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Abstract

The Synthetic Control (SC) method is widely employed in estimating causal
treatment effects in observational studies. Typically, it synthesizes the coun-
terfactual of the treated unit by employing a data-driven weighted average
of the remaining units in the post-treatment period. These weights aim to
minimize the distance between the treated unit and its counterfactual in the
pre-treatment period. To prevent overfitting of the pre-treatment data, the
original approach introduced by Abadie, Diamond, and Hainmueller (ADH)
imposes a constraint wherein all weights must be weakly positive and sum
up to one. Expanding upon Doudchenko and Imbens [2016], we introduce
REGSC, an alternative regularized synthetic control approach. This approach
involves shrinking individual coefficients toward zero and the sum of coeffi-
cients toward one. It amalgamates the benefits of the original SC method and
the elastic net, offering a closed-form solution with tunable hyperparameters.
The estimator also allows for a straightforward Bayesian representation, pro-
viding advantages, particularly in quantifying estimation uncertainty through
Bayesian credibility intervals. By appending the donor pool with lagged val-
ues of the donors and the counterfactual, the REGSC framework is extended
to dynamic contexts. Our dynamic version of the REGSC estimator accom-
modates nonstationary and cointegrated time series, a case where the original
SC method is inconsistent. To assess the relative performance of our estima-
tion approach in static and dynamic data-generating processes we conduct
a variety of Monte Carlo experiments experiments and apply it to existing
empirical datasets. Our results suggest that the (dynamic) REGSC estimator
outperforms other SC methods previously proposed in the literature.

Keywords: Synthetic Control; Causal Inference; Regularization, Autoregres-

sive Distributed Lag Models, Bayesian Estimation
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1. Introduction

The synthetic control (henceforth: SC) method was developed by Alberto Abadie,

Alexis Diamond, and Jens Hainmueller (ADH) in a series of influential papers

(Abadie and Gardeazabal [2003], Abadie et al. [2010], Abadie et al. [2015]). The

method is designed to estimate the causal effect of a treatment (resp. interven-

tion) in settings with (at least) a single treatment unit and a number of potential

control units. This is achieved by comparing the observed treatment unit to the

hypothetical trajectory of the treatment unit in the absence of the treatment. Pre-

and post-treatment data are observed for the treatment and control units (also

called donors), for the outcome of interest as well as for a set of time-constant co-

variates. Usually, both the number of potential control units J and the amount

of pre-treatment periods Tpre are small. In many applications Tpre is even smaller

than J , making standard estimation approaches like Ordinary Least Squares (OLS)

unreliable or infeasible.

Building on the work of Doudchenko and Imbens [2016] and ADH, we propose a

novel regularized SC estimator (henceforth: REGSC) that shrinks individual weights

towards zero and the sum of the weights towards one. Due to the differentiable

penalty term, the estimator has a closed form solution which is especially appeal-

ing in the context of low-frequency macroeconomic application of the SC method.

Furthermore, our estimator is flexible enough to produce reliable estimates of the

counterfactuals and still maintaining the interpretability of the weights. The natu-

ral Bayesian representation of our estimator is another mayor strength over existing

SC methods. In many applications, the estimated treatment effects are temporally

cumulated over the post-treatment periods. In such cases, a simple point estimate

of the effect may be misleading and we consider it crucial to assess the estima-

tion uncertainty in terms of forecast intervals. Relying on the Bayesian REGSC

representation this can be achieved via Bayesian credibility intervals.

Another contribution of this paper is to accommodate dynamic features of the

time series. To achieve this, we expand the donor pool by including lagged values of

both the donors and the treatment series. Such expansions often lead to a plethora

of explanatory variables, necessitating adequate regularization. In this context we

found the elastic net to be particularly promising due to its ability to obtain sparse

solutions. Another advantage of dynamic methods is that it is well suited for deal-

ing with possibly nonstationary time series. Note that for nonstationary and not

cointegrated time series there does not exist a stable long-run relationship between

the treatment and donor series and, therefore, it does not make sense to construct
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a synthetic control unit by some linear combination of the donor series. In such

cases SC methods need to be applied to the differenced series. On the other hand,

if the treatment series are cointegrated with the donor series then taking differences

ignores important information on the long-run relationship among the series. In

such a scenario, dynamic SC methods offer a significant improvement.

This paper is structured as follows. Section 2 outlines the conceptual framework

and motivates the REGSC estimator. The subsequent subsections close the bridge

to related estimation techniques like Differences-in-Differences (DiD) and the fac-

tor model. Furthermore, we discus the role of additional explanatory variables and

the potential presence of serial dependence in the data. We also demonstrate the

estimation of Bayesian credibility intervals to quantify the estimation uncertainty.

In section 3, we conduct an extensive Monte Carlo simulation to study the perfor-

mance of our proposed and various routinely employed estimators in the context of

SC. We pay special attention to plausible data-generating processes by considering

static factor models as well as stationary vector autoregressions and nonstationary

cointegration processes. Section 4 demonstrates the external validity and reveals

important differences of the estimators by revisiting two well known applications of

ADH. Section 5 concludes and provides an outlook on further work.

2. Theoretical framework

The conceptual framework is related to the potential outcome framework as in-

troduced by Neyman [1923] and elaborated by Rubin [1974] and Holland [1986].

Assume that we observe a collection of J + 1 time series Yj,t with j = 0, 1, ..., J and

t = 1, . . . , T . The unit j = 0 is denoted as the treatment unit exposed to some in-

tervention (treatment) at period T0 < T . The other series with j = 1, . . . , J belong

to the set of donor units. Accordingly the temporal ordering is given by:

1, 2, ... , T0︸ ︷︷ ︸
Tpre observations

, T0 + 1, T0 + 2 , ... , T︸ ︷︷ ︸
Tpost observations

,

such that Tpre = T0 periods of pre-treatment data and Tpost = T − T0 periods of

post-treatment data are observed.

Following the existing literature we rule out any anticipation effects and con-

tamination (i.e., no spillovers to the donor units). As argued by Abadie et al. [2010]

in the presence of anticipation effects, the date T0 should be shifted backward until

the no-anticipation assumption seem plausible. If some panel units in the donor

pool are affected by the treatment (contamination), these units should be removed
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from the donor pool prior to estimation. Our goal is to evaluate the causal effect of

the intervention, where the specific form of the effect remains unspecified. This is

possible because the main goal of SC estimation lies in the precise estimation of the

counterfactual. Formally the treatment effect at time τ > T0 is given by

δτ = Y0,τ − Y N
0,τ

where Y0,τ denotes the observed outcome under the treatment and Y N
0,τ denotes the

(unobserved) potential outcome without treatment, henceforth referred to as the

counterfactual outcome. Obviously, the treatment effect is estimated efficiently by

replacing Y N
0,τ by an efficient estimator. It is well known that the MSE-optimal

forecast Ŷ N
0,τ of the counterfactual is given by the conditional expectation

Ŷ N
0,τ = E(Y N

0,τ |Iτ )

where Iτ denotes the relevant information set at period τ . In what follows the

(potential) information set is assumed to be given by

Iτ = {zτ , zτ−1, . . . , zT0+1, yT0
, . . . , y1} for τ > T0

where zt = (Y1,t, Y2,t, . . . , YJ,t)
′ and yt = (Y0,t, z′

t)
′ such that the information set is

comprised by the post-treatment donor series zτ for τ > T0 and the pre-treatment

observations of the treated series and the donors yt with t ≤ T0.

We may extend the information set by including additional predictors comprised

in the k × 1 vector xt that are known not to be affected by intervention but help

to predict the counterfactual outcome. We briefly discuss this extension in Section

2.5. However, as such an extension complicates the analysis without adding much to

the insights, our primary research focus does not center around scenarios involving

additional covariates.

We will further assume that the J +1 time series vector y∗

t = (Y N
0,t , z′

t)
′ is weakly

stationary for t = 1, . . . , T , where Y N
0,t = Y0,t for t ≤ T0. In Section 2.7 we discuss

extensions to a setting where the autoregressive representation of y∗

t possesses roots

on the unit circle of the complex plane. It turns out that in this case we require

that Y N
0,t is cointegrated with some linear combination of zt.

2.1. The static case

Let us first consider the most simple scenario of one treatment unit j = 0 and

two donor units j = 1, 2. In this subsection we assume that the outcome vector
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yt = (Y0,t, Y1,t, Y2,t)
′ for t = 1, . . . , T0 and y∗

t = (Y N
0,t , Y1,t, Y2,t)

′ for t = T0 + 1, . . . , T

are distributed as

yt
iid
∼ N (µ, Σ) and y∗

t
iid
∼ N (µ, Σ)

with µ = (µ0, µ1, µ2)
′ and the positive definite covariance matrix

Σ =


 σ2

0 σ′

12

σ12 Σ2


 ,

where σ2
0 denotes the variance of y0, Σ2 is a (2 × 2) covariance matrix of the vector

(Y1,t, Y2,t)
′ and σ12 is a (2 × 1) vector with elements cov(Y0,t, Y1,t) and cov(Y0,t, Y2,t).

We are interested in deriving the (mean-square) optimal forecast of the counter-

factual Y N
0,t , which is given by the conditional expectation

E(Y N
0,t | Y1,t, Y2,t) = µ0 + w1(Y1,t − µ1) + w2(Y2,t − µ2)

= µ∗ + w1Y1,t + w2Y2,t

where µ∗ = µ0 − w1µ1 − w2µ2 and

w =


w1

w2


 = Σ−1

2 σ12

The original SC estimator imposes the restrictions that w1, w2 ≥ 0 and w1 + w2 = 1

yet our result implies that in the most simple case, there is no inherent reason

to do so. Furthermore, we argue that the construction of SC should include a

constant term, as otherwise the estimated counterfactual may have a mean outside

the convex hull of the donor means. See also Doudchenko and Imbens [2016] for a

careful discussion of these restrictions.

To illustrate these findings assume that

yt
iid
∼ N







1

1

1


 ,




1 0.1 0.4

0.1 1 0.5

0.4 0.5 1





 .

For this example the unrestricted optimal weights for the counterfactual result as

w1 = −0.1333, w2 = 0.4667 and µ∗ = 0.6667.1 Note that w1 is negative even though

all bivariate correlations between the units are positive. One may argue that this

1 The computation is postponed to the appendix.
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result does not make much sense as the economic interpretation of Y1,t entering the

counterfactual Ŷ N
0,t with a negative sign is unclear. This demonstrates the trade-off

between optimality in a statistical sense and the economic interpretation of the so-

lution. What happens if we impose the restrictions that all weights are positive and

sum up to unity? In this case the restricted optimum yields the linear combina-

tion Ỹ N
0,t = 0.2Y1,t + 0.8Y2,t. The important difference lies in the variance of these

estimates. For our example we obtain

var
(
Y N

0,t − Ŷ N
0,t

)
= 0.8267

var
(
Y N

0,t − Ỹ N
0,t

)
= 1.1600.

It is interesting to note that the variance of the restricted estimate is even larger

than the unconditional variance of Y0. This is possible as (w1, w2) = (0, 0) is not

included in the restricted parameter space.

In microeconometric settings it is usually assumed that the units (individuals)

in the treatment group and units in the control group are uncorrelated or even

independent. In such cases the weights are equal to zero and the optimal forecast of

the counterfactual is identical to µ∗ = µ0. This mean is estimated without involving

the control units (donors). The only reason for considering the control units in this

case may be the additional assumption that Y0,t and Yj,t have the same mean for

j = 1, . . . , J .

2.2. Regularized SC estimator

In the previous section we considered a framework where all parameters of the

distributions are known. In empirical practice this is usually not the case and,

therefore, the parameters need to be estimated. In the context of applications of

the SC method, usually those samples are fairly small as the variables of interest

are often measured at quarterly or even annual intervals. Thus, the number of

pre-intervention time periods T0 is typically small and may even be smaller than

the number of units in the donor pool J . In such scenarios, the unrestricted OLS

estimate may face issues of instability, large variances or may not be available if

T0 < J . To analyse the (asymptotic) properties consider the least-squares estimator

for the relevant regression

Y0,t = µ∗ + w1 Y1,t + w2 Y2,t + · · · + wJ YJ,t + ut for t = 1, 2, ..., T0.

Under standard assumptions for the linear regression it follows that for a fixed num-

ber of regressors (J) the OLS estimator ŵ = (ŵ1, . . . , ŵJ)′ converges in probability
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to the optimal weights w = (w1, . . . , wJ)′ and has a normal limit distribution for

fixed J and T0 → ∞. In empirical practice, we typically have a large number of

donors candidates such that J may be of similar magnitude than T0. As shown by

Bekker [1994], if J/T0 converges to some constant c > 0 as J and T0 tend to infinity,

the OLS estimator does not longer converge to the true coefficients. A convenient

approach to mitigate this deficiency of the OLS estimator is to impose some reg-

ularization. In this context Doudchenko and Imbens [2016] suggest employing an

elastic net regression that minimizes the objective function

Q(w, λ1, λ2) =
T0∑

t=1


Y0,t − µ∗ −

J∑

j=1

wjYj,t




2

︸ ︷︷ ︸
RSS

+λ1




J∑

j=1

w2
j




︸ ︷︷ ︸
Ridge

+λ2




J∑

j=1

|wj|




︸ ︷︷ ︸
Lasso

The L2-norm (Ridge penalty) as proposed by Hoerl and Kennard [1970] shrinks the

coefficients towards zero without performing variable selection in the sense that cer-

tain coefficients are set exactly to zero as done by the L1 (Lasso) penalty . However,

the Ridge penalty has the appealing feature that it results in a quadratic minimiza-

tion problem which admits a computationally fast closed form solution. In contrast,

the L1-norm (Lasso penalty) as proposed by Tibshirani [1996] implies both, con-

tinuous shrinkage and automatic variable selection. As a consequence, the solution

of the objective function typically involves entries of w that are exactly zero which

makes the resulting model sparse and easier to interpret. However, the Lasso has no

closed form solution and therefore, numerical optimization techniques are required.

The shrinkage parameters λ1 and λ2 can be selected through k-fold cross validation

(CV). This involves storing combinations of λ1 and λ2 that minimize the objective

function across k validation sets and computing the means of those parameters.

We propose a different regularization that we call the regularized synthetic con-

trol estimator (REGSC). This estimator augments the OLS objective function by

a Ridge penalty and another penalty term that shrinks the sum of coefficient to-

wards one. The penalty term is comparable to a prior on the sum of coefficients

as frequently applied in the context of large Bayesian vector-autoregressions (see

for instance Bańbura et al. [2010]). Vector autoregressions with a great number of

time series can lack stability and imposing the prior belief that the coefficient sum

should not exceed a certain threshold has proven to be beneficial. To the best of

our knowledge, there is no existing work that advocated the approach of shrinking

the sum of coefficients towards one in the context of SC. Our proposed REGSC
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estimator has the following the objective function:

Q(w, λ1, λ2) =
T0∑

t=1


Y0,t − µ∗ −

J∑

j=1

wjYj,t




2

︸ ︷︷ ︸
RSS

+λ1




J∑

j=1

w2
j




︸ ︷︷ ︸
Ridge

+λ2


1 −

J∑

j=1

wj




2

︸ ︷︷ ︸
weight penalty

Due to the individual shrinkage to zero (Ridge) and the joint shrinkage to one

(weight penalty), this regularization is closely related to original SC estimator and

the elastic net. It combines the strengths of both techniques as it preserves the

weight interpretation of the SC approach with weights that (approximately) sum up

to one whenever the tuneable hyperparameter λ2 is large.

To ensure unbiasedness in the absence of the constant, we recommend to de-

mean the pre-treatment units as follows: Let ỹ0 = (Y0,1 −Y 0, . . . , Y0,T0
−Y 0)

′, where

Y 0 = T −1
0

∑T0

t=1 Y0,t and Z̃ = (z1 − z, . . . , zT0
− z)′. Following the notation of section

2, zt represents the vector of donor values at t. To demean this vector, we subtract

the donor-specific pre-treatment mean from each entry such that z = (Y 1, . . . , Y J).

The minimization of Q(w, λ1, λ2) has the following closed form solution:

ŵλ1,λ2
=

(
Z̃′Z̃ + λ1IJ + λ21J1′

J

)
−1 (

Z̃′ỹ0 + λ21J

)
.

where IJ is the J × J identity matrix and 1J is a J-dimensional vector of ones.

In the appendix, we show for λ1 → ∞ and λ1/λ2 → φ the weights converge to

1/(n + φ) ≈ 1/n, for large n, which seems to be a more reasonable target than

shrinking towards zero as done by the elastic net. Similar to the case of the elastic

net, the shrinkage parameters λ1 and λ2 can by chosen by cross validation, where

our experience suggests that λ2 is typically substantially larger than λ1. Thus,

optimizing subject to the restriction λ2 ≈ 1, 000 · λ1 reduces computation time and

already produces reasonable estimates. Note, however, that the choice of λ1 and

λ2 will always be case specific. The combination of a closed form solution and

tuneable hyperparameters makes the REGSC method highly appropriate for the

low-frequency macroeconomic context of SC: It is able to produce weights that are

flexible enough, tend to be positive, and can be estimated reliably in small samples.

We also tried out to combine the Lasso penalty with the “weight penalty” but we

did not found any improvement over the proposed estimator.

Our regularized estimator admits a reasonable Bayesian interpretation. As shown
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in the appendix, the REGSC estimator implies a prior distribution of the form

w ∼ N (µ01J , V0)

where µ0 = λ2/(λ1 + Jλ2)

and V0 is a matrix with variances Vii = σ2(λ−1
1 − ψ/J) for i = 1, . . . , J and covari-

ances Vij = −σ2ψ/J for i Ó= j, with ψ = λ−1
1 − (λ1 + Jλ2)

−1.

Note that if λ1

λ2

→ 0, µ0 → 1/J and ψ → 1. For µ0, this implies an equally

weighted prior mean. As ψ → 1, the off-diagonal elements of V0 increase in absolute

value indicating that for large values of λ2, the prior has to put more emphasis on the

joint distribution of the weights summing up to one. On the contrary, if λ2/λ1 → 0,

µ0 → 0 and ψ → 0, hence the off-diagonal elements of V0 shrink to 0. Further, in

case λ1 resp. λ2 approach infinity, the prior becomes dogmatic. In Section 2.8, the

Bayesian interpretation is used for the computation of Bayesian credibility intervals.

2.3. Difference-in-Difference estimation

Let us briefly compare the REGSC estimator to the difference-in-difference (DiD)

estimator, a popular estimation method developed for panel data. The estimator is

based on a comparison of the before-after sample means of the treatment and the

control group. In our case the treatment group consist on a single unit whereas

the control group entails the J donor series. Another important difference is that

the treatment effect is assumed to be different for each time series. Therefore, the

“mean” of the post-treatment sample is based on a single observation Y0,τ with

τ > T0. Accordingly, the DiD estimator boils down to

δ̂DiD
τ = (Y0,τ − Y

pre
0 ) − (Y

post
τ − Y

pre
c )

where

Y
pre
0 =

1

T0

T0∑

t=1

Y0,t = µ̂0 , Y
post
c =

1

J

J∑

j=1

Yj,τ

Y
pre

c =
1

J · T0

T0∑

t=1

J∑

j=1

Yj,t =
1

J

J∑

j=1

µ̂j ,

Comparing the DiD estimator to the REGSC estimator we conclude that the DiD

estimator is obtained if ŵj = 1/J . Accordingly, our REGSC estimator becomes

equivalent to the DiD estimator if λ1 is small and λ2 is large.
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2.4. Factor models

The SC approach is typically motivated by considering a factor model of the form

Yit = µi + θt + λift + ut

where µi and θt are individual and time specific constants (e.g. Abadie et al. [2010]

and Ferman [2021] ). It is assumed that the common factor ft and the idiosyncratic

component are uncorrelated and the idiosyncratic errors are mutually uncorrelated.

Let us first ignore the time and individual specific constant (which in practice can

easily replaced by sample counterparts). We are interested in the conditional expec-

tation:

Ŷ N
0,τ = E(Y0,τ |Y1,τ , . . . , YJ,τ ) for τ = T0 + 1, . . . , T

= λ0 E(fτ |Y1,τ , . . . , YJ,τ )

This suggests to estimate the common factor as linear combination of the donors

z̃τ = (Y1,τ − Y 1, . . . , YJ,τ − Y J)′. A popular estimator with this property is the

principal component (PC) estimator. The approach can easily be generalized to

model with r > 1 factors. Let Vr denote the J × r matrix of eigenvectors associated

with the r largest eigenvalues of Z̃′z̃/T0. Accordingly, the vector of r factors for

period 1 ≤ t ≤ T is estimated as f̂t = V′

rz̃t. Furthermore, the r × 1 vector of factor

loadings λ0 is obtained from the regression

Y0,t = µ∗ + f̂ ′

tλ0 + ut for t = 1, . . . , T0

Let µ̂∗ and λ̂0 denote the OLS estimators of µ∗ and λ0, respectively. Then the

estimated counterfactual results as

Ỹ N
0,t = µ̂∗ + f̂ ′

tλ̂0

Note that f̂ ′

tλ̂0 = w̃′z̃t is a particular combination of the donor observations with

w̃ = Vrλ̂0. The factor model can be considered an alternative shrinkage estimator,

and we recommend to employ it for the estimation of the counterfactual in SC

applications even in absence of a strict factor data-generating process. For instance,

in PC regressions, the original set of donors is transformed into a set of linearly

uncorrelated variables known as principal components which are linear combinations

of the original donors. By using a subset of these principal components that capture

the most variability, a shrinkage procedure that focuses on the most important
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components and discards the less influential ones is performed. Furthermore, the

factor model is particularly appealing when dealing with multicollinearity which is

often the case SC applications. In this sense the factor model can be interpreted as

another regularized estimator that shrinks the weights towards the implied factor

structure.

2.5. Additional covariates

The original SC approach (e.g. Abadie and Gardeazabal [2003] and Abadie et al.

[2010]) assumes that we have available K additional time-constant covariates that

characterizes important features of the units. Let us represent this addtional infor-

mation by the K × (J + 1) matrix X. The weight vector is chosen such that

ŵ(W ) = arg min
w

(x0 − X1w)′V(x0 − X1w)

where x0 denotes the first columns of X (the characteristics of the treatment unit)

and X1 is the K × J matrix of the remaining columns. The matrix V is a diagonal

matrix of additional weights that is related to the importance of the corresponding

characteristics for the minimization problem.

Our REGSC estimator estimator can be seen as a special case of this estimator

by treating all of the T0 observations of Yj,t as covariates. Accordingly, K = T0

and the (k, j) element of X is equal to Yj,t. Furthermore the weight matrix V is

the identity matrix. An important drawback of the original SC approach is that it

does not exploit the information from the past of the J + 1 time series. Let Ypre

denote the T0 × (J + 1) matrix of observations coming from the time before the

intervention. We can combine the internal and external information by defining the

matrix X+ = (X, Ypre) and consider the minimization

ŵ(V ) = arg min
w

(z+
0 − Z+

1 w)′V(z+
0 − Z+

1 w)

where z+
0 denotes the first columns of Z+ and Z+

1 collects the remaining columns.

The upper block of the weight matrix V that is associated to Ypre will typically be

an identity matrix whereas the weights of the lower diagonal block are control to

the importance of the external information relative to the internal information from

the past.
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2.6. Dynamic models

When modelling macroeconomic time series it is often assumed that the (J + 1) × 1

vector of time series yt = (Y0,t, . . . , YJ,t)
′ can be represented by a vector autoregres-

sive model given by

yt = α + A1yt−1 + · · · + Apyt−p + ut

yt = µ + A(L)(yt−1 − µ) + ut

where A(L) = A1 +A2L+ · · ·+ApLp−1 denotes the (J +1)×(J +2) lag polynomial,

µ = (µ0, µ1, . . . , µJ)′ and E(utu
′

t) = Σ is a positive definite covariance matrix.

Let us derive the optimal forecast of Y0,t conditional on It = {y0
τ , y0

τ−1, . . . ,

y0
T0+1, yT0

, . . . , y1} for τ ≥ T0. Denote by Q be the Cholesky factor of the inverse of

the covariance matrix such that Σ−1 = Q′Q, where Q is a lower triangular matrix

such that

Ŷ N
0,t = E(Y N

0,t | It)

= µ0 +
J∑

i=1

wi(Yi,t − µi) + β(L)′(yt−1 − µ) (1)

where wi = qi+1/q1, q = (q1, q2, . . . , qk+1)
′ is the first row of the matrix Q′, β(L) =

β1L+ · · ·+βpLp, and βj = w′Aj/w1. For t ≥ T0 the vector yt results from replacing

the treated series by the non-treated counterfactual yt = (Y N
0,t , Y1,t, . . . , Yk,t), where

Ŷ N
0,t = Y0,t for t ≤ T0. In practice the unknown counterfactual Y N

0,t needs to be

replaced by the estimate Ŷ N
0,t . Accordingly the sequence Ŷ N

0,t is obtained from a

simple recursion.

An important problem with the optimal solution (1) is that it involves (p +

1)(k + 1) parameters which may be difficult to estimate reliably in practice. We

therefore adapt some regularization for estimating the parameters. We consider

three alternative regularization schemes. First, all coefficients of the dynamic model

may be regularized by applying the aforementioned REGSC method as used in the

static model and proposed in section 2.2. Second, the REGSC weight regularization

is only applied to the vector (w1, . . . , wJ). The additional coefficients attached to the

lags of the series are only subject to the ridge penalty. Alternatively, all coefficients

of the dynamic model may be regularized by using the elastic net penalty.
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2.7. Nonstationary time series

In most empirical application of the SC methodology the time series exhibit promi-

nent time trends. Accordingly it is important to consider the case, where the time

series are nonstationary. Therefore, we consider the case where some roots of the

characteristic equation det[A(z)] = 0 are equal to one (unit roots).

First assume that the number of roots is equal to J + 1. In this case the J + 1

time series are assumed to be integrated of order one and there exist no stationary

linear combination (no cointegration). In this case the SC methods considered above

need to be applied to the differences of the time series, as otherwise the estimation

suffers from the spurious-regression problem. The differences are used to forecast

the differenced counterfactual ∆Y N
0,t yielding the difference of the treatment effect

δ∆
τ = ∆Y I

0,τ − ∆Y N
0,τ for τ > T0. The treatment effect of interest is then obtained

from cumulating the resulting effects of the differences yielding δτ = δ∆
T0+1 + · · ·+δ∆

τ .

Next, assume that the donor set and the treated variable share a common

stochastic trend. This is the most favorable situation that was also considered

by Harvey and Thiele [2020]. In this case there exist J independent cointegra-

tion vectors that render a stationary forecast error of the counterfactual series.

We may therefore apply the same estimation procedures in section 2.2 that were

originally developed for stationary time series. We also note that if the series are

cointegrated with the treated series, then the weights w1, . . . , wJ can be estimated

super-consistently (that is with the convergence rate 1/T ).

2.8. Statistical inference

In this section we briefly discuss statistical tools for assessing the reliability of the

estimated treatment effect.

Placebotests

To assess whether an identified treatment effect can be deemed significant, ADH

propose a model-invariant non-parametric inference procedure that is based on Fis-

cher’s permutation test Fisher [1935]. The first version of the test permutes the

treatment across panel units. Leaving out the treatment unit, the “treatment ef-

fect” (resp. placebo effect) is estimated for each of the J control units although

these units are not treated. The observed J treatment effects are considered to be

realisations of the treatment estimator under the null hypothesis of no treatment.

The basic assumption for valid inference is that the empirical distribution of the

J placebo treatment effects converge to the true distribution of the forecast error

of the counterfactual Y N
0,τ − Ỹ N

0,τ . This is the case if the unconditional distribution
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of Y N
0,τ − Ỹ N

0,τ is the same as the unconditional distribution of Yj,τ − Ỹ N
j,τ for all

j = 1, . . . , J . Obviously this is approximately the case in an i.i.d. setting. It is

important to notice however, that the treatment effect for unit j = 0 is based on J

donor series, wheres the J placebo effects are based on J −1 donors only. Therefore,

even in the i.i.d. setting the unconditional distributions of the J placebo treatments

tend to have a (slightly) higher variance for small J . As it is sufficient to require

identical unconditional distributions, we can drop the assumption of independence

and rely on identical distributions. For normally distributed treatment effects, this

implies that the variances are identical and the expectation is equal to zero.

The second version of the test considers time permutations of the treated unit.

That is ADH permute the treatment to time periods prior to the true treatment

date T0. Provided that T0 > J , this approach can increase the power of the test, as

the empirical distribution is determined by T0 observations. On the other hand this

approach requires that the prediction error variance of the counterfactual is constant

in time which may be a more realistic assumption than assuming the forecast error

variance to be identical across the control units. Further, time permutations can be

used to verify that certain donor units are not affected by the intervention at T0,

which is a crucial assumption for assigning the donor units. Lastly, as suggested by

Doudchenko and Imbens [2016], it is also possible to combine permutations in time

and in space. This would imply comparing the estimated treatment effect for j = 0

and t = T0 to all ((J + 1) · T0) − 1 remaining permutations of time and space.

Credibility Intervals

If a substantial treatment effect is observed, the call for standard errors and pre-

diction intervals emerges naturally. For unbiased estimates, the calculation of cor-

responding uncertainty metrics is straightforward. However, penalized estimators

such as REGSC allow for a trade-off between bias and variance reduction in order to

improve the predictive accuracy. Accordingly, standard (frequentist) confidence in-

tervals are not available. In what follows, we show how Bayesian posterior sampling

can be used to quantify the estimation uncertainty of our proposed model.

As mentioned in Section 2.2 our proposed regularization is equivalent to imposing

a multivariate normal prior distribution of the following form:

p(w) ∼ N (µ01J , V0)

where µ0 = λ2/(λ1 + Jλ2)

and V0 is a matrix with variances Vii = σ2(λ−1
1 − ψ/J) for i = 1, . . . , J and covari-
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ances Vij = −σ2ψ/J for i Ó= j, where ψ = λ−1
1 − (λ1 + Jλ2)

−1. Once the posterior

distribution is set up by multiplying the likelihood function with the specific prior,

standard MCMC algorithms like Metropolis-Hastings or Hamiltonian Monte Carlo

can be performed to obtain valid samples from the marginal posteriors. Subse-

quently, these samples can be used to construct Bayesian credibility intervals for

the weight vector as well as for the predicted quantity.

To illustrate the estimation of Bayesian credibility intervals for the REGSC

estimator, we simulated some artificial data. Specifically, we generated data for

Tpre = 50 periods of pre-treatment and Tpost = 20 periods of post-treatment data

for a single treated unit and J = 10 potential donors. Among these donors, only

the first five provide systematic information about the counterfactual and the error

is drawn from a standard normal with zero mean and unit variance. For obvious

reasons, this knowledge is not accessible when we assess the ability of our estima-

tion procedure to quantify the involved statistical uncertainty by means of Bayesian

credibility intervals. Therefore, we assume ǫi ∼ N (0, σ2) along with a weakly in-

formative inverse gamma distribution with hyperparameters a = b = 0.001 for the

error variance. Combining the above REGSC prior with the error distribution and

the likelihood gives us the posterior distribution:

p(w, σ2|λ1, λ2) ∝
T0∏

i=1

Ni(0, σ2)

︸ ︷︷ ︸
Likelihood

· IG (a, b)︸ ︷︷ ︸
σ2

−Prior

· N (µ, Σ)︸ ︷︷ ︸
w−Prior

Note again the multivariate J-dimensional nature of the REGSC-prior. Due to

the weight-penalty, the off-diagonal elements of the covariance matrix are non-zero

and the J-dimensional distribution is not equivalent to the product of J individual

priors as it would be the case for univariate shrinkage procedures like Ridge or Lasso.

A more detailed explanation of the Bayesian computation with visualized Markov

Chains can be found in the appendix. Note that if the error variance is known, the

REGSC estimator is directly accessible via the following analytic form:2

p(w) ∼ N (µ, Σ)

µ =
(
Z̃ ′Z̃ + λ1IJ + λ21J1′

J

)
−1 (

Z̃ ′ỹ0 + λ21J

)

Σ =
(
Z̃ ′Z̃ + λ1IJ + λ21J1′

J

)
−1

Z̃ ′σ2IT0

(
(Z̃ ′Z̃ + λ1IJ + λ21J1′

J)−1
)

′

Z̃ ′

Assume we obtained 1, 000 valid draws from the marginal posterior densities of

2 The derivation of the analytical form of the REGSC estimator is postponed to the appendix. Cf.
the closed form solution of section 2.2
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the weights. Though it is possible to maintain the constant during the Bayesian

estimation by appending the design matrix with a column of 1, our experience

suggests that the computation without intercept and using demeand series is more

convenient.3

By sampling from the posterior distribution, we account for the estimation un-

certainty of the weight vector. However, the prediction error for the counterfactual

depends also on the the error term. Therefore, it is also necessary to include the

(normally distributed) error term.4 To construct the Bayesian credibility interval

of the counterfactual treatment series, we draw one observation from the normally

distributed constant and the normally distributed error term and add both to the

matrix product of the 70 × 10-dimensional donor matrix and the 10 × 1-dimensional

first draw of the posterior distribution of the weights. This provides us with one

potential counterfactual trajectory. By repeating this procedure, say, 1, 000 times

and disregarding the first and the last 25, we obtain the Bayesian 95% credibility

interval. The following figure depicts the REGSC counterfactual with the estimated

95% credibility interval. To quantify the performance of the estimated credibility

interval, we also plot the empirical confidence interval that is obtained by adding

the (in practice unknown) percentiles of the error distribution (here ±1.96).

The posterior predictive distribution is an alternative, less conservative way to

obtain Bayesian credibility intervals. This involves generating new observations

of the dependent variable at each time point given the posterior samples and the

likelihood. Again, the 2.5% and the 97.5% percentiles of these new observations

form the boundaries of the 95% credibility interval.

Bootstrap Intervals

Bootstrap intervals are another way of quantifying the statistical uncertainty of the

estimate. More specifically, bootstrap-based calculations provide an assessment of

the variance, reliable estimates of the bias are only available if a reliable unbiased

estimate is available. In the REGSC context, we draw with replacement T0 observa-

tions from the T0 × J-dimensional donor pool, compute the REGSC prediction and

store the corresponding residuals. This procedure is repeated B times, which pro-

vides us with B observations of the residual based on which we can compute mean,

variance and percentiles. As the temporal ordering of the observations matters in

3 Let µT0
be the unconditional pre-treatment mean and σ2

T0
be the unconditional pre-treatment

variance. Then, the constant is distributed as µ ∼ N (µT0
, σ2

T0
/T0).

4 Let µǫ,T0
be the pre-treatment error mean obtained by subtracting the counterfactual from the

actual series. Further, let σ2
ǫ,T0

be the pre-treatment error term variance. Then, the error is

distributed as µǫ ∼ N (µǫ,T0
, σ2

ǫ,T0
).
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Figure 1. Bayesian Credibility Intervals

Panel a) plots the actual series (black), the true interval (red) and the REGSC counterfactual

(green). At T = 51, the series experiences a persisting treatment effect of size 10. We see that the

Bayesian credibility interval has decent coverage: At only two time points (10, 45), the actual series

lies outside the Bayesian interval (shaded area). Panel b) compares the actual treatment effect

(black) to the REGSC estimation (green), obtained by subtracting the REGSC counterfactual

from the actual series. In the pre-treatment period, the actual treatment effect of zero is within

the interval in 48 of 50 cases. In the post-treatment period, the actual treatment effect of 10 falls

inside the interval in 18 of 20 cases. Further, we see a high degree of similarity between empirical

confidence and estimated credibility interval.

applications of SC, it is recommendable to perform the so-called block-bootstrap

which consists of dividing the data into blocks of observations and sampling the

blocks randomly with replacement (see e.g. Hall et al. [1995]).

For the parametric bootstrap with normality assumption, we require the boot-

strap estimate of the residual standard deviation and the respective percentile of

the normal distribution. The bootstrap interval is given by

[
yN

0t − u1−
α

2
σ̂boot, yN

0t + u1−
α

2
σ̂boot

]
,

where u depicts the corresponding percentile of the normal distribution. As the

sample sizes in the context of SC are generally small, the normal distribution may

be hard to justify and the t-distribution can provide a suitable and more conservative
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basis for the interval. In this case, the interval is given by

[
yN

0t − t1−
α

2
σ̂boot, yN

0t + t1−
α

2
σ̂boot

]
,

where t represents the corresponding percentile of the t-distribution. Both intervals

are only asymptotically valid and can be considerably biased in smaller samples.

Therefore, the non-parametric percentile interval is another potential approach. As

its name suggest, the boundaries of the interval are obtained directly by the re-

spective percentiles of the bootstrap distribution. The percentile interval is defined

as follows where Ĝ constitutes the percentile function of the bootstrap standard

deviation: [
Ĝ−1

α

2

, Ĝ−1

1−
α

2

]

An analogous figure as 1 can be found in the appendix. As the bootstrap in-

terval is solely based on the pre-treatment period, the resulting bootstrap interval

is somewhat optimistic and exhibits a lower coverage than the Bayesian credibility

interval.

3. Small sample performance of alternative estimators

In this section, we compare the performance of alternative SC estimators for different

data-generating processes (DGP). To this end we generate Tpre = T0 periods of pre-

treatment and Tpost = T − T0 periods of post-treatment data for a single treated

unit and J donor units. The pre-treatment sample represents the training set for

the models, the post-treatment observations define the validation set. To root the

simulation framework as close as possible to real-world SC applications, we define

Tpre and Tpost such that their range is comparable to low-frequency macroeconomic

settings, i.e. Tpre ∈ {20, 50, 100} and Tpost ∈ {10}.5 Furthermore we consider three

types of DGP, a static factor model, a stationary dynamic vector autoregressive

(VAR) process and a nonstationary process incorporating a cointegration structure.

3.1. Static Data Generating Process

3.1.1. Factor model

As the original SC method is based on a particular factor model, see Abadie et al.

[2010], we first investigate the performance of alternative SC estimators in a factor

model similar to the one considered in Ferman [2021]. Rather than analyzing a

5 We also considered data sets of varying post-treatment period length but noted that the main
determinant of the models accuracy is the pre-treatment sample size.
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fully demeaned DGP, we find it more realistic to incorporate a time-invariant and

panel-specific intercept into the (potential) outcome. Our representation of the

counterfactual is

Y N
j,t = αj + λ′

jft + ǫjt,

where λi is a r × 1 vector of factor loadings, ft is a unknown r × 1 vector of common

factors ft = (f1,t, . . . , fr,t)
′, αi is the individual specific intercept and ǫj,t is an i.i.d.

idiosyncratic shock. Ferman [2021] considers a scenario with two common factors.

We proceed analogously and generate data such that the (potential) outcome of the

treated unit and the first half of the donor pool load exclusively with unit loading

on the first factor, whereas a second factor affects the remaining donors load with

unit loading. Accordingly λj = (1, 0)′ for j = 0, 1, . . . , J/2 and λj = (0, 1)′ for

j = J/2+1, . . . , J . Further, the random variables αj, f1,t, f2,t and ǫj,t are realizations

of a standard Gaussian white noise process. The following figure exemplifies the

functionality of the DGP with Tpre = 20, Tpost = 10 and a constant treatment effect

of δ0,t = 10 for t ≥ T0. To make the factor structure more tangible, we set the

Figure 2. Example factor DGP

variance of the factors equal to 10 and the error variance is σǫ = 0.1. The generated

data exhibits a clearly observable factor structure: The treatment unit and the first

half of the donors (Donor 1 and 2) as well as the second half of the donors (Donor 3

and 4) share a common factor. Thus, the objective of each employed method is to

recover the true factor structure, i.e. irrelevant of the size of donor pool to weight

only the first J
2

donors positively. Further, we see that each series possesses an own

intercept. Yet in this specific example, the intercept variation is dominated by the

factor variation.
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For each of the 3 combinations of pre- and post-treatment period length Tpre ∈

{20, 50, 100}, Tpost ∈ {10} and the 6 investigated donor group sizes J ∈ {5, 10, 15, 20, 25, 30},

we simulated 500 static factor processes as described above. This simulation pro-

vides us with a total of 9,000 static factor processes that are analyzed with respect

to the following metrics in the post-treatment period:

The RMSE is given by

RMSEm =


 1

T − T0

T∑

t=T0

(y0,t − δ0,t − ŷ0,t(m))2




1/2

,

and serves as the central loss function, where the index m refers to the associated

estimation approach. Note that the treatment effect δ0,t is subtracted from y0,t to

re-calibrate the process towards its origin.

The RMSE can be decomposed into the squared bias and the variance of the

forecast. Therefore, we also report the (squared) bias component to assess the size of

the systematic estimation error. To distinguish over- and underestimations we look

at the distribution of the bias which is especially important when analyzing models

without an intercept. On average, such models will exhibit a positive (negative)

bias whenever the intercept of the treatment unit falls below (exceeds) the donor

intercepts.

The Mincer-Zarnowitz (MZ) regression (Mincer and Zarnowitz [1969]) tests the

forecast for a specific form of unbiasedness (also called autocalibration) by regressing

the true value on its predicted value in the post-treatment period:

y0,t = β0 + β1ŷ0,t for t ∈ Tpost.

If the forecast is rational we expect estimated coefficients close to (β0, β1) = (0, 1),

an hypothesis that is directly testable by a simple F -test. We therefore report the

relative frequency of Monte Carlo replications for which the F -test accepted the

joint hypothesis (β0, β1) = (0, 1) at the conventional significance level of 5%.

For the static factor DGP, we employ the following five models:

1. Synthetic Control (SC). The first model is the SC method of ADH with

the common restrictions (no intercept, weakly positive weights that sum up to one)

yet without additional time-invariant covariates. Therefore, as outlined in section

2.5, the matrix of explanatory variables X exclusively contains the pre-treatment

Yj,t-series of all panel units and the weights are chosen such that the pre-treatment

distance of Y0,t and YN
0,t is minimized. This procedure of appending lagged values
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of the dependent variable to the matrix of explanatory variables has already been

applied in Abadie et al. [2010], see also section 2.5.

2. Ordinary Least Squares (OLS). The second method is a usual (unrestricted)

least squares regression that regresses the pre-treatment treatment series on the

donor series. The motivation for this approach is that it is efficient if the number

of donors (J) is small and the number of pre-treatment observations T0 is large. If

J/T0 is larger than one, the OLS estimator is not available.

3. Elastic Net Regression (NET). The third approach we consider is the afore-

mentioned elastic net as proposed by Doudchenko and Imbens [2016]. Similar to the

simple OLS regression, it regresses the pre-treatment treatment series on the donor

series employing the Ridge and Lasso penalties. The constant is unrestricted. For

the sake of simplicity and due to the short training periods, we perform a simple 3-

fold cross-validation and rely on the R package glmnet of Friedman et al. [2010]. In

the conceptual introduction of the elastic net, we stressed the potential drawback of

having no closed-form solution. Accordingly, the computation is considerably more

demanding.

4. Regularized Synthetic Control (REGSC). The fourth model under con-

sideration is our proposed regularized synthetic control estimator. It is comparable

to the elastic net but substitutes the Lasso-shrinkage by the weight-penalty shrink-

age. This substitution is motivated by the natural interpretation of the coefficients

as SC weights. Furthermore, using this penalty term tends to produce more posi-

tive weights that better correspond to the original idea of a weighting scheme. Its

closed-form solution helps to reduce the computational burden. To further reduce

computation time, the hyperparameters are selected by applying a 2-fold CV in a

two-step random grid-search procedure. Random hyperparameter grid search has

proven to be more efficient than manual grid search both theoretically and empiri-

cally, see for instance Bergstra and Bengio [2012] for a careful discussion of hyper-

parameter optimization. In the first step of the procedure, we identify the optimal

hyperparameter combination of the initialized grid by applying 2-fold CV. Based on

the result of the first step, we enclose the potential optimum in the second step by

sequentially holding the first and the second hyperparameter fixed while increasing

and decreasing the remaining hyperparameter on a coarser grid.

5. Factor model (FACTOR) The data of this process is generated by a factor

model and, hence, the principal component estimator suggested in section ?? seems

to be most natural for this setup. In the pre-treatment period, we obtain the pre-

dictions by regressing the treatment series on the latent factors, obtained from the
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first two principal components. The forecasts for the counterfactual in the post-

treatment period is obtained by adapting the weighting scheme from the principal

component estimator to the set of donors of the post-treatment period, yielding

the factors of the post-treatment sample. The factor loading is obtained from a

regression of the treatment series on the principal components of the pre-treatment

sample. As this model directly builds upon the DGP, it is our benchmark-model

and we expect it to perform best among all candidates.

The full simulation results can be found in table format in the appendix 6.7.1

where we group the tables at the level of the six analyzed donor quantities. Here,

we give a focus on the the main results of the simulation. To do so, consider the

following figure that plots the average RMSE of the models against the size of the

donor pool for Tpre =∈ {20, 50, 100} and Tpost ∈ {10}.

Figure 3. Factor Simulation Performance for Tpre ∈ {20, 50, 100} and Tpost ∈ {10}

Based on the results in Figure 3 and in the tables of the appendix, the following

observations stand out: First, considering unrestricted OLS, we note that the esti-

mator is not applicable in panel a) for J ≥ 20. In panel b) and c), the requirement

Tpre > J is satisfied in all cases but the estimator tends to overfit the training data

indicated by the positive relation between RMSE and the number of donors. Second,

considering the original SC method of ADH, we observe a less clear relation between

the models accuracy and relation between J and Tpre. In panel a), the model pro-

vides the best forecast for J = 5, in panel b) for J = 30 and in c) again for J = 5.
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Furthermore we observe that the method is most precise (compared to Tpre = 20 and

Tpre = 100) for Tpre = 50 indicating that more pre-treatment observations increase

the accuracy but that too many pre-treatment observations deteriorate it. This may

be due to the fact that the SC model, as implemented here, fits all pre-treatment

values of the treatment series, resulting in an overfitting of the pre-treatment data

when Tpre becomes too large. Third, considering the NET, the REGSC and the

FACTOR estimators, we see that the factor model dominates all remaining models

in all J − Tpre-combinations. This is not surprising as the data are generated by

a factor model. All three models successfully balance the trade-off between over-

and underfitting as they become increasingly precise for increasing size of the donor

pool. Lastly, considering the relative performance of NET and REGSC, we observe

that NET is more precise for the three cases of J = 5. For the remaining 15 cases

with J > 5, the REGSC outperforms the elastic by a small but consistent margin.

It has been emphasized that RMSE alone should not be the sole precision metric

when assessing forecast performance, as it fails to detect over- and underestimation.

While the bias can identify iteration-specific over- and underestimations, aggregat-

ing it into a single metric like the mean can lead to spurious optimality.6 To address

this issue, we initially examine bias distributions: As previously discussed, models

without intercept such as the SC method will show a positive (negative) bias when

the mean of the treatment series exceeds (falls below) the means of the donor se-

ries. In our simulation, the intercepts of the series are independent and identically

distributed (iid) realizations of standard normal distributions. Therefore, the prob-

ability that the mean of the treatment series falls below (exceeds) all donor means

equals 1

J+1
.7 In order to illustrate the possible bias of the SC method, the following

figure presents the distribution of the observed bias of the sample draws where the

intercept was most extreme relative to the donor series (for all donor group sizes J).

We grouped the observed biases according to minimum (positive bias)/ maximum

(negative bias) and present the resulting distributions of the biases for the SC and

the REGSC model in Figure 4.

The aforementioned bias problem is immediately apparent: the SC method ex-

hibits positive/ negative biases if the treatment intercept falls outside the convex

hull of the donors’ intercepts. In contrast, the REGSC model (as well as the re-

maining models that include an intercepts) do not suffer from this problem. In

6 Consider for instance a model that forecasts {−1, 1}, each in 50% of the cases for a quantity
whose optimal forecast is 0 in 100% of the cases. This model is far from optimal but the mean
bias is 0.

7 For each donor quantity J , there are (J + 1)! total orderings. In (J+1)!
J+1 of the cases, the intercept

of the treatment series is the most extreme. This translates to a probability of 1
J+1 .
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Figure 4. Bias distribution for the SC and the REGSC model

appendix 6.7.1, we plot the bias-distributions for all models and combination of pre-

and post-treatment periods lengths. As expected, we see that the bias distributions

of all models become more tightly centered around zero the longer the pre-treatment

periods. Further the SC model stands out as the only one whose performance does

not consistently improve with longer pre-treatment periods. In the appendix, we

present the full simulation results for the RMSE and the MZ acceptance rate. In

sum, the REGSC model achieves the highest MZ acceptance rate (excluding the fac-

tor model) in 9 cases, the elastic net in 8 cases and the SC method in one case. The

fact that the MZ-regressions produce somewhat different results than the RMSE is

likely due to the small post-treatment period of Tpost = 10.

Our findings from the Monte Carlo experiments of the static setup can be summa-

rized as follows: With exception of the unrestricted OLS estimator, all models per-

form reasonably well in distinguishing systematic pre-treatment patterns from noise

and do not indicate any severe risk of overfitting. However, the simplified version of

the SC method that matches all pre-treatment values of the dependent variable faces

stability issues when Tpre exceeds 50 periods. Further as already stressed by Abadie

et al. [2010], we observe biased SC-forecasts if the treatment series intercept does

not fall inside the range of the donor intercepts. NET and REGSC model include

an intercept and allow more flexible weight coefficients which safeguards against

biased forecasts. Furthermore the REGSC tends to outperform the elastic net by a

small but consistent margin. Not surprisingly, the FACTOR estimator outperforms

all other estimators as the data are generated by a factor model. Therefore in the
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next subsection we generate data with a different correlation pattern that explicitly

favors the original SC approach.

3.1.2. More general correlation patterns

To mitigate the simulation results’ reliance on a specific DGP, we assess the

model’s performance using another static process tailored to favor the SC model.

We start by generating donor weights that correspond to the salient features of the

original SC approach by randomly drawing J/2 weights from a U [0, 1] distribution

and setting the remaining J/2 donor weights equal to zero. The weights are normal-

ized such that they sum up to unity. The donor series are obtained by generating

a (Tpre + Tpost) × (J − 1) matrix of normal random variables with covariance ma-

trix RR′, where R is a (J − 1) × (J − 1) matrix of independent U [0, 1] distributed

elements. The counterfactual is generated as Y N
0,t = w′Y N

j,t +α ·ǫ, with ǫ being a stan-

dard normal error and the parameter α controls the signal-to-noise ratio. We set α

equal to one.8 Analogously to the previous simulation, we simulate 500 replications,

train the model on the first Tpre observations and test their predictive performance

on the remaining Tpost observations.

Figure 5 reports the sample RMSE across the alternative estimators (excluding

OLS as it never was competitive). For a small number of donors (J = 5) we find,

as anticipated, that the original SC method outperforms all other methods. This

is due to the fact that the data generating process adheres to the conditions of the

SC method. For a larger number of donors, however, some additional regulariza-

tion is required, as the variance of the SC method increases dramatically. This is

achieved by employing the penalty terms of the REGSC estimator or by imposing

the factor structure as for the FACTOR estimator. It is also interesting to note

that the NET estimator performs quite poorly for Tpre = 20. In small samples, this

estimator heavily shrinks towards zero, leading to a severe bias. Overall, our Monte

Carlo experiment confirms the favorable small sample properties of the REGSC and

FACTOR estimators.

3.2. Stationary Dynamic Data Generating Process

In order to evaluate the performance of the alternative approaches, we now proceed

to study these methods in a simulation framework that mimic the real world. Given

the focus of previous studies on economic development before and after treatment, it

is reasonable to consider changes in GDP, such as GDP growth rates, as the basis of

8 We also considered DGP with different signal-to-noise ratios and DGP that did not induce sparsity
by setting J/2 weights exactly to zero. These adjustments did not change the results.
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Figure 5. SC Simulation Performance for Tpre ∈ {20, 50, 100} and Tpost ∈ {10}

a realistic SC scenario. To ensure a relatively uniform reference group with sufficient

commonalities and correlations, the reference dataset includes all countries from the

G20 and the European Union (EU).9 The dataset is further refined to include only

countries with a minimum of 40 years of GDP growth data. The resulting set of 31

selected countries form the basis for generating close-to-reality datasets, simulated

using a VAR model.

One country is randomly selected as the treatment unit, and an additional J

similar10 donors are drawn from the remaining 30 countries. Note that the number

of parameters increases dramatically with the dimension of the VAR process, so

we are limited to focusing on a small number of countries. Next we estimate a

VAR(2) model for these J +1 selected countries and simulate new data sets without

treatment based on the estimated model. For each of the simulated data sets we

estimate the counterfactual based on the J donor series and compare the estimates

with the original treatment series. As in the static case, the estimation is based

on a variation of pre-treatment periods Tpre ∈ {30, 50, 100} and the post-treatment

period is set to Tpre = 20.

9 The GDP data is extracted from the World Bank’s World Development Indicators, which
is directly accessible via the WDI-Package Arel-Bundock [2022] in R using the ticker
’NY.GDP.MKTP.KD.ZG’ (GDP Growth Rate (annual %)).

10 The donors are selected in a way such that they share a similar correlation structure with the
treatment unit.
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For the dynamic setup, we employ all of the previously methods from the static

case for reference. Furthermore we introduce estimators that accommodate specific

dynamic features, see also section 2.6. In particular we apply the following dynamic

approaches:

1. Unrestricted VAR (VAR): The first dynamic estimator uses an unrestricted

vector autoregressive (VAR) model. In this approach the lagged donor series and

lags of the treatment series are treated as additional donors and the corresponding

weights are estimated by OLS. Accordingly, this estimator is the best predictor

of the synthetic control as Tpre tends to infinity. In finite samples, however, this

estimator suffers from the large number of parameters and typically shows a poor

small sample properties. Nevertheless this estimator serves as a benchmark model

for the dynamic case as it closely mimics the DGP.

2. Regularized VAR (REGVAR and NETVAR): As the VAR model involves a

large number of parameters, it is important in empirical practice to apply some

regularization scheme. We therefore extend the regularization of the static setup

to the VAR model. The NETVAR method applies the elastic net penalty to all

coefficients of the regressors, whereas the REGVAR approach applies the REGSC

penalty to all coefficients.11

As in the static case, further simulation results can be found in the appendix

6.7.2 while the key aspects are presented here. In Table 1 the simulation results in

terms of RMSE are presented for Tpre = 50 and Tpost = 20 periods over 500 iterations

for each donor group.12

Overall we find that the regularized dynamic approaches outperform the static

methods in our dynamic setup. Especially for larger donors sets the dynamic models

perform significantly better than their static counterparts and in particular the orig-

inal SC method. This is highlighted by the boxplots for the RMSE presented in Fig-

ure 6. The regularized dynamic estimators not only have the lowest RMSE median

but also the smallest interquartile range. It further demonstrates that the perfor-

mance of the dynamic estimators in comparison with the static estimators increases

steadily with an increasing number of donors. Moreover, among the dynamic mod-

els, elastic net regularization emerges as the most efficacious regularization method

in this simulation setting indicating the strength of the elastic net regularization to

11 In this dynamic simulation section (other than in the static case) 3-fold cross validation is used
since it appeared more effective than 2-fold cross validation. For all dynamic models the lag
order is set to p = 2 to align with the simulation settings.

12 The table contains the average values over all replications for the specific number of donors. For
very few iterations (approximately 0.5%), some models produced very large outliers, which are
excluded before averaging.
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Table 1. RMSE for stationary data (Tpre = 50, Tpost = 20)

Method J = 2 J = 4 J = 6 J = 8

SC 1.815 2.005 2.251 2.669
OLS 1.349 1.688 2.007 2.444
REGSC 1.359 1.696 2.012 2.446
NET 1.347 1.678 1.983 2.410
FACTOR 1.349 1.672 2.043 2.573
VAR 1.281 1.469 1.992 1.898
REGVAR 1.312 1.432 1.681 1.744
NETVAR 1.277 1.490 1.632 1.554

generate sparse solutions.
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Figure 6. Stationary simulation RMSE comparison for different sizes of the donor
Set (Tpre = 50, Tpost = 20)

3.3. Nonstationary dynamics

In many empirical applications the treatment and donor series appear to be nonsta-

tionary. It is therefore important to study the ability of the methods to deal with

nonstationary data. This section is divided into two parts. The first part examines

a nonstationary simulation case which as a comparison is derived from the same

GDP data basis as in the static case. The second part examines a new DGP that

examines the effects of cointegrated data in a nonstationary time series setting.

The comparison simulation is based on the same data as in the stationary DGP in

section 3.2, but now we apply all methods to (the logarithms of) GDP levels instead

of GDP growth rates. To ensure direct comparability, the GDP growth series are

drawn from the same data basis as in the stationary case but are cumulated before

estimating the counterfactual. Since (log) GDP possess a VAR(3) representation

with time trends, we include a linear trend in the VAR(3) representation when

estimating and simulating the dynamic processes in levels. For computing the RMSE
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the actual and forecasted counterfactual series is differenced in order to allow for a

direct comparison with the results in section 3.2.

Table 2. RMSE for nonstationary data (Tpre = 50, Tpost = 20)

Method J = 2 J = 4 J = 6 J = 8

SC 1.6556 2.1518 2.223 2.6359
OLS 1.6194 2.363 2.4976 2.7524
REGSC 1.5816 2.1598 2.2576 2.6526
NET 1.6004 2.2647 2.3885 2.6409
FACTOR 1.6194 2.031 2.1988 2.7458
VAR 1.2948 1.4929 1.7226 2.4175
REGVAR 1.3848 1.7407 1.9144 2.2169
NETVAR 1.2425 1.4157 1.5791 1.8216

The results demonstrate that the static approaches have severe problems to cope

with nonstationary time series. Compared to the (more appropriate) use of differ-

enced time series in section 3.2 the RMSE is much larger, whereas the dynamic

methods perform similar whether the series are differenced or not. This is due to

the fact that the dynamic approaches include lagged differences and, therefore, the

dynamic specification is able to incorporate unit roots in the autoregressive specifi-

cation if necessary. Hence it is important to check the time series for nonstationarity

before applying static SC methods. On the other hand, dynamic methods turn out

to be fairly robust against a possible nonstationarity of the data.

The following subsection presents a new DGP is designed to represent a nonsta-

tionary environment in which one part of the potential donor data is cointegrated

with the treatment unit while the other part is not. The construction of the GDP

is similar to the factor model used in the static simulation case in section 3.1.1.

To account for the cointegration structure, two independent random walk processes

are used as factors, from which the resulting data are derived in such a way that

half of the donors are cointegrated with the treatment unit and the other half are

not. This setup allows us to analyze three different scenarios. In the first scenario,

the data is used as it is, i.e. the full nonstationary data set with both the with

the counterfactual cointegrated and non-cointegrated donor sets. In the second sce-

nario, we perform preselection in a way that the non-cointegrated data is removed

before the methods are applied. Hence, only the donor sets which are cointegrated

with the treatment unit remain. In the third scenario we keep the full data set but

take differences in order to account for the nonstationary time structure and obtain

stationary data.
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Table 3 report the results of the cointegrated DGP for J ∈ {4, 8, 12, 16, 20} and

Tpre = 50 and Tpost = 20.13 In general the results are in line with our theoretical

reasoning. Compared to the non-cointegrated setup of the previous subsection, the

gap between the performance of the static and dynamic methods are considerably

smaller. Nevertheless, the dynamic methods outperform the static competitors by a

substantial margin. This is also apparent from the boxplots presented in Figure 7,

where the RMSE is averaged accross all J and 8, for the individual donor groups.

Figure 7. Cointegrated series comparison (Tpre = 50, Tpost = 20)

Especially the SC and VAR models suffer severely in the full data set scenario

indicating problems regarding spurious regression. However, the issues regarding

the VAR model may also arise from overfitting due to the comparable large amount

of donors14 and their lagged values which enter the model estimation without reg-

ularization. This assumption is also supported by the fact, that the VAR models

RMSE is also quite high in the other scenarios.

Overall the results strikingly demonstrate the benefits of variable selection, regu-

larization and cross validation under such a regime. Removing the non-cointegrated

data from the donor set, i.e. a priori preselection of variables is beneficious for all

models and for all donor amounts under this simulation setting. However, this is

also an artifact of the simulation design, where the non-cointegrated data are not

informative for estimating the counterfactual. Interestingly, not only does the SC

model benefit the most from the preselection due to its very large RMSE beforehand,

13 Further details are given in appendix 6.7.3.
14 As before, a lag order of p = 2 is used in estimation
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but also in this setup of only cointegrated donors, the SC model performs slightly

better than all other models.

Keeping the full donor set intact but establishing stationarity due to differencing

the time series also yields significantly better results for the SC model. However, for

all other models the cost of loss of information due to the differencing is reflected by

slightly higher RMSEs compared to the preselected, but also the full scenario. The

simulation results strongly emphasize the importance of addressing the problem of

nonstationary in an non-cointegrated time series environment.

Table 3. RMSE for cointegrated series (Tpre = 50, Tpost = 20)

DGP Method J = 4 J = 8 J = 12 J = 16 J = 20

Full SC 1.2748 1.1701 5.0211 8.5764 8.0811
OLS 1.4048 1.2971 1.3124 1.3975 1.4783
REGSC 1.3978 1.2847 1.2381 1.2457 1.2284
NET 1.4289 1.2971 1.2415 1.2565 1.2608
FACTOR 1.3869 1.2307 1.1683 1.1413 1.1733
VAR 2.0577 2.1316 2.7562 3.4028 11.1224
REGVAR 1.5814 1.4856 1.4404 1.4129 1.4221
NETVAR 1.4041 1.3272 1.2818 1.2803 1.3318

J = 2 J = 4 J = 6 J = 8 J = 10

Preselect SC 1.2035 1.1576 1.0988 1.1060 1.0906
OLS 1.2574 1.2097 1.1490 1.1922 1.1972
REGSC 1.2544 1.1908 1.0949 1.1194 1.0911
NET 1.2663 1.2172 1.1353 1.1814 1.1496
FACTOR 1.2465 1.1685 1.0815 1.1046 1.0839
VAR 1.7811 1.8383 1.7774 1.9859 2.2580
REGVAR 1.2847 1.2287 1.1570 1.2016 1.1511
NETVAR 1.2773 1.2242 1.1555 1.2074 1.1642

J = 4 J = 8 J = 12 J = 16 J = 20

Differenced SC 1.7184 1.6439 1.6593 1.9005 1.9014
OLS 1.6785 1.6489 1.5444 1.6819 1.7263
REGSC 1.6847 1.6184 1.4813 1.5551 1.5570
NET 1.6745 1.6172 1.5014 1.5724 1.5858
FACTOR 1.6338 1.5402 1.5232 1.5093 1.4567
VAR 1.8922 2.0406 2.2225 2.4952 2.8434
REGVAR 1.7536 1.6883 1.5927 1.6059 1.6651
NETVAR 1.6907 1.6995 1.5655 1.6484 1.6416
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4. Applications

In this section, we consider two leading examples of ADH, the effect of Califor-

nia’s tobacco control program Abadie et al. [2010] and the economic cost of the 1990

German Reunification Abadie et al. [2015]. We compare the outcomes that result

from the different estimation methods and pay special attention to the prevalence

of non-stationarity in the time series.

4.1. Estimating the Effect of California’s Tobacco Control Program

Abadie et al. [2010] estimate the treatment effect of a large anti-smoking leg-

islation in California called Proposition 99. The outcome of interest is per capita

smoking in California and 38 U.S. states without legislation serve as Donors. ADH

build their estimation on Tpre = 18 (1970 − 1987) pre-treatment and Tpost = 13

(1988−2000) post-treatment periods and reckon that Proposition 99 had a substan-

tial, time-increasing negative effect on per capita cigarette sales of about 26 packs

by the year 2000. The following figure plots the re-estimation results of Proposition

99 in levels and due to the existence of a clear downward time trend, also in first

differences. The dashed dark-grey lines in the upper graph depict the 95% credibility

interval based on the Bayesian representation of the REGSC model.

Figure 9. Cigarette Sales per capita for (synthetic) California

The dashed vertical red line indicates the treatment date. Left axis, upper graph: original series

in levels. Right axis, lower graph: transformed series of first differences.

Considering the pre-treatment period, we observe that all models are capable of
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reproducing the original series in levels reasonably well. All predictions fall comfort-

ably inside the estimated 95% credibility interval, indicating that the pre-treatment

estimation uncertainty is neglectable. A distinct perspective emerges when examin-

ing the series of first differences, revealing erratic behavior characterized by signifi-

cant upward and downward swings. While the SC estimator struggles to accurately

capture the actual series, NET, NETVAR, REGSC, REGVAR and FACTOR meth-

ods appear to adeptly navigate the complexities of the first difference time series.

Focusing on the post-treatment period and level data, we note that all employed

models produce similar estimated treatment effects that range between yearly aver-

ages from -14.43 (REGVAR) to -19.74 (NETVAR) packages per capita. Cumulated

over the entire time window from 1988 until 2000, this translates into an average

reduction of 173.21 (REGVAR) to 236.90 (NETVAR) packages per capita due to

Proposition 99 and our REGSC 95% credibility intervals suggest that the actual

cumulated effect of Proposition 99 could reasonably range from -116 to -282. For

the series of first differences, we observe a substantial slowdown in the absolute

growth rate of per Capita smoking after Proposition 99. NET, REGSC and the

factor model generate larger but less similar counterfactuals than in the level-data

case. In contrast, the SC model struggles and does neither produce a credible pre-

nor a credible post-treatment counterfactual path.

In table 4 we document the full estimation results for all models and both data

types. Besides pre-treatment R2, end-of-sample (δend), mean (δ̄) and cumulated

treatment effects (
∑

δ), we also show the permutation p-values of ADH obtained by

dividing the post-RMSE by the pre-RMSE. By considering the ratio of pre- and post-

treatment fit, the approach of ADH implicitly guards against overly conservative test

results. Through pre-RMSE-scaling, donor units that are difficult to predict during

the pre-treatment period are prevented from yielding extreme test statistics. For

the sake of comparability, the results of the models for the differenced data have

been cumulated to transform them back to level.



4.2 The Economic Cost of the 1990 German Reunification 34

Table 4. Estimation Results: Tobacco Control Program

Type Method R2 δend δ̄
∑

δ p-value

Levels SC 0.9764 -25.58 -18.84 -226.09 0.026
REGSC 1.0000 -21.51 -14.52 -174.23 0.026
REGVAR 0.9983 -23.68 -14.51 -174.08 0.179
NET 0.9984 -24.21 -16.36 -196.32 0.026
NETVAR 0.9993 -22.13 -16.63 -199.50 0.103
FACTOR 0.9959 -28.04 -18.73 -224.76 0.051

1st Diff. SC 0.8338 -38.05 -29.03 -348.39 0.359
REGSC 0.9914 -14.43 -11.45 -137.41 0.205
REGVAR 0.9995 -15.42 -10.01 -120.12 0.103
NET 0.9938 -13.49 -11.44 -137.27 0.205
NETVAR 0.9999 -12.55 -8.64 -103.70 0.128
FACTOR 0.9943 -12.28 -11.36 -136.35 0.128

For the level data, we obtain promising p-values around 5% for the four static

models. On the other hand, the p-values of the two dynamic models seem unrealis-

tically high. Most likely, this observation point towards overfitting issues as if both

treatment and donor series are predicted with high accuracy in the pre-treatment

period, the permutation test does not consider post-treatment deviation an extreme

event. All estimations based on the differenced data suggest smaller and thus also

less significant treatment effects. Summarizing this application, we see that indepen-

dent of the assumptions and estimatioin methods, all models estimate large negative

treatment effects. Further, we observe that model uncertainty is not neglectable as

the range of estimated treatment effects varies substantially with the model under

consideration. Our credibility intervals for the REGSC model offer orientation in

this uncertain environment and it speaks in favor of a significant causal effect of

Proposition 99 that all employed models fall inside the estimated uncertainty band-

width. Considering the p-values of the dynamic models and the differenced data,

we recommend to follow the parsimony-principle and to employ less parameterized

models if the data is noisy and the pre-treatment period is short. However, as the

originally SC methods provide a substantially larger effect than most of the remain-

ing models, it is possible that the actual effect of Proposition 99 was somewhat

smaller than initially estimated.

4.2. The Economic Cost of the 1990 German Reunification

The reunification of East and West Germany coincided with an substantial slow-

down of GDP per capita growth in West Germany. Abadie et al. [2015] use this
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natural experiment as another application of their SC method. In contrast to the

Proposition 99 application, the reunification dataset is somewhat longer as data is

observed for Tpre = 30 (1960 − 1989), Tpost = 14 (1990 − 2003) years and J = 16

donors and West Germany. From 1992 onward, ADH identified a negative treatment

effect of about $1,600 per capita and year, translating approximately into an 8%

reduction compared to the 1990 baseline level. Similar to the preceding example,

the following figure depicts the original and the differenced series for selected SC

methods along with 95% credibility intervals for the REGSC approach.

Figure 10. GDP per capita for the (synthetic) West Germany

First, it is important to note that the GDP series exhibit a nonstationary pat-

tern, where prior to the German reunification the growth path of per capita GDP

was characterized by an exponential exponential trend. This growth pattern is very

well captured by the different SC methods. Interesting differences emerge after the

reunification, where – as already mentioned by ADH – the primary impact of the

reunification appears with a temporal delay of approximately 5 years. The 95%

credibility interval suggests that the temporal delay may be even longer as only by

the year 1999, the credibility interval indicates a statistically significant treatment

effect at the conventional 5% level. This observation indicates an interesting un-

certainty trade-off: As the time distance to the treatment date grows, so does the

distance between original series and credibility interval. Eventually, the distance is

large enough to obtain statistically significant results. However, if this distance has
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grown large enough, it becomes questionable whether the model that was trained in

the distant past still possesses external validity. Further, it is interesting to note that

even though the visual inspection indicates comparable effects, the estimated an-

nual treatment effect across all models and datra types is quite different and ranges

from -884.98 (REGVAR, differenced data) to -2252.51 (REGVAR, level data). The

credibility interval of the average REGSC effect ranges even from −3260 to 623,

suggesting a huge uncertainty around the point estimates. This implies an insignif-

icant average treatment effect that is mainly due to the large temporal delay of the

effect. Table 5 summarizes the findings and again also presents the p values of the

permutation test.

Table 5. Estimation Results: German Reunification

Type Method R2 δend δ̄
∑

δ p-value

Levels SC 0.9997 -3134.1 -1276.4 -17870.1 0.059
REGSC 1.0000 -3187.9 -1482.6 -20756.9 0.118
REGVAR 1.0000 -5480.9 -2252.5 -31535.2 0.235
NET 0.9999 -2858.4 -1058.5 -14818.7 0.353
NETVAR 0.9998 -4095.6 -1379.8 -19316.8 0.176
FACTOR 1.0000 -4593.7 -2032.5 -28454.2 0.059

1st Diff. SC 0.9997 -3537.4 -1606.1 -22485.7 0.059
REGSC 0.9999 -3710.3 -1474.0 -20636.4 0.118
REGVAR 1.0000 -4000.9 -885.0 -12389.7 0.588
NET 0.9999 -4186.1 -1706.1 -23885.3 0.118
NETVAR 0.9999 -4800.8 -1870.7 -26189.8 0.118
FACTOR 0.9999 -4751.7 -1887.5 -26424.9 0.059

Interestingly, while SC-, REGSC- and FACTOR seem to cope with the pre-

treatment level data, both versions of the NET struggle to some extend to precisely

match the pre-treatment path of per capita GDP. This observation is noteworthy

as from a theoretical perspective, the elastic net with static data should nest the

solution of the simplified SC model without covariates. The dynamic REGVAR

estimator produces cumulated effects that exceed the estimates of the original SC

model by almost 100%. Similar to the previous example, the p-values were computed

based on the ratios between pre- and post-treatment fit. Considering the results for

the differenced data, we observe an improved predictive performance of the NET

estimator and, as expected, a higher precision for the dynamic models compared

to their static counterparts. The dynamic models seem to require a more attentive

modeling procedure and we again recommend to follow the parsimony principle

and opt for the simplest models, i.e. the SC-model and the static REGSC model
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for the level data. In summary, we find again that that different models yield

different (though in comparable magnitude) treatment effect, stressing once more

the crucial aspect of model uncertainty. Our credibility intervals provides again

some degree of certainty and demonstrates the above outlined uncertainty-trade-

off. Considering the estimation results of the different models, we suggest to regard

the estimated effect of the original SC estimator as a conservative estimate, with

substantial uncertainty surrounding the point estimates.

5. Conclusion

More than 20 years ago, ADH proposed a robust, reliable and easily implemented

method for estimating the causal effect in macroeconomic time series that does not

require hyperparameter tuning, allows for the inclusion of additional explanatory

variables, and is applicable even if the size of the donor pool J exceeds the number

of pre-treatment observations T0. It is therefore not surprising that Athey and

Imbens [2016] describe the method as “arguably the most important innovation in

the policy evaluation literature in the last 15 years”.

In this paper we consider a general model framework for causal inference in a

static and dynamic environment. In this framework, the statistical challenge is to

devise an efficient estimator for the counterfactual, drawing from the relevant infor-

mation set. In empirical practice, the crucial issue is to construct a reliable estimator

in a situation where the number of donors is of similar magnitude than the number

of pre-treatment observations. In this case some regularisation is required. The

original SC approach by ADH imposes the restrictions that all weights are positive

and sum up to unity, whereas Doudchenko and Imbens [2016] propose an elastic

net regularization. Instead of shrinking the weights towards zero our regularization

shrinks the sum of weights towards unity, which can be seen a more flexible version

of the ADH regularization. As the SC approach is often motivated by using a factor

framework, we also propose an SC estimator that is derives from a principal compo-

nent analysis of the covariance matrix. Our Monte Carlo simulations suggest that

both estimators yield a significant improvement over the existing SC methods. Fur-

thermore our regularized estimator admits a natural Bayesian representation that

allows us to compute Bayesian credibility intervals to assess the involved estimation

uncertainty. Especially in contexts where interest relies in the cumulated treatment

effect, it is crucial to assess the uncertainty by providing intervals instead of solely

focusing on point estimates.

Recognizing the prevalence of time series dynamics in many applications, we

highlight the limitations of static models for estimating the treatment effect. We
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therefore propose dynamic versions of the SC estimators that append the donor

pool by lagged donor series. This approach significantly increases the possibility of

overfitting the pre-treatment data and it is therefore important to adopt a suitable

regularization. In the dynamic context, our Monte Carlo experiments show a clear

superiority of the elastic net shrinkage which is due to the ability of the elastic

net to obtain sparse solutions. Generally, we recommend to prioritize rows over

columns as we note that additional donors and covariates that explain the structural

characteristics of the panel units (e.g. columns) are less valuable than longer pre-

treatment time series (e.g. rows).

Another important issue is that in many empirical applications the time series

(for example GDP of different countries) are nonstationary. In this case there may

not exist a stable long-run relationship between the treatment and donor series that

can be used to construct a reliable SC unit. Accordingly there is a risk that static SC

methods suffer from some variant of the spurious regression fallacy. In this case it is

important to apply the static methods to the differenced time series. The dynamic

approaches circumvent this problem as they are able to accommodate unit roots in

the VAR representation of the time series.

Lastly, all SC approaches implicitly assume that the employed model generated

the data at hand, so model uncertainty can be neglected. A possible approach for

further work would be to investigate how different estimated counterfactuals can be

optimally combined, where we again stress the importance of de-meaning intercept-

free models to avoid biased predictions. In the context of the SC method, working

with demeaned series implies that the donor pool is used to explain the deviations of

the treatment series from its pre-treatment mean only. This approach is equivalent

to incorporating a constant and recovers the appealing percent interpretation of the

coefficients. After the estimation of individual models, a natural candidate for a

model stacking approach would be a Bayesian model averaging approach that takes

into account both model and estimation uncertainty.
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6. Appendix

6.1. The limit of REGSC for λ1 → ∞ and λ2 → ∞

For λ1 → ∞ and λ2 → ∞ the objective function reduce to

Q(λ1, λ2) = λ1w
′w + λ2(1 − 1′w)2

The derivative is obtained as

∂Q(λ1, λ2)

∂w
= 2λ1w + 2λ2(1 − 11′w)

By setting the derivative to zero and multiplying with 1 we obtain:

λ11
′w + λ2(n − 1′w) = 0

where 1′w =
∑

wi. Solving for 1′w we obtain

1′w =
1

1 + λ1/λ2

and due to the symmetry of the objective function with respect to the elements of

the weight vector we have

wi = 1/(n + nλ1/λ2)

6.2. Inference

6.3. Derivation of the REGSC prior

The objective function of the REGSC estimator is given by

Q(w, λ1, λ2) =
T0∑

t=1


y0,t − µ∗ −

J∑

j=1

wjyj,t




2

︸ ︷︷ ︸
RSS

+λ1




J∑

j=1

w2
j




︸ ︷︷ ︸
Ridge

+λ2


1 −

J∑

j=1

wj




2

︸ ︷︷ ︸
”inverse”-Ridge

+C

= RSS + λ1w
′w + λ2(w − ιJ)′1J1′

J(w − ιJ) + C

where ιJ is a J × 1 vector with identical elements 1/J . The additional constant C

is just introduced for convenience and does not affect the solution. We are looking

for a Bayesian interpretation of the likelihood of the form

l(w, λ1, λ2) = const −
1

2σ2
RSS −

1

2
(w − µ0)

′V −1
0 (w − µ0)
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where the second term represents the prior distribution. From the squared wi, we

find the covariance matrix:

1

σ2
V −1

0 = λ1IJ + λ2 1J1′

J

= λ1(IJ − P ) + (λ1 + Jλ2)P with P =
2

J
1J1′

J

=
1

λ1

(IJ − P ) +
1

λ1 + Jλ2

P

=
1

λ1

IJ +
1

J(λ1 + Jλ2)
1J1′

J

In a similar manner we obtain

−
2

σ2
w′V −1

0 µ0 = −2λ2w
′1J1′

J ιJ

and, therefore,

1

σ2
V −1

0 µ0 = λ21J1′

J ιJ

µ0 = λ2σ
2V0 1J1′

J ιJ

= λ2/(λ1 + Jλ2)

This gives the parameter for the prior distribution. Note that the constant C ensures

that also the constant term will match.

6.4. Bayesian Estimation of the REGSC weights

To obtain valid posterior samples for each of the 10 explanatory variables and the

error variance, we start by taking the logarithm of the posterior distribution. After-

wards, the posterior is more tangible as it is comprised of the sum of the likelihood

and our priors for the coefficients and the error variance. For numerical stability and

to expand the support to R, we applied a logarithmic transformation to the error

variance. For iid-errors, the likelihood simplifies to the sum of T0 normal densities.

The multivariate (logarithmized) normal prior for the coefficients is of dimension

J and cannot be simplified to a J-dimensional sum of normal distributions as the

covariance structure of the prior matters. For the error term, we assumed a weakly

informative inverse gamma prior distribution with hyperparameters a = b = 0.001.

Next, we employed a metropolis-hastings algorithm with random walk updates

to obtain samples from the posterior distribution. In each step of the iteration, this

involves proposing a new parameter vector based on a normal distribution around
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the previously accepted proposal. The variance of this normal is an hyperparameter

that can have a large impact on the speed of convergence of the algorithm. Each

proposal is assessed according to the posterior value it causes: In case the proposal

provides a higher log-posterior value, it is accepted with certainty to ensure the

algorithm converges to the true REGSC coefficients. In case the proposal provides a

lower log-posterior value, is is accepted with an acceptance probability that is based

on the difference between the log-posterior value of the proposal and the previously

accepted proposal. This procedure ensures that also areas of lower density are

represented accordingly. Bayesian inference is only valid when all Markov Chains

have converged simultaneously and when the autocorrelation structure within in

obtained Markov Chains is removed. Thus, we simulated a total of 150, 000 samples

per marginal posterior, burned the first 50, 000 and thinned the chains by keeping

only every 10th chain element. The following figures shows the converged Markov

Chains (black) with the closed form estimates (red) and the 2.5% and the 97.5%

percentiles (dashed blue):
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Figure 11. Marginal posterior distributions
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6.5. Derivation of the analytical REGSC distribution

It has already been shown that the REGSC estimator has the following closed form

solution:

ŵλ1,λ2
=

(
Z̃ ′Z̃ + λ1IJ + λ21J1′

J

)
−1 (

Z̃ ′ỹ0 + λ21J

)
.

Similar to the variance of the OLS estimator, the variance of the REGSC estimator

conditional on the explanatory variables is derived as follows:

V (ŵλ1,λ2
) = V

(
(Z̃ ′Z̃ + λ1IJ + λ21J1′

J)−1(Z̃ ′ỹ0 + λ21J)|Z̃
)

= (Z̃ ′Z̃ + λ1IJ + λ21J1′

J)−1(Z̃ ′ V (ỹ0|Z̃)
(
Z̃ ′Z̃ + λ1IJ + λ21J1′

J)−1Z̃ ′

)
′

= (Z̃ ′Z̃ + λ1IJ + λ21J1′

J)−1Z̃ ′ V (ǫ|Z̃)
(
(Z̃ ′Z̃ + λ1IJ + λ21J1′

J)−1Z̃ ′

)
′

= σ2(Z̃ ′Z̃ + λ1IJ + λ21J1′

J)−1Z̃ ′

(
(Z̃ ′Z̃ + λ1IJ + λ21J1′

J)−1Z̃ ′

)
′

For a normally distributed error term, it follows that the REGSC estimator is nor-

mally distributed with ŵλ1,λ2
∼ N (ŵλ1,λ2

, V (ŵλ1,λ2
)).
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6.6. Bootstrap Interval

Analogous to figure 1, the following figure demonstrates the functionality of the

Bootstrap intervals. We see that the Bootstrap interval is overly optimistic, most

of the time it is narrower than the true empirical interval.

Figure 12. Bootstrap Intervals

Panel a) plots the actual series (black), the true interval (red) and the REGSC counterfactual

(green). At T = 51, the series experiences a persisting treatment effect of size 10. We see that

the Bootstrap interval has decent coverage: At only two time points (10, 45), the actual series

lies outside the interval. Panel b) compares the actual treatment effect (black) to the REGSC

estimation (green), obtained by subtracting the REGSC counterfactual from the actual series. In

the pre-treatment period, the actual treatment effect of zero is within the interval in 48 out of 50

cases. In the post-treatment period, the actual treatment effect of falls inside the interval in 1 of

20 cases.
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6.7. Additional results

6.7.1. The static case

Table 6. Simulation Results of the Static Factor Model with J = 5 Donors.

Tpre Tpost FACTOR SC REGSC NET OLS

RMSE RMSE RMSE RMSE RMSE
{BIAS} {BIAS} {BIAS} {BIAS} {BIAS}

[MZ] [MZ] [MZ] [MZ] [MZ]
(VAR) (VAR) (VAR) (VAR) (VAR)

20 10 1.2348 1.4482 1.2968 1.2926 1.3520
{-0.0103} {-0.0347} {-0.0104} {-0.0037} {0.0143}
[0.8940] [0.7000] [0.8540] [0.8766] [0.8240]
(0.5889) (1.0399) (0.6222) (0.5745) (1.0234)

50 10 1.1524 1.4264 1.1819 1.1711 1.1862
{0.0110} {-0.0285} {0.0113} {0.0187} {0.0195}
[0.9240] [0.7160] [0.9060] [0.9100] [0.9040]
(0.6342) (1.0640) (0.6435) (0.5778) (0.7819)

100 10 1.1409 1.3606 1.1529 1.1504 1.1534
{0.0200} {0.0584} {0.0229} {0.0216} {0.0251}
[0.9240] [0.7640] [0.9220] [0.9220] [0.9300]
(0.6091) (0.9868) (0.5778) (0.5481) (0.6699)
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Table 7. Simulation Results of the Static Factor Model with J = 10 Donors.

Tpre Tpost FACTOR SC REGSC NET OLS

RMSE RMSE RMSE RMSE RMSE
{BIAS} {BIAS} {BIAS} {BIAS} {BIAS}

[MZ] [MZ] [MZ] [MZ] [MZ]
(VAR) (VAR) (VAR) (VAR) (VAR)

20 10 1.1519 1.5824 1.2383 1.2445 1.6072
{-0.0157} {-0.0193} {-0.0130} {-0.0190} {0.0124}
[0.8880] [0.5980] [0.8400] [0.8402] [0.5800]
(0.6850) (0.8727) (0.7410) (0.7231) (2.1206)

50 10 1.0791 1.3589 1.1136 1.1239 1.1879
{-0.0159} {0.0260} {-0.0205} {-0.0179} {-0.0217}
[0.9500] [0.7720] [0.9520] [0.9380] [0.9140]
(0.7413) (1.0677) (0.7007) (0.6334) (1.0317)

100 10 1.0790 1.5657 1.0972 1.1007 1.1241
{0.0177} {-0.0045} {0.0168} {0.0195} {0.0179}
[0.9460] [0.6060] [0.9460] [0.9460] [0.9440]
(0.7462) (0.8328) (0.7172) (0.6530) (0.8755)
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Table 8. Simulation Results of the Static Factor Model with J = 15 Donors.

Tpre Tpost FACTOR SC REGSC NET OLS

RMSE RMSE RMSE RMSE RMSE
{BIAS} {BIAS} {BIAS} {BIAS} {BIAS}

[MZ] [MZ] [MZ] [MZ] [MZ]
(VAR) (VAR) (VAR) (VAR) (VAR)

20 10 1.1287 1.8565 1.2200 1.2518 2.3528
{0.0080} {0.0710} {0.0058} {-0.0034} {-0.0210}
[0.8920] [0.5080] [0.8580] [0.8574] [0.2620]
(0.7477) (0.9210) (0.8326) (0.8114) (5.2601)

50 10 1.0684 1.3649 1.1105 1.1202 1.2556
{0.0023} {0.0110} {0.0077} {0.0049} {0.0158}
[0.9240] [0.7740] [0.9260] [0.9300] [0.8600]
(0.7179) (0.9402) (0.6938) (0.6181) (1.2110)

100 10 1.0486 1.8036 1.0770 1.0898 1.1387
{-0.0123} {-0.0236} {-0.0176} {-0.0149} {-0.0220}
[0.9480] [0.5440] [0.9340] [0.9280] [0.9300]
(0.7593) (0.8418) (0.7110) (0.6602) (0.9729)

Table 9. Simulation Results of the Static Factor Model with J = 20 Donors.

Tpre Tpost FACTOR SC REGSC NET OLS

RMSE RMSE RMSE RMSE RMSE
{BIAS} {BIAS} {BIAS} {BIAS} {BIAS}

[MZ] [MZ] [MZ] [MZ] [MZ]
(VAR) (VAR) (VAR) (VAR) (VAR)

20 10 1.0952 1.8022 1.1924 1.2214 NA
{-0.0219} {-0.0468} {-0.0226} {-0.0276} NA
[0.9120] [0.5540] [0.8760] [0.8629] NA
(0.7841) (0.8723) (0.8030) (0.8089) NA

50 10 1.0444 1.2875 1.0871 1.1011 1.3345
{-0.0004} {-0.0687} {0.0034} {0.0014} {0.0044}
[0.9360] [0.8100] [0.9180] [0.9200] [0.7940]
(0.7665) (0.8944) (0.7122) (0.6516) (1.4578)

100 10 1.0588 1.7170 1.0803 1.0926 1.1764
{0.0124} {-0.0365} {0.0117} {0.0170} {0.0080}
[0.9600] [0.6200] [0.9460] [0.9340] [0.9100]
(0.8199) (0.7517) (0.7661) (0.6983) (1.1016)
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Table 10. Simulation Results of the Static Factor Model with J = 25 Donors.

Tpre Tpost FACTOR SC REGSC NET OLS

RMSE RMSE RMSE RMSE RMSE
{BIAS} {BIAS} {BIAS} {BIAS} {BIAS}

[MZ] [MZ] [MZ] [MZ] [MZ]
(VAR) (VAR) (VAR) (VAR) (VAR)

20 10 1.1064 1.7120 1.1843 1.2123 NA
{0.0018} {0.0352} {0.0032} {-0.0037} NA
[0.8900] [0.5820] [0.8600] [0.8727] NA
(0.7039) (0.7882) (0.7240) (0.7020) NA

50 10 1.0206 1.2530 1.0681 1.0859 1.4528
{-0.0059} {0.0267} {0.0006} {-0.0001} {-0.0049}
[0.9180] [0.8120] [0.9100] [0.9200] [0.6880]
(0.7826) (0.9777) (0.7508) (0.6835) (1.9355)

100 10 1.0314 1.6539 1.0582 1.0719 1.1890
{0.0028} {0.0766} {0.0041} {0.0067} {0.0082}
[0.9440] [0.6260] [0.9280] [0.9320] [0.8960]
(0.8144) (0.7027) (0.7473) (0.6881) (1.1599)

Table 11. Simulation Results of the Static Factor Model with J = 30 Donors.

Tpre Tpost FACTOR SC REGSC NET OLS

RMSE RMSE RMSE RMSE RMSE
{BIAS} {BIAS} {BIAS} {BIAS} {BIAS}

[MZ] [MZ] [MZ] [MZ] [MZ]
(VAR) (VAR) (VAR) (VAR) (VAR)

20 10 1.0947 1.6478 1.1613 1.1959 NA
{-0.0035} {0.0033} {-0.0073} {-0.0053} NA
[0.9200] [0.5840] [0.8800] [0.8699] NA
(0.8268) (0.8100) (0.7555) (0.7996) NA

50 10 1.0306 1.2044 1.0730 1.0862 1.6406
{0.0051} {-0.0335} {0.0029} {-0.0018} {-0.0247}
[0.9320] [0.8560] [0.9200] [0.9160] [0.5220]
(0.8421) (0.9469) (0.7919) (0.7065) (2.4925)

100 10 1.0167 1.5814 1.0354 1.0524 1.2026
{0.0074} {-0.0379} {0.0054} {0.0026} {0.0069}
[0.9560] [0.5920] [0.9480] [0.9380] [0.8740]
(0.8534) (0.6674) (0.7864) (0.7223) (1.3139)
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Figure 13. Bias-densities for Tpre = 20 and Tpost = 10



6.7 Additional results 52

Figure 14. Bias-densities for Tpre = 50 and Tpost = 10
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Figure 15. Bias-densities for Tpre = 100 and Tpost = 10
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Table 12. MZ-Acceptance rates for Tpre ∈ {20, 50, 100} and J ∈
{5, 10, 15, 20, 25, 30}. 2nd best always excludes the benchmark factor model.

Tpre Donors SC OLS REGSC NET FACTOR 2nd best*

20 5 0.7000 0.8240 0.8540 0.8766 0.8940 NET
20 10 0.5980 0.5800 0.8400 0.8402 0.8880 NET
20 15 0.5080 0.2620 0.8580 0.8574 0.8920 REGSC
20 20 0.5540 NA 0.8760 0.8629 0.9120 REGSC
20 25 0.5820 NA 0.8600 0.8727 0.8900 NET
20 30 0.5840 NA 0.8800 0.8699 0.9200 REGSC

50 5 0.7160 0.9040 0.9060 0.9100 0.9240 NET
50 10 0.7720 0.9140 0.9520 0.9380 0.9500 REGSC
50 15 0.7740 0.8600 0.9260 0.9300 0.9240 NET
50 20 0.8100 0.7940 0.9180 0.9200 0.9360 NET
50 25 0.8120 0.6880 0.9100 0.9200 0.9180 NET
50 30 0.8560 0.5220 0.9200 0.9160 0.9320 REGSC

100 5 0.7640 0.9300 0.9220 0.9220 0.9240 SC
100 10 0.6060 0.9440 0.9460 0.9460 0.9460 REGSC
100 15 0.5440 0.9300 0.9340 0.9280 0.9480 REGSC
100 20 0.6200 0.9100 0.9460 0.9340 0.9600 REGSC
100 25 0.6260 0.8960 0.9280 0.9320 0.9440 NET
100 30 0.5920 0.8740 0.9480 0.9380 0.9560 REGSC



6.7 Additional results 55

Table 13. RMSE average for Tpre ∈ {20, 50, 100} and J ∈ {5, 10, 15, 20, 25, 30}.
2nd best always excludes the benchmark factor model.

Tpre Donors SC OLS REGSC NET FACTOR 2nd best*

20 5 1.4482 1.3520 1.2968 1.2926 1.2348 NET
20 10 1.5824 1.6072 1.2383 1.2445 1.1519 REGSC
20 15 1.8565 2.3528 1.2200 1.2518 1.1287 REGSC
20 20 1.8022 NA 1.1924 1.2214 1.0952 REGSC
20 25 1.7120 NA 1.1843 1.2123 1.1064 REGSC
20 30 1.6478 NA 1.1613 1.1959 1.0947 REGSC

50 5 1.4264 1.1862 1.1819 1.1711 1.1524 NET
50 10 1.3589 1.1879 1.1136 1.1239 1.0791 REGSC
50 15 1.3649 1.2556 1.1105 1.1202 1.0684 REGSC
50 20 1.2875 1.3345 1.0871 1.1011 1.0444 REGSC
50 25 1.2530 1.4528 1.0681 1.0859 1.0206 REGSC
50 30 1.2044 1.6406 1.0730 1.0862 1.0306 REGSC

100 5 1.3606 1.1534 1.1529 1.1504 1.1409 NET
100 10 1.5657 1.1241 1.0972 1.1007 1.0790 REGSC
100 15 1.8036 1.1387 1.0770 1.0898 1.0486 REGSC
100 20 1.7170 1.1764 1.0803 1.0926 1.0588 REGSC
100 25 1.6539 1.1890 1.0582 1.0719 1.0314 REGSC
100 30 1.5814 1.2026 1.0354 1.0524 1.0167 REGSC


