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EU ETS Market Expectations and Rational Bubbles

Abstract

Concerns about a price bubble within the European Union Emissions Trad-

ing System (EU ETS) emerged during the third trading period. We argue that

bubble tests based on costs for switching from cheap, polluting to costly, clean

energy sources is restricted to situations of market certainty. This limitation

is unrealistic, considering the ongoing CO2 reduction measures. Additionally,

establishing fundamental value through switching costs lacks a singular ap-

proach, leading to inconclusive findings. We propose a robust approach to infer

bubbles in the EU ETS. Empirical findings do not support the presence of a

bubble in the third or fourth trading period.

JEL Code: C12 • G14 • Q01



1 Introduction

The theoretical articulation of a trading system as a measure to address market failure by

utilizing transferable allowances was originally introduced by Coase (1960). To internalize

the negative externality of climate change, the European Union (EU) introduced the Euro-

pean Emissions Trading System (EU ETS) in 2005 as a key climate protection instrument.

Alongside other climate policy measures, this cap-and-trade system was initially intended

to help reduce greenhouse gas emissions in the EU by at least 40% by 2030 compared to

1990 levels.

Overall, the EU ETS covers around 40% of total greenhouse gas emissions within the

European Union. This makes the EU ETS the most comprehensive emissions trading system

in the world. The participating states issue emission allowances partly free of charge,

partly through auctions. One allowance permits the emission of one ton of CO2 equivalents.

Annually, firms subject to reporting obligations are required to submit an emissions report

for the previous year and they are obligated to prove ownership of the corresponding

number of allowances by the compliance date. Market participants have the option of

banking allowances, given that the certificates maintain their validity not only within the

compliance period but also extending into a subsequent trading period and beyond. Further,

the right to freely trade these emission allowances establishes market prices for greenhouse

gas emissions on the spot and futures market.

The total amount of greenhouse gas emissions per trading period that may be emitted

by the approximately 13,500 production facilities subject to emissions trading in the 27 EU

member states, Norway, Iceland and Liechtenstein is determined by a cap. In the first two

trading periods (2005-2007 and 2008-2012), there was a massive oversupply of emission

rights that were allocated largely free of charge. The resulting market prices were judged

by the Organisation for Economic Co-operation and Development (OECD) to be too low to

meet the political target in terms of emission reductions within the EU (see OECD, 2018).

On the contrary, Bayer and Aklin (2020) empirically demonstrate that, despite low prices,

the EU ETS effectively contributed to a significant reduction in emissions from 2008 to

2016.

To reinforce the effectiveness of the EU ETS to limit CO2 emissions, with a price at

around three euros per metric ton of CO2 equivalents at the start of the third trading period

in 2013, EU policymakers initiated a number of reforms: (i) Since the third trading period

(2013-2020), a larger share of allowances has been auctioned to market participants, rather
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than allocated freely as in the second trading period; (ii) during the first and second trading

periods, there were national caps – with the third trading period, a uniform cap was set in

the EU ETS; (iii) the EU adopted measures to reduce the amount of (surplus) allowances.

The focus here is on the Market Stability Reserve (MSR), which gradually reduces the

surplus in emissions trading and transfers it to a reserve from 2019 on.

Insert Figure 1 here.

Since 2018, there have been rapid price increases for the market price of emission

allowances (see Figure 1). According to a 2019 survey by the Leibniz Centre for European

Economic Research (see ZEW, 2019), 34% of market participants see the expected shortage

of allowances due to the MSR as the main driver of the price increase, another 16%

attribute it to the expectation of other tighter regulations, and 14% assume that speculation

is behind the sharp price increases. With respect to the academic literature, there are

several studies addressing excessive speculation and bubbles in the EU ETS. See, for most

recent contributions, Jeszke and Lizak (2021), Wei, Li, and Wang (2022) and Quemin and

Pahle (2023).

If the price hikes are indeed caused by a rational bubble, there would be uncertainty

about the sustainability of the price increase since 2018 and whether a market correction

should be anticipated in the future. In this case, the incentive created by the EU ETS for

cost-effective emission reductions risks becoming ineffective. However, a massive drop

in prices has not been observed since 2018 – on the contrary, prices have continued to

rise with the fourth trading period (see Figure 1). Pahle, Günther, Osorio, and Quemin

(2023) provide an analysis on various scenarios and developments related to the endgame

anticipating a decade of critical changes in the EU ETS. In April 2023, the European

Parliament adopted a new round of EU ETS reforms aligned with the Fit For 55 package.

These reforms include (i) a reduction in freely issued allowances and a stricter cap, with the

Linear Reduction Factor for new allowances increasing from 2.2% per year to 4.4% starting

in 2028 and (ii) two one-off reductions of allowances, known as Rebasing, are scheduled

for 2024 and 2026. With the supply of new allowances expected to reach zero by 2040,

these changes introduce substantial uncertainty into the market’s long-term price dynamics

and coincident with further price increases. Hence, the price of allowances might reflect

market participants’ expectations about the scarcity of allowances rather than the current

switching costs, including the associated uncertainty. In this context, the primary objective

of this paper is to offer an empirical analysis to determine whether the price increases over

the third and fourth trading period can genuinely be attributed to a rational bubble.
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On the one hand, the empirical evidence for a rational bubble in the EU ETS could be

attributed to the existence of a rational bubble in the EU ETS or to the misspecification

of the empirical proxy for the fundamental. Under the conditions that fuel-switching, i.e.,

investing in transitioning the production process from environmentally detrimental energy

sources to environmentally friendly alternatives, is a perfect substitute for buying emission

permits, producers will shift their production from cheaper but environmentally harmful

energy sources to more expensive but cleaner alternatives. This transition will continue as

long as the cost of reducing CO2 emissions is lower than the price of allowances. In a state

of market equilibrium without a rational bubble, the price in the EU ETS will align with

the marginal abatement costs, see Montgomery (1972), Rubin (1996) and Kling and Rubin

(1997) for deterministic equilibrium models. This forms the rationale for the folk principle

considering switching costs as the fundamental in the EU ETS.

On the other hand, the interpretation of rational bubble tests based on switching costs

assumes that the purchase of emission allowances is a perfect substitute for abatement

solutions and this does not hold if market actors make decisions under uncertainty, e.g.,

uncertainty about allowance price determinants, market demand for products and services

provided by CO2 emitting firms or policy certainty, see Zhao (2003), Chesney and Taschini

(2012) and Taschini (2021), or if transaction costs, e.g., informational and contractual costs,

have an impact, see Baudry, Faure, and Quemin (2021). Further, deterministic equilibrium

models assume that polluting firms comply with the regulation while stochastic equilibrium

models take the non-compliant event directly into account, see Seifert, Uhrig-Homburg,

and Wagner (2008), Carmona, Fehr, and Hinz (2009), Carmona, Fehr, Hinz, and Porchet

(2010), Carmona and Hinz (2011), Chesney and Taschini (2012) and Hitzemann and

Uhrig-Homburg (2018) for stochastic equilibrium models.1

We study the empirical implications of pricing equations for testing efficiency in an

Emissions Trading Systems (ETS) on a solid foundation of rigorous economic theory. More

specifically, we analyze the empirical implications of market equilibria, i.e., in the absence

and presence of a rational bubble, within an ETS:

(i) Pricing with Switching Costs: Given that the EU ETS market price aligns with marginal

abatement costs, see Carmona, Fehr, and Hinz (2009), we establish a pricing equation

which implies a testable theoretical co-integration (co-explosiveness) vector. This

1See Chapter 7 in Chesney, Gheyssens, and Taschini (2013) for a comprehensive overview on deterministic
and stochastic models for emission price dynamics.
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vector should be evident in market equilibrium during non-explosive (explosive)

episodes when no rational bubble is present.

(ii) Pricing with Market Expectations: For cases where the EU ETS market price deviates

from marginal abatement costs, we examine the empirical implications of pricing

equations based on market expectations, as discussed by Chesney and Taschini (2012)

and Hitzemann and Uhrig-Homburg (2018). We differentiate between scenarios

where banking is feasible or not within the trading system.

Given the option for market actors to bank certificates in the EU ETS, we propose a testing

procedure that is based on the predictive regressions outlined by Fama (1984). This is

referred to hereafter as the Fama Predictive Regression (FPR). We follow Pavlidis, Paya,

and Peel (2017, 2018) using an endogenous instrumental variable based method (IVX),

see Phillips and Magdalinos (2009), Kostakis, Magdalinos, and Stamatogiannis (2015)

and Yang, Long, Peng, and Cai (2020), to estimate the FPR. Nevertheless, unlike the

methodology proposed in Pavlidis, Paya, and Peel (2017) where a non-zero risk premium

is restricted from being a component of the futures price, our method permits its inclusion.

Considering that purchasers (sellers) of certificates can hedge against anticipated price

increases (decreases) on the futures market, it stands to reason that hedging pressure

will arise, particularly in the event of strong price dynamics (see, among others, Bessem-

binder, 1992; Bessembinder and Chan, 1992; De Roon, Nijman, and Veld, 2000; Dewally,

Ederington, and Fernando, 2013, for empirical evidence supporting the Hedging Pressure

Hypothesis on futures markets). Notably, our approach is innovative in that it remains

agnostic concerning the true fundamental and trend behavior of the risk premium. Thus,

the risk premium can be explosive, which might be a phenomenon of economic relevance

given rapidly growing price expectations. Therefore, this paper contributes also to the

literature on testing against rational bubbles (see, among others, Phillips and Yu, 2011;

Phillips, Shi, and Yu, 2015a,b; Harvey, Leybourne, Sollis, and Taylor, 2016; Pavlidis, Paya,

and Peel, 2017, 2018).

Moreover, to examine whether the third trading phase (2013-2020) and the fourth

trading phase (2021-ongoing) of the EU ETS have been free of rational bubbles (so far),

we contribute with the following exercises to the empirical literature on carbon trading:

(i) We first investigate whether the EU ETS contains explosive episodes during the third

and fourth trading period, which is a necessary condition for a rational bubble in
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the EU ETS during this period. At this juncture, it seems acceptable to make a slight

anticipation: We find pronounced explosiveness in EU ETS prices since 2018.

(ii) We estimate the predictive regression proposed by Fama (1984) employing the IVX

technique by Kostakis, Magdalinos, and Stamatogiannis (2015) and using the IVX-AR

approach by Yang, Long, Peng, and Cai (2020). This allows us to test against a rational

bubble in the EU ETS in the presence of an (explosively) trending risk premium.

(iii) To either validate or challenge the outcomes of the FPR approach, we employ both the

test by Phillips, Shi, and Yu (2015a,b) on the differential between future spot rates

and futures rates and the test by Evripidou, Harvey, Leybourne, and Sollis (2022) on

the future spot rates and futures rates, aiming to investigate the potential absence of

a rational bubble in the EU ETS.

The paper is organized as follows: The following section elaborates on pricing equations in

the EU ETS based on switching costs and based on market expectations. Section 3 proposes

the econometric testing procedure and presents the results of a comprehensive Monte Carlo

analysis. Section 4 describes the data and unveils the empirical findings of the paper. The

concluding section, as outlined in Section 5, wraps up the discussion and delves into policy

implications and potential directions for future research.

2 Pricing Equations for Emission Trading Systems

This section presents two fundamentally different approaches to price allowances in emis-

sions trading systems: One is based on switching costs and the other on market expectations.

The first approach relies on the implicit assumption that emission allowances are perfect

substitutes for any technological abatement solution. Under this assumption, the ETS price

should be determined by switching costs towards more CO2-efficient energy sources (see

Montgomery, 1972; Rubin, 1996; Kling and Rubin, 1997; Carmona, Fehr, and Hinz, 2009).

However, if market participants act under uncertainty and/or are faced with transaction

costs, the assumption that allowances and fuel-switching are perfect substitutes is violated.

Considering that investments in fuel-switching technologies often come with high costs,

long-term durability, and irreversible investment requirements, they are typically not viewed

as a perfect substitute to emission permits (see Chesney and Taschini, 2012; Taschini, 2021).

Hence, the current spot price might reflect the expectation of scarcity of future emission
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allowances rather than current switching costs. Therefore, we study in the following

empirical implications of pricing equations based on expectations.

2.1 Pricing with Switching Costs

A rational bubble can be characterized as a situation where the price of an asset becomes

disconnected from its underlying fundamental value. Within a rational expectations frame-

work, rational bubbles emerge solely from the expectations of market actors regarding

future price increases (see Flood and Hodrick, 1990). Since rational price expectations are

positive, the price of the asset surges beyond its intrinsic value during a rational bubble

(see Tirole, 1985; Diba and Grossman, 1988a,b).

We denote the price in the ETS as Pt , viz.

Pt = Ut + Bt with t = 1, 2, . . . , T (1)

where Ut ≥ 0 is the fundamental value and Bt ≥ 0 is the bubble component. The

decomposition is orthogonal and hence, Ut and Bt are uncorrelated components of Pt .

Blanchard (1979) suggests to model the bubble component as

Bt =

¨

1+ρ
π × Bt−1 + εt with probability π,

εt with probability 1−π,
(2)

where ρ > 0 denotes the risk-free rate and εt is an independent and identically distributed

(i.i.d.) random variable with zero mean and variance σ2
ε
, i.e., εt ∼ i.i.d.

�

0,σ2
ε

�

. We relax

the i.i.d. assumption to allow for a general linear process, e.g., a stationary and invertible

AutoRegressive Moving Average (ARMA) process. The bubble survives with probability π in

period t. In this case, the bubble expands at an increased rate of (1+ρ)/π to compensate

investors for the potential bubble collapse. The bubble bursts with probability 1−π to white

noise εt . We denote the conditional expectation given the information set Ft available at

time t by Et := E [· | Ft]. Since the bubble is a sub-martingale process, i.e.,

Et [Bt+1] = (1+ρ)Bt , (3)

the bubble component of the price process Bt is explosive and expecting that Bt+1 >

Bt is rational, hence the term rational bubble (see Diba and Grossman, 1988a). These
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characteristics are also fulfilled, for example, by the periodically collapsing bubble process

according to Evans (1991).

A time series with no deterministic component is said to be integrated of order d, denoted

as I (d), if differencing the series d times results in a time series that has a stationary and

invertible ARMA representation (see Engle and Granger, 1987). No finite number of

differencing of an explosive process has a stationary and invertible ARMA presentation, viz.

an explosive process is I (∞) and therefore, the bubble component is integrated of order

infinity, i.e., Bt ∼ I (∞), see Diba and Grossman (1988a). We use the notion of integration

and the I (d)-notation in the following to analyze the empirical implications for the ETS

price given the presence or absence of a rational bubble, respectively.

Next, we delve into modeling the fundamental Ut : Assuming that emission allowances

can perfectly substitute fuel-switching – meaning a transition from cheap but polluting

to expensive but clean energy sources – producers will adjust their production processes.

This adjustment will occur as long as the marginal cost of avoiding CO2 emissions does not

surpass the price of allowances (see Montgomery, 1972; Rubin, 1996; Kling and Rubin,

1997). Hence, in market equilibrium and assuming the absence of a rational price bubble,

the price within the ETS aligns with the switching costs towards CO2-efficient energy

sources. Building on Carmona, Fehr, and Hinz (2009), the switching costs in the EU ETS

are given as

St =
ηgas × P(gas)

t −ηcoal × P(coal)
t

Ecoal − Egas
, (4)

with P(gas)
t and P(coal)

t as the price of natural gas and the price of coal at time t, respectively.

Further, the constant average CO2 emissions for gas are given by

Egas = 0.202
tCO2

MWhtherm
×

1
0.52

MWhtherm

MWhel
= 0.388

tCO2

MWhel

and for coal are given by

Ecoal = 0.341
tCO2

MWhtherm
×

1
0.38

MWhtherm

MWhel
= 0.897

tCO2

MWhel
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expressed in terms of metric tons of carbon emissions (tCO2
) per Megawatt-hour (MWh) of

electricity (MWhel). Further, MWhtherm denotes a MWh of thermal power. The correspond-

ing heat input coefficient is for gas

ηgas =
1

0.52
MWhtherm

MWhel
= 1.92

MWhtherm

MWhel

and for coal

ηcoal =
1

6.961
tcoal

MWhtherm
×

1
0.38

MWhtherm

MWhel
= 0.378

tcoal

MWhel

where tcoal denotes one metric tone of coal. The precise numeric coefficients are obtained

from Carmona, Fehr, and Hinz (2009).

Hence, the empirical pricing equation of emission allowances with Bt = 0 based on

switching costs as the fundamental value reads as

Pt =
ηgas

Ecoal − Egas
× P(gas)

t −
ηcoal

Ecoal − Egas
× P(coal)

t + εt , (5)

where P(gas)
t and P(coal)

t are time series that are assumed to be integrated of order one,

respectively. Further, let εt be a zero-mean innovation term integrated of order zero, i.e.,

εt ∼ I (0). Thus, εt might follow a stationary and invertible ARMA process.

Time series are said to be co-integrated when they share a common stochastic trend,

meaning that there is a linear combination of these time series with a lower degree of inte-

gration than the underlying variables. Under the above assumptions about the underlying

time series, the switching costs and the spot prices in the ETS are co-integrated with vector

�

1,ψgas,ψcoal

�′
:=

�

1,
ηgas

Ecoal − Egas
,−

ηcoal

Ecoal − Egas

�′

, (6)

since Pt ∼ I(1), P(gas)
t ∼ I(1), P(coal)

t ∼ I(1) and Pt−ψgas×P(gas)
t −ψcoal×P(coal)

t = εt ∼ I (0).
Note that the expression on the right-hand side of Equation (5) also has the potential

to exhibit explosiveness. Specifically, gas prices, coal prices, or both may be explosive

(integrated of order infinity). In such a scenario, the ETS spot price would demonstrate an

explosively trending behavior and share this explosive trend with gas and/or coal prices. In

other words, ETS spot prices would exhibit co-explosiveness with gas and coal spot prices,
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e.g., Pt ∼ I(∞), P(gas)
t ∼ I(∞), P(coal)

t ∼ I(1) and Pt −ψgas× P(gas)
t −ψcoal× P(coal)

t = εt ∼
I (0).2

Pricing Equation 1 With a potentially non-zero bubble component, it follows that the spot

price process in the emission trading system, if emission certificates and switching costs are

perfect substitutes, is given by

Pt
︸︷︷︸

I(1)/ I(∞)

=
ηgas

Ecoal − Egas
× P(gas)

t
︸︷︷︸

I(1)/ I(∞)

−
ηgas

Ecoal − Egas
× P(coal)

t
︸ ︷︷ ︸

I(1)/ I(∞)

+ Bt
︸︷︷︸

I(∞)

+ εt
︸︷︷︸

I(0)

.

It becomes evident that when Bt > 0, the price dynamics Pt must exhibit explosiveness,

and when Bt = 0, the price dynamics could potentially be explosive, contingent upon

an explosive coal or gas price. Therefore, the presence of explosiveness in the price Pt

alone does not provide adequate grounds to ascertain the existence of a rational bubble.

Yet, when Bt = 0, the differential between the price and the switching costs is integrated

to an order of zero, i.e., Pt − St = εt ∼ I(0), since Pt and St are co-integrated or co-

explosive, respectively. In contrast, when Bt > 0, the differential exhibits explosiveness,

viz. Pt − St = Bt + εt ∼ I(∞). To examine the presence of a rational bubble within the

ETS, one approach is to employ a right-sided unit root test on the differential between the

ETS price and the switching costs. Empirical evidence in favor of the alternative, i.e., that

Pt − St is explosive, could argue for the existence of a rational bubble. However, rejecting

the null hypothesis could stem from a misspecification of the fundamental, leading to

inconclusive outcomes. For example, Creti and Joëts (2017) determine the fundamental

of the EU ETS as 0.520× P(gas)
t + 0.632× P(oil)

t + 0.514× St − 0.260× P(stock)
t by principle

component analysis, whereas P(oil)
t denotes the price for crude oil and P(stock)

t is the value

of an appropriate stock market index at time t. Specifying the fundamental in this way is

in marked contrast to the specification based solely on switching costs as in Equation (5),

highlighting the different interpretations of the true underlying fundamental in the ETS

and the possibility of misspecification.

Consequently, discovering a method to identify a rational bubble without the need to

explicitly define a fundamental is essential, particularly in the context of an ETS. It becomes

even more crucial considering an additional limitation of the switching costs approach,

which assumes that investments in fuel-switching technologies and the acquisition of

emission allowances are perfect substitutes. In situations where market participants are

2There is the possibility of co-integration or co-explosiveness between gas and coal prices. Nevertheless,
since these instances are not pertinent to the subsequent analysis, they will not be elaborated upon here.
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faced with transaction costs or if market actors anticipate alterations in future switching

costs, varying penalties for non-compliance, or a potential adjustment in the quantity of

certificates available, the perfect substitutes assumption might be violated and the validity

of Pricing Equation 1 would be compromised (see Zhao, 2003; Chesney and Taschini, 2012;

Taschini, 2021; Baudry, Faure, and Quemin, 2021). Especially due to dynamic political

measures to reduce CO2 emissions, the assumption that market actors decide under certainty

appears unrealistic (see Pahle, Günther, Osorio, and Quemin, 2023). The next section

provides an approach which does not require the assumption that fuel-switching and buying

certificates are perfect substitutes.3

2.2 Pricing with Market Expectations

Chesney and Taschini (2012) formulate an equilibrium model for the price dynamics of

emission allowances, incorporating the presence of asymmetric information. As a result,

the equilibrium price of allowances is determined by the market actor’s expectations of

either scarcity or surplus of allowances in the market. Expanding upon their results and

on the findings by Hitzemann and Uhrig-Homburg (2018), our goal within this section is

to introduce a pricing equation based on market expectation to analyse rational bubbles

in ETS. We begin with an approach that assumes the absence of banking possibilities.

Following this, we delve into a perspective that accommodates banking, which aligns more

realistically with the context of the EU ETS.

Banking in the context of this paper means that market actors are allowed to use

certificates beyond the current compliance date T and they exercise this option when

they anticipate an increase in allowance prices. In order to fix ideas, consider the forward

contract written at time t with delivery date T : The bubble component is eliminated from

the forward price if the delivery date equals the compliance date T , as the forward contract

can only be used for compliance and not longer for speculation. However, if it is possible to

bank, speculation can continue beyond T , and the bubble component does not necessarily

disappear from the price expectations. However, as pointed out by Pavlidis, Paya, and

Peel (2017, 2018), under rational bubbles, the weighting of the bubble part in the price

3Given that the assumptions of an empirical study relying on the switching costs approach seem overly
restrictive, we will refrain from analyzing co-integration or co-explosiveness in the following empirical
analysis. However, note that there are several studies that analyze a potential co-integration equilibrium
between switching costs and emission prices (see Creti, Jouvet, and Mignon, 2012; Koch, Fuss, Grosjean,
and Edenhofer, 2014; Rickels, Görlich, and Peterson, 2015). Further, see Hintermann, Peterson, and Rickels
(2016) for a comprehensive review on the empirical literature about allowance price dynamics during phase
II.
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expectations differs from the weighting of the bubble component in the actual spot price.

As the fundamental components are weighted equally in the equations for prices and price

expectations, explosiveness in the differential between price expectations and the actual

prices indicates conclusively a rational bubble.

2.2.1 Trading without Banking Opportunities

If the ETS does not allow for banking, the value of an allowance at time t for a regulated

firm i, denoted as Ui,t , can be thought of as the expected discounted probability-weighted

penalty $T , which firm i = 1,2, . . . , I would have to pay if it fails to provide enough

certificates by the compliance date T (see Carmona, Fehr, and Hinz, 2009; Chesney and

Taschini, 2012; Hitzemann and Uhrig-Homburg, 2018). Hence, we receive the fundamental

in the ETS from the perspective of firm i as

Ui,t = (1+ρ)
−(T −t) ×Ei,t

�

$T ×
�

1−Pi,T

��

, (7)

whereas t ∈ (0,T ], Pi,T is the probability that firm i fails to comply with the regulations

at time T and Ei,t := E
�

· | Fi,t

�

denotes conditional expectation given the information set

Fi,t available for firm i at time t. Next, consider the price of a forward contract, denoted by

Fi,T ,t , written by firm i at time t with delivery date T , i.e., the price of a forward contract

that guarantees delivery of allowances at compliance date to firm i. Given that market

actors are risk-neutral, the price of this forward contract at time t corresponds to the

expected probability-weighted penalty, viz.

Fi,T ,t = Ei,t

�

$T ×
�

1−Pi,T

��

, (8)

as any speculation on elevated prices beyond time T is irrational from the perspective

of firm i without banking. Hence, the speculative element, i.e., the influence of the

bubble component within this forward contract must approach zero as the delivery date

approaches compliance date T . Chesney and Taschini (2012) show in a multi-firm trading

setup and under asymmetric information about emission levels of individual firms that

the discounted equilibrium fundamental process is a martingale and free of arbitrage

opportunities. Correspondingly, Hitzemann and Uhrig-Homburg (2018) receive a cost-of-

carry model similar to

Ut = (1+ρ)
−(T −t) × FT ,t + vt . (9)
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It is important to mention that in this context, vt ∼ I (0) incorporates the convenience

yield, as discussed in detail by Trück and Weron (2016).

Pricing Equation 2 The assumption of risk-neutral agents ensures that FT ,t is equivalent to

market expectations. Hence, in the absence of the ability to bank certificates, the spot price in

the ETS is determined for risk-neutral agents as

Pt = (1+ρ)
−(T −t) × FT ,t + Bt + vt .

Given that vt ∼ I(0), for Bt = 0, the differential

DT ,t := Pt − (1+ρ)
−(T −t) × FT ,t , (10)

is integrated of order zero, i.e.,

DT ,t
︸︷︷︸

I(0)

= vt
︸︷︷︸

I(0)

(11)

and for Bt > 0, the differential is integrated of order infinity, i.e.,

DT ,t
︸︷︷︸

I(∞)

= Bt
︸︷︷︸

I(∞)

+ vt
︸︷︷︸

I(0)

. (12)

Hence, applying a right-sided unit root test to DT ,t would allow to draw consistent inference

about a rational bubble. Moving forward, we examine a trading scheme that permits banking

and is thus more in alignment with the EU ETS.

2.2.2 Trading with Banking Opportunities

Taking into account the opportunity for banking among market participants beyond period

T , the forward (futures) price could contain a bubble component. Hitzemann and Uhrig-

Homburg (2018) propose a stochastic equilibrium model that takes banking directly into

account. The authors show that the equilibrium permit price without a rational bubble,

i.e., the fundamental value, is given by

Ut =
NT
∑

p=k

(1+ρ)−(Tp−t) ×Et

�

UTp

�

(13)
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allowing for permit banking, whereas t ∈ (Tk−1,Tk] and NT denotes the number of

compliance periods of the ETS.

Pricing Equation 3 If banking is allowed in the emission trading system, the spot price in

the ETS is determined as

Pt =
NT
∑

p=k

(1+ρ)−(Tp−t) ×Et

�

UTp

�

+ Bt .

Hence, the price with a bubble component at time t + n is given by

Pt+n = Ut+n + Bt+n =
NT
∑

p=k

�

(1+ρ)−(Tp−t−n) ×Et+n

�

UTp

��

+ Bt+n

=
NT
∑

p=k

�

(1+ρ)−(Tp−t−n) ×Et+n

�

UTp

��

+
�

1+ρ
π

�n

Bt + εt+n

(14)

with (t + n) ∈ (Tk−1,Tk]. For the price expectations at time t about time t + n, we receive

Et [Pt+n] =
NT
∑

p=k

�

(1+ρ)−(Tp−t−n) ×Et

�

UTp

��

+Et [Bt+n]

=
NT
∑

p=k

�

(1+ρ)−(Tp−t−n) ×Et

�

UTp

��

+ (1+ρ)n × Bt

(15)

with (t + n) ∈ (Tk−1,Tk]. The differential between actual and expected ETS prices is given

by

Dt+n := Pt+n −Et [Pt+n] = ϑt+n + (1+ρ)
n
�

1
πn
− 1

�

× Bt + εt+n, (16)

whereas the prediction error of the fundamental component reads as

ϑt+n =
NT
∑

p=k

�

(1+ρ)−(Tp−t−n) ×Et+n

�

UTp

��

−
NT
∑

p=k

�

(1+ρ)−(Tp−t−n) ×Et

�

UTp

��

(17)

and εt+n is the prediction error for the bubble component. Note that ϑt+n when Bt = 0 and

ϑt+n + εt+n when Bt > 0 correspond to the prediction which minimizes the mean-squared

prediction error (MSPE). This is because, by definition, conditional expectation minimizes

the MSPE under quadratic loss, see Granger (1969) and Baumeister (2023).
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With ϑt+n ∼ I (0) and ϑt+n + εt+n ∼ I (0), respectively, we receive for Bt = 0,

Dt+n
︸︷︷︸

I(0)

= ϑt+n
︸︷︷︸

I(0)

(18)

and for Bt > 0, we obtain

Dt+n
︸︷︷︸

I(∞)

= ϑt+n
︸︷︷︸

I(0)

+(1+ρ)n
�

1
πn
− 1

�

× Bt
︸︷︷︸

I(∞)

+ εt+n
︸︷︷︸

I(0)

. (19)

Hence, the differential Dt+n does not depend on the market fundamental, see Pavlidis, Paya,

and Peel (2017, 2018). This implies that the explosive dynamics of the differential between

spot (see Equation 14) and expected spot prices (see Equation 15) are due solely to the

presence of a rational bubble.

Hence, one might consider employing a right-sided unit root test to assess explosiveness

in Dt+n. However, it is crucial to acknowledge that Et [Pt+n] is not observable. To tackle

the challenges stemming from this lack of observability, we introduce a novel approach in

the following sections.
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3 Testing against Rational Bubbles in the Presence of a

Risk Premium

The predominant empirical method for evaluating rational bubbles has been introduced

by Phillips and Yu (2011) and Phillips, Shi, and Yu (2015a,b). Their proposed approach

involves testing against explosive behavior in the differential between fundamental and

price series. Moreover, these scholars present robust right-sided unit root tests, aiming to

overcome concerns raised by Evans (1991) regarding the limited power of standard unit

root and co-integration tests in detecting periodically collapsing bubbles. One limitation

of employing explosiveness testing in the differential between fundamental and price

series to assess rational bubbles is its dependence on a proxy for the fundamental process.

Although this concern might be manageable in the realm of stocks, where the dividend

process is observable and can act as a substitute for the fundamental, the preceding chapter

underscored the challenges associated with defining the fundamental in the context of an

ETS.

Pavlidis, Paya, and Peel (2017, 2018) address this challenge by investigating market

expectations instead of opting for a proxy for the fundamental. Consequently, Pavlidis,

Paya, and Peel (2017) utilize the continuous futures price at time t with a delivery date

of t + n, represented as Fn,t , as a proxy of market expectations. However, this approach

comes with a limitation, as the risk premium, which accounts for the difference between

the futures price and the market expectation, remains unobservable. Based on the current

state of the literature, this necessitates a decision between making assumptions about the

trending behavior of the risk premium or estimating the risk premium from the futures

price series, as deliberated by Hamilton and Wu (2014). Subsequently, we investigate an

approach that eliminates the need for both.4

4It is crucial to acknowledge that employing the Hamilton and Wu (2014) method for estimating the
market expectations includes an inherent estimation error. This error extends to right-sided unit root tests
employed for rational bubble inference, potentially resulting in significant size distortions. Hence, we abstain
from estimating market expectations in the initial stage and subsequently employing these expectations for
bubble testing in the second stage.
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3.1 The Role of the Risk Premium

As stated previously in Section 2.2.2, Equation (16) predicts a stationary equilibrium

between actual prices and price expectations in the absence of a rational bubble. Should

the researcher opt for assuming a stationary risk premium, denoted as RPn,t ∼ I (0) where

RPn,t := Fn,t −Et [Pt+n] , (20)

she can apply a stationarity test to Pt+n − Fn,t to test against the presence of a rational

bubble. However, rejecting the null hypothesis of stationarity of Pt+n − Fn,t could arise

from either a bubble price component or a non-stationary risk premium. Moreover, if the

researcher is willing to assume an integrated risk premium of order one, i.e., RPn,t ∼ I (1),
a right-sided unit root test might be employed. Rejecting the null hypothesis of no rational

bubble in this scenario could be attributed to either a rational bubble or an explosive risk

premium, denoted as RPn,t ∼ I (∞).

Is an explosive risk premium a phenomenon that holds economic relevance? To answer

this question, we define the risk premium as in Equation (20), a negative (positive) risk

premium indicates normal backwardation (normal contango) in the futures market, i.e.,

Fn,t < Et [Pt+n]
�

Fn,t > Et [Pt+n]
�

. Originally proposed by Keynes (1930) and Hicks (1939),

the notion of normal backwardation posits that hedgers typically maintain short positions as

an insurance against the market price risk. The Insurance Hypothesis implies that the futures

price should be lower than the expected future spot price, acting as compensation to the

speculator for furnishing insurance to the producer. More generally, the Hedging Pressure

Hypothesis states that, in normal backwardation (normal contango), the risk premium is

driven by sellers (buyers) engaged in future contracts to insure against anticipated price

decreases (increases), see, among others, Bessembinder (1992), Bessembinder and Chan

(1992), De Roon, Nijman, and Veld (2000), and Dewally, Ederington, and Fernando (2013)

for empirical support in favor of the Hedging Pressure Hypothesis.

In the context of an ETS, firms regulated and holding surplus emission certificates may

choose to sacrifice a premium to shift the price risk to the long position, viz. they are willing

to receive the certainty equivalent Et [U (Pt+n)] whereas Et [U (Pt+n)] < Et [Pt+n]. In this

case U (·) denotes the utility function of a representative agent holding the short position.

Conversely, firms facing a shortage of certificates might be inclined to pay a premium to

transfer the price risk to the short position, viz. these agents are willing to pay the certainty
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equivalent Et [U (Pt+n)] whereas Et [U (Pt+n)] > Et [Pt+n]. In this case U (·) denotes the

utility function of a representative agent holding the long position.

In both scenarios (normal contango or normal backwardation), the resulting time-

varying risk premium depends on the spot price:

RPn,t = Et [U (Pt+n)]−Et [Pt+n] +ϕt . (21)

Here, ϕt is a zero-mean I (0) innovation term whose variance is labeled as σ2
ϕ

. This implies

that Cov
�

Bt , RPn,t

�

6= 0 and Cov
�

Ut , RPn,t

�

6= 0 might be pertinent, whereas Cov (·, ·)
denotes the population covariance. To illustrate the potential economic significance of a

trending risk premium with utmost simplicity, we assume that U (·) is linear, i.e.,

Et [U (Pt+n)] = (1+%)Et [Pt+n] , (22)

whereas % denotes the risk aversion parameter with −1 < % < 0 in a normal back-

wardation situation and % > 0 in a normal contango situation. Hence, we receive the

time-varying risk premium as

RPn,t = % × ((1+ρ)
n Bt + θ

nUt) +ϕt , (23)

whereas Cov (Ut , Bt) = 0 and the fundamental follows an autoregressive process, expressed

as Ut = θUt−1+ϑt , where θ ≥ 1 represents the autoregressive coefficient. This formulation

ensures co-explosiveness (co-integration) between the risk premium and the bubble (and

the fundamental) component with the vector

�

1,ψn,B,ψn,U

�′
:= (1,% (1+ρ)n ,%θ n)′

such that Cov
�

Bt , RPn,t

�

= % (1+ρ)n Var (Bt) and Cov
�

Ut , RPn,t

�

= %θ n Var (Ut). The

potential co-explosiveness between bubble (fundamental) and risk premium, renders an

explosive risk premium a phenomenon of economic relevance.
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3.2 Fama Predictive Regressions

In this section, we showcase a method based on FPRs that is robust against the trending

behavior of the risk premium. Specifically, the rejection rates of the newly suggested test

statistic align with the nominal level under the null hypothesis of no rational bubble (size of

the test). Additionally, our method exhibits decent power properties to infer rational bubbles

under different conditions, such as a stationary risk premium, RPn,t ∼ I (0); an integrated

risk premium of order one, RPn,t ∼ I (1); and an explosive risk premium, RPn,t ∼ I (∞).

Fama (1984) splits the futures price at time t and delivery date t + n into the expected

price at time t with respect to time t + n and a risk premium RPn,t , i.e.,

Fn,t = Et [Pt+n] + RPn,t (24)

to receive the differential between the futures price and the current price, i.e.,

Fn,t − Pt = Et [Pt+n]− Pt + RPn,t , (25)

and to obtain the differential between the futures price and future spot price, i.e.,

Fn,t − Pt+n = Et [Pt+n]− Pt+n + RPn,t . (26)

Bearing this in mind, Fama (1984) considers the two regressions

(FPR 1) Fn,t − Pt+n = µ1,n + β1,n

�

Fn,t − Pt

�

+ e1,t+n,

(FPR 2) Pt+n − Pt = µ2,n + β2,n

�

Fn,t − Pt

�

+ e2,t+n,

whereas µ1,n and µ2,n are constants, β1,n and β2,n are slope coefficients and e1,t+n and e2,t+n

are disturbances with mean zero. Given that there is no rational bubble, we obtain from

Equation (16), Equation (25) and Equation (26) the slope coefficient of FPR 1 as

β1,n :=
Cov

�

Fn,t − Pt+n, Fn,t − Pt

�

Var
�

Fn,t − Pt

� =
Cov

�

−ϑt+n + RPn,t ,Et [Pt+n]− Pt + RPn,t

�

Var
�

Fn,t − Pt

� , (27)

whereas Var (·) denotes the population variance. For Cov
�

ϑt+n, RPn,t

�

= 0 and Cov (ϑt+n, Pt) =
0, we receive

β1,n =
Var

�

RPn,t

�

+Cov
�

RPn,t ,Et [Pt+n]− Pt

�

Var
�

RPn,t

�

+ Var (Et [Pt+n]− Pt) + 2Cov
�

RPn,t ,Et [Pt+n]− Pt

� . (28)
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For β2,n, i.e., the slope coefficient of FPR 2, we obtain

β2,n :=
Cov

�

Pt+n − Pt , Fn,t − Pt

�

Var
�

Fn,t − Pt

� =
Cov

�

Et [Pt+n]− Pt + ϑt+n,Et [Pt+n]− Pt + RPn,t

�

Var
�

Fn,t − Pt

�

(29)

and with the above argument, i.e., Cov
�

ϑt+n, RPn,t

�

= 0 and Cov (ϑt+n, Pt) = 0, we receive

β2,n =
Var (Et [Pt+n]− Pt) +Cov

�

RPn,t ,Et [Pt+n]− Pt

�

Var
�

RPn,t

�

+ Var (Et [Pt+n]− Pt) + 2Cov
�

RPn,t ,Et [Pt+n]− Pt

� . (30)

Fama (1984) notes that both FPRs convey identical information, resulting in β1,n+β2,n = 1,

µ1,n +µ2,n = 0 and the disturbances sum up to zero for each time period t.

3.2.1 Slope Coefficients β1,n and β2,n under an Ongoing Rational Bubble

Next, we analyze β1,n and β2,n under an ongoing rational bubble. We assume that the

fundamental follows a mildly explosive process, viz. Ut = θUt−1+ϑt where θ = 1+c×T−α

and c > 0, α ∈ (0, 1) such that θ = 1 as T →∞, as discussed in Phillips and Magdalinos

(2007). For a data generating processes (DGP) characterized by mild explosiveness, the

autoregressive coefficient surpasses unity, with the extent of its deviation from unity di-

minishing as the sample size increases. This process has been demonstrated to effectively

capture the features of moderately explosive behavior observed in various economic and

financial time series. Since future innovations are uncorrelated with fundamental and

bubble component, i.e., Cov (ϑt+n, Ut) = Cov (εt+n, Bt) = 0, we receive

β1,n =
Var

�

RPn,t

�

− γ1,n Var (Bt) + γ2,n Cov
�

Bt , RPn,t

�

Var
�

RPn,t

�

+ γ2
n Var (Bt) + 2γn Cov

�

Bt , RPn,t

� as T →∞, (31)

whereas γn := (1+ρ)n − 1,

γ1,n := (1+ρ)n
�

1
πn
− 1

�

((1+ρ)n − 1) and γ2,n := 2 (1+ρ)n −
�

1+ρ
π

�n

− 1

and

β2,n =
γ3,n Var (Bt) + γ4,n Cov

�

Bt , RPn,t

�

Var
�

RPn,t

�

+ γ2
n Var (Bt) + 2γn Cov

�

Bt , RPn,t

� as T →∞, (32)
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with

γ3,n :=
��

1+ρ
π

�n

− 1
�

((1+ρ)n − 1) and γ4,n :=
�

1+ρ
π

�n

− 1.

Note that γ2
n = −γ1,n+γ3,n and 2γn = γ2,n+γ4,n leading to the conclusion that β1,n+β2,n = 1,

see Fama (1984). A detailed derivation can be found in Appendix A.

As a result, when Bt = 0, i.e., Var (Bt) = 0 and Cov
�

Bt , RPn,t

�

= 0, we obtain β1,n = 1

and β2,n = 0. In the scenario where Bt > 0, we distinguish between the case that

Cov
�

Bt , RPn,t

�

= 0 and that Cov
�

Bt , RPn,t

�

6= 0. For Cov
�

Bt , RPn,t

�

= 0, we receive

β1,n =
Var

�

RPn,t

�

− γ1,n Var (Bt)

Var
�

RPn,t

�

+ γ2
n Var (Bt)

≤ 1 and

β2,n =
γ3,n Var (Bt)

Var
�

RPn,t

�

+ γ2
n Var (Bt)

≥ 0 as T →∞
(33)

with
∂ β1,n

∂ Var (Bt)
< 0,

∂ β1,n

∂ Var
�

RPn,t

� > 0,
∂ β2,n

∂ Var (Bt)
> 0,

∂ β2,n

∂ Var
�

RPn,t

� < 0

for ρ > 0, 0 < π ≤ 1 and n ∈ Z with n ≥ 1. This implies that β1,n decreases monotoni-

cally below one and that β2,n increases monotonically above zero as Var (Bt) increases, in

particular β1,n →
�

(1+ρ)n −
�1+ρ
π

�n�
/γn and β2,n →

��1+ρ
π

�n
− 1

�

/γn as Var (Bt) → ∞,

respectively.

Moreover, we explore the scenario where Cov
�

Bt , RPn,t

�

6= 0. Based on the notion

of a futures market in contango, i.e., ψn,B > 0 and ψn,U > 0, or backwardation i.e.,

ψn,B < 0 and ψn,U < 0, we obtain Var
�

RPn,t

�

= ψ2
n,B ×Var (Bt)+ψ2

n,U ×Var (Ut)+σ2
ϕ

and

Cov
�

Bt , RPn,t

�

= ψn,B × Var (Bt). This yields

β1,n =
σ2
ϕ
+
�

�

ψn,B + γn

�2
− γ3,n −ψn,Bγ4,n

�

Var (Bt) +ψ2
n,U Var (Ut)

σ2
ϕ
+
�

ψn,B + γn

�2
Var (Bt) +ψ2

n,U Var (Ut)
≤ 1 and

β2,n =

�

γ3,n +ψn,Bγ4,n

�

Var (Bt)

σ2
ϕ
+
�

ψn,B + γn

�2
Var (Bt) +ψ2

n,U Var (Ut)
≥ 0 as T →∞,

(34)

with
∂ β1,n

∂ Var (Bt)
< 0,

∂ β1,n

∂ Var (Ut)
> 0,

∂ β2,n

∂ Var (Bt)
> 0,

∂ β2,n

∂ Var (Ut)
< 0
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for ρ > 0, 0 < π ≤ 1, n ∈ Z with n ≥ 1 andψn,B+γn > 0. Hence, we need to impose the

assumption thatψn,B+γn > 0 ifψn,B < 0 to ensure that β1,n decreases monotonously below

one and that β2,n increases monotonously above zero as Var (Bt) increases. In particular

β1,n →
�

ψn,B + (1+ρ)
n −

�1+ρ
π

�n�
/
�

ψn,B + γn

�

and β2,n →
��1+ρ

π

�n
− 1

�

/
�

ψn,B + γn

�

as

Var (Bt) →∞, respectively.5

3.2.2 Drawing Inference on β1,n and β2,n

We are interested in testing

H0 : β1,n = 1 (no rational bubble) vs. HA : β1,n < 1 (rational bubble),

H0 : β2,n = 0 (no rational bubble) vs. HA : β2,n > 0 (rational bubble)

using the conventional t-test based on the OLS method without the need to specify the

fundamental or impose assumptions on the trending behavior of the risk premium. However,

with a significant level of persistence in the explanatory variable, the conventional t-

test results derived from the OLS method lose their validity. Stambaugh (1999) has

demonstrated convincingly that this issue becomes more pronounced when the disturbances

in the predictive regression are strongly correlated with the regressor’s innovations.

Kostakis, Magdalinos, and Stamatogiannis (2015) present the IVX procedure that

strengthens the robustness of inference concerning the degree of persistence of the explana-

tory variable, encompassing mildly explosive behavior. More explicitly, by replacing the

regressor, denoted in the following by x t := Fn,t − Pt , with an instrument zt – characterized

by a controllable level of persistence – results in a robust inference procedure that addresses

the impacts of non-stationarity. We denote the regressand by yt , i.e., yt := Fn,t − Pt+n for

FPR 1 and yt := Pt+n − Pt for FPR 2. The IVX estimator of the slope coefficient of the FPR

is given by

bβ IV X =

∑T
t=1 zt eyt

∑T
t=1 ztex t

, (35)

whereas ex t and eyt denote demeaned counterparts of x t and yt , respectively. Kostakis,

Magdalinos, and Stamatogiannis (2015) demonstrate the convergence of bβ IV X to a mixed

Gaussian limiting distribution, a result that remains valid irrespective of the level of per-

sistence exhibited by the regressors in the model. As a result, this feature facilitates the

development of a Wald-type statistic, denoted as Wβ , which converges to a standard χ2-

5Note that, since the IVX approach (to estimate the slope coefficients) employs demeaned variables, we
do not derive µ1,n and µ2,n.
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distribution. We make use of the IVX estimator for FPR 2 and we study the performance of

the corresponding Wald statistic, see Kostakis, Magdalinos, and Stamatogiannis (2015), for

testing β2,n = 0 against β2,n 6= 0 in the following section (the rational for opting to test

against β2,n 6= 0 instead of testing against β2,n > 0 is provided below).

3.3 Monte Carlo Simulation

We analyse the finite-sample properties of the FPR approach with n = 1 applied to test

against rational bubbles. For additional simulation studies encompassing a prediction

period exceeding one, i.e., n ∈ {2,3, 4}, we refer the reader to Appendix C. We specifically

examine cases where the sample size takes on values from the set T ∈ {150, 300}, aligning

with our subsequent empirical analysis.6

3.3.1 Monte Carlo Simulation: Size

We start with the size, i.e., we consider the rejection rates of a Wald statistic, as proposed by

Kostakis, Magdalinos, and Stamatogiannis (2015), for the hypothesis that β2,n = 0 against

β2,n 6= 0 when Pt = Ut . Under the null hypothesis, the fundamental is generated as

Ut = θUt−1 + ϑt whereas θ = 1+ c × T−α and ϑt ∼ i.i.d.N (0,1)

with c = 0.1, α ∈ {0.7, 0.75,0.8, 0.85} and U0 = 100, i.e., the fundamental is explosive

and therefore the price series fulfills the necessary condition for a rational bubble. The risk

premium is simulated by two distinct DGPs under the null hypothesis, denoted as RP 1 and

RP 2 respectively:

(RP 1) RPn,t = λRPn,t−1 +ϕt where ϕt ∼ i.i.d. N (0,1) and λ ∈ {0, 0.5,1, 1.01} ,

(RP 2) RPn,t = %θUt +ϕt where ϕt ∼ i.i.d. N (0,1) and % ∈ {−0.01,+0.01} .

Hence, under specification RP 1, we consider a risk premium which is stationary, i.e.,

λ ∈ {0, 0.5}, integrated of order one, i.e., λ = 1, and explosive, i.e., λ = 1.01. Further,

6The exuber package in R was employed to simulate bubble processes and compute the SADF, BSADF, and
GSADF test statistic along with their corresponding critical values, as detailed in (see Vasilopoulos, Pavlidis,
and Martínez-García, 2022). It is worth noting that FPR 1 and FPR 2 contain identical information. Therefore,
evaluating the performance of either regression is sufficient for testing rational bubbles. In this study, we opt
for FPR 2 to facilitate the use of the ivx R-package (see Vasilopoulos and Pavlidis, 2020) for testing β2,n = 0
versus β2,n 6= 0.
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under specification RP 2, we examine a risk premium that shares an explosive trend with

the fundamental. This enables an examination of Cov
�

Ut , RPn,t

�

6= 0. Specifically, we

obtain Cov
�

Ut , RPn,t

�

= %θ Var (Ut), where % > 0 (% < 0) ensures that Cov
�

Ut , RPn,t

�

>

0
�

Cov
�

Ut , RPn,t

�

< 0
�

. Furthermore, it is important to observe that the risk premium

specification RP 1, where λ ∈ {0,0.5}, implies that the representative agent involved in

the futures market is characterized as risk-neutral. In contrast, specifications RP 2 (and RP

3 below) are in line with either normal contango or normal backwardation. Conversely, RP

1 with λ ∈ {1,1.01} corresponds to a scenario where agents are not risk-neutral, however,

the risk premium is influenced by factors other than market prices.

As a natural competitor we apply the KPSS test to Pt+1 − F1,t , see Kwiatkowski, Phillips,

Schmidt, and Shin (1992), as Equation (16) predicts a stationary differential between

actual prices and price expectations in the absence of a rational bubble. Table 1 outlines

the results of a Monte Carlo simulation with 10,000 repetitions and a nominal size of 5%.

The left panel contains the results for the FPR method and the right panel shows the results

of the KPSS test with b4 (T/100)0.25c = 4 lags (whereas b·c indicates the floor function).

Insert Table 1 here.

We observe that the trend behavior of RPn,t does not carry significance for the rejection

rates in testing β2,n = 0 (or β1,n = 1). Although the variance of RPn,t increases with a

higher degree of integration, resulting in a loss of power, as illustrated below, the test’s size

remains uninfluenced by the trend in RPn,t . This is due to the fact that, regardless of the

risk premium’s trend behavior, the numerator in Equation (31) (Equation 32) consistently

maintains a value of zero (one) under the null hypothesis. In particular, as anticipated, the

KPSS test maintains its nominal size when the risk premium is stationary. However, this

ceases to be the case when the risk premium is integrated of order one or explosive. Hence,

the KPSS test is unreliable in these cases.

3.3.2 Monte Carlo Simulation: Estimation

Next, we study the performance of the IVX approach to estimate β2,n given that the price

process is generated by Pt = Ut +Bt with Bt > 0. Throughout the analysis, we assume that

the fundamental is generated by a random walk, i.e., Ut = Ut−1+ϑt with ϑt ∼ i.i.d.N (0, 1).
In examining size, it is crucial for either the fundamental and/or the risk premium to exhibit

explosiveness; otherwise, the empirical analysis of a rational bubble is not justified, as the
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necessary condition for a rational bubble remains unmet. However, in the scenario where

the price exhibits a non-zero bubble component, i.e., under the alternative hypothesis,

the fundamental may manifest as a random walk. While there is the potential for the

fundamental to exhibit explosiveness also under the alternative hypothesis, it is cautious to

presume a random walk for the fundamental to rule out a positive effect on power due

to a non-zero covariance between explosive fundamental and risk premium. Under the

alternative, the risk premium is generated by RP 1 or by

(RP 3) RPn,t = % × (1+ρ)Bt +% × θUt +ϕt ,

where ϕt ∼ i.i.d. N (0,1) and % ∈ {−0.01,+0.01}.

We examine the estimates of β2,n based on Blanchard’s DGP as described in Equation

(2) under the assumption that the bubble does not burst. We do this to demonstrate that,

fundamentally, our results are comparable to those presented by Pavlidis, Paya, and Peel

(2017). The bubble price component is generated by

(B 1) Bt =
1+ρ
π

Bt−1 + εt whereas εt ∼ i.i.d.N (0,0.3) ,

B0 = 20 and T = 150. Given that the bubble is continuing and that the risk premium is

generated by RP 3, we receive the theoretical slope coefficient as

β2,n =
(% (1+ρ) +ρ)(1−π+ρ)Var (Bt)

π
�

σ2
ϕ
+ (% (1+ρ) +ρ)2 Var (Bt) +%θ Var (Ut)

� as T →∞ (36)

whereas Var (Ut) = tσ2
ϕ

(since the fundamental is generated by a random walk) and

Var (Bt) =
�

�1+ρ
π

�2t
− 1

�

/
�

�1+ρ
π

�2
− 1

�

σ2
ε
, see Fuller (2009).

Insert Table 2 here.

Table 2 outlines the theoretical value of β2,n, the arithmetic mean and the standard

deviation, denoted by Mean and SD, respectively, of the IVX estimates for β2,n with 10,000

simulated price paths of a non-collapsing bubble according to DGP B 1 with ρ = 0.1 and

π ∈ {0.3,0.5, 0.7,0.9} following the simulation study by Pavlidis, Paya, and Peel (2017).

It is noteworthy that, given the specified price process, there should be an approximate

difference of −1 between the slope coefficient outlined in Table 1 in Pavlidis, Paya, and

Peel (2017) and the slope coefficient for FPR 2 in Table 2 for λ = % = 0 (we refrain from
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exploring additional values for λ since the variance of the risk premium is dominated by

the variance of the bubble, rendering the variance of the risk premium negligible). The

relatively low standard deviations observed in all cases are consistent with the findings in

Pavlidis, Paya, and Peel (2017).

Further, we consider the estimation of the slope coefficient for FPR 2 given that the

bubble component of Pt = Ut + Bt is generated by Blanchard (1979) and by Evans (1991)

whereas the bubble collapses potentially. For both DGPs, the sample size is chosen to

be T from the set {150,300} and the fundamental is generated by Ut = Ut−1 + ϑt with

ϑt ∼ i.i.d.N (0, 1). Blanchard’s DGP is generated by

(B 2) Bt =

¨

1+0.1
π × Bt−1 + εt with probability π,

εt with probability 1−π,

whereas εt ∼ i.i.d.N
�

0, 0.32
�

, B0 = 20 and π ∈ {0.3, 0.5,0.7, 0.9}. For Evans’ DGP the

following specification applies

(B 3) Bt+1 =

¨

(1+ρ)Btξt+1, if Bt ≤ 1,
�

0.5+ 1
π(1+ρ)ςt+1

�

Bt −
0.5
(1+ρ)

��

ξt+1, if Bt > 1,

whereas ξt follows a lognormal distribution, viz. ξt = exp
�

κt − 0.052/2
�

with κt ∼
i.i.d.N

�

0,0.052
�

, and ςt is a Bernoulli process, taking the value of 1 with probability π and

the value of 0 with probability 1−π whereas π ∈ {0.3, 0.5,0.7, 0.9}. Note that this process

fulfills also rational expectations. We adhere to Evans (1991) and to Pavlidis, Paya, and

Peel (2017) and scale bubbles generated from DGP B3 by a factor of 20 in the subsequent

simulation study.

Insert Table 3 here.

Table 3 presents the outcomes from 10,000 Monte Carlo replications and the risk

premium is generated by DGP RP 1 (upper panel) and DGP RP 3 (lower panel). When

dealing with the (periodically) collapsing bubbles, it becomes evident that the mean of

the IVX estimates for β2,n consistently takes on negative values. This observation can be

attributed to an autoregressive coefficient within the stationary region, specifically below

one, of the price process during the collapse of the rational bubble. We could leverage

this observation, akin to the methodology introduced by Pavlidis, Paya, and Peel (2017),

by utilizing the change in sign of the slope coefficient in a rolling-window approach to
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timestamp the bubble phase. It is pertinent to note that while Pavlidis, Paya, and Peel (2017)

thoroughly examined the rolling-window approach, we refrain from further discussion on

this topic here, emphasizing that the same rolling-window methodology is applicable to FPR

2. However, our subsequent attention is directed toward a full-sample approach. Hence,

we conduct the test against β2,n 6= 0 instead of β2,n > 0 because a collapsing bubble would

imply β2,n < 0, while an ongoing bubble suggests β2,n > 0. Consequently, to account for

both surviving and bursting bubbles, we specify the alternative as β2,n 6= 0 rather than

β2,n > 0.

3.3.3 Monte Carlo Simulation: Power

The absolute value of the mean of the IVX estimates for β2,n diminishes with the rise in the

value of λ. As the latter has a negative effect on power, we analyse the rejection rates of the

Wald statistic, as outlined by Kostakis, Magdalinos, and Stamatogiannis (2015), applied to

the FPR approach under identical specifications as for the simulation with regard to the

estimation of the slope coefficient. As a competitor we employ the Generalized Supremum

Augmented Dickey Fuller test (GSADF) which tests under the null hypothesis that the

differential Pt+1 − F1,t has a unit root against the temporary explosive alternative. This

approach is the natural choice under the assumption that the risk premium is I (1). Further,

it is known that full-sample stationarity and unit roots tests have little power to indicate

bubbles which arise and collapse. In contrast, the GSADF test is recognized for its good

power properties in the presence of (periodically) collapsing bubbles.

Insert Table 4 here.

Table 4 offers a synopsis of the rejection rates for the Wald statistic (left panel) and

the GSADF test (right panel). This summary is based on a nominal size of 5% and 10,000

replications, considering the Blanchard bubble and the risk premium is generated by DGP

RP 1 (upper panel) and by DGP RP 3 (lower panel). Likewise, Table 5 presents the rejection

rates of the Wald statistic and the GSADF approach under identical conditions, maintaining

a nominal size of 5% and 10,000 replications, with a focus on the Evans bubble.

Insert Table 5 here.

In the realm of assessing rational bubbles in conjunction with a risk premium integrated

of order one or explosive, the FPR approach stands out for maintaining its nominal size. This
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is a crucial consideration, as inaccurately identifying a bubble could lead to misguided policy

recommendations and result in significant adverse economic and political consequences.

However, it is crucial to recognize that this robustness comes with trade-offs, resulting

in a decrease in the power of the FPR approach as the persistence of the risk premium

increases. This increase in persistence leads to an elevated variance of the risk premium.

Consequently, it holds that as Var
�

RPn,t

�

→∞, we obtain β1,n → 1 and β2,n → 0, resulting

in a loss of power of the FPR approach, all else being equal. A similar outcome arises

when there is correlation between the risk premium and the bubble and fundamental

component, respectively, coupled with an increasing variance of the fundamental since as

Var (Ut) →∞, we obtain also β1,n → 1 and β2,n → 0. In contrast, the power of the GSADF

test remains unaffected by the trending behavior of the risk premium in all considered

cases.

Moreover, the power of the FPR approach capitalizes on an increasing (decreasing)

covariance between the risk premium and the bubble component, all else being equal. On

the contrary, the GSADF test’s power remains unaffected if the covariance varies. Thus, the

FPR approach effectively utilizes the information of the non-zero covariance in contrast to

the GSADF test. As a result, our overall findings indicate that, although the FPR approach

may not definitively surpass the GSADF approach in inferring a rational bubble in every

considered case, it exhibits superior performance in the majority of scenarios (especially

under a stationary risk premium, normal backwardation or normal contango).

4 Data and Empirical Results

Prior to delving into the empirical findings, we begin this section by introducing the data

employed in our empirical analysis. Next, we investigate whether market prices and futures

prices show explosive behavior using the Supremum Augmented Dickey Fuller test (SADF)

and the GSADF test (see Phillips, Shi, and Yu, 2015a,b). Subsequently, we turn to the core

of our analysis, and we test the pair of hypotheses

H0 : β2,n = 0 (no rational bubble) vs. HA : β2,n 6= 0 (rational bubble)

for the third trading phase (2013-2020) and the fourth trading phase (2021-ongoing) of the

EU ETS. We employ the IVX approach by Kostakis, Magdalinos, and Stamatogiannis (2015)

and the IVX-AR method by Yang, Long, Peng, and Cai (2020) to tackle potential distortions

in size in the testing procedure proposed by Kostakis, Magdalinos, and Stamatogiannis
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(2015) when serial correlation and heteroskedasticity are present in the error term of the

predictive regression. To emphasize or contest the results of the FPR approach, we apply

also the competitors from the Monte Carlo simulation above: The GSADF approach (and

the SADF approach) by Phillips, Shi, and Yu (2015a,b) applied to the difference between

future spot rates and futures rates, and the method by Evripidou, Harvey, Leybourne, and

Sollis (2022) examining co-explosiveness between future spot rates and futures rates.

4.1 Data

We utilize weekly price data from the Bloomberg database spanning from January 4, 2013,

to October 11, 2023, encompassing a total of T = 563 observations. The Bloomberg

abbreviation for the spot price is ICEDEU3 Index. All fundamental contracts were actively

traded and monitored on the Intercontinental Currency Exchange (ICE). Based on these

contracts, our analysis focuses on generic continuous futures prices with a delivery date of

one, two, three and four months, respectively. Since we consider weekly data, we receive

n ∈ {4,8, 12,16}, i.e., delivery in 4, 8, 12 and 16 weeks. Contracts with n > 4 are excluded

due to a lack of liquidity.

4.2 Is there an Explosive Episode in EU ETS Spot and Futures Rates?

We start our empirical exercise with testing against explosive episodes in the EU ETS price

and futures price series over the full sample from 2013 to 2023. Explosiveness in spot

prices is a necessary but, as described above, not a sufficient condition for a rational bubble.

Nevertheless, the timing of when the spot price becomes explosive holds significance for

subsample analysis, such as predictive regression and co-explosiveness analysis, in the

subsequent sections.

We employ the SADF and GSADF test on the spot and futures price series in its original

levels, and we find evidence for explosive behavior at the 5% significance level indicated

by superscript r, as reported in Table 6.

Insert Table 6 here.

The critical values for the SADF and GSADF test are determined by wild bootstrapping

with 999 repetitions accounting for multiplicity and heteroskedasticity (see Phillips and
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Shi, 2020). Further, the test uses T = 563 observations and a minimum window size of

r0 :=
�

0.01+ 1.8
p

T
�

= 42 observations, following the rule proposed by Phillips, Shi, and

Yu (2015a,b). Furthermore, as highlighted by Vasilopoulos, Pavlidis, and Martínez-García

(2022), simulations provide evidence suggesting the effective performance of the SADF

and GSADF tests when a limited fixed number of lags is employed. In contrast, utilizing

information criteria for lag selection may lead to notable distortions in size. As a result,

we adopt the approach proposed by Pavlidis, Yusupova, Paya, Peel, Martínez-García, Mack,

and Grossman (2016), employing two variations of a fixed number of lags. Specifically, we

integrate one and four lags within the augmented Dickey-Fuller regression.

Subsequently, our next objective is to date-stamp the beginning and the end of the

explosive periods. Hence, we use the Backward Supremum Augemented Dickey Fuller

(BSADF) sequence with bootstrapped critical values (see Phillips, Shi, and Yu, 2015a,b;

Phillips and Shi, 2020). Overall, our findings for the spot and futures price series reveal (i)

consistent indications of explosiveness across all series, and (ii) a notably similar timing

pattern of the explosive phases in spot and futures prices during the third and fourth

trading phase. The results are summarized by Figure 2 and Figure 3, indicating episodes of

explosive behavior during the end of the third and during the fourth trading period.

Insert Figures 2 and 3 here.

4.3 Is there a Rational Bubble in the EU ETS?

As the date stamping reveals periods of explosive price behavior in the third trading period

from 2018 to its closure 2022 and at the commencement of the fourth trading period 2021

up to 2023, our analysis below concentrates on two specific approaches. First, we conduct a

full-sample analysis by employing the Fama predictive regression covering the period from

January 2018 to October 2023, i.e., T = 302. Second, we perform a subsample analysis,

examining the third and fourth trading periods separately, creating a subset from January

2018 to December 2020, i.e., T = 156, and another from January 2021 to October 2023,

i.e., T = 146.

We estimate the predictive regression by the IVX method and we test β2,n = 0 against

β2,n 6= 0 using the Wald statistic, see Kostakis, Magdalinos, and Stamatogiannis (2015).

Moreover, we employ the IVX-AR procedure as outlined in Yang, Long, Peng, and Cai (2020)

to account for potential distortions in size in the testing procedure proposed by Kostakis,
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Magdalinos, and Stamatogiannis (2015) when serial correlation and heteroskedasticity are

present in the error term of the predictive regression.

Insert Tables 7 and 8 here.

The outcomes are detailed in Table 7 for the full-sample analysis, i.e., we consider the

third (since 2018) and fourth trading periods together, and in Table 8 for the sub-sample

analysis, i.e., we consider the third (since 2018) and fourth trading period separately. The

value of the Wald test statistic introduced by Kostakis, Magdalinos, and Stamatogiannis

(2015) is denoted by Wβ , fWβ is the value of the Wald test statistic introduced by Yang,

Long, Peng, and Cai (2020) and |tβ | denotes the absolute value of the t-statistic in the OLS

case for comparison.

Further, WAR denotes the Wald statistic for the joint hypothesis that all included lags in

the error term of FPR 2 are equal to zero, see Yang, Long, Peng, and Cai (2020) for details.

The corresponding p−values are outlined in parentheses. Note that we determine the lag

length to account for autocorrelation in the error term of FPR 2 by the Bayesian Information

Criterion (BIC). The results corresponding to WAR in Table 7 and Table 8 highlight the need

to account for serial correlation in the error term.

Therefore, we concentrate on the outcomes associated with the IVX-AR method. Em-

ploying this approach, we fail to reject the null hypothesis that β2,n = 0 in favor of the

alternative β2,n 6= 0 in all considered cases. This contradicts the presence of a collapsing

bubble (β2,n < 0) or an ongoing bubble (β2,n > 0). These results are consistent across

both the full-sample analysis and the sub-sample analyzes.
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4.4 Further Empirical Evidence

In order to either confirm or contest the findings of the Fama predictive regression approach,

we utilize both the test conducted by Phillips, Shi, and Yu (2015a,b) on the differential

between future spot rates and futures rates and the test by Evripidou, Harvey, Leybourne,

and Sollis (2022) on the future spot rates and futures rates.

4.4.1 Testing against Explosiveness in the Differential between Future Spot Rates

and Futures Rates

Given that the risk premium is integrated of order dRP , i.e., RPn,t ∼ I (dRP), whereas

dRP ∈ [0,1], it stands to reason to consider the empirical model

Pt+n − Fn,t = µD + θD

�

Pt−1+n − Fn,t−1

�

+ ut+n, (37)

whereas ut+n is a martingale difference sequence, µD is the drift component and θD is the

autoregressive parameter, and to test

H0 : θD ≤ 1 (no rational bubble) vs. HA : θD > 1 (rational bubble).

Similar to the scenario where spot and futures rates are considered, critical values for the

SADF and GSADF tests are derived through wild bootstrapping with 999 repetitions, taking

into account multiplicity and heteroskedasticity (see Phillips and Shi, 2020). The test is

implemented with T = 563 observations and a minimum window size of 42, adhering to

the guideline proposed by Phillips, Shi, and Yu (2015a,b).

Insert Table 9 here.

Table 9 presents the outcomes of the test by Phillips, Shi, and Yu (2015a,b) with one

and four lags, applied to the differential between future spot rates and futures rates with

n ∈ {4,8, 12,16}weeks. Our findings reveal no evidence of explosiveness in the differential

between future spot rates and futures rates, indicating a lack of support for the presence of

a rational bubble or an explosive risk premium.

31



4.4.2 Testing against Co-Explosiveness between Future Spot Rates and Futures Rates

Ultimately, we examine the co-explosiveness of the EU ETS price and its expectations. To

establish the absence of a rational bubble, a sufficient condition is that futures prices, i.e.,

Fn,t , and spot prices, i.e., Pt+n, share a common (explosive) trend. Therefore, we employ

the approach introduced by Evripidou, Harvey, Leybourne, and Sollis (2022). Hence, we

test

H0 : βF > 0, βZ = 0 (no rational bubble) vs.HA : βF = 0, βZ > 0 (rational bubble)

with

Pt+n = µP + βF Fn,t + βZ Zt+n +ωt+n (38)

whereas µP is a constant, the unobserved variable Zt+n contains the bubble component

Bt+n > 0 and ωt+n equals ϑt+n for Bt = 0 or aggregates εt+n and ϑt+n for Bt > 0. The spot

price and futures prices (including the stationary risk premium) exhibit co-explosiveness

according to the null hypothesis. Under the alternative, the spot price and the expectations

differ by an explosive component, i.e., the explosive risk premium or the explosive bubble

component. Hence, if the null hypothesis is not rejected, we can infer the absence of a

bubble component. However, rejecting it does not definitively establish the presence of a

rational bubble.

The approach by Evripidou, Harvey, Leybourne, and Sollis (2022) utilizes a KPSS-type

test (see Kwiatkowski, Phillips, Schmidt, and Shin, 1992) on ω̂t+n whereas ω̂t+n = Pt+n −
µ̂P− β̂F Fn,t and µ̂P and β̂F are OLS estimates. This approach accounts for heteroskedasticity

by a wild bootstrap procedure (see Liu, 1988; Mammen, 1993). Further, note that we use

the approach by Newey and West (1994) with a quadratic spectral kernel with automated

lag selection to estimate the long-run variance employed in the test statistic.

Insert Table 10 here.

Table 10 presents the test statistics and their corresponding 5% critical values, deter-

mined through wild bootstrap, for the entire sample period from January 2018 to October

2023. The testing for co-explosiveness between futures and spot rates leads to rejecting

the null hypothesis for all examined values of n, suggesting the presence of either an

explosive bubble component or another non-stationary component, e.g., a non-stationary

risk premium.
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Insert Table 11 here.

However, Table 11 displays the outcomes from the sub-sample analysis covering January

2018 to December 2021 (left panel) and January 2022 to October 2023 (right panel). When

distinguishing between the third and fourth trading periods, we do not find evidence to

reject the null hypothesis, indicating the absence of a rational bubble during either period.

Consequently, the results across the entire sample could be influenced by a structural break

(e.g., a mean shift) in the risk premium leading a rejecting of the null hypothesis that future

spot and futures rates are co-explosive. Thus, the co-explosiveness test results align with

those from the FPR approach.

5 Conclusion, Discussion and Future Research

The significance of addressing climate change emphasizes the utmost importance of emission

trading systems operating optimally. Therefore, it is crucial to leverage the insights acquired

from previous trading phases for shaping the design of future emission trading systems and

for implementation of best possible regulations. As emission trading schemes play a central

role in climate policy, understanding their market dynamics and potential for improvement

is of paramount importance.

This paper adds to the existing body of research on climate finance, with a specific focus

on carbon trading, see Hong, Karolyi, and Scheinkman (2020). The empirical investigation,

in particular, aims to enhance our understanding of whether the notable rise in EU ETS

prices since 2018 can be linked to a rational bubble. However, the analysis reveals no

evidence of a rational bubble being the driving force behind the surge in allowance prices

in 2018. Instead, it implies that the surge in EU ETS prices could be attributed to the

expectation of impending scarcity, stemming from significant policy changes affecting

emission caps. This is supported by the parallel (explosive) trend behavior observed in

both future spot rates and futures rates.

Although we refrain from asserting the superiority of a Pigouvian tax or a trading system

in mitigating carbon emissions, a significant drawback of a trading system would be the

potential for excessive speculation resulting in a (rational) bubble. We alleviate concerns

regarding speculation that triggered a rational bubble in previous trading phases. Therefore,

in our perspective, there is no necessity for policy intervention to prevent potential rational

bubbles in the EU ETS architecture, given the analysis of historical data at our disposal.
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Our research, in our view, opens up various possibilities for future research. First, we

have demonstrated that Fama Predictive Regressions can be used to test against rational

bubbles also in the presence of a time-trending risk premium. Hence, FPRs can be employed

across various asset classes where futures prices are observable, without the necessity of

assuming the trend behavior of the risk premium or establishing a fundamental. This

includes bonds, commodities, currencies, stocks but also certificates of other emission

trading systems.

Second, Quemin and Pahle (2023) established a diagnostic toolkit to evaluate the extent

and consequences of speculation for an emission trading system, subsequently applying it to

the EU ETS. Nonetheless, a heightened level of speculation alone does not inherently imply

market inefficiency. Therefore, it is reasonable to employ FPRs within a rolling window

approach to provide a real-time perspective to indicate inefficiency of emission trading

systems.

Third, analyzing the price expectations of market participants in the ETS can serve not

only for testing against a rational bubble but also for evaluating the effectiveness of the ETS

in reducing carbon emissions, especially in comparison to a tax, see Martinsson, Strömberg,

Sajtos, and Thomann (2023). Further, it would be intriguing to explore whether and when

investments in research and development rise in anticipation of higher future prices in the

ETS, see Brown, Martinsson, and Thomann (2022).
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Appendix A: Derivation of β1,n and β2,n in the presence or

absence of a rational bubble

In this section we present the derivation of β1,n and β2,n under a non-zero risk premium

and in the presence or absence of an ongoing rational bubble.

We assume that the fundamental evolves following a mildly explosive process, viz.

Ut = θUt−1+ϑt , where θ = 1+c×T−α with c > 0 and α ∈ (0, 1), as detailed in Phillips and

Magdalinos (2007), and that fundamental and bubble component are uncorrelated. Further

note that fundamental and bubble component are uncorrelated with future innovations,

i.e.,
Cov (ϑt+n, Ut) = Cov (ϑt+n, Bt) = Cov

�

ϑt+n, RPn,t

�

=Cov (εt+n, Ut) = Cov (εt+n, Bt) = Cov
�

εt+n, RPn,t

�

= 0.

Consider the slope coefficients of FPR 1 and FPR 2, i.e.,

β1,n :=
Cov

�

Fn,t − Pt+n, Fn,t − Pt

�

Var
�

Fn,t − Pt

� and β2,n :=
Cov

�

Pt+n − Pt , Fn,t − Pt

�

Var
�

Fn,t − Pt

� .

Under the above assumption, we obtain the numerator of β1,n as

Cov
�

Fn,t − Pt+n, Fn,t − Pt

�

=Cov
�

−ϑt+n − (1+ρ)
n
�

1
πn
− 1

�

Bt − εt+n + RPn,t , (θ
n − 1)Ut + ((1+ρ)

n − 1)Bt + RPn,t

�

=Var
�

RPn,t

�

− (1+ρ)n
�

1
πn
− 1

�

((1+ρ)n − 1)
︸ ︷︷ ︸

=:γ1,n

Var (Bt)− (1+ρ)
n
�

1
πn
− 1

�

(θ n − 1)Cov (Bt , Ut)
︸ ︷︷ ︸

=0

+
�

2 (1+ρ)n −
�

1+ρ
π

�n

− 1
�

︸ ︷︷ ︸

=:γ2,n

Cov
�

Bt , RPn,t

�

+ (θ n − 1)Cov
�

Ut , RPn,t

�

︸ ︷︷ ︸

→0 as T→∞

− (θ n − 1)Cov (ϑt+n, Ut)
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=0

− ((1+ρ)n − 1)Cov (ϑt+n, Bt)
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=0
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�
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=0

− (θ n − 1)Cov (εt+n, Ut)
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=0
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,
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and the numerator of β2,n as

Cov
�

Pt+n − Pt , Fn,t − Pt

�

=Cov
�

(θ n − 1)Ut + ϑt+n +
��

1+ρ
π

�n

− 1
�
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�
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��

1+ρ
π

�n

− 1
�

((1+ρ)n − 1)
︸ ︷︷ ︸

=:γ3,n

Var (Bt) + (θ
n − 1)2 Var (Ut)
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+
��

1+ρ
π

�n
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�
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=:γ4,n
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�
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�

+ (θ n − 1)Cov
�

Ut , RPn,t

�
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+(θ n − 1)Cov (ϑt+n, Ut)
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=0
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=0

+Cov
�

ϑt+n, RPn,t

�
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=0

+(θ n − 1)Cov (εt+n, Ut)
︸ ︷︷ ︸
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=0
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�
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.

For the denominator of β1,n and of β2,n, we receive

Var
�

Fn,t − Pt

�

= Var
�

RPn,t + (θ
n − 1)Ut + ((1+ρ)

n − 1)Bt

�

=Var
�

RPn,t

�
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n

Var (Bt) + (θ
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�
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.

This gives us

β1,n =
Var

�

RPn,t

�

− γ1,n Var (Bt) + γ2,n Cov
�

Bt , RPn,t

�

Var
�

RPn,t
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+ γ2
n Var (Bt) + 2γn Cov
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and
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γ3,n Var (Bt) + γ4,n Cov
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�

Var
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RPn,t

�

+ γ2
n Var (Bt) + 2γn Cov

�

Bt , RPn,t

� for T →∞.
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Appendix B: Tables and Figures

Table 1: Size

FPR
λ T α 0.7 0.75 0.8 0.85

0
150 0.06 0.05 0.06 0.05
300 0.05 0.05 0.05 0.05

0.5
150 0.05 0.05 0.05 0.06
300 0.05 0.05 0.05 0.05

1
150 0.06 0.05 0.05 0.05
300 0.06 0.06 0.05 0.05

1.01
150 0.07 0.06 0.06 0.05
300 0.09 0.06 0.05 0.05

% T α 0.7 0.75 0.8 0.85

−0.01
150 0.05 0.05 0.06 0.05
300 0.05 0.05 0.05 0.05

+0.01
150 0.05 0.05 0.05 0.06
300 0.05 0.05 0.05 0.05

KPSS
λ T α 0.7 0.75 0.8 0.85

0
150 0.04 0.05 0.05 0.04
300 0.05 0.04 0.05 0.05

0.5
150 0.08 0.08 0.08 0.08
300 0.08 0.08 0.08 0.07

1
150 0.90 0.91 0.91 0.90
300 0.97 0.97 0.97 0.97

1.01
150 0.96 0.96 0.96 0.95
300 0.99 0.99 0.99 0.99

% T α 0.7 0.75 0.8 0.85

−0.01
150 0.31 0.19 0.14 0.11
300 0.70 0.44 0.30 0.21

+0.01
150 0.31 0.21 0.15 0.11
300 0.67 0.46 0.31 0.22

Explanations: The table displays the rejection rates given that Bt = 0 of the Wald statistic

based on FPR 2 for the null that β2,n = 0 (left panel), as well as the rejection rates

of the KPSS for the null that Pt+1 − F1,t is stationary (right panel). The nominal size is

fixed at 5%, and we conduct 10,000 replications. The upper panels correspond to the

scenario where Cov
�

Ut , RPn,t

�

= 0, and the lower panel corresponds to the case where

Cov
�

Ut , RPn,t

�

= %θ Var (Ut) 6= 0. The underlying fundamental process is characterized

by explosiveness, with a parameter c = 0.1 and varying α; λ controls the persistence of

the risk premium.

44



Table 2: Estimation of β2,n

λ π 0.3 0.5 0.7 0.9

β2,n 26.67 12.00 5.71 2.22
0 Mean 26.67 12.00 5.71 2.22

SD 1× 10−14 4× 10−15 2× 10−15 8× 10−14

% π 0.3 0.5 0.7 0.9

β2,n 29.96 13.48 6.42 2.50
−0.01 Mean 29.96 13.48 6.42 2.50

SD 2× 10−14 6× 10−15 3× 10−15 9× 10−14

β2,n 24.02 10.81 5.15 2.00
+0.01 Mean 24.02 10.81 5.15 2.00

SD 1× 10−14 5× 10−15 2× 10−15 7× 10−14

Explanations: The table displays the mean (denoted by Mean) and standard deviation

(denoted by SD) of IVX estimates for β2,n based on 10,000 simulated price paths of a

non-collapsing bubble process (DGP B 1) with ρ = 0.1 and π ∈ {0.3,0.5, 0.7,0.9} and the

risk premium is generated by DGP RP 1 (upper panel) and by DGP RP 3 (lower panel). We

examine the case where λ = 0, meaning the risk premium is stationary, and % takes values

from the set {−0.01,+0.01}.
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Table 3: Estimation of β2,n (cont’d)

Blanchard

λ T π 0.3 0.5 0.7 0.9

0

150 Mean −2.54 −2.41 −2.10 −1.47
SD 2.59 2.00 1.39 0.80

300 Mean −2.90 −2.71 −2.33 −1.64
SD 2.53 1.93 1.25 0.59

0.5

150 Mean −2.27 −2.21 −1.95 −1.43
SD 2.51 2.00 1.41 0.82

300 Mean −2.60 −2.53 −2.20 −1.59
SD 2.47 1.94 1.29 0.63

1

150 Mean −0.92 −0.97 −0.95 −0.94
SD 1.77 1.59 1.27 0.87

300 Mean −0.79 −0.85 −0.91 −1.04
SD 1.71 1.47 1.22 0.81

1.01

150 Mean −0.71 −0.73 −0.74 −0.82
SD 1.65 1.43 1.16 0.88

300 Mean −0.32 −0.37 −0.41 −0.65
SD 1.08 1.04 0.91 0.78

% T π 0.3 0.5 0.7 0.9

−0.01

150 Mean −2.59 −2.54 −2.19 −1.61
SD 2.88 2.28 1.56 0.91

300 Mean −3.03 −2.85 −2.50 −1.79
SD 2.80 2.14 1.43 0.71

+0.01

150 Mean −2.42 −2.33 −2.03 −1.37
SD 2.38 1.82 1.23 0.71

300 Mean −2.80 −2.63 −2.21 −1.49
SD 2.27 1.70 1.10 0.54

Evans

λ T π 0.3 0.5 0.7 0.9

0

150 Mean −5.67 −4.94 −3.68 −1.85
SD 2.34 1.45 0.98 0.91

300 Mean −6.42 −5.30 −3.76 −1.86
SD 1.66 0.91 0.69 0.65

0.5

150 Mean −5.43 −4.76 −3.60 −1.82
SD 2.27 1.48 0.96 0.95

300 Mean −6.16 −5.17 −3.71 −1.86
SD 1.58 0.97 0.71 0.64

1

150 Mean −2.72 −2.70 −2.40 −1.59
SD 2.57 2.01 1.38 0.93

300 Mean −2.83 −2.84 −2.54 −1.73
SD 2.53 1.96 1.24 0.64

1.01

150 Mean −2.20 −2.16 −1.98 −1.50
SD 2.45 2.08 1.46 0.91

300 Mean −1.28 −1.36 −1.37 −1.35
SD 2.05 1.81 1.41 0.78

% T π 0.3 0.5 0.7 0.9

−0.01

150 Mean −6.12 −5.34 −4.03 −2.09
SD 2.68 1.69 1.15 1.01

300 Mean −6.99 −5.83 −4.18 −2.09
SD 1.70 1.02 0.75 0.75

+0.01

150 Mean −5.35 −4.59 −3.37 −1.67
SD 1.86 1.17 0.88 0.85

300 Mean −5.96 −4.85 −3.41 −1.68
SD 1.16 0.77 0.63 0.59

Explanations: The table displays the mean (denoted by Mean) and standard deviation

(denoted by SD) of IVX estimates for β2,n based on 10,000 simulated price paths of a

collapsing bubble process and the risk premium is generated by DGP RP 1 (upper panel)

and by DGP RP 3 (lower panel). The simulations use the DGPs B 2 (left panel) and B 3

(right panel) with ρ = 0.1 and π values from the set {0.3, 0.5,0.7, 0.9}.
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Table 4: Power

FPR

λ T π 0.3 0.5 0.7 0.9

0
150 0.71 0.75 0.80 0.89
300 0.88 0.90 0.94 0.98

0.5
150 0.64 0.69 0.77 0.88
300 0.84 0.89 0.93 0.97

1
150 0.25 0.32 0.38 0.58
300 0.30 0.36 0.46 0.74

1.01
150 0.19 0.23 0.28 0.50
300 0.12 0.15 0.21 0.47

% T π 0.3 0.5 0.7 0.9

−0.01
150 0.68 0.73 0.78 0.88
300 0.85 0.89 0.93 0.97

+0.01
150 0.73 0.78 0.84 0.91
300 0.90 0.93 0.95 0.98

GSADF

λ T π 0.3 0.5 0.7 0.9

0
150 0.31 0.33 0.32 0.40
300 0.47 0.50 0.48 0.59

0.5
150 0.30 0.34 0.33 0.42
300 0.47 0.51 0.50 0.61

1
150 0.31 0.35 0.34 0.41
300 0.46 0.50 0.49 0.61

1.01
150 0.31 0.34 0.33 0.43
300 0.49 0.53 0.52 0.63

% T π 0.3 0.5 0.7 0.9

−0.01
150 0.30 0.33 0.31 0.41
300 0.47 0.50 0.49 0.61

+0.01
150 0.31 0.32 0.32 0.39
300 0.46 0.49 0.47 0.57

Explanations: The table presents rejection rates for Bt > 0 whereas the bubble is generated

by Blanchard’s DGP B 2 and the risk premium is generated by DGP RP 1 (upper panel) and

by DGP RP 3 (lower panel). The left panel shows the rejection rates of a Wald statistic

based on FPR 2, while the right panel illustrates the rejection rates of the GSADF test

applied to Pt+1 − F1,t . The nominal size is set at 5%, and we perform 10,000 replications.

The underlying fundamental process follows a random walk.
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Table 5: Power (cont’d)

FPR

λ T π 0.3 0.5 0.7 0.9

0
150 0.99 1.00 0.99 0.98
300 1.00 1.00 1.00 0.99

0.5
150 0.99 1.00 0.99 0.98
300 1.00 1.00 1.00 0.99

1
150 0.72 0.79 0.86 0.94
300 0.85 0.91 0.96 0.99

1.01
150 0.55 0.63 0.72 0.88
300 0.41 0.49 0.61 0.87

% T π 0.3 0.5 0.7 0.9

−0.01
150 0.99 1.00 0.99 0.98
300 1.00 1.00 1.00 0.99

+0.01
150 1.00 1.00 0.99 0.98
300 1.00 1.00 1.00 0.99

GSADF

λ T π 0.3 0.5 0.7 0.9

0
150 0.57 0.56 0.54 0.51
300 0.75 0.69 0.66 0.61

0.5
150 0.57 0.56 0.52 0.50
300 0.74 0.69 0.66 0.62

1
150 0.57 0.55 0.54 0.51
300 0.74 0.68 0.65 0.60

1.01
150 0.57 0.56 0.54 0.52
300 0.71 0.67 0.65 0.60

% T π 0.3 0.5 0.7 0.9

−0.01
150 0.57 0.56 0.54 0.53
300 0.75 0.69 0.66 0.65

+0.01
150 0.57 0.55 0.52 0.45
300 0.75 0.69 0.64 0.56

Explanations: The table presents rejection rates for Bt > 0 whereas the bubble is generated

by Evans’ DGP B 3 and the risk premium is generated by DGP RP 1 (upper panel) and by

DGP RP 3 (lower panel). The left panel shows the rejection rates of a Wald statistic based

on FPR 2, while the right panel illustrates the rejection rates of the GSADF test applied

to Pt+1 − F1,t . The nominal size is set at 5%, and we perform 10,000 replications. The

underlying fundamental process follows a random walk.
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Table 6: Testing explosiveness of EU ETS spot and futures rates

Lags Pt F4,t F8,t F12,t F16,t

SADF 1 4.96r 4.97r 4.98r 4.97r 4.96r

4 5.43r 5.45r 5.46r 5.45r 5.43r

GSADF 1 4.96r 4.97r 4.98r 4.97r 4.97r

4 5.43r 5.45r 5.46r 5.45r 5.43r

Explanations: The table presents the test statistics of the SADF and GSADF test applied to

the spot and futures rates. Superscript r indicates rejection at the 5% significance level

whereas critical values are obtained by bootstrapping with 999 repetitions.
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Table 7: Testing a bubble in the EU ETS by the FPR approach

Third and fourth trading period

n 4 8 12 16

OLS β̂2,n −1.86 −1.50 −1.90 −1.68
|tβ | 0.86 1.61 3.00r 3.35r

( 0.39 ) ( 0.11 ) ( 0.00 ) ( 0.00 )

IVX β̂2,n −1.59 −1.30 −1.84 −1.70
Wβ 0.54 1.91 8.01r 11.09r

( 0.46 ) ( 0.17 ) ( 0.00 ) ( 0.00 )

IVX-AR β̂2,n −2.84 −2.14 −1.59 −2.00
fWβ 3.05 2.45 1.72 2.34

( 0.08 ) ( 0.12 ) ( 0.19 ) ( 0.13 )

WAR 329.9r 556.6r 860.2r 833.7r

( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

Explanations: Estimates for the slope coefficient β̂2,n of FPR 2 for the full-sample (January

2018 to October 2023). The slope coefficients are estimated by Ordinary Least Squares, by

the IVX estimator according to Kostakis, Magdalinos, and Stamatogiannis (2015) and by

the IVX-AR estimator according to Yang, Long, Peng, and Cai (2020). The absolute value

of the t-statistic in the OLS case is denoted by |tβ | and the values of the Wald statistic is

denoted by Wβ for the approach by Kostakis, Magdalinos, and Stamatogiannis (2015) and

by fWβ for the approach by Yang, Long, Peng, and Cai (2020). Further, WAR denotes the

Wald statistic for the joint hypothesis that all included lags in the error term of FPR 2 are

equal to zero. We use the BIC to select the lag length. Superscript r indicates rejection at

the 5% significance level and p−values are in parentheses.
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Table 8: Testing a bubble in the EU ETS by the FPR approach (cont’d)

Third trading period

n 4 8 12 16

OLS β̂2,n −19.54 −0.53 −9.86 −4.61
|tβ | 1.47 0.08 2.33r 1.36

( 0.14 ) ( 0.94 ) ( 0.02 ) ( 0.18 )

IVX β̂2,n −18.07 5.09 −3.81 1.99
Wβ 1.85 0.54 0.73 0.29

( 0.17 ) ( 0.46 ) ( 0.39 ) ( 0.59 )

IVX-AR β̂2,n −8.15 −0.35 −5.72 −0.24
fWβ 1.57 0.01 2.10 0.01

( 0.21 ) ( 0.91 ) ( 0.15 ) ( 0.94 )

WAR 350.9r 805.0r 641.6r 1071.0r

( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

Fourth trading period

n 4 8 12 16

OLS β̂2,n −3.38 −3.30 −3.78 −3.64
|tβ | 1.03 2.22r 3.80r 4.70r

( 0.31 ) ( 0.03 ) ( 0.00 ) ( 0.00 )

IVX β̂2,n −2.62 −2.80 −3.70 −3.63
Wβ 0.62 3.42 13.02r 20.64r

( 0.43 ) ( 0.06 ) ( 0.00 ) ( 0.00 )

IVX-AR β̂2,n −1.92 −1.76 −2.61 −3.05
fWβ 0.52 0.93 2.51 2.93

( 0.47 ) ( 0.33 ) ( 0.11 ) ( 0.09 )

WAR 195.5r 697.5r 593.4r 563.9r

( 0.00 ) ( 0.00 ) ( 0.00 ) ( 0.00 )

Explanations: Estimates for the slope coefficient β̂2,n of FPR 2 for the sub-samples (January

2018 to December 2021 in the left panel and January 2022 to October 2023 in the right

panel). The slope coefficients are estimated by Ordinary Least Squares, by the IVX estimator

according to Kostakis, Magdalinos, and Stamatogiannis (2015) and by the IVX-AR estimator

according to Yang, Long, Peng, and Cai (2020). The absolute value of the t-statistic in the

OLS case is denoted by |tβ | and the values of the Wald statistic is denoted by Wβ for the

approach by Kostakis, Magdalinos, and Stamatogiannis (2015) and by fWβ for the approach

by Yang, Long, Peng, and Cai (2020). Further, WAR denotes the Wald statistic for the joint

hypothesis that all included lags in the error term of FPR 2 are equal to zero. We use the

BIC to select the lag length. Superscript r indicates rejection at the 5% significance level

and p−values are in parentheses.
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Table 9: Testing a bubble in the EU ETS by the GSADF approach

Lags n 4 8 12 16

SADF 1 −4.24 −2.38 −1.11 −1.13
4 −1.26 −0.76 −0.34 −0.36

GSADF 1 −0.17 0.67 1.52 1.68
4 1.07 2.02 1.59 2.22

Explanations: The table presents the test statistics of the SADF and GSADF test applied to

the differential between future spot rates and futures rates with n ∈ {4,8, 12,16} weeks.

Superscript r indicates rejection at the 5% significance level whereas critical values are

obtained by bootstrapping with 999 repetitions.

Table 10: Testing a bubble in the EU ETS by the KPSS-type approach

Third and fourth trading period

n 4 8 12 16

Bootstrap CV 5% 0.138 0.139 0.153 0.167
Test statistic 0.248r 0.254r 0.296r 0.327r

Explanations: Bootstrap CV 5% denotes the 5% critical value for the testing procedure for

co-explosiveness obtained by wild bootstrap and the row below contains the test statistic

for the full sample (January 2018 to October 2023). We rejectH0 at the 5% significance

level if the test statistic is larger than the bootstrap critical value (indicated by superscript

r).
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Table 11: Testing a bubble in the EU ETS by the KPSS-type approach (cont’d)

Third trading period

n 4 8 12 16

Bootstrap CV 5% 0.347 0.400 0.367 0.433
Test statistic 0.227 0.176 0.145 0.155

Fourth trading period

n 4 8 12 16

Bootstrap CV 5% 0.282 0.248 0.210 0.190
Test statistic 0.168 0.115 0.121 0.108

Explanations: Bootstrap CV 5% denotes the 5% critical value for the testing procedure for

co-explosiveness obtained by wild bootstrap and the row below contains the test statistic

for the sub-sample (January 2018 to December 2021 in the left panel and January 2022

to October 2023 in the right panel). We rejectH0 at the 5% significance level if the test

statistic is larger than the bootstrap critical value (indicated by superscript r).

53



Figure 1: Spot price series of emission allowances in the EU ETS
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Explanations: The dotted vertical line indicates the (supposed) start of the price surge

(2018). The solid vertical line indicates the start of the fourth trading period (2021).
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Figure 2: Timing of explosiveness in EU ETS spot and futures prices
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Explanations: The regions shaded in gray signify explosive periods, as determined by the

BSADF procedure at a 5% significance level, employing one lag and a minimum window

size of 36 observations. "Spot" denotes the date stamping for the spot price, while "Futures

Price 1" corresponds to the futures price with delivery in one month (4 weeks), and so

forth.
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Figure 3: Timing of explosiveness in EU ETS spot and futures prices (cont’d)
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Explanations: The regions shaded in gray signify explosive periods, as determined by the

BSADF procedure at a 5% significance level, employing four lag and a minimum window

size of 36 observations. "Spot" denotes the date stamping for the spot price, while "Futures

Price 1" corresponds to the futures price with delivery in one month (4 weeks), and so

forth.
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Appendix C: Further Monte Carlo Studies

In this section, we present supplementary findings from simulation studies regarding the

power to identify rational bubbles of the Fama Predictive Regression (FPR) approach, in

particular FPR 2, and the Generalized Supremum Augmented Dickey Fuller (GSADF) test

applied to Pt+n − Fn,t , where n takes values from the set 2,3, 4. In particular, we consider

Pt = Ut + Bt and Fn,t = Et [Pt+n] + RPn,t whereas

(i) the fundamental is generated by a random walk, i.e., Ut = Ut−1 + ϑt with U0 = 100

and ϑt ∼ i.i.d.N (0, 1),

(ii) the bubble is generated by DGP B 2 (see Table 12 to Table 14) and by DGP B 3 (see

Table 15 to Table 17), respectively,

(iii) the risk premium is generated by RPn,t = λRPn,t−1 + ϕt with λ ∈ {0, 0.5,1, 1.01}
(upper panel in the following tables) and RPn,t = %× (1+ρ)Bt +%× θUt +ϕt with

% ∈ {−0.01,+0.01} where ϕt ∼ i.i.d. N (0,1) (lower panel in the following tables),

(iv) the sample size takes on values from the set T ∈ {150,300}.

We note a constant power level in the GSADF approach for extended forecast horizons,

whereas the power of the FPR approach shows an upward trend in all examined scenarios

below. This phenomenon can be attributed to the growing persistence in the regressand in

FPR 2 for longer predictive horizons, especially when a rational bubble is present. Regarding

our specific application, it is noteworthy that as n exceeds one, the evidence against the

price being influenced by a rational bubble becomes increasingly compelling.
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Table 12: Power with n = 2 (Blanchard)

FPR

λ T π 0.3 0.5 0.7 0.9

0
150 0.87 0.92 0.94 0.97
300 0.97 0.98 0.99 0.99

0.5
150 0.84 0.89 0.93 0.97
300 0.96 0.98 0.99 0.99

1
150 0.42 0.56 0.66 0.82
300 0.51 0.64 0.74 0.91

1.01
150 0.31 0.42 0.51 0.71
300 0.23 0.29 0.38 0.66

% T π 0.3 0.5 0.7 0.9

−0.01
150 0.85 0.92 0.94 0.97
300 0.97 0.98 0.99 0.99

+0.01
150 0.88 0.93 0.95 0.97
300 0.98 0.99 0.99 0.99

GSADF

λ T π 0.3 0.5 0.7 0.9

0
150 0.36 0.44 0.44 0.51
300 0.55 0.62 0.63 0.69

0.5
150 0.38 0.46 0.45 0.52
300 0.57 0.64 0.64 0.71

1
150 0.38 0.45 0.45 0.54
300 0.55 0.63 0.63 0.71

1.01
150 0.38 0.44 0.45 0.54
300 0.58 0.66 0.67 0.75

% T π 0.3 0.5 0.7 0.9

−0.01
150 0.36 0.44 0.45 0.52
300 0.55 0.63 0.62 0.71

+0.01
150 0.36 0.43 0.43 0.50
300 0.55 0.63 0.63 0.69

Explanations: The table presents rejection rates for Bt > 0 and n = 2 whereas the bubble

is generated by Blanchard’s DGP B 2 and the risk premium is generated by DGP RP 1

(upper panel) and by DGP RP 3 (lower panel). The left panel shows the rejection rates of a

Wald statistic based on FPR 2, while the right panel illustrates the rejection rates of the

GSADF test applied to Pt+2 − F2,t . The nominal size is set at 5%, and we perform 10,000

replications. The underlying fundamental process follows a random walk.
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Table 13: Power with n = 3 (Blanchard)

FPR

λ T π 0.3 0.5 0.7 0.9

0
150 0.92 0.95 0.97 0.98
300 0.99 0.99 0.99 0.99

0.5
150 0.90 0.93 0.96 0.98
300 0.98 0.99 0.99 0.99

1
150 0.55 0.67 0.79 0.91
300 0.65 0.78 0.86 0.96

1.01
150 0.43 0.55 0.65 0.82
300 0.31 0.39 0.49 0.75

% T π 0.3 0.5 0.7 0.9

−0.01
150 0.91 0.95 0.97 0.98
300 0.99 0.99 0.99 0.99

+0.01
150 0.93 0.96 0.98 0.98
300 0.99 1.00 1.00 1.00

GSADF

λ T π 0.3 0.5 0.7 0.9

0
150 0.37 0.47 0.49 0.57
300 0.55 0.67 0.69 0.75

0.5
150 0.38 0.49 0.52 0.59
300 0.56 0.68 0.70 0.77

1
150 0.39 0.49 0.51 0.59
300 0.55 0.68 0.70 0.78

1.01
150 0.39 0.49 0.50 0.61
300 0.60 0.71 0.74 0.81

% T π 0.3 0.5 0.7 0.9

−0.01
150 0.37 0.46 0.49 0.57
300 0.55 0.66 0.70 0.77

+0.01
150 0.36 0.47 0.48 0.57
300 0.55 0.66 0.69 0.75

Explanations: The table presents rejection rates for Bt > 0 and n = 3 whereas the bubble

is generated by Blanchard’s DGP B 2 and the risk premium is generated by DGP RP 1

(upper panel) and by DGP RP 3 (lower panel). The left panel shows the rejection rates of a

Wald statistic based on FPR 2, while the right panel illustrates the rejection rates of the

GSADF test applied to Pt+3 − F3,t . The nominal size is set at 5%, and we perform 10,000

replications. The underlying fundamental process follows a random walk.
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Table 14: Power with n = 4 (Blanchard)

FPR

λ T π 0.3 0.5 0.7 0.9

0
150 0.94 0.96 0.97 0.98
300 0.99 0.99 0.99 0.99

0.5
150 0.92 0.94 0.97 0.98
300 0.98 0.99 0.99 0.99

1
150 0.63 0.74 0.84 0.95
300 0.74 0.84 0.91 0.98

1.01
150 0.51 0.63 0.74 0.88
300 0.40 0.48 0.57 0.82

% T π 0.3 0.5 0.7 0.9

−0.01
150 0.94 0.96 0.97 0.98
300 0.99 0.99 0.99 0.99

+0.01
150 0.95 0.97 0.98 0.98
300 0.99 1.00 1.00 0.99

GSADF

λ T π 0.3 0.5 0.7 0.9

0
150 0.35 0.48 0.53 0.60
300 0.53 0.67 0.73 0.79

0.5
150 0.37 0.49 0.54 0.63
300 0.54 0.69 0.73 0.81

1
150 0.36 0.50 0.54 0.62
300 0.55 0.69 0.73 0.81

1.01
150 0.37 0.50 0.55 0.63
300 0.58 0.73 0.78 0.85

% T π 0.3 0.5 0.7 0.9

−0.01
150 0.36 0.48 0.53 0.62
300 0.52 0.69 0.72 0.80

+0.01
150 0.35 0.48 0.52 0.60
300 0.54 0.68 0.72 0.79

Explanations: The table presents rejection rates for Bt > 0 and n = 4 whereas the bubble

is generated by Blanchard’s DGP B 2 and the risk premium is generated by DGP RP 1

(upper panel) and by DGP RP 3 (lower panel). The left panel shows the rejection rates of a

Wald statistic based on FPR 2, while the right panel illustrates the rejection rates of the

GSADF test applied to Pt+4 − F4,t . The nominal size is set at 5%, and we perform 10,000

replications. The underlying fundamental process follows a random walk.
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Table 15: Power with n = 2 (Evans)

FPR

λ T π 0.3 0.5 0.7 0.9

0
150 1.00 1.00 0.99 0.98
300 1.00 1.00 1.00 0.99

0.5
150 1.00 1.00 0.99 0.98
300 1.00 1.00 1.00 0.99

1
150 0.93 0.96 0.98 0.98
300 0.97 0.99 0.99 0.99

1.01
150 0.79 0.85 0.91 0.96
300 0.62 0.71 0.81 0.96

% T π 0.3 0.5 0.7 0.9

−0.01
150 0.93 0.97 0.98 0.98
300 0.98 0.99 1.00 0.99

+0.01
150 0.93 0.96 0.98 0.98
300 0.98 0.99 0.99 0.99

GSADF

λ T π 0.3 0.5 0.7 0.9

0
150 0.56 0.64 0.67 0.75
300 0.75 0.80 0.80 0.83

0.5
150 0.57 0.64 0.67 0.74
300 0.75 0.80 0.81 0.83

1
150 0.56 0.64 0.67 0.74
300 0.75 0.80 0.81 0.84

1.01
150 0.58 0.65 0.67 0.74
300 0.72 0.80 0.79 0.83

% T π 0.3 0.5 0.7 0.9

−0.01
150 0.57 0.63 0.67 0.75
300 0.74 0.81 0.81 0.83

+0.01
150 0.57 0.64 0.67 0.75
300 0.74 0.80 0.80 0.83

Explanations: The table presents rejection rates for Bt > 0 and n = 2 whereas the bubble

is generated by Evans’ DGP B 3 and the risk premium is generated by DGP RP 1 (upper

panel) and by DGP RP 3 (lower panel). The left panel shows the rejection rates of a Wald

statistic based on FPR 2, while the right panel illustrates the rejection rates of the GSADF

test applied to Pt+2−F2,t . The nominal size is set at 5%, and we perform 10,000 replications.

The underlying fundamental process follows a random walk.
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Table 16: Power with n = 3 (Evans)

FPR

λ T π 0.3 0.5 0.7 0.9

0
150 1.00 1.00 1.00 0.99
300 1.00 1.00 1.00 1.00

0.5
150 1.00 1.00 0.99 0.99
300 1.00 1.00 1.00 0.99

1
150 0.98 0.99 0.99 0.98
300 1.00 1.00 1.00 1.00

1.01
150 0.89 0.94 0.96 0.98
300 0.74 0.83 0.91 0.98

% T π 0.3 0.5 0.7 0.9

−0.01
150 0.98 0.99 0.99 0.98
300 0.99 1.00 1.00 0.99

+0.01
150 0.98 0.99 0.99 0.99
300 0.99 1.00 1.00 0.99

GSADF

λ T π 0.3 0.5 0.7 0.9

0
150 0.56 0.66 0.71 0.80
300 0.74 0.83 0.85 0.88

0.5
150 0.57 0.65 0.71 0.80
300 0.73 0.82 0.86 0.88

1
150 0.56 0.66 0.72 0.80
300 0.73 0.82 0.85 0.88

1.01
150 0.55 0.65 0.72 0.80
300 0.70 0.83 0.85 0.89

% T π 0.3 0.5 0.7 0.9

−0.01
150 0.56 0.66 0.72 0.80
300 0.73 0.83 0.85 0.88

+0.01
150 0.56 0.66 0.71 0.80
300 0.72 0.82 0.85 0.88

Explanations: The table presents rejection rates for Bt > 0 and n = 3 whereas the bubble

is generated by Evans’ DGP B 3 and the risk premium is generated by DGP RP 1 (upper

panel) and by DGP RP 3 (lower panel). The left panel shows the rejection rates of a Wald

statistic based on FPR 2, while the right panel illustrates the rejection rates of the GSADF

test applied to Pt+3−F3,t . The nominal size is set at 5%, and we perform 10,000 replications.

The underlying fundamental process follows a random walk.
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Table 17: Power with n = 4 (Evans)

FPR

λ T π 0.3 0.5 0.7 0.9

0
150 1.00 1.00 0.99 0.98
300 1.00 1.00 1.00 0.99

0.5
150 1.00 1.00 0.99 0.98
300 1.00 1.00 1.00 0.99

1
150 0.99 0.99 0.99 0.99
300 1.00 1.00 1.00 0.99

1.01
150 0.94 0.97 0.98 0.98
300 0.82 0.90 0.95 0.99

% T π 0.3 0.5 0.7 0.9

−0.01
150 0.99 0.99 0.99 0.98
300 1.00 1.00 1.00 0.99

+0.01
150 0.99 0.99 0.99 0.99
300 1.00 1.00 1.00 1.00

GSADF

λ T π 0.3 0.5 0.7 0.9

0
150 0.55 0.64 0.73 0.82
300 0.71 0.81 0.87 0.90

0.5
150 0.55 0.64 0.73 0.82
300 0.72 0.81 0.87 0.91

1
150 0.55 0.64 0.73 0.82
300 0.71 0.81 0.87 0.90

1.01
150 0.54 0.63 0.74 0.81
300 0.68 0.81 0.86 0.90

% T π 0.3 0.5 0.7 0.9

−0.01
150 0.54 0.65 0.74 0.82
300 0.71 0.82 0.87 0.91

+0.01
150 0.55 0.64 0.73 0.81
300 0.71 0.81 0.87 0.90

Explanations: The table presents rejection rates for Bt > 0 and n = 4 whereas the bubble

is generated by Evans’ DGP B 3 and the risk premium is generated by DGP RP 1 (upper

panel) and by DGP RP 3 (lower panel). The left panel shows the rejection rates of a Wald

statistic based on FPR 2, while the right panel illustrates the rejection rates of the GSADF

test applied to Pt+4−F4,t . The nominal size is set at 5%, and we perform 10,000 replications.

The underlying fundamental process follows a random walk.
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