

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Gold, Robert; Lehr, Jakob

Conference Paper

Paying Off Populism: How Regional Policies Affect Voting Behavior

Beiträge zur Jahrestagung des Vereins für Socialpolitik 2024: Upcoming Labor Market Challenges

Provided in Cooperation with:

Verein für Socialpolitik / German Economic Association

Suggested Citation: Gold, Robert; Lehr, Jakob (2024): Paying Off Populism: How Regional Policies Affect Voting Behavior, Beiträge zur Jahrestagung des Vereins für Socialpolitik 2024: Upcoming Labor Market Challenges, ZBW - Leibniz Information Centre for Economics, Kiel, Hamburg

This Version is available at: https://hdl.handle.net/10419/302441

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Paying Off Populism: How Regional Policies Affect Voting Behavior

Robert Gold* and Jakob Lehr†

February 2024

Abstract

This paper shows that regional policies can decrease populist support. We focus on the European Regional Development Fund (ERDF), an EU-wide policy program to support lagging-behind regions. For causal inference, we exploit three sources of quasi-exogenous variation in an RDD, a DiD, and with matching techniques. Using Nuts3-level panel data on the outcomes of elections to the EU parliament, observed over the period 1999-2019, we consistently find that the ERDF program reduces the vote share of right-fringe parties by about 2.5 pp. Left-fringe party support is not affected. Complementary analyses of individual-level survey data from the Eurobarometer indicate that ERDF spending increases trust in democratic institutions and decreases discontent with the EU.

Keywords: Populism, Regional Policies, European Integration, Regression Discontinuity Design

JEL Classification: D72, H54, R11, R58

^{*}Kiel Institute for the World Economy and CESifo

[†]University of Mannheim

¹Acknowledgements: Jakob Lehr gratefully acknowledges funding by the German Research Foundation (DFG) through CRC TR 224 (Project B07). Robert Gold acknowledges support by INET-Grant INO18-00028. We hereby declare that no actual or potential competing interests exist. All errors are our own.

1 Introduction

Support for populist parties from the far-right of the political spectrum, such as the French Rassemblement National, the Fratelli d'Italia or the Alternative for Germany, has been on a constant rise across Western democracies over the previous years. In the UK, the populist surge flushed the country out of the European Union. Populism also casts a shadow on the future development of the EU, since populist leaders often pursue short-time oriented, nationalist policies that hamper international cooperation and bar the way to furthering European integration.

Against this background, recent research on the economic causes of populism has revealed stark regional heterogeneities in populist support, with lagging-behind regions becoming strongholds of populist parties and candidates, see Guriev and Papaioannou (2022) for an extensive overview. Consequently, regional policies supporting the development of such regions could help to decrease populist support. Indeed, the European Union has a longstanding history of supporting lagging-behind regions and promoting convergence. Accordingly, the EU devotes approximately one-third of its budget (the so-called multiannual financial framework) to structural and cohesion policy. However, it is often regions benefiting from EU-funds where support of populist parties is comparatively strong.

In this paper, we evaluate the impact of EU regional policy on support for populist parties (left-fringe and right-fringe) throughout Europe. While many studies analyze the causes and drivers of populism, little is known about potential remedies. Only a few papers have analyzed the effect of the EU's regional policy on voting in single-country-single-election settings. The evidence is still mixed, though. Based on a spatial Regression-Discontinuity-Design (RDD) along bordering NUTS2 regions in Wales and South-West England, Crescenzi et al. (2020) find no effect of regional funds on voting behavior in the Brexit referendum. In contrast, Albanese et al. (2022), who also apply a spatial RDD, find that EU policy reduced votes for populist parties in the 2013 national election in Italy by approximately 10%.

The main contribution of our paper lies in evaluating the impact of the EU's regional policy on populist support in a pan-European setting, using regional-level panel data on the results of elections for the European Parliament. While previous case studies yield valuable insights into specific and context-dependent correlations, we identify the average effect across time and space. Results from the elections to the European Parliament are particularly suitable for this purpose. These elections are held simultaneously everywhere in Europe, and tactical voting to achieve some domestic objective is less likely to disguise voter's revealed preferences. Moreover, the

institutional framework of the European Regional Development Funds (ERDF) generates three sources of quasi-exogenous variation that can be used for causal inference.

Our empirical analysis employs a unique dataset on the regional outcomes of European Parliamentary elections, all observed at the fine-grain NUTS3-level between 1999 and 2019. We observe election outcomes for up to 27 countries, depending on the contemporary state of European unification. To assess treatment effects, we merge regional-level data on ERDF spending. Our focus is on the ERDF's main funding line, the "development-objective", also known as "Objective-1", that supports economically underdeveloped NUTS2-regions. While almost all European regions receive some funding by the ERDF under any funding line, the main share of ERDF funds is devoted to this development objective – and eligibility for "Objective-1" follows clearly defined criteria.

Generally, a European region is eligible for ERDF funding under Objective-1 if its GDP per capita does not exceed 75 percent of the EU average. First, this institutional setup gives rise to a regression discontinuity design, which compares similarly underdeveloped regions around the 75 percent threshold that differ in just one aspect: whether they receive ERDF support under the development objective, or not (cf. Becker et al., 2018). Second, the Eastern Enlargement in 2004 generates quasi-exogenous variation in some regions' treatment status, which we exploit in a difference-in-differences setting. Because of the Eastern Enlargement, some comparatively underdeveloped Western European regions dropped out of Objective-1-treatment not because they prospered economically, but just because EU's average GDP per capita declined. Eventually, in a third step, we exploit the spatial structure of our data, where outcomes are observed on the NUTS3 level but treatment is defined on the NUTS2-level. Thus, some comparatively poor NUTS3-regions receive treatment just because they are nested in a rich NUTS2 region. Conversely, some relatively rich NUTS3 regions receive treatment just because they have poor neighbors decreasing the NUTS2-average GDP per capita. We match these quasi-exogeneously (un-)treated "nested abberants" to comparable NUTS3-regions with similar GDP per capita, but the opposite treatment status. All three empirical strategies provide similar results.

We first document a negative correlation between the vote share received by right-fringe parties and per-capita transfers of the EU's structural funds, as well as a positive correlation between transfer intensity and vote shares for left-fringe parties. Based on our identification approaches, we provide evidence for a causal relationship between EU transfers and vote shares for far-right parties but not for far-left parties. Our RDD analysis shows that Objective-1 treatment decreases support for populist parties from the right fringe of the political spectrum by \approx 2.8 pp, which

implies a decline of populist support by around 20% for the average region. Difference-indifferences estimates based on regions dropping out of the Objective-1 funding line in 2007 confirm these results. Eventually, an analysis of matched "nested abberants", i.e. NUTS3-regions on the other side of the threshold than the NUTS2-region they belong to, finds a similar effect.

The regional-level results are mirrored in an individual-level analysis, using EU-wide survey data from Eurobarometer. Employing the same RDD-setup as for the regional data, it turns out that ERDF investments increase satisfaction with democracy and with the national government, and decreases dis-satisfaction with the EU in the treated regions. This implies that regional policies increase people's consent with the democratic institutions governing those policies.

Our paper adds to three related strands of the literature. First, our paper contributes to an emerging literature looking into the political impacts of public spending and redistributive policies. Most closely, it relates to the two papers cited above (Albanese et al. (2022); Crescenzi et al., 2020), which study the effect of EU regional policy on populist support in the 2013 general election in Italy and the support for the Brexit referendum in 2016, respectively. While EU transfers negatively affected the share of votes for far-right parties in the general election in Italy in 2013, Crescenzi et al., 2020 find that the average effect of EU funds on the Brexit referendum was zero. However, when EU funds led to improved labor market conditions, they reduced Euroscepticism. Fetzer (2019) also focuses on the Brexit referendum and documents that fiscal austerity led to a higher share of votes for the "Leave"-campaign. Our paper complements this result by showing that public spending can counter populism.

Second, our paper adds to the literature on the economic effects of regional policies (Becker et al., 2012; Brachert et al., 2019; Criscuolo et al., 2019; Ehrlich and Seidel, 2018; Siegloch et al., 2021) by looking into their political consequences. Our study closely relates to a series of papers also employing an RDD to identify economic impacts of the EU regional policies (Becker et al., 2010; Becker et al., 2013; Becker et al., 2018). These studies find that overall, EU regional policy successfully delivers on its primary objective, i.e. improve the economic development of left-behind regions to foster convergence. Against this background, the decrease in populist support we measure comes as a –arguably unintended– consequence of regional policy.

Third, our paper complements the literature on the causes of populism by looking into possible remedies. This literature has analyzed the political consequences of international migration

¹Further papers studying voting behavior in the Brexit referendum include Fidrmuc et al., 2019 and Becker et al. (2017). The former does not find that EU regional policy correlates with the leave share. The latter identifies structural factors such as socioeconomic profiles and regional characteristics, e.g. the economic structure as primary drivers of voting behavior.

(Gallegos Torres, 2023; Dustmann et al., 2019; Steinmayr, 2021; Halla et al., 2017), macroeconomic "shocks" like financial crises (Funke et al., 2016; Gyöngyösi and Verner, 2022), increasing international trade (Autor et al., 2020; Dippel et al., 2022) or technological change (Anelli et al., 2019; Frey et al., 2018, Rodríguez-Pose, 2018). The latter literature shows that regional sub-units of developed economies are very differently affected by macroeconomic developments. While some regions benefit from the changing economic environment, others are left behind in structural change. Regions on the losing side of this process are more likely to support populist parties and candidates. We show that regional policies aimed at improving the development perspectives of left-behind regions reduce the "populist backlash" to economic change.

Moreover, our individual-level results speak to a broader literature related to the effects of economic developments on trust in democratic institutions and governments (Algan et al., 2017; Dustmann et al., 2017). Against this background, our individual-level results do not only confirm our regional-level findings. They also indicate that regional policies, by addressing the economic roots of populism, affect the psychological channels that translate discontent with economic developments into populist support.

The remainder of this paper is organized as follows. Section 2 introduces our data. Section 3 lays out the empirical strategy. Section 4 presents our regional-level results. The section first reports correlational evidence, then assesses treatment effects in a RDD-setting, in a DiD-setting, and on a matched sample. Section 5 adds our individual-level analysis, and section 6 concludes.

2 Data

2.1 Data on Regional Policies

Established in 1975, the European Regional Development Funds (EFRE) finances regional policies following the goals and regulations set out by the European Commission. Since 1994, the EFRE has followed programming periods of 6-7 years. The EU Commission defines overarching goals and budgets, while national and regional governments define concrete projects and measures. Generally, all EFRE measures require co-funding by the national or regional governments.

While the concrete goals and policy instruments of the EFRE have frequently changed over time, there has been one constant, i.e. the goal to support the economic development of lagging-behind regions. We focus on this specific policy goal and the respective funding line within the EFRE, which we call "Objective-1". Funds supporting the development objective have consistently been assigned according to a simple rule. All European NUTS2-regions with a GDP per capita below 75

percent of the EU average have been eligible for funding. This arbitrarily set threshold provides a source of quasi-exogenous variation that allows identifying policy effects in a regression discontinuity design.

Our empirical analysis concentrates on ERDF funding under Objective-1 for the three recent programming periods 2000-2006, 2007-2013, and 2014-2020. For each period, we identify the NUTS2-regions eligible (and receiving) funding from the *Official Journal of the European Communities*.² We also collect data on actual ERDF transfers from various sources. At the NUTS2 level, the European Commission (DG Regional Policy) provides regionalized information on annual expenditures from EU funds (ERDF, CF, ESF).³ There exist separate databases with expenditure information at the more granular NUTS3 level (nested in NUTS2), which can all be accessed via the website of the European Commission. For the funding cycle from 2000 to 2006 and 2007 to 2013, NUTS3 level expenditure information is published in the Annexe to reports produced for the Commission, which describe the regional distribution of EU expenditures.⁴ For the most recent funding period, the European Commission started to provide project-specific information, including the projects' geocodes, the total volume of the projects and the cofinancing rate. We downloaded the data for the universe of projects and mapped the projects to NUTS3 regions to calculate total transfers at the NUTS3 level.⁵

2.2 Election Data

To analyze the effect of regional policies on populist support, we collect results from elections to the European Parliament from the past 20 years. Our election data is regionally highly disaggregated, i.e we observe election outcomes at the NUTS3-level, the lowest level of the standard European classification of regions. The primary data sources are the national electoral authorities. While recent election results are often available for download, NUTS3-level results for earlier years were available upon request. We use EUROSTAT's correspondence tables to accommodate changes in the boundaries of NUTS regions and various national correspondence tables to account for shifts in the boundaries of local administrative units. The regional units

 $^{^2}$ Concretely, regions covered by the development goal of the ERDF for the period 2000 - 2006 are listed in in the Official Journal L 194 (27/07/1999) on page 53 - 57; for the period 2007 - 2013 regions are listed in in the Official Journal L 243 (06/09/2006) on page 44 - 46 and for the period 2014 - 2020 respective regions are listed in in the Official Journal L 50 (20/02/2014) on page 22 - 34.

³The information on annual expenditures at the NUTS2 level can be found here. Last retrieved in February 2021. ⁴The report about expenditure during the funding period 2007 -2013 is titled "Geography of Expenditure" and the title for the report describing the regional expenditure distribution in the period 2000 - 2006 is "Regional expenditure study 2000-2006". See here for the reports and the data. Last retrieved in October 2021.

⁵We downloaded the data here. Last retrieved in June 2023. While this data source seems ideal, many of the geocodes turned out to be identical, e.g., a town's centroid. We adopted various cleaning steps to be confident that our data reasonably describe transfer intensity.

in our final election dataset largely correspond to the NUTS3 classification from 2016. On this basis, we consistently merge all other regional-level data.

We observe NUTS3 regional election outcomes for almost all member countries of the EU-28. Exceptions are the Republic of Ireland, where it was impossible to obtain regionally disaggregated election results, and observations from Scotland, Wales and Northern Ireland, where it is impossible to map the electoral wards into the NUTS classification. For most countries, our dataset covers at least the past five elections, which took place in 1999, 2004, 2009, 2014 and 2019. When a new member state enters the EU, the first observation refers to the first regular election to the European Parliament in which the new member participates.

To classify parties into the political left-right-spectrum and as populist, we build on "The PopuList" (M.Rooduijn et al., 2019). "The PopuList" assesses the political orientation of parties from 31 European countries, evaluated by academics and journalists in a peer-reviewed process. Based on this information, we classify parties as either far-right or far-left. The former group consists of 51 parties from the right fringe of the political spectrum and the latter consists of 34 parties from the left fringe of the political spectrum.

Fortunately, the election cycles to the European Parliament nicely coincide with the funding periods of the ERDF. In Each funding period, we observe at least one election. Our main analysis will focus on election results from the years 2004 (Funding Period 2000 - 2006), 2009 (Funding Period 2007 - 2013) and 2019 (Funding Period 2014 - 2020), i.e. the last election per funding period. Some analyses will use election results from 1999 and from 2004 as reference, and for robustness tests.

2.3 Descriptives

Table 1, provides summary statistics election outcomes at the NUTS3- level. Over the last 20 years, right-fringe parties increased their electoral support from an average vote share of approximately 8% in 2004 to roughly 10% in 2009, 16% in 2014 and 19% in the most recent election to the European Parliament in 2019. In contrast, the support for left-fringe parties has remained stable over time and averaged at a vote share of about 6%.

The numbers in Table 1 mask a pronounced spatial variation in election outcomes, which is illustrated in Figure 1. The map shows the vote shares received by right fringe parties at the Nuts-3 level for our main elections of interest, i.e. elections to the European Parliament in 2004

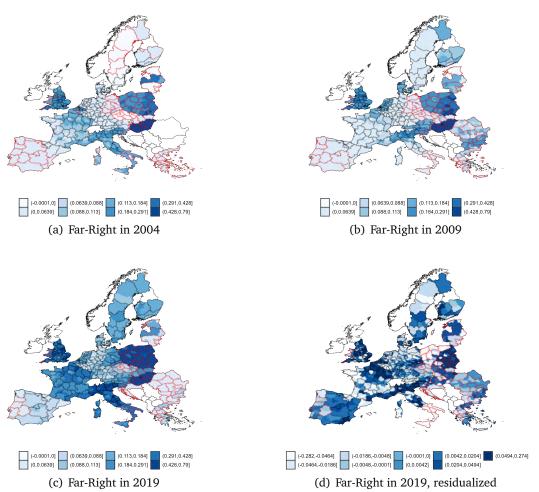
⁶For more information, see https://popu-list.org/

Table 1: Descriptive Statistics - Votes

	Mean	Mode	SD	Max	Min	N
Election 1999						
Share Far Right	0.051	0.024	0.064	0.352	0.000	894
Share Far Left	0.069	0.037	0.079	0.407	0.000	894
Election 2004						
Share Far Right	0.102	0.044	0.113	0.583	0.000	1,187
Share Far Left	0.056	0.021	0.074	0.408	0.000	1,187
Election 2009						
Share Far Right	0.109	0.050	0.134	0.777	0.000	1,252
Share Far Left	0.058	0.032	0.070	0.499	0.000	1,252
Election 2014						
Share Far Right	0.161	0.104	0.143	0.744	0.000	1,279
Share Far Left	0.060	0.035	0.078	0.459	0.000	1,279
Election 2019						
Share Far Right	0.212	0.144	0.173	0.790	0.000	1,286
Share Far Left	0.055	0.031	0.071	0.403	0.000	1,286

Notes: This table shows moments of the distributions of vote shares for far right and far left parties in the past four elections to the European Parliament.

(upper left panel). 2009 (upper right panel) and 2019 (lower left). In the appendix, present corresponding maps for the vote shares received by left-fringe parties in Figure A1.


The maps reveal substantial between-country variation in populist support, almost all European countries can easily be identified by changing colors at the border. In our empirical analysis, such country-level differences will be absorbed by country-time fixed effects. To illustrate the remaining variation used the regression analyses, we plot the residualized vote shares from the election in the lower-right panel of Figure 1.

Because of EU enlargements, the number of regions observed varies by election.⁷ Our final dataset includes 201 NUTS2 regions in the funding period 2000 - 2006, 243 NUTS2 regions in the period 2007 - 2013, and 258 in the period 2013 - 2020. The number of treated regions is 52, 66 and 65 in the respective funding periods (compare Table 2).

While our treatment variable is observed at the NUTS2-level, outcome variables are observed at the NUTS3-level, with NUTS3 being nested in NUTS2. On average, approximately five NUTS3 regions are nested within one NUTS2 region. In rows three and four of Table 2, we show the total number of NUTS3 regions and the number of NUTS3 regions with Objective-1 treatment status.

⁷As mentioned above, we had to drop Ireland as well as Scotland, Wales and Northern Ireland due to data limitations. We also drop the French oversea regions Guadeloupe, Martinique, Guyane and La Réunion. We drop the Spanish exclaves Ceuta and Melilla, as well as the Portuguese regions "Região Autónoma da Madeira" and "Região Autónoma dos Açores"

Figure 1: Vote Shares for Right-fringe Parties and Treated Regions

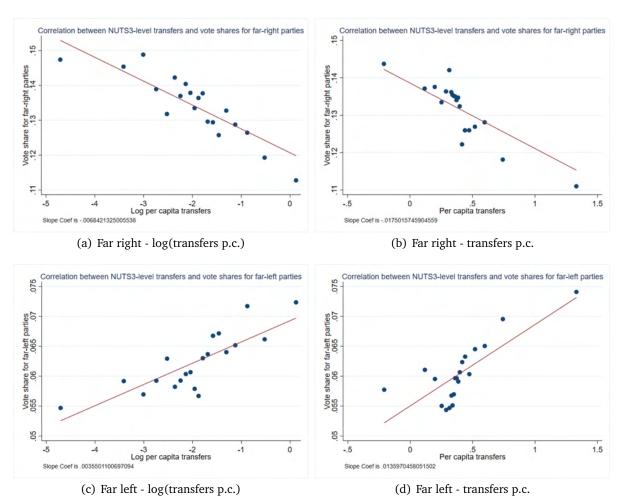
Notes: The figures show the share of votes for far right parties in the elections to the European Parliament in 2004, 2009, and 2019, as well as the residualized outcome for 2019. Regions outlined in red are the Objective 1 regions.

In row five and six of Table 2, we show the average per capita disbursements (over the whole period) from the European structural and investment funds in treatment regions and contrast it with the average per capita disbursement in control regions. The average per capita transfer is approximately four to seven times higher in treated regions than in the control group. The difference between treated regions and the rest is the smallest from 2007 until 2013. This is likely due to special "fading-out" assistance provided to NUTS2-regions loosing treatment status due to the Eastern Enlargement of the EU. These figures mainly demonstrate the relevance of a region's Objective-1 treatment status for the amount of transfers a region receives.

Table 2: Regions and Treatment Status

Funding Period	2000-2006	2007 - 2013	2014 - 2020
NUTS2 Regions	249	261	264
NUTS2 Regions - Dev. Obj.	92	79	68
NUTS3 Regions	1,242	1,291	1,313
NUTS3 Regions - Dev. Obj.	414	379	301
Transfers (No Dev. Obj.)	210	464	299
Transfers (Dev. Obj.)	1,498	2,139	1,351

Notes: This table reports the number of NUTS2 and NUTS3 regions in our estimation sample for each funding period. It also shows the average per capita transfers from the EU separately for treated and non-treated regions.


We supplement our data with a set of regional-level variables, mostly downloaded from the European Commissions Database (ARDECO). ARDECO draws on information from EUROSTAT, supplemented with data from Cambridge Econometrics. The data comes as a balanced panel, i.e. the NUTS regions were harmonized over time. It includes population density, employment shares, employment by economic sectors, and GDP per capita in purchasing power parities. Most regional level data is available at the NUTS2 and NUTS3 levels. Importantly, we draw on this data source to construct the forcing variable for our fuzzy RDD. Other variables will be used as controls. Summary statistics of covariates and the forcing variable are shown in Table A2 in the appendix.

2.4 Correlation Between EU-Spending and Populist Support

To motivate the subsequent empirical analysis, we pool election outcomes observed between 2004 and 2019 on the Nuts3-level, and correlate the vote shares received by left-fringe and by right-fringe parties with the EU-transfers a region receives over the corresponding funding period. Figure 2 summarizes the statistical relationship as binscatter-plots. All variables are demeanded by country-election.

⁸Regionalized information on EU expenditures can be downloaded from the EU Commissions' website (DG Regional Policy.

Figure 2: Correlations between EU-transfers and vote shares

Notes: The binned scatter plots visualize the correlations between the share of votes for extreme parties (far-right and far-left) and per capita transfers. Observations from the 2004, 2009, 2014 and 2019 elections were pooled and the sample was restricted to countries that were EU members at the beginning of a funding period. We omit very affluent regions from the sample and focus instead on a symmetric sample (+/- 75%) around the threshold, determining a NUTS2 region's eligibility for objective 1 transfers. The units of observation are NUTS3 regions. All variables are residualized by country election. Subfigure (a) reports the correlation between the vote share for far-right parties and the log of per capita transfers, (b) uses per capita transfers in levels, Subfigure (c) reports the correlation between far-left parties and log transfers and (d) far-left parties and transfers in levels.

The bins in Figure 2 refer to Nuts3-regions with a GDP per capita of less than 150% of the EU-average. With a view on the subsequent analyses, richer regions have been omitted. The upper panels (a) and (b) show a negative correlation between far-right voting support and per-capita transfers in logs (a) and in levels (b). Coversely, the lower panels (c) and (d) show a positive correlation between the EU-transfers a region receives, and voting support of left-fringe parties. Table A3 in the Appendix confirms that this relationship is statistically highly significant, even conditional on regional control variables. Accordingly, transferring additional 1000€ per capita to a NUTS3-region decreases support of right-fringe parties by 1.2pp., but increases support of left-fringe parties by 1.4pp. The empirical challenge is to extract the exogenous variation caused by EU regional policies from this correlation.

3 Empirical Strategy

To assess the causal effect of EU regional transfers on voting support for populist parties, we focus on ERDF-spending under Objective-1, the development-objective supporting lagging behind regions. Thus, we omit particularly well-developed regions with a GDP per capita larger than 150% of the EU-average at the beginning of each funding period from all subsequent analyses. We exploit three different sources of quasi-exogenous variation in three different empirical settings.

3.1 Regression Discontinuity Design

Similar to Becker et al. (2010) and Becker et al. (2018), we leverage the eligibility rule for ERDF-funding under the development-objective to identify the effect of regional policy on voting behavior. As described above, a NUTS2 region is formally eligible for support under the ERFD's "Objective-1" if the regions' average GDP per capita is less than 75% of the respective average in the EU.⁹ This gives rise to a regression discontinuity design (RDD). The discontinuity at the 75% threshold is illustrated in Figure 3 (left panel), as well as the steep increase in ERDF spending that comes with Objective-1 treatment (right panel).

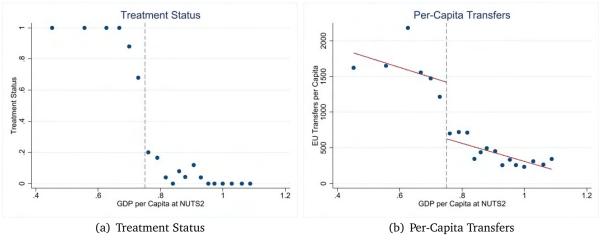


Figure 3: Forcing Variable, Treatment Status and Per-Capita Transfers

Notes: This figure illustrates the discontinuity at the threshold. Subfigure 4(a) plots the treatment probability against the forcing variable (GDP per Capita) with the vertical line indicating the cutoff. Subfigure 4(b) plots the average per capita EU-transfers against the forcing variable. The red lines correspond to a linear fit. Source: ARDECO and European Commission. Own calculations.

The left panel of Figure 3 plots the treatment status of NUTS2 regions against the regions' GDP

⁹To be precise, eligibility status is determined based on the average GDP per capita in years prior to the respective funding period. For the three funding periods, we thus consider averages calculated over the following years: for the funding period 2000 - 2006 the year 1994-1996 were decisive, for the funding period 2007 - 2013 the years 2000 - 2002, and, finally, for the period 2014 - 2020 the years 2007-2009 determined eligibility.

per capita (observations are pooled across funding periods). Importantly, as the right panel shows, the treatment implies a significant increase in funds under Objective-1, while regions not eligible for Objective-1-funding may still receive funds from other funding lines of the ERDF-program.

Apparently, the 75% rule is not sharp in practice, i.e. there are some non-compliers. One can see that few regions formally eligible for treatment did not receive treatment. More frequently, regions receive treatment although their GDP per capita exceeds the 75% threshold.¹⁰ Consequently, we employ a fuzzy-RDD, that uses the forcing variable "GDP per capita" as IV in 2SLS-regressions.

The first stage is given by:

$$D_{int} = \alpha_0 + \alpha_{c,t} + \gamma \cdot Z_{nt} + f^p(X_{nt}) \cdot \zeta_1 + K_{int} \cdot \zeta_2 + \epsilon_{int}$$
 (1)

and the second stage reads as:

$$V_{int} = \beta_0 + \beta_{c,t} + \theta \cdot D_{int} + f^p(X_{nt}) \cdot \lambda_1 + K_{int} \cdot \lambda_2 + \varepsilon_{int}$$
 (2)

We adopt the following notation to outline our empirical specification: D_{int} is a treatment dummy that takes the value 1 if NUTS3 region i, nested in NUTS2 region n, is treated with Objective-1-transfers in funding period t, and 0 otherwise. Z_{nt} is an indicator for ERDF eligibility under the development-objective, i.e. Z_{nt} is equal to 1 if GDP per capita in the NUTS2 region n is below 75% of the EU average. The vector K_{int} contains strictly exogenous NUTS3 level controls. Finally, the forcing variable is denoted by X_{nt} .

The coefficient of interest θ captures the local average treatment effect, i.e. the effect of ERDF transfers under Objective-1 on voting behavior. The functions f^p are polynomial functions (of different order) of the logarithm of the normalized NUTS2 level GDP per capita. We allow these functions to differ to the right and left of the 75% eligibility threshold in all specifications. The variable of interest V_{int} is the average vote share for far-right, far left or EU-sceptical parties in NUTS3 region i in period t. $\alpha_{c,t}$ and $\beta_{c,t}$ are election-by-country fixed effects. Standard errors are clustered at the NUTS2-level.

¹⁰Most of the regions receiving ERDF funding despite a GDP per capita above the threshold qualify for exemptions for sparsely populated areas such as the Finnish region Pohjois-ja Itä-Suomi and the Swedish regions Norra Mellansverige, Mellersta Norrland and Övre Norrland. Moreover, GDP revisions and territtorial reorganizations frequently lead to non-compliance.

3.2 Difference-in-Differences

Having data from the past 20 years allows us to exploit longitudinal variation in regions' treatment status. In particular, many regions in Western Europe did not qualify for the ERDF's development objective any longer after the EU's average GDP per capita dropped as a result of the EU enlargement in 2004. Accordingly, comparatively poor regions lost funding not because of economic development, but jut because of even poorer regions joining the EU. We leverage this within-region variation over time for causal identification in a difference-in-differences type of regression.

Specifically, we relate the change in vote shares between the first and second elections after losing treatment status and the last election under treatment to a dummy that indicates loss of treatment. Formally, this reads as follows

$$\Delta V_{in} = \alpha_0 + \alpha_c + \theta \cdot \operatorname{dropout}_n + K_{in} \cdot \lambda + \varepsilon_{inc}$$
(3)

where α_c are country fixed effects and K_{in} are regional level controls fixed at their baseline levels. The sample is restricted to regions ever receiving Objective-1 funding. Indicator dropout_n takes the value of one if a region drops out of funding, and is zero for regions receiving Objective-1 transfers. We are interested in the coefficient θ which captures the effect of losing Objective-1 treatment on fringe-party vote shares. This setting nicely complements the RDD analysis, as it recovers the treatment effect from NUTS3 regions that switched treatment status.

3.3 Matching Nested Aberrants

We further leverage the granularity of our data and exploit within NUTS2 variation in NUTS3-regions' GDP per capita. Somewhat arbitrarily, the EU chose the NUTS2-level to define treatment eligibility. Accordingly, some comparatively rich NUTS3-regions with their own per-capita GDP above the 75% threshold receive funding just because the NUTS2-boundaries include sufficiently poor neighbors. These regions are "exogenously treated" since in a counterfactual world that defined eligibility on a NUTS3-level, they would not receive funding under Objective-1. Similarly, "exogenously untreated" NUTS3-regions exist that do not receive funding just because they are nested in comparatively rich NUTS2-regions. The larger a NUTS2 region, the more likely the existence of such "nested aberrants", i.e. NUTS3-regions that, taken by themselves, are on the other side of the 75% threshold than the NUTS2-average of the broader region they belong to.

Figure A2 (a) in the Appendix illustrates this variation by plotting the residual of a NUTS3 regions' GDP per capita and the NUTS2 region's GDP per capita. The density plots in figure A2 (b) confirm a substantial overlap of GDP per capita at the NUTS3 level between treated and untreated regions.

We match exogeneously (un)treated NUTS3-regions to their statistical twins, particularly NUTS3-regions with the same GDP per capita but a different treatment status, and estimate the following regression to corroborate our previous analyses:

$$V_{int} = \alpha_0 + \alpha_{c,t} + \theta \cdot D_{int} + K_{int} \cdot \lambda + \varepsilon_{int}$$
(4)

Again V_{int} is the share of votes for fringe parties, D_{int} is a treatment dummy, $\alpha_{c,t}$ are country-election fixed effects, and K_{int} is a vector of control variables.

4 Regional-Level Results

4.1 Main Results - Regression-Discontinuity

Table 3 presents our main RDD results with the share of votes for far-right parties as the dependent variable. All regression specifications include country-by-election fixed effects to net out country-level differences in fringe-party support. We first present results from the "full sample", i.e. the sample of NUTS3-regions with less than 150% of the EU average in GDP per capita. We then narrow down the range around the 75% threshold (+/- 15% in columns 3-6 and +/- 5% in columns 7 and 8). We control for GDP per Capita, i.e. the forcing variable, by including polynomials. Depending on the estimation sample, we vary the polynomial degree as indicated at the bottom of the table. The polynomials are always allowed to take different shapes on each side of the threshold. Additional control variables are indicated at the bottom of the table. In case of multiple elections per funding period, we use the latest election. 12

Columns 1-2 show results from the full sample, which gives us 3721 NUTS3 region-election observations. To flexibly control for the structural relationship between GDP per capita and voting, these specifications include third-order polynomials of the forcing variable. The point

¹¹For the regional controls, we use the average values from the years that were relevant to determine a NUTS2 regions' treatment status, i.e., they are exogenous to the current treatment. Regional controls include employment shares, the share of industrial employment, GDP per capita at the NUTS3 level, log population density and region type by country fixed effects.

¹²In practice, this implies the exclusion of the election in 2014 only. In the table with robustness checks (Table 7) we present estimates that include the election in 2014.

 Table 3: ERDF Transfers and Vote Shares for Far-Right Parties

	Full	Range		Range	+/- 15		Range +/- 5	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Vote Shares								
Treatment	-0.033**	-0.041***	-0.022**	-0.028***	-0.025***	-0.031***	-0.024*	-0.029*
	(0.014)	(0.013)	(0.010)	(0.010)	(0.009)	(0.009)	(0.013)	(0.015)
# of Observations	3,721	3,721	1,175	1,175	1,175	1,175	416	416
Adj. R -Squared	0.081	0.134	0.010	0.058	0.002	0.052	0.040	0.107
K-P- F -Statistic	145.12	139.32	58.12	54.21	73.84	67.18	13.32	15.87
Regional Controls		Yes		Yes		Yes		Yes
Ctry-Election-FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Order of Poly.	Cub.	Cub.	Quad.	Quad.	Lin.	Lin.	Lin.	Lin.

Notes: This table shows the results from the fuzzy regression discontinuity design. The dependent variable is the share of votes for far-right parties. The units of observation are NUTS3 regions. The treatment dummy is instrumented with a dummy that indicates eligibility based on the GDP per capita criterion (< 75% of the EU's average). The specifications include country-election fixed effects and may or may not include regional controls (sectoral employment shares and log of population density, gdp per capita and region-type by country fixed effects all measured at the level of NUTS3 regions). At the bottom of the table we report the first stage's Kleibergen-Paap -. We estimate the effect on the full range, on a range +/-15 and +/-5. To control for the forcing variable, we use polynomials which are allowed to have different shapes on each side of the threshold. Standard errors are clustered at the NUTS2 level. * p < 0.1; ** p < 0.05; *** p < 0.01.

estimate shown in column 1 implies a reduction of vote shares for far-right parties by 3.3pp. as a result of receiving Objective-1 transfers. In column 2, we add regional controls, which increases the point estimate by almost 1pp. All controls are fixed to their pre-funding period levels to avoid bad control problems. Results from the full sample provide a first benchmark. Still, since the forcing variable's polynomials are unlikely to fully capture the relationship between the forcing variable and outcome, it is good practice to focus the analysis on observations in closer proximity to the threshold. Thus in columns 3-6, we focus om regions with a per capita GDP between 60 and 90 percent of the EU average, i.e. +/- 15pp. around the cutoff. This leaves us with 1175 NUTS3-level observations. Columns with even numbers include regional-level control variables. In columns 3-4, we add second-order polynomials of the forcing variable. For comparison, columns 5-6 include the forcing variable in linear form only.

Results from the sample around the threshold consistently show that Objective-1 treatment decreases populist support in European regions. ERDF investments decrease the vote share received by right fringe parties between 2.2 and 3.1 percentage points. All point estimates are statistically significant at conventional levels. Our preferred specification is in Column (4). Accordingly, ERDF investments decrease voting support of far right parties by 2.8pp., i.e. 21 percent of the vote share of 13.4 received on average by these parties.

In each RDD, narrowing down the sample at smaller ranges around the threshold decreases the probability of violating the exclusion restriction. Identification comes at a cost, though. First, non-compliers are more frequently observed in close proximity to the threshold and second,

the LATE is is identified from an ever-more selective set of observations. Columns 7-8 focus on regions with GDP per Capita +/-5pp around the threshold. The number of observed NUTS3 regions drops to 416 and the first stage becomes weaker, though the F-statistic still exceeds conventional limits. Lower precision decreases the treatment effect's level of significance to the 10% level. However, finding point estimates of similar magnitude on this selective set of regions with per capita GDP between 70 and 80 percent of the EU average makes us confident that we can indeed interpret our preferred specification (4) as LATE of EU spending under the EFRE's development objective on right-wing populist support.

Table 4: ERDF Transfers and Vote Shares for Far-Left Parties

	Full I	Range		Range	+/- 15		Range +/- 5	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Vote Shares								
Treatment	-0.004	-0.003	0.004	0.009	-0.001	0.007	0.017	0.017
	(0.006)	(0.006)	(0.007)	(0.007)	(0.007)	(0.007)	(0.017)	(0.013)
# of Observations	3,721	3,721	1,175	1,175	1,175	1,175	416	416
Adj. R -Squared	0.006	0.052	0.018	0.111	0.004	0.107	-0.041	0.082
K-P-F-Statistic	145.12	139.32	58.12	54.21	73.84	67.18	13.32	15.87
Regional Controls		Yes		Yes		Yes		Yes
Ctry-Election-FE	Yes	Yes						
Order of Poly.	Cub.	Cub.	Quad.	Quad.	Lin.	Lin.	Lin.	Lin.

Notes: This table shows the results from the fuzzy regression discontinuity design. The dependent variable is the share of votes for far-left parties. The units of observation are NUTS3 regions. The treatment dummy is instrumented with a dummy that indicates eligibility based on the GDP per capita criterion (< 75% of the EU's average). The specifications include country-election fixed effects and may or may not include regional controls (sectoral employment shares and log of population density, gdp per capita and region-type by country fixed effects all measured at the level of NUTS3 regions). At the bottom of the table we report the first stage's Kleibergen-Paap -. We estimate the effect on the full range, on a range +/-15 and +/-5. To control for the forcing variable, we use polynomials which are allowed to have different shapes on each side of the threshold. Standard errors are clustered at the NUTS2 level. * p < 0.1; ** p < 0.05; *** p < 0.01.

Table A4 in the Appendix estimates the treatment effect on the *change* in far-right parties' vote shares. In line with the main results from table 3 we find negative and significant treatment effects based on the full sample and across both ranges and specifications. Looking at changes in vote shares instead of levels, we net out the effect of regional characteristics that persistently drive voting behavior. The differencing comes at the cost of potentially also differencing away parts of the treatment effect; for example, if an always treated region experienced a change in the level of vote shares resulting from the treatment but no change in the growth rates of vote shares. Hence, the results in table A4 are both a robustness check and a qualification of the treatment effect: the results are robust to netting out persistent regional factors, and they qualify the treatment effect as results imply that the treatment affects not only levels but also growth of populist support.

Table 4 presents results with far-left parties' vote shares as dependent variables. All coefficients

obtained from the full sample and the subsample of NUTS2 regions within a range +/-15pp around the threshold are very close to zero and statistically insignificant. Point estimates in columns 7 and 8, based on observations in the narrow range around the threshold, suggest an increase in far-left parties' vote shares by 1.7pp. However, the coefficients are estimated imprecisely and thus lack statistical significance. Similarly, when looking at the effect on changes of far-left parties' vote shares shown in table A5 in the appendix, we find zero effects except for one small significantly positive effect estimated from the specification focusing on the smallest range around the threshold without control variables.

In sum, the baseline RDD results as reported in Tables 3 and 4 provide strong evidence for a negative causal effect of EU-regional policy on the vote share for far-right parties but yield no support for a causal effect on the vote share for far-left parties. Altogether, the coefficients suggest that Objective-1 treatment depresses the share of votes for far-right parties by 2 - 3pp, corresponding to a reduction of 15-20% relative to the dependent variable's mean.

In addition to the above, Table A6 in the Appendix estimates the treatment effect on vote shares for parties that are part of a country's national government at the time of the election to the European parliament. Our most preferred specification, focusing on a range of +/- 15% around the threshold, provides suggestive evidence that governing parties benefit from treatment through higher vote shares. This offers at least a partial answer to the question of who benefits from the losses for far-right parties. Since, at least in public media, voting behavior in European elections is often interpreted as a way to express discontent with the national government, these results could suggest higher levels of satisfaction with government in treated regions and, for that reason, lower support for far-right parties. In line with this reasoning, Table A7 indicates slightly higher turnout rates in treated regions, also viewed as a measure of voters' satisfaction with government and the political system.

4.2 Losing Treatment: Difference in Differences Results

As explained in subsection 3, we also exploit the longitudinal variation in Western European NUTS2 regions' treatment status, which resulted from their GDP per capita no longer exceeding 75% of the EU average after the EU's enlargement in 2004 (for a list of regions that lost eligibility in 2007, see Table A1 in the Appendix).

We keep only NUTS2 regions classified as Objective-1 regions from 2000 until 2006 to investigate the effect of losing treatment status. The difference in differences approach then relates the changes in vote shares between the first and second election after losing treatment status and

the last election under treatment to a dummy that indicates loss of treatment. The difference in difference parameter θ identifies the causal effect of losing treatment status on voting behavior under the assumption that in the absence of the change in the treatment status, vote shares in regions that lost treatment would have evolved parallel to those that remained treated. The fact that the loss in treatment status for the funding period 2007 - 2013 did not occur because of regions' growth performance but because of the EU enlargement lends credence to the identifying assumption. We also analyze pre-trends, i.e. we project the change in vote shares between 2004 and 1999 on our indicator variable, thus adding further credibility to the validity of the identifying assumption.

Table 5: Loosing Development-Objective Transfers and the Effect on Voting Behavior

	Δ 2004 :	and 1999	Δ 2009 a	and 2004	Δ 2014 a	and 2004
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A – Far Right Parties						
Lost Treatment	-0.0044	-0.0039	0.0088***	0.0063*	0.0171***	0.0159***
	(0.0028)	(0.0032)	(0.0029)	(0.0032)	(0.0034)	(0.0038)
# of Observations	240	240	246	246	245	245
Adj. R-Squared	0.529	0.559	0.915	0.924	0.919	0.925
Panel B – Far Left Parties						
Lost Treatment	0.0173***	0.0159***	-0.0134***	-0.0115***	-0.0164***	-0.0152**
	(0.0050)	(0.0054)	(0.0039)	(0.0044)	(0.0063)	(0.0070)
# of Observations	240	240	246	246	245	245
Adj. R -Squared	0.673	0.726	0.740	0.768	0.853	0.866
Regional Controls		Yes		Yes		Yes
Country-FE	Yes	Yes	Yes	Yes	Yes	Yes

Notes: This table shows difference in differences estimates. The sample includes all Western European Objective 1 regions from the funding period 2000 - 2006. The treatment dummy takes the value 1 if a region lost objective 1 treatment in 2007 - 2013, following the accession of Eastern European countries. The unit of observation are NUTS3 regions. Standard errors are clustered at the NUTS2 level. Regional-level controls are log population density, employment shares, gdp per capita and region-type by country fixed effects. All controls were fixed to baseline levels. * p < 0.1; *** p < 0.05; *** p < 0.01.

Results from estimating various versions of equation 3 are shown in Table 5. Panel A. reports the results for changes in far-right parties' vote shares, and Panel B. looks at the effect on vote shares for far-left parties.

Columns 1 and 2 report the estimates capturing pre-trends in vote shares by looking at changes between 2004 and 1999 before the Eastward Enlargement. As seen from columns 1 and 2 of Panel A., the point estimates are small and statistically insignificant. Accordingly, regions that lost treatment and later years did not differ from regions that remained treated before the Eastward enlargement, supporting the validity of our identifying assumption.

Columns 3 and 4 show point estimates measuring the change in vote shares for far-right parties between 2009 and 2004. The coefficients imply that dropping out of treatment lead to an

increase in far-right parties' vote shares by 0.6-0.9 pp. The increase in far-right parties' vote shares tends to grow larger over time, as can be seen from the results in columns 5 and 6, which measure the differential change in their vote shares between 2014 and 2004. Corresponding estimates suggest an increase in far-right parties' vote shares by approximately 1.6 pp relative to the control group in Columns (6). The gradual increase is plausible since special "phasing out" transfers were still provided to regions that dropped out of the treatment. Moreover, transfers from the previous period were most likely paid out after 2006, as existing projects continued, i.e., transfers were gradually reduced after 2006.

Panel B. reports the estimates pertaining to the effect of losing treatment on the share of votes for far-left parties. The four post coefficients in columns 3-6 show a negative effect of losing Objective-1 treatment on vote shares for far-left parties. For instance, column 4 implies a differential drop in far-left parties' vote shares by around 1.2pp in 2009. This estimate increased to 1.5pp in 2014, as shown in column 6. This effect size aligns with the point estimates from the RDD design after restricting the sample to observations to a very close window around the threshold (column 8 of table 4) and to the results in the enhanced correlations exercise. However, these effects must be interpreted cautiously: the coefficients in columns 1 and 2 are positive and statistically significant, thus hinting at a pre-trend and the post-period estimates might reflect a reversion of far-left party vote shares to pre-2004 levels. More generally, results on far-left parties are much less robust to specification changes than results on far right parties.

4.3 Matched Sample: Nested Aberrants

To corroborate our previous findings, we focus on quasi-exogenously (un-)treated NUTS3-regions, i.e. comparatively rich NUTS3-regions that receive Objective-1- transfers only because they are nested in a NUTS2-regions below the thresholds, and vice versa. Rich aberrants that exogenously receive treatment are matched to similarly rich that don't. Likewise, poor aberrants not receiving treatment are matched to similar NUTS3-regions that do. The effect of receiving ERDF funding on populist support is identified from this matched sample of comparable regions.

Table 6 reports results from the regression analysis. All regressions include country-by-election fixed effects and regional-level controls. The first two columns use nested aberrants on both sides of the threshold. Both columns in the middle compare treated regions with "exogenously untreated" regions, i.e NUTS3 regions with GDP per capita < 75% nested in a relatively rich NUTS2 region and the columns to the right compare untreated NUTS3 regions with "exogenously treated" NUTS3 regions (GDP per capita > 75%). In uneven columns, we match on a country-

election specific area of common support, i.e. NUTS-3 regions with the same GDP per capita but differing treatment status, observed in the same country and the same election cycle. Even columns report the results from a sample homogenized via caliper-matching. Specifically, we perform tight caliper matching on NUTS3 regions' GDP per capita within country-election strata (cf. figure 3(d) for the balancing of GDP per capita between treated regions and controls).¹³

Table 6: Nested Aberrants and Vote Shares for Far-Right Parties

	Exo. (un)tr	eated	Exo. untre	ated	Exo. treated		
	(Common Sup.)	(Caliper)	(Common Sup.)	(Caliper)	(Common Sup.)	(Caliper)	
Panel A.							
Treatment	-0.021***	-0.020**	-0.032***	-0.035**	0.000	0.006	
	(0.008)	(0.009)	(0.011)	(0.014)	(0.006)	(0.005)	
# Aberrant NUTS3	291	90	228	53	63	29	
# Control NUTS3	178	90	115	53	63	29	
Adjusted R -Squared	0.963	0.972	0.965	0.973	0.946	0.969	
Country-Election-FE	Yes	Yes	Yes	Yes	Yes	Yes	
Regional Controls	Yes	Yes	Yes	Yes	Yes	Yes	

Notes: This table shows results from a comparison of NUTS3 regions with different treatment statuses conditional on levels of economic development at the NUTS3 level. The dependent variable is the share of votes for far-right parties at the NUTS3-level. The sample is restricted to NUTS2 regions that comply with the 75% rule and to NUTS3 regions with GDP per capita on the country-election specific area of common support", i.e., for a treated NUTS3 region, there exists at least one untreated NUTS3 region in the same country-election cycle with a GDP per capita as small as the treated region's GDP per capita. Accordingly, for each untreated NUTS3 region, at least one treated NUTS3 region exists in the same country and period with GDP per capita as high as the untreated region's GDP per capita. In odd columns we use all observations and in even columns we estimate on a sample homogenized via caliper matching on GDP per capita within country-election strata. All regressions include country-election-fixed effects. All specifications include regional controls (sectoral employment shares and log of population density, gdp per capita and region-type by country fixed effects all measured at the level of NUTS3 regions). Standard errors are clustered at the NUTS2 level. * p < 0.1; ** p < 0.05; *** p < 0.01."

Column 1 reports a negative and statistically significant effect of transfers on far-right parties' vote shares of around 2pp. After the caliper-matching, the number of observations drops to 90 aberrant NUTS3 regions and 90 matched controls, but the point estimate remains almost unchanged and significant. In columns 3 and 4 we compare treated regions with exogenously untreated regions. For these comparatively poor regions, the point estimates suggest a negative and highly significant effect of around 3.2pp in the unmatched and 3.5pp in the matched sample. In contrast, we do not find an effect when comparing untreated and exogenously treated regions (columns 5 and 6), i.e. comparatively rich regions. This could relate to small number of observations. It could also relate to the composition if this subsample, that contains a number of cities that may differ in voting behavior from rural areas. In any case, the underdeveloped regions targeted by the ERDF's Objective-1 turn out to be more responsive to the treatment than the richer regions.

Finally, Table A9 in the Appendix reports the same results with the share of far-left parties as

¹³We follow the convention in the literature and set the caliper to 0.25 times the standard deviation of the matching variable (cf. Rosenbaum and Rubin, 1985)

dependent variables. In line with the RDD results, no evidence exists of a treatment effect on voting for far-left parties. All point estimates are quantitively small and statistically insignificant.

4.4 Robustness of RDD-Main Results

To test the robustness of our main result about the effect of Objective-1 treatment on voting for far-right parties, we estimate modified versions of the specifications from columns 4 and 6 of table 3, i.e. we consider the range of \pm 15pp around the threshold and include regional level controls. Results are reported in table 7.

In columns 1 and 2 we use the log of the vote share for far-right parties as the left-hand side variable instead of the vote share in levels. The point estimates are informative about the magnitude of the effect as they show how much the vote shares change in percentage terms. Concretely, the estimates reported in columns 1 and 2 of table 7 imply a reduction in the share of votes for far-right parties by 15-20%. The share of votes for far-right parties averages around 16pp in the estimation sample. Hence the effect size in the log specification aligns well with the results in the levels specification in Table 3).

In columns 3 and 4, we add historical vote shares for far-right parties as explanatory variables to the model, most of which are respective vote shares from the election to the European Parliament in 1999. Conditioning on start-of-period values controls for persistent differences in voting behaviors between NUTS3 regions. Identification then relies on changes to trends in regional voting behavior as used in the first differences specifications. 14 As expected from this reasoning, the point estimates drop compared to the baseline results in table 3, indicating that vote shares for far-right parties are approximately 1.7 pp lower in treated regions. It appears worth noting that the effect's statistical significance increases compared to the baseline results because of much smaller standard errors. The improvement in precision results from past vote shares being a powerful predictor of contemporaneous voting behavior (compare also the Adjusted R^2).

In columns 5 and 6 we analyze the aggregate NUTS-2 level, the unit at which the treatment status varies. Reassuringly, the point estimates are in the same order of magnitude as the baseline results. With NUTS2 regions as units of observation, the number of observations drops to 230; consequently, our estimates lose precision but remain significant at the 10% and 5% level.

In columns 7 and 8, we restrict the estimation sample to EU-15 countries. Over our period of

¹⁴A point estimate indistinguishable from zero would not allow the conclusion that transfers did not affect voting behavior since most regions receiving Objective-1 transfers after 2000 also received transfers before. If the treatment effect was a one-time level shift, start-of-period values would absorb it.

analysis, most NUTS2-regions in Eastern Europe were classified as Objective-region at least at some point in time. Omitting Eastern Europe leads to a minuscule drop in the point estimate. Since we always used the last election within a funding period, we have omitted the election in 2014 from the RDD sample.

Columns 9 and 10 present estimates that include the election results from 2014, which gives us a sample of 1577 NUTS3 region-year observations. As one can see from the respective columns, the main results remain qualitatively unchanged upon the inclusion of the election results from 2014. Finally, the estimate in column 11 is based on an RDD specification with a linear polynomial of the forcing variable, whose shape is allowed to vary not only on each side of the cutoff but also by country. While in theory there might be good reasons for believing that the relationship between GDP per capita and voting has a country-specific component with the limited amount of data, this is likely an instance of overfitting the data. Still, the effect size remains approximately similar.

Finally, we check the sensitivity of our main results towards omitting individual countries from the estimation sample. For that, we estimate the baseline specifications and consecutively drop countries. Table A8 in the appendix reports the "leave-one-country-out" coefficients. Reassuringly the results do not qualitatively depend on any individual country despite some sensitivities regarding the magnitude of the effect. For instance, the omission of Spain leads to a visible increase in the point estimate, indicating a reduction in the vote share for far-right parties by \approx 3.8pp. On the other hand, dropping the UK leads to a visible drop in the point estimate to \approx 2pp. These 'sensitivities' partially reflect different levels in the share of votes for far-right parties between those two countries. The second column from the right in Table A8 reports the mean of the dependent variable in the estimation sample (cf. also the first map in Figure 1). Moreover, omitting Italy leads to a visible increase in standard errors which is for multiple reasons: Italy has relatively many regions and there exists meaningful within-country variation in NUTS2 regions' treatment status, which is crucial for our identification and the treatment assignment obeyed comparably strictly to the 75% rule which matters for the precision of the first stage estimate. Overall results reported in Table A8 clearly show that our main result do not depend on single countries.

5 Individual-level Analysis

In the preceding part of this paper, we have shown that regional policies ultimately lead to fewer votes for right-fringe parties. To corroborate our findings, and to infer on potential

Table 7: Robustness: Transfers and Vote Shares for Far-Right Parties (Range is 15)

	LHS in Log		FP-Va	FP-Values		NUTS-2		EU-15		Incl. 2014	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Vote Shares											
Treatment	-0.189**	-0.166**	-0.018***	-0.017**	-0.022**	-0.024*	-0.028***	-0.026***	-0.028***	-0.023**	-0.032***
	(0.078)	(0.080)	(0.006)	(0.007)	(0.011)	(0.013)	(0.009)	(0.010)	(0.009)	(0.010)	(0.011)
# of Observations	1,168	1,168	1,175	1,175	230	230	1,083	1,083	1,577	1,577	1,175
Adj. R -Squared	0.067	0.072	0.356	0.358	0.091	0.092	0.052	0.056	0.052	0.060	0.054
K-P-F-Statistic	67.36	54.42	67.02	54.33	76.24	64.49	63.61	53.25	63.76	51.99	38.96
Regional Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Ctry-Election-FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Order of Poly.	Lin.	Quad.	Lin.	Quad.	Lin.	Quad.	Lin.	Quad.	Lin.	Quad.	Lin.

Notes: This table shows the results from alternative specifications based on the fuzzy regression discontinuity design. The estimation sample comprises NUTS2 regions in a range of \pm 15 around the threshold. The dependent variable in columns 1 and 2 is the log share of votes for far-right parties. In columns 3 and 4 we include a control for the share of votes for far-right parties in an early election (usually 1999). In columns 5 and 6 we estimate our main specification using NUTS2 instead of NUTS3 regions. In columns 7 and 8 we use only EU 15 countries, i.e. we omit Eastern Europe. In column 9 and 10 we also include the election results from 2014. Finally, in column 11 we interact the linear polynomial of the forcing variable with the county i.e., we allow for a different shape of the relationship between GDP per capita and election outcomes by country and side of the cutoff. The treatment dummy is always instrumented with a dummy that indicates eligibility based on the GDP per capita criterion (\pm 75% of the EU's average). All specifications include country-election fixed effects and regional controls (sectoral employment shares and log of population density, gdp per capita and region-type by country fixed effects all measured at the level of NUTS3 regions). At the bottom of each Panel, we report the first stage's Kleibergen-Paap \pm 10 control for the forcing variable, we use polynomials which are allowed to have different shapes on each side of the threshold. Standard errors are clustered at the NUTS2 level. The variable in a range of the share of votes for far-right parties. In columns 3 and 4 we include a control for the share of votes for far-right parties. In columns 3 and 4 we include a control for the share of votes for far-right parties. In columns 3 and 4 we include a control for the share of votes for far-right parties. In columns 3 and 4 we include a control for the share of votes for far-right parties. In columns 3 and 4 we include a control for the share of votes for far-right parties. In column

mechanisms, we replicate our RDD design from above and assess individual-level survey data from the Eurobarometer (EB), which, among other things, asks about attitudes towards the EU, trust in institutions and expectations about the economy and labor markets.

5.1 Data: The Eurobarometer

The Eurobarometer (EB) is a multi-annual survey conducted on behalf of EU institutions. The so-called "Standard Eurobarometer" - at least two of which are released each year - contains core questions related to personal convictions, trust measures, and subjects' political attitudes. Each wave of the EB surveys approximately 25000 people and at least 500 from each member state. We combine 40 waves of the standard EB covering 2000 until 2019. For most countries, information on the subjects' residence is available at the NUTS2 level. However, for some countries such as Germany, the UK and parts of Italy, the EB provides geographic information only at a more aggregate level. We homogenize the regional identifiers over time, supplement the EB with information on regional characteristics from ARDECO (cf. section 2), and with appropriately aggregated voting results.

We group questions asked in the EB into three broad categories: The first, which we call "attitudes", contains questions about individuals' image of the EU or their level of satisfaction with democracy in the EU. The second category contains measures of individuals' trust in institutions, e.g. people are asked if they trust the European parliament or their national governments. In the last category - "expectations' - we collect questions about individuals' expectations regarding economic or labor market developments. We construct binary indicators for all outcomes if the response is not yet on a 0-1 scale.

To provide a first sense of the raw data, Figure A3 in the appendix plots the evolution of one measure from each of the categories mentioned above separately for treated regions and the untreated regions. Figure 4(a) shows the share of individuals with a negative EU image, Figure 4(b) the share of people with trust in the EU and Figure 4(c) plots the evolution of individuals' expectations regarding economic development, measured by the share of people who expect the economic situation to improve. In all figures, the time series for the treated and untreated groups strongly co-move. Looking at 4(a) one can see that over the entire period between 2000 and 2019, treated regions have a consistently less negative image of the EU. Likewise, people living in treated regions generally express higher trust in the EU (cf. Figure 4(b)). One can also see how the evolution of these time series plausibly reflects significant macro developments e.g., during the European debt crisis between 2010 and 2015 the share of people with a negative EU

image peaked and trust levels hit their bottom.

5.1.1 RDD Results - Eurobarometer

To move beyond the suggestive evidence for a less negative EU image in treated regions and higher levels of trust in the EU as indicated by Figure A3 we use the RDD to estimate the causal effects of EU transfers on theses individual-level outcomes. We focus on a range of $\pm 15\%$ around the threshold and, as in the previous section, on outcomes observed towards the end of a funding period. As in the regional-level analysis, we include country-time fixed effects, regional-level controls, as well as some - arguably exogenous - individual-level controls such as age and gender.

Figure 4 plots the point estimates and confidence intervals for specifications with first and second-order polynomials (triangles and circles). From the first block of results, one can see that individuals living in treated regions are approximately 5pp more likely to think that their country benefits from the EU and are approximately 5pp less likely to have a negative image of the EU. For the first outcome, the point estimates correspond to an $\approx 7\%$ increase relative to the mean of the dependent variable. The relative effect size for the second outcome is substantially larger relative to its mean: in the estimation sample about $\approx 25\%$ of the individuals hold a negative view; hence, the point estimate implies a 20% reduction relative to the mean. Interestingly, we observe no increase in the proportion of individuals with explicitly positive views of the EU. Apparently, ERDF transfers may decrease discontent with the EU, without furthering content. However, when explicitly asked about their satisfaction with democracy in the EU, satisfaction levels tend to increase due to ERDF transfers, while dissatisfaction is not affected.

The block of results in the middle presents estimates of the effect of EU transfers and measures of trust in institutions such as the EU, its institutions, or the national government. Apparently, ERDF transfers increase trust with EU institutions, which transcends into increasing trust in the national government. Indeed, when interpreted relative to the mean of the dependent variable in the estimation sample, the effect on trust in the national government is the largest. ¹⁶ These results are consistent with the main finding about ERDF treatment's impact on voting behavior, as trust in government and satisfaction with the political system are known to be associated with fewer votes for fringe parties (cf. Dustmann et al., 2017).

¹⁵Specifically, the regional-level controls include the employment share, the share of industrial workers, and population density. The variables from the EB that we include as controls are individuals' gender, marital status, dummies for age categories, and their community type (rural, suburban, urban) by country.

¹⁶The share of people with trust in the EU, the EU Commission, the European Parliament and the national government are 44%, 51%, 54% and 32%.

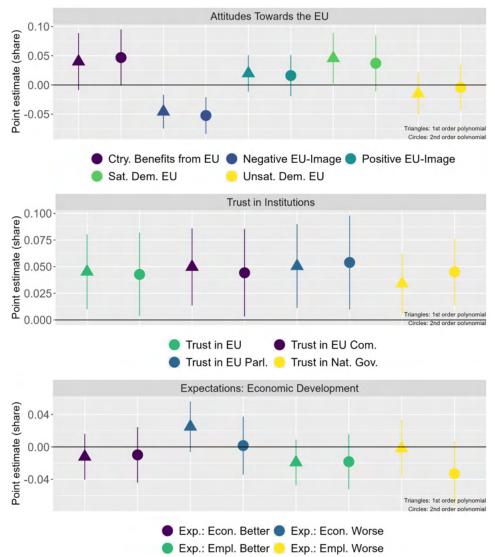


Figure 4: Point Estimates from FRDD

Notes: The figure plots the point estimates and 90% confidence intervals from our FRDD, focusing on a range of +/-15% around the threshold. The estimates are obtained from individual-level data from the last three years of a funding period. All outcomes are 0-1 dummies. The triangles/circles represent the point estimates from a specification with linear/quadratic polynomials. Regressions include country-time fixed effects and the employment share, the share of industrial workers, population density, individuals' gender, marital status, dummies for age categories, and their community type (rural, suburban, urban) by country as further controls. Standard errors are clustered at the region-year level. Source: Eurobarometer and Ardeco.

The primary objective of regional policy is to foster economic convergence between regions, which, as documented by previous research, is successful (cf. Becker et al., 2013; Becker et al., 2012). Hence, it is natural to hypothesize that this also translates into individuals being more optimistic/less pessimistic regarding future economic development, affecting their trust in institutions, attitudes and eventually voting behavior. However, as the bottom block of Figure 4 shows, individuals economic expectations are not affected by ERDF transfers. Apparently, the reason to decrease support of populist parties in reaction to the EU's regional policy has less to

do with voters' economic considerations, but more with voter's (re-)gaining trust in the political system.

This interpretation is supported by the binscatters in Figure 5. By the way of example, they show the relationship between far-right voting on the regional level and regional-level aggregates of the answers to the Eurobarometer. While far-right voting support relates to Attitudes to the EU and to Trust in Institutions, there is no statistical relationship between economic expectations and the vote share received by far-right parties.

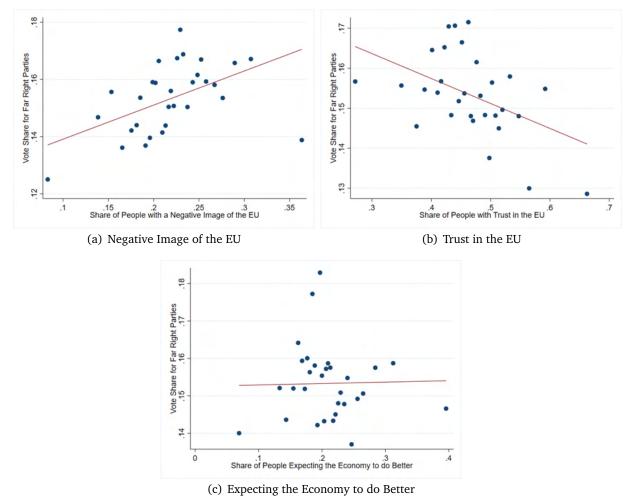


Figure 5: Correlation - Survey Voting

Notes: The figures show the correlations between vote shares for far-right parties and the share of individuals with a negative view of the EU (6(a)), trust in the EU (6(b)) and the expectation that the economic situation will improve at the regional level (NUTS2 or broader). Both variables are residualized by country-election, i.e., the correlations are from within countries. Source: Eurobarometer and national electoral authorities, Own calculations.

To further explore the relationship between treatment on the one hand and attitudes, trust and expectations on the other hand, we split between individuals by their education level. In Table A10, presenting estimates for respective subgroups, we find suggestive evidence indicating a more pronounced treatment effect on individuals without formal education until age 21. For

instance, among those with low education, treatment decreases the share holding a negative view of the EU by approximately 5pp, contrasting with around 2.5pp for those with higher education. The difference is even more pronounced when looking at most trust measures: we find a positive effect of treatment on trust in the EU by about 5pp and no effect among individuals with high levels of education. This is despite lower trust in institutions among individuals with lower educational levels, e.g. only 37% of individuals with lower education express trust in the EU compared to 48% among individuals with higher education. Hence, one perspective on the size of treatment effects is that it closes 50% of the trust gap between high- and low-educated individuals.

6 Conclusion

While the economic causes of populism are comparatively well understood, little is known about potential remedies. We show that regional policies can mitigate the populist surge. Specifically, public investments into regional development, as funded by the European Regional Development Funds (ERDF), reduce the support of nationalist parties from the right fringe of the political spectrum. Indeed, populist support decreases by around 20% in European regions receiving ERDF funding under its development-objective. This result holds in different empirical models using different sources of quasi-exoegenous variation, and on different samples of European regions.

With that, investments into regional development help to counter the political polarization in space observed in many Western democracies. As a general pattern, urban agglomerations are less inclined to support populist parties or candidates, who tend to have their strongholds in more peripheral regions. Our analysis shows that regional policies may at least slow down the drifting-apart between prosperous centers and lagging behind regions – not only economically, but also politically.

In the EU, the rise of populism casts a shadow on the future prospects of European integration. Specifically, right-wing populists mostly pursue a nationalist agenda, that tends to be sceptical towards the institutions of the EU, and to furthering European cooperation. We show that it is the voting support of exactly this set of parties that reacts most strongly to ERDF investments. Our individual-level analysis suggests that regional policies increase individuals' trust in the EU and its institutions, as well as consent with democracy more generally. This seems to be the reason why populist support decreases in regions receiving support from the EU's structural funds.

Our paper deliberately takes a pan-European view, assessing the effect of regional policy on an average European regions. This broad view comes at the expense of detail. While we identify the overall effect of ERDF-investments under the development-effective, we cannot say much about the effectiveness of specific policy-measures – nit to speak of efficiency. More research is needed to better understand how exactly public support for regional developments affect voting behavior, and how the political consequences of regional polices interact with their economic effects.

References

- Albanese, Giuseppe, Guglielmo Barone, and Guido de Blasio (2022). "Populist voting and losers' discontent: Does redistribution matter?" *European Economic Review* 141, p. 104000. DOI: https://doi.org/10.1016/j.euroecorev.2021.104000.
- Algan, Yann, Sergei Guriev, Elias Papaioannou, and Evgenia Passari (2017). "The European Trust Crisis and the Rise of Populism". *Brookings Papers on Economic Activity* 48.2 (Fall), pp. 309–400.
- Anelli, Massimo, Italo Colantone, and Piero Stanig (2019). *We Were the Robots. Automation and Voting Behavior in Western Europe*. Working Paper 12485. IZA Institute of Labor Economics.
- Autor, David, David Dorn, Gordon Hanson, and Kaveh Majlesi (Oct. 2020). "Importing Political Polarization? The Electoral Consequences of Rising Trade Exposure". *American Economic Review* 110.10, pp. 3139–83. DOI: 10.1257/aer.20170011.
- Becker, Sascha O., Peter H. Egger, and Maximilian von Ehrlich (Nov. 2013). "Absorptive Capacity and the Growth and Investment Effects of Regional Transfers: A Regression Discontinuity Design with Heterogeneous Treatment Effects". *American Economic Journal: Economic Policy* 5.4, pp. 29–77. DOI: 10.1257/pol.5.4.29.
- Becker, Sascha O., Peter H. Egger, and Maximilian von Ehrlich (2010). "Going NUTS: The effect of EU Structural Funds on regional performance". *Journal of Public Economics* 94.9, pp. 578–590. DOI: https://doi.org/10.1016/j.jpubeco.2010.06.006.
- (2012). "Too much of a good thing? On the growth effects of the EU's regional policy". European
 Economic Review 56.4, pp. 648-668. DOI: https://doi.org/10.1016/j.euroecorev.2012.
 03.001.
- (2018). "Effects of EU Regional Policy: 1989-2013". Regional Science and Urban Economics 69, pp. 143-152. DOI: https://doi.org/10.1016/j.regsciurbeco.2017.12.001.
- Becker, Sascha O, Thiemo Fetzer, and Dennis Novy (Oct. 2017). "Who voted for Brexit? A comprehensive district-level analysis". *Economic Policy* 32.92, pp. 601–650. DOI: 10.1093/

- epolic/eix012. eprint: https://academic.oup.com/economicpolicy/article-pdf/32/92/601/21762463/eix012.pdf.
- Brachert, Matthias, Eva Dettmann, and Mirko Titze (2019). "The regional effects of a place-based policy Causal evidence from Germany". *Regional Science and Urban Economics* 79, p. 103483.

 DOI: https://doi.org/10.1016/j.regsciurbeco.2019.103483.
- Crescenzi, Riccardo, Marco Di Cataldo, and Mara Giua (2020). "It's not about the money. EU funds, local opportunities, and Euroscepticism". *Regional Science and Urban Economics* 84, p. 103556. DOI: https://doi.org/10.1016/j.regsciurbeco.2020.103556.
- Criscuolo, Chiara, Ralf Martin, Henry G. Overman, and John Van Reenen (Jan. 2019). "Some Causal Effects of an Industrial Policy". *American Economic Review* 109.1, pp. 48–85. DOI: 10.1257/aer.20160034.
- Dippel, Christian, Robert Gold, Stephan Heblich, and Rodrigo Pinto (2022). "Trade Effects on Workers and Voters". *The Economic Journal* 132.641, pp. 199–217.
- Dustmann, Christian, Barry Eichengreen, Sebastian Otten, André Sapir, Guido Tabellini, and Gylfi Zoega (2017). "Europe's Trust Deficit: Causes and Remedies". Monitoring International Integration 1.
- Dustmann, Christian, Kristine Vasiljeva, and Anna Piil Damm (Sept. 2019). "Refugee Migration and Electoral Outcomes". *The Review of Economic Studies* 86.5, pp. 2035–2091. DOI: 10.1093/restud/rdy047. eprint: https://academic.oup.com/restud/article-pdf/86/5/2035/29581471/rdy047.pdf.
- Ehrlich, Maximilian v. and Tobias Seidel (Nov. 2018). "The Persistent Effects of Place-Based Policy: Evidence from the West-German Zonenrandgebiet". *American Economic Journal: Economic Policy* 10.4, pp. 344–74. DOI: 10.1257/pol.20160395.
- Fetzer, Thiemo (Nov. 2019). "Did Austerity Cause Brexit?" *American Economic Review* 109.11, pp. 3849–86. DOI: 10.1257/aer.20181164.
- Fidrmuc, Jan, Martin Hulényi, and Çiğdem Börke Tunalı (2019). "Can money buy EU love?" European Journal of Political Economy 60, p. 101804. DOI: https://doi.org/10.1016/j.ejpoleco.2019.07.002.
- Frey, Carl Benedikt, Thor Berger, and Chinchih Chen (2018). "Political Machinery. Did Robots Swing the 2016 US Presidential Election?" *Oxford Review of Economic Policy* 34.3, pp. 418–442.
- Funke, Manuel, Moritz Schularick, and Christoph Trebesch (2016). "Going to Extremes. Politics After Financial Crises, 1870-2014". *European Economic Review* 88.C, pp. 227–260.

- Gallegos Torres, Katia (2023). "The 2015 refugee inflow and concerns over immigration". European Journal of Political Economy 78, p. 102323. DOI: https://doi.org/10.1016/j.ejpoleco.2022.102323.
- Guriev, Sergei and Elias Papaioannou (2022). "The Political Economy of Populism". *Journal of Economic Literature*, forthcoming.
- Gyöngyösi, Gyözö and Emil Verner (2022). "Financial Crisis, Creditor-Debtor Conflict, and Populism". *Journal of Finance*, forthcoming.
- Halla, Martin, Alexander F Wagner, and Josef Zweimüller (Mar. 2017). "Immigration and Voting for the Far Right". *Journal of the European Economic Association* 15.6, pp. 1341–1385. DOI: 10.1093/jeea/jvx003.eprint: https://academic.oup.com/jeea/article-pdf/15/6/1341/23661400/jvx003.pdf.
- M.Rooduijn, S. Van Kessel, C. Froio, A. Pirro, S. De Lange, D. Halikiopoulou, P. Lewis, C. Mudde, and P. Taggart (2019). *The PopuList: An Overview of Populist, Far Right, Far Left and Eurosceptic Parties in Europe*.
- Rodríguez-Pose, Andrés (Jan. 2018). "The revenge of the places that don't matter (and what to do about it)". Cambridge Journal of Regions, Economy and Society 11.1, pp. 189–209.

 DOI: 10.1093/cjres/rsx024. eprint: https://academic.oup.com/cjres/article-pdf/11/1/189/24281859/rsx024.pdf.
- Rosenbaum, Paul R. and Donald B. Rubin (1985). "Constructing a Control Group Using Multivariate Matched Sampling Methods That Incorporate the Propensity Score". *The American Statistician* 39.1, pp. 33–38.
- Siegloch, Sebastian, Nils Wehrhöfer, and Tobias Etzel (May 2021). *Direct, Spillover and Welfare Effects of Regional Firm Subsidies*. IZA Discussion Papers 14362. Institute of Labor Economics (IZA).
- Steinmayr, Andreas (Mar. 2021). "Contact versus Exposure: Refugee Presence and Voting for the Far Right". *The Review of Economics and Statistics*, pp. 1–18. DOI: 10.1162/rest_a_00922. eprint: https://direct.mit.edu/rest/article-pdf/doi/10.1162/rest_a_00922/1903021/rest_a_00922.pdf.

Appendix A Additional Material

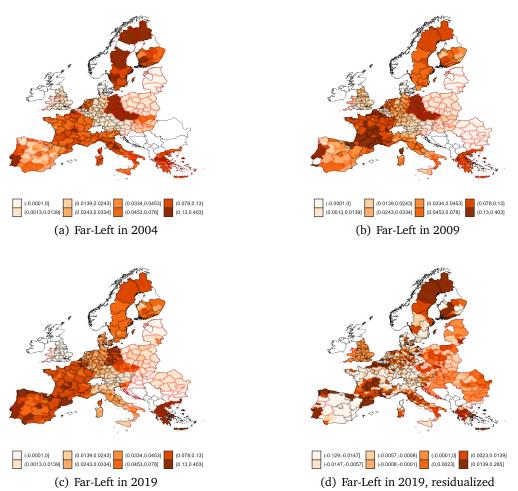

A.1 Descriptive Information

Table A1: List of regions used in difference in differences estimation

NUTS2 regions that remained treated	NUTS2 regions that dropped out of treatment
DE41 (8), DE80 (8), DED2 (5), DED (4), DEE0 (14), DEG0 (23), EL41 (3), EL43 (4), EL51 (5), EL54 (3), EL61 (3), EL62 (4), EL63 (3), EL65 (3), ES11 (4), ES42 (5), ES43 (2), ES61 (8), FI1D (7), ITF3 (5), ITF4 (6), ITF6 (5), ITG1 (9), PT11 (8), PT16 (8), PT18 (5), UKK3 (1)	AT11 (3), BE32 (7), DE42 (10), DED5 (3), EL42 (2), EL52 (7), EL53 (3), EL64 (5), ES12 (1), ES13 (1), ES41 (9), ES52 (3), ES62 (1), ES70 (2), FRM0 (2), ITF2 (2), ITF5 (2), ITG2 (8), PT15 (1), SE31 (3), SE32 (2), SE33 (2), UKD7 (4), UKE3 (2)

Notes: Regions used in the difference in differences regressions. All listed NUTS2 regions received objective 1 treatment until 2007. The number of nested NUTS3 regions is shown in brackets. Source: Official Journal of the European (L 194, L 243/44)

Figure A1: Vote Shares for Far-Left Parties and Treated Regions

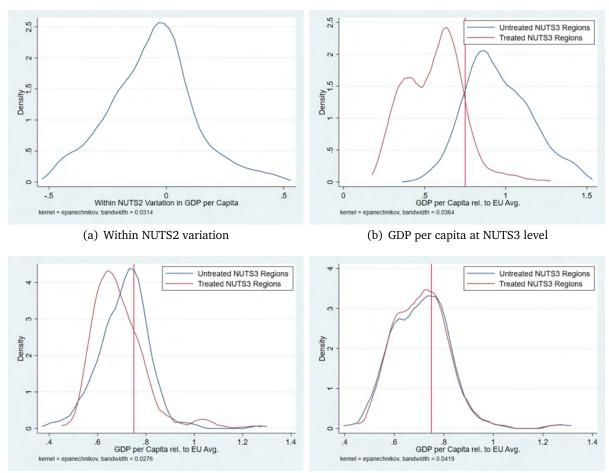

Notes: The figures show the share of votes for far left parties in the elections to the European Parliament in 2004, 2009, and 2019, as well as the residualized outcome 2019. Regions outlined in red are the Objective 1 regions.

Table A2: Descriptive Statistics of NUTS3-Level Covariates

	Mean	Mode	SD	Max	Min	N
GDP / Capita	21,532	20,479	15,638	365,805	798	5,004
GDP / Capita - Forcing	0.910	0.848	0.547	12.522	0.129	5,004
Employment Share	0.444	0.422	0.146	2.918	0.214	5,004
Industry Share	0.350	0.337	0.133	0.862	0.041	5,004
Total Population (in 1000)	370.570	264.009	413.664	6,263.517	19.833	5,004
Population Dens. (Pop/km2)	575	144	1,405	21,339	2	5,004

Notes: This table shows summary statistics of covariates at the NUTS3-level pooled over the election years 2004, 2009, 2014 and 2019. Source: ARDECO database.

Figure A2: Variation of GDP per Capita between NUTS3 Regions

(c) GDP per capita on area of common support

(d) GDP per capita after matching

Notes: Subfigure (a) shows the distribution of the differences between a NUTS3 region's GDP per capita and the GDP per capita at the level of the mother NUTS2 region. Subfigure (b) shows the distribution of GDP per capita at the NUTS3 level, separately for treated regions and untreated regions. Subfigure (c) shows the distribution of GDP per capita at the NUTS3 level for treated and untreated NUTS3 regions after the sample has been restricted to the country by period specific area of common support with regard to GDP per capita. Subfigure (d) shows the distribution of GDP per capita on the matched sample, separately for treated and untreated NUTS3 regions. Source: Official Journal of the European (L 194, L 243/44, L 50/22) and Union European Commission - DG REGIONAL POLICY

A.2 Enhanced Correlations Transfers

To explore the correlation between vote shares and EU-transfers we pool the data from the last four elections to the EP and estimate the following OLS regression at the NUTS3 level.

$$V_{ict} = \beta_0 + \beta_1 X_{ict} + \phi_{ct} + \alpha T_{ict} + \varepsilon_{ict}$$
 (5)

The coefficient α measures the correlation between the population normalized measure of EU transfers (T_{ict}) and the vote shares V_{ict} , conditional on country-election fixed effects (ϕ_{ct}) and regional control variables (X_{ict}) .¹⁷ Panel A of table A3 reports the respective point estimates when the explanatory variable is in log. Panel B shows the results when EU transfers are in levels (1000Euro/per capita). The dependent variables are the shares of votes for far-right parties (columns 1 and 2) and far-left parties (columns 3 and 4)

Table A3: NUTS3-level transfers and vote shares for far-right/-left parties

	Far-righ	t parties	Far-left	parties
	(1)	(2)	(3)	(4)
Panel A - Log of p.c. Transfers				
Transfers	-0.007***	-0.005***	0.004***	0.004***
	(0.001)	(0.001)	(0.000)	(0.000)
# of Observations	3,925	3,923	3,925	3,923
Adj. R -Squared	0.909	0.919	0.865	0.883
Panel A - Transfers (1000/p.c.)				
Transfers	-0.018***	-0.012***	0.014***	0.014***
	(0.002)	(0.002)	(0.001)	(0.001)
# of Observations	4,099	4,097	4,099	4,097
Adj. R-Squared	0.909	0.919	0.868	0.885
Regional Controls		Yes		Yes
Country-Election-FE	Yes	Yes	Yes	Yes

Notes: This table shows correlations between the share of votes for extreme parties (far-right in columns 1 and 2 and far-left in columns 3 and 4) and per capita transfers. The units of observation are NUTS3 regions. The specifications include country-election fixed effects and may or may not include regional controls (Log employment, log GDP per capita, log of population density and higher order terms thereof). In Panel A, the independent variable is in log and in Panel B, the independent variable is in levels (1000€ per capita). We omit very affluent regions from the sample and focus instead on a symmetric sample (+/- 75%) around the threshold, determining a NUTS2 region's eligibility for objective 1 transfers. We pool all observations from the 2004, 2009, 2014 and 2019 elections and keep all countries that were EU members at the beginning of a funding period. * p < 0.1; *** p < 0.05; **** p < 0.01.

Results in panel A indicate that higher per-capita transfers are associated with a lower share of votes for far-right parties. Qualitatively this holds in specifications with and without regional controls. The converse is true for the association between transfers and the share of votes for

 $^{^{17}}$ The regional controls collected in X_{ict} include log population density, employment, GDP per capita and higher-order terms. The estimation sample includes all objective 1 regions and all NUTS3 regions nested in a NUTS2 region with a GDP per capita that does not exceed 1.5 times the EU's average (i.e., the sample is symmetric around the threshold)

far-left parties. Both effects are highly significant in a statistical sense but quantitatively relatively small. For instance, the coefficients in the specification without regional controls imply that 100% larger EU transfers are associated with vote shares for far-right parties being 0.7pp lower and far-left parties' vote shares 0.4pp higher. The same picture emerges from Panel B when using transfer intensity in levels instead of logs. The coefficients in columns 1 and 3 of Panel B. imply that transferring an additional 1000€ per capita is associated with vote shares for far-right parties being 1.8pp lower and for far-left parties 1.4pp higher. We visually show the same relationships in the appendix in figures 2 using binned scatterplots. Against the backdrop of these first indicative results, the remainder of this section aims at analysing the causal effect of regional policy on voting.

A.3 Additional Regression Results: Regional

Table A4: ERDF Transfers and Vote Shares for Far-Right Parties - In First Differences

	Full I	Range		Range +/- 15				Range +/- 5	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Δ Shares									
Treatment	-0.017***	-0.018***	-0.013**	-0.013**	-0.015***	-0.015**	-0.020*	-0.013	
	(0.005)	(0.005)	(0.006)	(0.007)	(0.006)	(0.006)	(0.011)	(0.009)	
# of Observations	3,414	3,414	1,077	1,077	1,077	1,077	372	372	
Adj. R -Squared	0.034	0.049	0.010	0.035	0.007	0.032	0.066	0.087	
K-P-F-Statistic	126.19	120.56	51.61	46.93	58.50	52.91	15.60	17.15	
Regional Controls		Yes		Yes		Yes		Yes	
Ctry-Election-FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Order of Poly.	Cub.	Cub.	Quad.	Quad.	Lin.	Lin.	Lin.	Lin.	

Notes: This table shows the results from the fuzzy regression discontinuity design. The dependent variable is the change in the first difference of the share of votes for far-right parties. The units of observation are NUTS3 regions. The treatment dummy is instrumented with a dummy that indicates eligibility based on the GDP per capita criterion (< 75% of the EU's average). The specifications include country-election fixed effects and may or may not include regional controls (sectoral employment shares and log of population density, gdp per capita and region-type by country fixed effects all measured at the level of NUTS3 regions). At the bottom of the table we report the first stage's Kleibergen-Paap -. We estimate the effect on the full range, on a range +/-15 and +/-5. To control for the forcing variable, we use polynomials which are allowed to have different shapes on each side of the threshold. Standard errors are clustered at the NUTS2 level. * p < 0.1; ** p < 0.05; *** p < 0.01.

Table A5: ERDF Transfers and Vote Shares for Far-Left Parties - In First Differences

	Full I	Range		Range	+/- 15		Range +/- 5			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Δ Shares										
Treatment	-0.003	-0.002	0.003	0.003	-0.002	-0.002	0.030**	0.025		
	(0.006)	(0.007)	(0.009)	(0.010)	(0.009)	(0.010)	(0.015)	(0.019)		
# of Observations	3,414	3,414	1,077	1,077	1,077	1,077	372	372		
Adj. R -Squared	0.008	0.009	0.015	0.024	0.003	0.011	0.076	0.088		
K-P- F -Statistic	126.19	120.56	51.61	46.93	58.50	52.91	15.60	17.15		
Regional Controls		Yes		Yes		Yes		Yes		
Ctry-Election-FE	Yes	Yes								
Order of Poly.	Cub.	Cub.	Quad.	Quad.	Lin.	Lin.	Lin.	Lin.		

Notes: This table shows the results from the fuzzy regression discontinuity design. The dependent variable is the change in the first difference of the share of votes for far-left parties. The units of observation are NUTS3 regions. The treatment dummy is instrumented with a dummy that indicates eligibility based on the GDP per capita criterion (<75% of the EU's average). The specifications include country-election fixed effects and may or may not include regional controls (sectoral employment shares and log of population density, gdp per capita and region-type by country fixed effects all measured at the level of NUTS3 regions). At the bottom of the table we report the first stage's Kleibergen-Paap -. We estimate the effect on the full range, on a range +/-15 and +/-5. To control for the forcing variable, we use polynomials which are allowed to have different shapes on each side of the threshold. Standard errors are clustered at the NUTS2 level. * p < 0.1; *** p < 0.05; *** p < 0.01.

Table A6: ERDF Transfers and Vote Shares for Governing Parties

	Full F	Range	Range +/- 15				Range +/- 5	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Vote Shares								
Treatment	0.006	0.007	0.028^{*}	0.022	0.029^{*}	0.022	0.004	0.001
	(0.015)	(0.016)	(0.016)	(0.015)	(0.016)	(0.015)	(0.020)	(0.023)
# of Observations	3,721	3,721	1,175	1,175	1,175	1,175	416	416
Adj. R -Squared	0.006	0.010	0.006	0.010	-0.002	0.007	0.004	0.035
K-P- F -Statistic	145.12	139.32	58.12	54.21	73.84	67.18	13.32	15.87
Regional Controls		Yes		Yes		Yes		Yes
Ctry-Election-FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Order of Poly.	Cub.	Cub.	Quad.	Quad.	Lin.	Lin.	Lin.	Lin.

Notes: This table shows the results from the fuzzy regression discontinuity design. The dependent variable is the share of votes for governing parties. The units of observation are NUTS3 regions. The treatment dummy is instrumented with a dummy that indicates eligibility based on the GDP per capita criterion (< 75% of the EU's average). The specifications include country-election fixed effects and may or may not include regional controls (sectoral employment shares and log of population density, gdp per capita and region-type by country fixed effects all measured at the level of NUTS3 regions). At the bottom of the table we report the first stage's Kleibergen-Paap -. We estimate the effect on the full range, on a range +/-15 and +/-5. To control for the forcing variable, we use polynomials which are allowed to have different shapes on each side of the threshold. Standard errors are clustered at the NUTS2 level. * p < 0.1; ** p < 0.05; *** p < 0.01.

Table A7: ERDF Transfers and Turnout

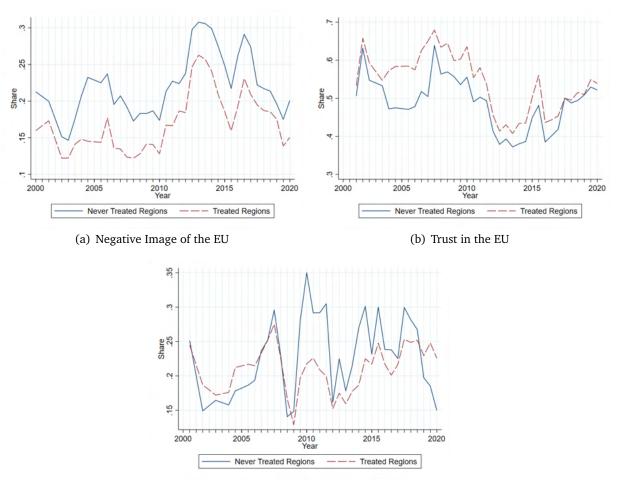
	Full Range		Range +/- 15				Range +/- 5		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Vote Shares									
Treatment	-0.013	-0.014	0.036	0.033	0.022	0.015	0.096*	0.102**	
	(0.035)	(0.036)	(0.033)	(0.029)	(0.035)	(0.032)	(0.053)	(0.044)	
# of Observations	3,106	3,106	909	909	909	909	339	339	
Adj. R -Squared	0.052	0.074	0.027	0.118	0.018	0.103	0.165	0.270	
K-P-F-Statistic	90.40	82.31	39.28	35.10	42.28	38.86	12.86	14.53	
Regional Controls		Yes		Yes		Yes		Yes	
Ctry-Election-FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Order of Poly.	Cub.	Cub.	Quad.	Quad.	Lin.	Lin.	Lin.	Lin.	

Notes: This table shows the results from the fuzzy regression discontinuity design. The dependent variable is turnout. The units of observation are NUTS3 regions. The treatment dummy is instrumented with a dummy that indicates eligibility based on the GDP per capita criterion (< 75% of the EU's average). The specifications include country-election fixed effects and may or may not include regional controls (sectoral employment shares and log of population density, gdp per capita and region-type by country fixed effects all measured at the level of NUTS3 regions). At the bottom of the table we report the first stage's Kleibergen-Paap -. We estimate the effect on the full range, on a range +/-15 and +/-5. To control for the forcing variable, we use polynomials which are allowed to have different shapes on each side of the threshold. Standard errors are clustered at the NUTS2 level. * p < 0.1; ** p < 0.05; *** p < 0.01.

Table A8: Leave-one-county-out coefficients

	First order polynomial		Second o	rder polynomial		
Country	β	se	β	se	YMean	N
AT	-0.032	0.009***	-0.029	0.010***	0.175	1,160
BE	-0.029	0.009***	-0.026	0.010**	0.183	1,109
BG	-0.031	0.009***	-0.028	0.010***	0.173	1,172
CZ	-0.031	0.009***	-0.029	0.010***	0.173	1,154
DE-W	-0.032	0.009***	-0.029	0.010***	0.183	1,132
DK	-0.031	0.009***	-0.028	0.010***	0.174	1,169
EE	-0.031	0.009***	-0.028	0.010***	0.173	1,172
EL	-0.032	0.009***	-0.030	0.010***	0.179	1,063
ES	-0.039	0.012***	-0.035	0.013***	0.184	1,085
FI	-0.033	0.009***	-0.030	0.011***	0.177	1,151
FR	-0.033	0.009***	-0.030	0.011***	0.177	1,052
HR	-0.031	0.009***	-0.028	0.010***	0.173	1,155
HU	-0.031	0.009***	-0.028	0.010***	0.173	1,175
IE	-0.031	0.009***	-0.028	0.010***	0.173	1,175
IT	-0.032	0.011***	-0.029	0.012**	0.173	1,069
NL	-0.031	0.009***	-0.029	0.010***	0.177	1,161
PL	-0.028	0.009***	-0.026	0.010***	0.167	1,152
PT	-0.031	0.009***	-0.029	0.010***	0.174	1,125
SE	-0.031	0.009***	-0.028	0.010***	0.174	1,168
SI	-0.031	0.009***	-0.029	0.010***	0.173	1,155
SK	-0.031	0.009***	-0.028	0.010***	0.173	1,173
GB-ENG	-0.020	0.007***	-0.017	0.007**	0.123	1,000
DE-E	-0.035	0.010***	-0.034	0.013***	0.169	947
GB-WLS	-0.031	0.009***	-0.028	0.010***	0.173	1,151

Notes: This table shows the results from the baseline FRDD specification estimated on a range of \pm 1-15 around the 75% threshold. The units of observation are NUTS3 regions. The treatment dummy is instrumented with a dummy that indicates eligibility based on the GDP per capita criterion. The specifications include country-election, country-region-type fixed effects and regional controls (employment share, industry share, log population density, GDP/capita, share of young/old people). Each row shows results from subsamples after dropping the county given in column 1. We report results from a specification with first and second-order polynomials of the forcing variable. The shape of the polynomial is allowed to vary on each side of the threshold. We also show the mean of the dependent variable for untreated regions in the respective subsamples. Standard errors are clustered at the NUTS2 level. * p < 0.1; ** p < 0.05; *** p < 0.01.


Table A9: Nested Aberrants and Vote Shares for Far-Left Parties

	Exo. (un)tre	eated	Exo. untre	ated	Exo. treated		
	(Common Sup.)	(Caliper)	(Common Sup.)	(Caliper)	(Common Sup.)	(Caliper)	
Panel A.							
Treatment	0.000	-0.000	0.005	0.011	-0.007	-0.007	
	(0.005)	(0.007)	(0.005)	(800.0)	(0.006)	(0.012)	
# Aberrant NUTS3	291	90	228	53	63	29	
# Control NUTS3	178	90	115	53	63	29	
Adjusted R -Squared	0.941	0.948	0.933	0.947	0.964	0.958	
Country-Election-FE	Yes	Yes	Yes	Yes	Yes	Yes	
Regional Controls	Yes	Yes	Yes	Yes	Yes	Yes	

Notes: This table shows results from a comparison of NUTS3 regions with different treatment statuses conditional on levels of economic development at the NUTS3 level. The dependent variable is the share of votes for far-left parties at the NUTS3-level. The sample is restricted to NUTS2 regions that comply with the 75% rule and to NUTS3 regions with GDP per capita on the country-election specific area of common support", i.e., for a treated NUTS3 region, there exists at least one untreated NUTS3 region in the same country-election cycle with a GDP per capita as small as the treated region's GDP per capita. Accordingly, for each untreated NUTS3 region, at least one treated NUTS3 region exists in the same country and period with GDP per capita as high as the untreated region's GDP per capita. In odd columns we use all observations and in even columns we estimate on a sample homogenized via caliper matching on GDP per capita within country-election strata. All regressions include country-election-fixed effects. All specifications include regional controls (sectoral employment shares and log of population density, gdp per capita and region-type by country fixed effects all measured at the level of NUTS3 regions). Standard errors are clustered at the NUTS2 level. * p < 0.1; ** p < 0.05; *** p < 0.01."

A.4 Individual-level Data

Figure A3: Evolution of EU Image, Trust in EU and Economic Expectations

(c) Expecting the Economy to do Better

Notes: The figures plot the evolution of the share of individuals with a negative image of the EU (4(a)), with trust in the EU (4(b)), and the share of individuals who expect their economic situation to improve (4(c)). The solid blue lines plot respective shares among individuals living in regions that never received objective 1 treatment and the dashed red lines for individuals whose region of residence was objective one region at least once between 2000 and 2020. Source: Eurobarometer, Own calculations.

Table A10: Effect of Treatment on Individual's Attitudes: Split by Education Level

	Ctry. Benefits		Neg. EU-Image		Sat. Dem. EU		Unsat. Dem. EU	
	(Low)	(High)	(Low)	(High)	(Low)	(High)	(Low)	(High)
Panel A. – Attitudes								
Treatment	0.039	0.039	-0.048***	-0.028	0.053^{*}	-0.014	-0.018	0.006
	(0.030)	(0.043)	(0.018)	(0.027)	(0.028)	(0.037)	(0.024)	(0.027)
Mean of Y	0.54	0.72	0.29	0.20	0.47	0.56	0.16	0.11
# Individuals	26,917	8,684	63,692	19,574	47,734	15,780	47,734	15,780
Adj. R -Squared	0.005	0.008	0.001	0.001	0.002	0.004	0.003	0.004
K-P- F Stat.	138.19	107.27	216.93	170.17	184.29	147.15	184.29	147.15
	Trust i	n EU	Trust in E	U-COM	Trust in	EU-EP	Trust in N	lat. Gov.
	(Low)	(High)	(Low)	(High)	(Low)	(High)	(Low)	(High)
Panel B. – Trust								
Treatment	0.054**	-0.008	0.040^{*}	0.042	0.047^{*}	0.008	0.043**	0.009
	(0.021)	(0.031)	(0.022)	(0.031)	(0.025)	(0.032)	(0.019)	(0.028)
Mean of Y	0.37	0.48	0.45	0.59	0.47	0.61	0.29	0.35
# Individuals	59,318	18,478	58,914	19,019	61,464	19,614	63,157	19,046
Adj. R -Squared	0.003	0.002	0.002	0.003	0.003	0.002	0.002	0.003
K-P- F Stat.	217.11	172.23	214.19	158.51	212.23	163.75	219.16	163.76
	Econ. 1	Better	Econ. Worse		Empl. Better		Empl. Worse	
	(Low)	(High)	(Low)	(High)	(Low)	(High)	(Low)	(High)
Panel C. – Expectations								
Treatment	-0.007	-0.022	0.024	0.035	-0.011	-0.027	-0.011	0.011
	(0.018)	(0.029)	(0.020)	(0.029)	(0.018)	(0.027)	(0.018)	(0.030)
Mean of Y	0.18	0.21	0.41	0.36	0.18	0.21	0.18	0.37
# Individuals	63,289	19,362	63,289	19,362	63,152	19,276	63,152	19,276
Adj. R-Squared	0.001	0.002	0.001	0.001	0.000	0.001	0.000	0.001
K-P-F Stat.	217.70	168.46	217.70	168.46	218.05	165.74	218.05	165.74
1^{st} Order Poly.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Ctry-Year-FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Regional Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Notes: This table reports the point estimates from the FRDD, focusing on a range of +/-15% around the threshold. The effects are estimated separately for individuals with high and low education (education at least until age 21 or not). The estimates are obtained from individual-level data from the last three years of a funding period. All outcomes are 0-1 dummies. The specifications include a linear polynomial of the forcing variable with different shapes on each side of the threshold. Regressions include country-time fixed effects and the employment share, the share of industrial workers, population density, individuals' gender, marital status, dummies for age categories, and their community type (rural, suburban, urban) by country as further controls. Standard errors are clustered at the region-year level (NUTS2 or larger). The table further reports the mean of dependent variables in each estimation sample. Source: Eurobarometer and Ardeco.* p < 0.1; *** p < 0.05; *** p < 0.01.