare event in

which the individual has a strict preference for the future, and we are compounding

this with the extra effect of a more-than-logarithmic curvature. To motivate (ii),

notice that we can make the differences in the timings as small or as large as desired.

Now, from Proposition 1 we know that Pf (0R, AR) = 1 − F r(K(AR)), which in

the parametric version reads as Pf (0R, AR) = 1 − Φ(K(AR)−µr

σr
). Fix any value of

p ∈ (0, 1), three payouts x0
1 > x0

2 > x1
2 > 0, and consider risk menus that vary only

on the payout x1
1. The thresholds of these menus are strictly increasing in x1

1 and

form a bijection with the real numbers. Hence, there exist two menus AR1 and AR2

such that the choice probabilities for options 0R1 and 0R2 are equal to 1−Φ(0) and

1 − Φ(1), respectively. It must then be µr = K(AR1) and σr = K(AR2) − µr =

K(AR2)−K(AR1).
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We now discuss time menus and, by using sufficiently large payouts in all our

arguments, we can assume w.l.o.g. that behavior corresponds to the case ω → 0. In

this limit case the conditional threshold map becomes piece-wise linear: (a) when r <

1, K(AT |r) =
log x1

x0

t1−t0
(1− r) ≡ K(AT )(1− r) > 0, where K(AT ) is a menu-dependent

constant, and (b) when r ≥ 1, K(AT |r) becomes null. Hence, the probability of

choosing 0T corresponds to the probability that δ lies above min{0, K(AT )(1− r)}

and, given our assumption (i), this can be approximated by the probability that δ

lies aboveK(AT )(1−r). This is the probability that the random variableK(AT )(1−

r)−δ lies below zero. Given normality this random variable is also normal with mean

−µδ−K(AT )µr+K(AT ) and standard deviation
√
K2(AT )σ2

r + σ2
δ + 2ρK(AT )σrσδ.

Thus the choice probability of 0T is approximately Φ
( µδ+K(AT )µr−K(AT )√

K2(AT )σ2
r+σ2

δ+2ρK(AT )σrσδ

)
.

By assumption (ii) there exist two time menus AT1 and AT2 with the same payouts

x0, x1 such that the choice probabilities of 0T are above and below Φ(0) = 1
2
, respec-

tively. Due to the stationarity of DEU, we can assume w.l.o.g. that the earlier payout

takes place in the present in both cases. By continuity there must exist a unique

t, and hence a menu AT3 = {([1;x0], 0), ([1;x1], t)} such that the choice probability

of option 0T3 is exactly Φ(0). Hence, µδ = K(AT3)(1− µr) = K(AT3)(1−K(AR1)).

Second, consider any sequence of time problems {AT n} such that limnK(AT n) = 0.

Denote by q the limit of the choice probabilities of option 0T n . We know that

q = Φ(µδ

σδ
) and, hence, it must be σδ =

µδ

Φ−1(q)
=

K(AT3 )(1−K(AR1
))

Φ−1(q)
. Finally, by fixing

again any three parameters in a time menu and varying the fourth, we know that

there exists a unique time menu AT4 in such a family for which K(AT4) = σδ

σr
.28

Denote by q′ the choice probability of option 0T4 . It must then be q′ = Φ(
µr−1
σr

+
µδ
σδ√

2(1+ρ)
).

Notice that the right-hand side map is either strictly increasing or strictly decreasing

in ρ, which allows to obtain ρ: ρ = 1
2

[ µr−1
σr

+
µδ
σδ

Φ−1(q′)

]2
− 1 = 1

2

[ K(AR1
)−1

K(AR2
)−K(AR1

)
+Φ−1(q)

Φ−1(q′)

]2
− 1.

This concludes the proof. ■

Proof of Proposition 5: Consider a menu AC defined by (p0, x0, t0; p1, x1, t1). We

first claim that, for every r ∈ R, the argument that maximizes DEUr,δ is decreasing

28This is in general different to AT3 . Otherwise, notice that the mapping

Φ
( µδ+K(AT )µr−K(AT )√

K2(AT )σ2
r+σ2

δ+2ρK(AT )σrσδ

)
is strictly monotone in ρ, and hence the parameter can be re-

covered using some other time menu.
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in δ. To see this, consider any pair of parameters (r, δ), and let a∗ ∈ [0, 1] be

the argument that maximizes DEUr,δ. If a∗ = 1, we are done. Consider then the

case of a∗ < 1 and any alternative a∗ < a ≤ 1. Given the optimality of a∗, we

know that DEUδ,r(a) ≤ DEUδ,r(a
∗), i.e., e−δt0p0ur(ω + (1 − a)x0) + e−δt1p1ur(ω +

ax1) ≤ e−δt0p0ur(ω+(1−a∗)x0)+e−δt1p1ur(ω+a∗x1) holds. The latter inequality is

equivalent to p0ur(ω+ (1− a)x0) + e−δ(t1−t0)p1ur(ω+ ax1) ≤ p0ur(ω+ (1− a∗)x0) +

e−δ(t1−t0)p1ur(ω+a∗x1). Now, it is evident that an increase of δ leaves unaffected the

first term in both the left and the right hand sides but decreases more significantly

the second term of the left hand side, because the function ur is strictly increasing.

Hence, alternative a∗ must be preferred to alternative a for the larger δ, and the

argument maximizing DEUmust be a∗ or smaller. We have proved our claim. Hence,

given r ∈ R, we can define K(a,AC|r), a ∈ [0, 1), as the infimum of the values of δ

for which any alternative in [0, a] is the DEU maximizer. Hence, the maximizer of

DEUr,δ is below a if and only if δ lies above K(a,AC|r), i.e., Γ(a,A) = {(r, δ) : δ ≤

K(a,AC|r)}, and Claims 1 and 2a follow.

We now study the structure of the thresholds. We start with the case of convex

monetary utilities, i.e., r ≤ 0. Convexity and the fact that ur(ω) = 0 guarantee that

e−δt0p0ur(ω+(1−a)x0)+ e−δt1p1ur(ω+ax1) ≤ e−δt0p0[aur(ω)+(1−a)ur(ω+x0)]+

e−δt1p1[(1−a)ur(ω)+aur(ω+x1)] = e−δt0p0(1−a)ur(ω+x0)+e−δt1p1aur(ω+x1) ≤

max{e−δt0p0ur(ω + x0), e−δt1p1ur(ω + x1)}. Hence, only alternatives 0 or 1 can be

the maximizers of DEUr,δ. Thus, for every menu AC there is a unique threshold

K(a,AC|r) ∈ R, independent of a, that corresponds to the δ that, given r, equalizes

the DEU value of 0 and 1. This value is 1
t1−t0

log
[
p1ur(ω+x1)
p0ur(ω+x0)

]
, that can also be written

as 1
t1−t0

log p1

p0
+ K(AT |r), with K(AT |r) referring to the hypothetical time menu

in which prizes x0 and x1 are offered at periods t0 and t1, without considering the

probability of these prizes. Proposition 2 argued that K(AT |r) is strictly decreasing,

and hence K(a,AC|r) is also strictly decreasing whenever r ≤ 0.

We now analyze strictly concave utilities, r > 0. We start by claiming that

the threshold K(a,AC|r) is decreasing for every a > ē, and increasing for every

a < ē. We start with the former, assuming by contradiction that 0 < r < r′ but

K(a,AC|r) < K(a,AC|r′) for some a > ē. Using continuity and the definition of the

thresholds, there must exist δ∗ with K(a,AC|r) < δ∗ < K(a,AC|r′) such that the
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maximizer for DEUr,δ∗ is a∗, with ē < a∗ < a. Consider any a′ > a∗. It must be

DEUr,δ∗(a
∗) ≥ DEUr,δ∗(a

′), i.e., e−δ∗t0p0ur(ω+(1− a∗)x0)+ e−δ∗t1p1ur(ω+ a∗x1) ≥

e−δ∗t0p0ur(ω+(1−a′)x0)+e−δ∗t1p1ur(ω+a′x1). Dividing both terms by the positive

constant p0e−δ∗t0 + p1e−δ∗t1 and denoting p = p0e−δ∗t0

p0e−δ∗t0+p1e−δ∗t1 , the former expression

can be written as pur(ω+ (1− a∗)x0) + (1− p)ur(ω+ a∗x1) ≥ pur(ω+ (1− a′)x0) +

(1−p)ur(ω+a′x1). Hence, the comparison of these two alternatives is equivalent to

that of a risk menu, with a∗ corresponding to alternative 0R and a′ to alternative 1R.

Hence, since a∗ is preferred at (r, δ∗), we know from Proposition 1 that a∗ will also

be preferred at (r′, δ∗) because r′ > r.29 Thus, the maximizer of DEUr′,δ∗ cannot be

above a∗. This contradicts the definition of K(a,AC|r′). That is, the threshold must

be decreasing whenever a > ē. Given that the family {ur} is strictly ordered by

concavity, the threshold must be strictly decreasing. The proof that the threshold

is strictly increasing whenever a < ē is analogous and thus omitted.

Consider now 0 < a < ē < a < 1 and denote by δē the value of δ that makes

indifferent all the alternatives when r = 0. From the previous reasoning, whenever

r > 0, K(a,AC|r) (resp., K(a,AC|r)) is above (resp., below) δē. Thus, for any given

δ > δē (resp., δ < δē), a dominating change in the conditional distribution of r

creates an increase in the conditional mass of the set of values of r that lie above

the inverse of threshold K(a,AC|r) (resp., K(a,AC|r)). Claim 2b then follows.

We now prove Claim 3a. We know that the choice belongs to [0, ē] if and only

if δ > K(ē, AC|r). We can reproduce the analysis of Proposition 2 for the case of

expansions in the conditional distribution of δ, and thus, Claim 3a follows. To show

Claim 3b, consider any sequence of values {an}, with an > ē, such that limn a
n = ē.

We know that the choice belongs to [0, an] if and only if δ > K(an, AC|r). Given that

for every an the threshold is strictly decreasing, we can invert these maps and then

reproduce the analysis of Proposition 2 for the case of expansions in the conditional

distribution of r, and thus, Claim 3b follows. ■

Proof of Proposition 6: We start by showing that θr ≡ (µr, σr) is identified.

Assume, on the contrary, that this is not the case: there exists θ′ and θ∗ in Θ with

θ′r ̸= θ∗r such that the distribution of the data is the same under both parameters.

29Notice that we are maintaining δ∗ constant because this value is part of the definition of the
lotteries.
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Let log R̃ ≡ log x1

x0 + log p1

p0
and k ≡ t1 − t0. Note that, under the assumption

that x0/ω → 0 and x1/ω → 0, the probability of corner allocations, conditional

on r > 0, converges to zero. Consequently, the probability of observing corner

allocations a ∈ {0, 1} is given by Pθ′ (a ∈ {0, 1} , AC) = Pθ′ (r ≤ 0) = Φ (−µ′
r/σ

′
r)

which, by the assumption of no-identification, is equal to Φ (−µ∗
r/σ

∗
r). It follows that

µ′
r/σ

′
r = µ∗

r/σ
∗
r . Consequently, both µ′

r ̸= µ∗
r and σ′

r ̸= σ∗
r must hold. Otherwise,

θ′r = θ∗r . Now, using the first order condition of the problem, we have:

Eθ′

[
log

(
ax1

m + ω

(1− a)x0
m + ω

)
|r > 0

]
= −Eθ′

[
δ

r
|r > 0

]
km + Eθ′

[
1

r
|r > 0

]
log R̃m,

for any menu AC,m. Combining the corresponding expressions for AC,a and AC,b, and

using the assumption that ka = kb, we get:

(A.7) Eθ′ [∆c|r > 0] = Eθ′

[
1

r
|r > 0

](
log R̃a − log R̃b

)
,

with

∆c ≡ log

(
ax1

a + ω

(1− a)x0
a + ω

)
− log

(
ax1

b + ω

(1− a)x0
b + ω

)
.

Since the model is not identified, it must also be the case that Eθ′ [∆c|r > 0] =

Eθ∗ [∆c|r > 0]. From equation (A.7), it follows that:(
Eθ′

[
1

r
|r > 0

]
− Eθ∗

[
1

r
|r > 0

])(
log R̃a − log R̃b

)
= 0.

Since R̃a ̸= R̃b by assumption, the previous expression implies that Eθ′
[
1
r
|r > 0

]
=

Eθ∗
[
1
r
|r > 0

]
. Using the fact that r follows a normal distribution, we can write

Eθ′
[
1
r
|r > 0

]
as:

Eθ′

[
1

r
|r > 0

]
=

1

1− Φ (−µ′
r/σ

′
r)

∫ ∞

0

1

x

(
1

σ′
r

)
ϕ

(
x− µ′

r

σ′
r

)
=

1

Φ (µ′
r/σ

′
r)σ

′
r

∫ ∞

0

1

z
ϕ (z − µ′

r/σ
′
r) dz,

where the second line uses the change of variable z ≡ x/σ and the symmetry of the

Normal CDF . Finally, for θ∗ we must also have:

Eθ∗

[
1

r
|r > 0

]
=

1

Φ (µ∗
r/σ

∗
r)σ

∗
r

∫ ∞

0

1

z
ϕ (z − µ∗

r/σ
∗
r) dz.

Since Eθ′
[
1
r
|r > 0

]
= Eθ∗

[
1
r
|r > 0

]
and µ′

r/σ
′
r = µ∗

r/σ
∗
r , the previous two expres-

sions imply that σ′
r = σ∗

r , arriving to a contradiction. Hence, θr is identified.
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The next step is to show that θδ ≡ (µδ, σδ, ρ) are identified. Fix θr ≡ (µr, σr)

and assume, on the contrary, that θδ is not identified: there exists θ′δ and θ∗δ in

Θ such that θ′δ ̸= θ∗δ and Pθ′δ
(a = 0, AC) = Pθ∗δ

(a = 0, AC). From Proposition 5,

this equality implies: Pθ′δ
(a = 0, AC|r ≤ 0) = Pθ′δ

(K(0, AC|r) ≤ δ|r ≤ 0)Pθr (r ≤ 0),

which is equal to Pθ∗δ
(K(0, AC|r) ≤ δ|r ≤ 0)Pθr (r ≤ 0) .. This equality implies:∫ 0

−∞

{
Φ

(
K (0, AC|r)− µ′

δ|r

σ′
δ|r

)
− Φ

(
K (0, AC|r)− µ∗

δ|r

σ∗
δ|r

)}
dr = 0,

At this stage, identification of θδ from convex menus is analogous to its identification

using time menus. We can thus use assumption (b) and the same steps used in the

second part of the proof of Proposition 3 to arrive to a contradiction. ■

Proof of Proposition 7: We start discussing menus in which t1 → t0, that can be

seen as risk problems only. In these menus, the choice is determined by the opti-

mization of the objective function p0 (ω+(1−a)x0)1−r−ω1−r

1−r
+p1 (ω+ax1)1−r−ω1−r

1−r
. Whenever

r ≤ 0, there are two cases. First, if p1x1 ≥ p0x0 the choice is a = 1. Second, if

p1x1 < p0x0, there is r∗ < 0 such that whenever r ≤ r∗ the choice is a = 1 and

whenever r > r∗ the choice is a = 0. Now, whenever r > 0, the solution is interior

and choices form a continuous mapping from the corner with larger expectation to-

wards the point ē = x0

x0+x1 , which is the limit of choices when r → ∞. Thus, we can

consider one such problem, say, one such that p1x1 > p0x0. The observed mass of

alternative a = 1, that we denote by q1, must be equal to Φ(0−µr

σr
). Now, let a be

any value in (ē, 1) and denote by ra the value above which the optimal choice falls

below a. Denote by q′ the observed choice probability below a, that must be equal

to 1− Φ( ra−µr

σr
). This allows to obtain parameters µr and σr: σr =

ra
1−Φ−1(q1)−Φ−1(q′)

and µr = −σrΦ
−1(q1) = − raΦ−1(q1)

1−Φ−1(q1)−Φ−1(q′)

The rest of the parameters can be identified as follows. As commented in the

proof of Proposition 4, for any given ω, the use of large payouts is equivalent to

use the case ω → 0 and, in what follows, we assume large payouts. Whenever

p1 → p0, the probability of selecting options below 1
2
is the probability that δ is

above K(AT )(1− r).30 One can then reproduce the proof of Proposition 4 replacing

the mass of 0T for the cumulative mass below 1
2
. ■

30Note that unlike in the case of Proposition 4, the probability obtained here is exact.
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Appendix B. Hybrid Menus

In a hybrid menu, each of the two alternatives corresponds to a two state-contingent

lottery, with the safer lottery awarded earlier in time. Formally, AH = {0H, 1H} with

0H = ([p, 1−p;x0
1, x

0
2], t

0) and 1H = ([p, 1−p;x1
1, x

1
2], t

1) such that x1
1 > x0

1 > x0
2 > x1

2,

p ∈ (0, 1) and t0 < t1. The analysis of hybrid menus is analogous to that of time

menus by conditioning again on parameter r. For any given hybrid menu AT and

any value of r, there exists a menu-dependent constant K(AH|r) ∈ R such that

alternative 0H is selected if and only if δ ≥ K(AH|r).31 As a result, the choice

probability of alternative 0H is:

Pf (0H, AH) = 1−
∫
r

Fδ|rK(AH|r)f r(r)dr.

The effect of shifts and spreads of δ are trivially understood from this structure,

by applying the logic of Proposition 2. Understanding the effect of r requires some

caution, since the ratio of expected utilities is an object that may be difficult to

tame. Fortunately, it can be seen that for standard families of monetary utilities

(e.g., CRRA and CARA), the threshold K(AH|r) is decreasing in r as long as δ > 0.

Appendix C. Numerical Evaluation of Choice Probabilities

DMPL. Given a value for parameter vector θ ∈ Θ, computation of the log-likelihood

defined in Section 4 requires computing Pθ (0m, Am) for each menu Am in the

dataset O. In general, this requires evaluating a double integral numerically. Given

the structure of the RDEU model, this can be done efficiently using Quasi-Monte

Carlo (QMC) methods: begin by discretizing the support of fθ it in NQMC nodes

{rk, δk}
NQMC

k=1 using low-discrepancy sequences. Let I (0m, Am|rk, δk) denote an in-

dicator function that takes value of one when DEUrk,δk (0m) > DEUrk,δk (1m), and

zero otherwise. For large enouh NQMC , we have

Pθ (0m, Am) ≈
V

NQMC

NQMC∑
k=1

I (0m, Am|rk, δk) fθ (rk, δk) ,

31It is easy to see that K(AH|r) = 1
t1−t2 log

[
pur(x

0
1)+(1−p)ur(x

0
2)

pur(x1
1)+(1−p)ur(x1

2)

]
.
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where V ≡
∫
r

∫
δ
drdδ = (r − r)

(
δ − δ

)
is a normalization constant. We can control

the accuracy of the approximation by increasing the number of nodes NQMC . Impor-

tantly, the indicator function I (0m, Am|rk, δk) is independent of θ. It follows that,

to compute the maximum-likelihood estimator of θ, this indicator function needs

to be computed only once before starting the search of the maximizer, reducing

dramatically the estimation time.

We can also use the results in the paper, together with the assumption that f

follows a bivariate normal distribution, to improve the estimation algorithm further.

For risk menus, Proposition 1 implies Pθ (0m, AR,m) = 1− Φ ((K (AR,m)− µr)/σr).

Computation of K (AR,m) requires solving a non-linear equation numerically for

each risk menu. However, these thresholds are independent of θ so we only need

to compute them once before estimation. For time menus, Proposition 2 simplifies

the double integral characterizing Pθ (0m, AT ,m) into the following following single-

valued integral:

Pθ (0m, AT ,m) = 1−
∫
r

Φ

(
K (AT ,m|r)− µδ|r

σδ|r

)
ϕ

(
r − µr

σr

)
dr,

with µδ|r ≡ µδ + ρσδ

σr
(r − µr) and σδ|r ≡ σδ

√
1− ρ2. This simpler integral can also

be evaluated numerically using QMC methods, as discussed before.

Convex Budgets. Computation of the log-likelihood function with convex budgets,

as defined in Section 6, is computationally more demanding as it requires evaluating

Pθ (a ∈ αs, Am) for each of the M menus in the dataset and each of the S options

in which the choice set is discretized. As in the iid-additive RUM, we can proceed

by rounding each observed allocation a to the midpoint of the option αs for which

a ∈ αs. This results in S possible observed allocations in the data: α1 = 0, α2 =

(a2 + a3) /2, . . ., αS−1 = (aS−1 + aS) /2 and αS = 1. Let I (α,Am|rk, δk) denote an

indicator function that takes value of 1 when DEUrk,δk (α) ≥ DEUrk,δk (α
∗) in menu

Am for all α∗ ∈ {α1, . . . , αS}, and zero otherwise. We can then use the numerical

approximation Pθ (a ∈ αs, Am) ≈ (V/NQMC)
∑NQMC

k=1 I (α,Am|rk, δk) fθ (rk, δk). As

in the DMPL case, the indicator function I (α,Am|rk, δk) is independent of θ and can

be pre-computed before maximization of the log-likelihood function. This method

allows for flexible specifications of f and can be easily extended to more general

models, as illustrated in Appendix D.
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Alternatively, we can exploit the results from Proposition 5 and the assumption

that f is normal to compute Pθ ([as, as+1] , Am) as the single-variable integral:∫
r

[
Φ

(
K (As,C|r)− µδ|r

σδ|r

)
− Φ

(
K (As+1,C|r)− µδ|r

σδ|r

)]
ϕ

(
r − µr

σr

)
dr,

where the thresholds K (As,C|r) are defined in Section 5 and are independent of θ.

Appendix D. Extensions

The methods introduced in this paper can be extended to allow for additional

behavioral features and alternative distributions for the random parameters. We

illustrate this in this section using convex budget data from the experimental design

in Andreoni and Sprenger (2012a). This dataset is similar to the one used in Section

5 and features 97 subjects facing 45 convex menus with certain payoffs. The main

difference with the data used for the baseline analysis in the main text is that some

of the menus feature payoffs in the present, which allows estimation of present bias

in discounting.

Table 6 summarizes the results of this exercise. To make comparison across models

with different distributional assumptions feasible, we report the median and inter-

quantile range (IQR) of the estimated distributions. The second column of Table

6 summarizes the baseline estimates obtained using the RDEU model following the

procedure used in Section 6. The estimated curvature of the utility function is statis-

tically zero, similar to the results obtained by Andreoni and Sprenger (2012b), which

could be due to the lack of variation in payoff probabilities in this dataset, indicating

that the curvature captures only intertemporal substitution. The estimated median

of the annual discount rate is small and statistically close to zero. Nevertheless, the

model estimates a large degree of heterogeneity in both parameters.

The third column of Table 6 shows the results using Quasi-Monte Carlo (QMC)

methods, as discussed in Section C of this Appendix. The results are virtually

identical to those obtained using the baseline algorithm developed in the paper.

Nevertheless, it takes four times longer to estimate the model using QMC meth-

ods, confirming the benefits of exploiting the economic structure of the problem.

Despite this, the QMC method is useful for estimating the model with alternative

distributions and behavioral features, as discussed below.
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The fourth column of Table 6 shows the results for a “constrained” version of the

RDE model where δ follows a normal distribution truncated at zero, ruling out the

possibility of preference for the future. In this case, we use a Gaussian copula to

allow for correlation between r and δ. The estimated median of the annual discount

rate is larger and statistically different from zero. The median curvature of the

utility function remains close to zero, and the IQR of both parameters is now lower.

As expected, restricting the domain of δ reduces the fit to the data, as reflected in

the resulting log-likelihood.

The last two columns of Table 6 show the results for the model extended to allow

present bias in discounting so that the discount factor in the model is βe−δ when

t0 = 0, and e−δ otherwise. The first of the two columns shows the results for an

“unconstrained” model that assumes parameters r, δ and β follow a multivariate

normal distribution with an arbitrary correlation matrix. The results in this case

are very similar to those obtained in the RDEU model, indicating a low degree

of present bias. The second column shows the results for a “constrained” model

where r follows a normal distribution, δ follows a normal distribution truncated

at zero, and β follows a beta distribution with support on the unit interval. The

estimated distributions of r and δ are similar to those obtained for the constrained

RDEU model, but now the median present bias is statistically different from 1.

Nevertheless, the improvement in fit is relatively low compared to the constrained

RDEU model.

Appendix E. Baseline wealth

We now briefly comment on the role of ω with CRRA monetary utilities. It is

immediate to see that in risk menus AR such that K(AR) ̸= 0, K(AR) is strictly in-

creasing (respectively, decreasing) in ω whenever K(AR) > 0 (resp., K(AR) < 0).32

Consequently, ceteris paribus, the alternative with larger expected value will be

chosen more often. In time menus AT , every threshold K(AT |r) converges mono-

tonically to the constant K(AT |0) as ω increases. The conditional behavior of every

r becomes more aligned with the conditional choices of r = 0. That is, ceteris

paribus, the more risk-averse (resp., lover) individuals will choose more often the

32In the degenerate case where the expected values of both lotteries coincide, we obviously have
K(AR) = 0 for all levels of ω.
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present (respectively, future) option. Similarly, in convex menus AC, every thresh-

old map K(a,AC|r) converges monotonically to the constant map K(a,AC|0) as

ω increases. The conditional behavior of every r becomes more aligned with the

conditional choices of r = 0 (with interior solutions vanishing).

Since in actual practice it is often assumed zero levels of background wealth, it is

interesting to discuss theoretically the limit model when the baseline wealth tends

to zero. From the previous discussion, we know that this limit case would create

the best conditions for parameter r kicking in all menus. Interestingly, for the

case of time menus AT , as discussed in the proof of Proposition 3, the conditional

threshold map becomes piece-wise linear: (a) when r < 1, K(AT |r) =
log x1

x0

t1−t0
(1−r) ≡

K(AT )(1−r) > 0, where K(AT ) is a menu-dependent constant, and (b) when r ≥ 1,

K(AT |r) becomes null. Hence, for parameters (r, δ), with r < 1, the earlier option

0T is preferred to the later option for such parameters if and only if δ
1−r

≥ K(AT ).

That is, the expression δ
1−r

represents a simple correction of δ based on the risk

parameter r that captures completely time considerations. In other words, the

behavior of DEUr,δ is equivalent to the behavior of DEU0, δ
1−r

, and if the analyst

is willing to entertain the idea that risk aversion above 1 is not crucial or that

risk aversion and delay aversion are somewhat independent phenomena for standard

values, independent distributions of r and δ
1−r

can be considered. Importantly,

behavior for r ≥ 1 becomes extreme when wealth is negligible, as alternative 0T is

always preferred.

To see the role of baseline wealth in the empirical applications studied in the

paper, Table 5 compares the estimates under the baseline choice of ω with those

obtained by setting ω to a positive value close to zero. This exercise confirms the

previous theoretical discussion: the estimated average and standard deviation of

risk aversion falls with the value of ω, and the correlation between r and δ increases.

Nevertheless, these changes are quantitativelly small. Notice also that the estimated

marginal distribution of δ remains practically unchanged after across values of ω.
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Figure 1. Individual Risk and Time Preferences: AHLR

Risk Aversion Coefficient µr Discount Rate µδ

NOTES. The figure shows the estimated average risk aversion coefficient µr (first column) and annual discount rate
µδ (second column) for each individual in the double-multiple price list data from Andersen et al. (2008). Each dot

shows a subject’s estimate using the corresponding structural model and compares it against the semi-parametric
estimate based on the adjacent menus in each risk/time task where the subject’s choice switched from the safe/early
lottery to the risky/delayed lottery. Subjects who did not switch choices in at least one of the four risk tasks are
shown in orange. Subjects who did not switch choices in at least one of the six time tasks are shown in purple.

Estimates are truncated to fit the ranges in the plots.
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Figure 2. Volatility of Individual Risk and Time Preferences: AHLR

Risk Aversion Coefficient: σr Discount Rate: σδ

NOTES. The figure shows the estimated standard deviation of the risk aversion coefficient σr (first column) and
annual discount rate σδ (second column) for each individual in the double-multiple price list data from Andersen

et al. (2008). Each dot shows a subject’s estimate using the corresponding structural model and compares it
against the semi-parametric estimate based on the adjacent menus in each risk/time task where the subject’s choice
switched from the safe/early lottery to the risky/delayed lottery. Subjects who did not switch choices in at least
one of the four risk tasks are shown in orange. Subjects who did not switch choices in at least one of the six time

tasks are shown in purple. Estimates are truncated to fit the ranges in the plots.
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Figure 3. Predicted and Observed Choice: AS

Full-Sample
(
x0, x1, p0, p1, t0, t1

)
= (20, 20, 0.4, 0.5, 7, 45)
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NOTES. The figure shows the observed and predicted frequency of choosing each token share a in the convex menu
dataset of Andreoni and Sprenger (2012b). The blue bars show the frequency observed in the data. The orange bars

show the frequency predicted by the corresponding model using the population estimates reported in Table 3. The left
column shows the results for the entire sample, while the right column shows the results for a convex menu with payoffs
of 20 USD delivered in 7 and 35 days with probability 0.4 and 0.5, respectively.
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Figure 4. Predicted and Observed Choice By Risk Condition: AS

Task 1: (pt, pt+k) = (1, 1) Task 4: (pt, pt+k) = (0.5, 0.5)

Task 2: (pt, pt+k) = (1, 0.8) Task 5: (pt, pt+k) = (0.5, 0.4)

Task 3: (pt, pt+k) = (0.8, 1) Task 6: (pt, pt+k) = (0.4, 0.5)

NOTES. The figure shows the observed and predicted frequency of choosing each token share a in the convex menu

dataset of Andreoni and Sprenger (2012b). The blue bars show the frequency observed in the data. The orange
bars show the frequency predicted by the RDEU model using the population estimates reported in Table 3.
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Table 1. Aggregate Risk and Time Preferences: AHLR

RDEU LUCE WILCOX SPE

µr
0.781

[0.053]

0.726

[0.058]

0.777

[0.045]

0.715

−

σr
0.895

[0.049]

0.086

[0.016]

0.220

[0.011]

0.833

−

µδ
0.125

[0.008]

0.101

[0.009]

0.095

[0.007]

0.138

−

σδ
0.125

[0.010]

0.020

[0.006]

0.222

[0.017]

0.165

−

ρ −0.958

[0.016]

−
−

−
−

−0.761

−

Log-Like L
Risk Menus −0.450 −0.448 −0.445 −
Time Menus −0.495 −0.554 −0.557 −
All Menus −0.481 −0.521 −0.522 −

NOTES.- The table reports estimated risk aversion and discount rates at the aggregate level

using different models and data from the double multiple price list design in Andersen et
al. (2008). The first three columns show the maximum likelihood estimates from the three

structural models described in the main text. The last column shows the aggregate mean and

standard deviation of the semi-parametric estimates of r and δ obtained from the adjacent
menus in each risk/time task where the choice of each individual in the sample switched from

the safe/early lottery to the risky/delayed lottery. Standard errors for each MLE are shown in

brackets and are clustered at the individual level.
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Table 2. Individual Risk and Time Preferences: AHLR

Risk Aversion Coefficient µr Discount Rate µδ

Moment RDEU LUCE WILCOX SPE RDEU LUCE WILCOX SPE

Mean 0.698 −4.875 −0.305 0.715 0.133 1.525 2.634 0.138

Std. Dev. 0.629 45.04 19.59 0.608 0.167 34.412 20.31 0.111
Min −1.886 −458.4 −276.7 −0.964 −0.443 −315.6 −34.03 0.006

10th pctl. −0.122 −0.052 −0.054 −0.064 0.018 0.040 0.001 0.027

25th pctl. 0.366 0.333 0.389 0.285 0.042 0.074 0.024 0.055
Median 0.708 0.656 0.782 0.714 0.098 0.115 0.067 0.110

75th pctl. 1.125 0.842 1.271 1.128 0.182 0.184 0.152 0.194

90th pctl. 1.507 0.894 2.782 1.557 0.315 0.303 0.273 0.308
Max 2.139 0.977 8.123 2.026 1.658 344.4 153.9 0.555

Correlation
with SPE
Pearson’ r 0.961 0.079 −0.111 1 0.814 0.029 0.023 1

Kendall’s τ 0.899 0.597 0.690 1 0.836 0.544 0.591 1
Spearman’s ρ 0.980 0.728 0.756 1 0.943 0.702 0.686 1

NOTES.- The table reports summary statistics of the estimated average risk aversion (µr) and discount rates (µδ)

across individuals using data from the double multiple price list design from Andersen et al. (2008). Each column

corresponds to a model described in the main text. The last three rows report, respectively, the Pearson correlation
coefficient, the Kendall rank correlation coefficient, and the Spearman rank correlation coefficient between subjects’

estimates using a structural model and the semi-parametric estimates obtained from the adjacent menus in each

risk/time task where the choice of the individual switched from the safe/early lottery to the risky/delayed lottery.
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Table 3. Aggregate Risk and Time Preferences: AS

RDEU
iid-additive

RUM
NLS

µr
0.207

[0.062]

−0.133

[0.020]

0.317

[0.017]

σr
0.752

[0.079]

−
−

−
−

µδ
0.339

[0.108]

0.571

[0.081]

0.262

[0.079]

σδ
1.805

[0.124]

−
−

−
−

ρ −0.164

[0.053]

−
−

−
−

L −2.108 −2.519 −
NOTES.- The table reports the maximum-likelihood estimates of risk
aversion and discounting at the aggregate level using data of convex

menus from the experimental design in Andreoni and Sprenger (2012).

Each column reports the estimates for the corresponding structural
model discussed in the main text. Standard errors for all estimates,

shown in brackets, are clustered at the individual level.
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Table 4. Volatility of Individual Risk and Time Preferences: AHLR

Risk Aversion Coefficient σr Discount Rate σδ

Moment RDEU LUCE WILCOX SPE RDEU LUCE WILCOX SPE

Mean 0.473 19.56 5021 0.539 0.099 0.510 19802 0.091

Std. Dev. 0.568 208.1 70187 0.374 0.247 6.373 139319 0.086
Min 0.001 0.001 0.001 0.056 0.001 0.002 0.001 0.003

10th pctl. 0.050 0.006 0.002 0.172 0.005 0.002 0.001 0.017

25th pctl. 0.190 0.021 0.055 0.273 0.015 0.003 0.005 0.029
Median 0.362 0.051 0.104 0.446 0.042 0.004 0.041 0.061

75th pctl. 0.554 0.112 0.189 0.710 0.107 0.017 0.120 0.120

90th pctl. 0.903 0.211 0.407 1.028 0.211 0.042 0.241 0.207
Max 5.963 2895 1e6 2.219 3.127 90.59 1e6 0.541

Correlation
with SPE
Pearson’ r 0.805 −0.055 0.014 1 0.591 0.126 0.136 1

Kendall’s τ 0.681 0.471 0.635 1 0.520 0.366 0.310 1
Spearman’s ρ 0.850 0.644 0.778 1 0.702 0.504 0.421 1

NOTES.- The table reports summary statistics of the estimated standard deviation of risk aversion (σr) and discount

rates (σδ) across individuals using data from the double multiple price list design from Andersen et al. (2008). Each

column corresponds to a model described in the main text. The last three rows report, respectively, the Pearson
correlation coefficient, the Kendall rank correlation coefficient, and the Spearman rank correlation coefficient between

subjects’ estimates using a structural model and the semi-parametric estimates obtained from the adjacent menus

in each risk/time task where the choice of the individual switched from the safe/early lottery to the risky/delayed
lottery.
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Table 5. Estimated Risk and Time Pref-
erences when ω ≈ 0

DMPL-AHLR CB-AS

Baseline ω ≈ 0 Baseline ω ≈ 0

µr
0.781
[0.053]

0.681
[0.032]

0.207
[0.062]

0.095
[0.045]

σr
0.895
[0.049]

0.768
[0.039]

0.752
[0.079]

0.562
[0.054]

µδ
0.125
[0.008]

0.102
[0.007]

0.339
[0.108]

0.383
[0.110]

σδ
0.125
[0.010]

0.116
[0.007]

1.805
[0.124]

1.821
[0.125]

ρ
−0.958

[0.016]

−0.999

[0.001]

−0.164

[0.053]

−0.202

[0.052]

NOTES.- The table reports the risk aversion coefficient

and annual discount rate at the population level esti-
mated by the RDEU model under two different assump-

tions about the value of integrated wealth ω.
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Table 6. Estimated Risk and Time Preferences in Andreoni and
Sprenger (2012a)

RDEU Hyperbolic Discounting

Baseline QMC Constrained Unconstrained Constrained

Median (r)
−0.051
[0.084]

−0.050
[0.080]

−0.037
[0.039]

−0.039
[0.071]

−0.038
[0.038]

IQR (r)
0.718
[0.166]

0.715
[0.152]

0.347
[0.072]

0.665
[0.122]

0.348
[0.070]

Median (δ)
0.043
[0.157]

0.037
[0.151]

0.504
[0.058]

0.072
[0.148]

0.490
[0.052]

IQR (δ)
2.317
[0.335]

2.310
[0.305]

0.784
[0.087]

2.217
[0.271]

0.764
[0.079]

Median (β) − − − 0.991

[0.004]

0.898

[0.008]

IQR (β) − − − 0.004

[0.005]

0.247

[0.056]

Cor (r, δ)
−0.306

[0.071]

−0.302

[0.068]

0.020

[0.056]

−0.284

[0.067]

0.017

[0.060]

Cor (r, β) − − − −0.002

[2.605]

−0.078

[0.459]

Cor (δ, β) − − − −0.001

[0.479]

0.134

[0.356]

L −1.709 −1.709 −1.835 −1.709 −1.833

NOTES.- The table reports estimated moments of the distributions of risk aversion (r),

discounting (δ), and present bias (β) estimated at the population level. The second
column reports the results obtained using the RDEU model with same methodology and

assumptions as in Section 6. The third column shows the results using Quasi-Monte

Carlo methods (QMC), as discussed in Appendix C. The fourth column shows the results
using QMC and assumes that δ follows a normal distribution truncated at zero. The

fourth column shows the results for a model extended to allow for present bias under the

assumption that the (r, δ, β) follow a multivariate normal distribution. The last column
shows the results assuming that δ follows a normal distribution truncated at zero and β a

beta distribution. Standard errors for each MLE are shown in brackets and are clustered
at the individual level.
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Table 7. Example of a Risk Task in AHLR

Lottery A Lottery B

Menu p Prize p Prize p Prize p Prize

1 0.1 2000 0.9 1600 0.1 3850 0.9 100

2 0.1 2000 0.9 1600 0.1 3850 0.9 100

3 0.1 2000 0.9 1600 0.1 3850 0.9 100

4 0.1 2000 0.9 1600 0.1 3850 0.9 100

5 0.1 2000 0.9 1600 0.1 3850 0.9 100

6 0.1 2000 0.9 1600 0.1 3850 0.9 100

7 0.1 2000 0.9 1600 0.1 3850 0.9 100

8 0.1 2000 0.9 1600 0.1 3850 0.9 100

9 0.1 2000 0.9 1600 0.1 3850 0.9 100

10 0.1 2000 0.9 1600 0.1 3850 0.9 100

NOTES.- Example of a risk task in Andersen et al. (2008). All prizes

are displayed in DKK.
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Table 8. Example of a Time Task in AHLR

Payment Option A Payment Option B

Payoff

Alternative

(Pays amount below

in 1 month)

(Pays amount below

in 7 months)

1 3000 3075

2 3000 3152

3 3000 3229

4 3000 3308

5 3000 3387

6 3000 3467

7 3000 3548

8 3000 3630

9 3000 3713

10 3000 3797

NOTES.- Example of a risk task in Andersen et al. (2008). All prizes are

displayed in DKK.
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