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Abstract

The paper considers two estimators for the linear random effects panel data model
with known heteroskedasticity. Examples where heteroskedasticity can be treated as
given include panel regression with averaged data, meta regression and the linear prob-
ability model. While one estimator builds on the additive random effects assumption,
the other, which is simpler to implement in standard software, assumes that the ran-
dom effect is multiplied by the heteroskedastic standard deviation. Simulation results
show that substantial efficiency gains can be realized with either of the two estimators,
even in case of misspecification of the scedastic function. Correct confidence interval
coverage is obtained if clustered standard errors are used. Efficiency gains are also evi-
dent in an illustrative meta-regression application estimating the effect of study design
features on loss aversion coefficients.
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1 Introduction

There is a substantial literature dealing with heteroskedasticity in the linear random effects

model for panel data. Part of it has been concerned with heteroskedastic time-invariant error

components (e.g. Mazodier and Trognon (1978) and Baltagi and Griffin (1988)), another

part with time-invariant heteroskedasticity of the general error term (e.g. Rao et al. (1981),

Baltagi (1988) and Wansbeek (1989)) and yet another part with modelling heteroskedasticity

as a low-dimensional parametric function of covariates (e.g. Baltagi et al. (2006) and Lejeune

(2005)).

Here, we consider a different situation, where the variances of the general errors are left com-

pletely unrestricted, but treated as given. Knowledge of the idiosyncratic error variances (or

consistent estimators thereof) leads to a considerable simplification of the estimation prob-

lem, as the feasible generalised least squares (GLS) estimator of the random effects panel

model requires estimation of one additional parameter only, the variance of the time-invariant

individual error component. In this way, over-parametrization is avoided and the estimation

problem is reduced to finding an efficient, and ideally also conveniently implementable, GLS

estimator for the regression parameters. Also, there is no reason to consider tests for het-

eroskedasticity, as provided by Holly and Gardiol (2000), Baltagi et al. (2006) or Lejeune

(2005), among others, since it is known to be present in our set-up.

It is not uncommon in applied work that the source of heteroskedasticity can be treated as

known. One application concerns state and year panel data for proportions or means, where

heteroskedasticity is generated by variation in sample sizes, both over time and across states.

Another growing field of application is in meta regressions where effect sizes are predicted by

study features. In this case, heteroskedasticity is due to variation in standard errors of the

estimated effect sizes. A panel dimension can arise if the meta regression includes several

estimates from the same study, as is frequently the case in practice.1 Yet another example

is the linear probability model for a binary dependent variable, where the heteroskedastic

1See Stanley and Doucouliagos (2008) for an introduction to meta analysis for economists.
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error variances can be consistently estimated because they are a known function of the linear

predictor.2

We discuss two versions of the random effects model with known heteroskedasticity. In the

standard version, the variance of the random effect is constant, and heteroskedasticity in the

general error term leads to variation in the pairwise within-unit correlations. In a modified

model, the random effect is multiplied by the standard deviation of the error term, and thus

effectively becomes heteroskedastic as well, since its variance is proportional to that of the

general error. In this “scaled random effects model”, the pairwise within-unit correlations

remain constant, and we consider this a useful benchmark, as it mirrors the correlation

structure implied by the homoskedastic random effects model.

In principle, there are two different ways each for implementing the GLS estimator for the

two heteroskedastic random effects models, either by using the inverse of the block-diagonal

covariance matrix of the combined errors, or by applying ordinary least squares to suitably

transformed data. For the scaled random effects model, the second approach is particularly

simple: divide the data by the standard deviation of the general error, and use a standard

random effects estimator, available in any econometric software package, on the transformed

data. No additional programming is required.

While both models account for dependent observations, and therefore make the estimators

potentially more efficient, there is no need to assume “correct specification”, and we rec-

ommend using cluster-robust standard errors in addition to weighting (see e.g. Romano

and Wolf (2017) for a general discussion of robust weighted least squares estimation, and

Pustejovsky and Tipton (2022) for robust estimation in the context of multi-study meta

regressions).

In simulation experiments, we document that substantial efficiency gains can be achieved,

and correctly sized tests be obtained, by using GLS estimators that account for full het-

eroskedasticity as well as within-unit correlation, even if the weighting matrix does not

2Similarly, heteroskedasticity of known form arises when estimating a linear model for the conditional

expectation of a Poisson distributed dependent variable.
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correspond to the true data generating process. The gains are similar for both working

models, and their related estimators, supporting the case for the easier-to-use scaled random

effects approach that assumes that the variance of the time-invariant error component is

proportional to the variance of the general error.

We also conduct an illustrative application to meta-regression. Brown et al. (2024) estimate

the effect of study design features on loss aversion coefficients, using 607 estimates from

150 articles. Loss aversion estimates are heteroskedastic, since their standard errors differ

depending on sample size and other features of the sampling process. Moreover, an article

contains several estimates which can be expected to be correlated. Accounting for correlation

and heteroskedasticity, we obtain substantially more precisely estimated meta-regression

coefficients than without those adjustments. For example, the evidence for the presence of

design effects is much stronger than would be inferred from a simple OLS or random effects

estimator.

2 Random effects models with heteroskedasticity

2.1 Basic setup

To introduce notation and as a point of reference for our extensions, we first restate the

textbook results on the random effects model without heteroskedasticity (e.g., Baltagi, 2008).

Let

yi = Xiβ + uiιTi
+ εi , i = 1, . . . , N (1)

where yi denotes the (Ti × 1) vector of outcomes and Xi the (Ti × p) design matrix that

includes a constant. ui is a scalar random effect, ιTi
a (Ti × 1) vector of ones, and εi a

(Ti×1) vector of general error terms. There are N independent units. We do not impose the

assumption of a balanced panel, so the total number of observations equals
∑N

i=1 Ti. Both

error components are assumed to be homoskedastic, Var(ui) = τ 2 and Var(εit) = σ2. The
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covariance matrix Ωi of the combined error term ui + εi can then be written as

Ωi = (Tiτ
2 + σ2)J̄Ti

+ σ2(ITi
− J̄Ti

) (2)

where TiJ̄Ti
is a (Ti × Ti) matrix of ones, and ITi

is the identity matrix (see Baltagi, 2008).

Since J̄Ti
and (ITi

− J̄Ti
) are idempotent and orthogonal, the inverse is given by Ω−1

i =

(Tiτ
2 + σ2)−1J̄Ti

+ σ−2(ITi
− J̄Ti

) and the square root of its inverse by Ω
−1/2
i = (Tiτ

2 +

σ2)−1/2J̄Ti
+ σ−1(ITi

− J̄Ti
). The inverse of the full covariance matrix of Y = (y1, . . . , yN)

′

is block-diagonal with typical element Ω−1
i , and it follows that the GLS estimator βGLS is

given by

β̂GLS = (X ′WX)−1X ′WY

=

(
N∑
i=1

X ′
iWiXi

)−1( N∑
i=1

X ′
iWiyi

)
(3)

where the weighting matrix Wi = Ω−1
i depends on two parameters only, τ 2 and σ2.

Alternatively, the GLS estimator can be conveniently obtained by first transforming the data

observation-by-observation. Premultiplying Y and X by σΩ−1/2, we find that Y ∗ has typical

element y∗it = yit − θiȳi where θi = 1 − σ/
√
Tiτ 2 + σ2 and ȳi is the unit specific mean. The

GLS estimator equals the least squares estimator expressed in terms of the transformed data

Y ∗ and X∗. For feasible GLS, τ 2 and σ2 need to be replaced by consistent estimators τ̂ 2 and

σ̂2.

The GLS formula (3) is completely general, of course, and the heteroskedastic random effects

estimators discussed below will only differ in the choice of weighting function Wi. Impor-

tantly, under correct specification, when Wi = Ω−1
i , the conditional variance covariance

matrix is given by

VarGLS(β̂|X) =

(
N∑
i=1

X ′
iΩ

−1
i Xi

)−1

, (4)

whereas it equals

VarGLS(β̂|X) =

(
N∑
i=1

X ′
iWiXi

)−1( N∑
i=1

X ′
iWiΩ

′
iWiXi

)(
N∑
i=1

X ′
iWiXi

)−1

, (5)
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when Wi and Ω−1
i differ. A consistent, cluster-robust estimator of the unconditional variance

covariance matrix is given by

V̂arCR

(
β̂
)
=

(
N∑
i=1

X ′
iWiXi

)−1( N∑
i=1

X ′
iWiêiê

′
iWiXi

)(
N∑
i=1

X ′
iWiXi

)−1

, (6)

where êi = yi −Xiβ̂ is the vector of unit specific residuals.

2.2 Time- and unit-specific heteroskedasticity

The simplifying factorization (2) goes through if ui is heteroskedastic with variance τi, or if

the variance of εit differs across units but is constant within units, such that we can write

Var(εit) = σ2
i . In this case, the Ωi submatrices differ not only in the Ti-dimension, but

also with respect to the parameters τ 2i and σ2
i . However, with a sufficiently large Ti, these

parameters can be estimated (see Baltagi, 2008, for further detail).

In this paper, we deal with a different case, namely known time- and unit-dependent vari-

ances of the general error term, referred to in the following as “full heteroskedasticity”.

Consequently, for unit i, the variance-covariance matrix of the general errors is of the form

Σi = diag(σi1, . . . , σi,Ti
), a (Ti × Ti) diagonal matrix. For τ 2 = 0 (or in a cross-section

application), we would have Ωi = Σ2
i , and the GLS estimator is obtained by dividing each

variable by the standard deviation of the general error that is assumed to be known. How-

ever, this transformation ignores the within-unit correlations that may arise from a common

unit-specific random effect, or from other forms of correlated errors. As a consequence,

simply weighting by the inverse standard deviation cannot be efficient.

We consider two approaches to account for potential within-unit error correlation. A natural

first step would be to augment the model by a simple constant-variance random effect. It

turns out that such a random effect, in combination with a heteroskedastic general error,

implies that high-variance observations have low correlation. Moreover, the model cannot be

estimated using standard panel data software. Both issues are addressed by an alternative,

scaled random effects specification, that enforces a common within-unit correlation and can
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be estimated using standard panel data software.

2.2.1 The standard random effects model

Using observation-specific notation, the model can be written as

yit = x′
itβ + ui + εit , i = 1, . . . , N, t = 1, . . . , Ti (7)

where Var(ui) = τ 2 and Var(εit) = σ2
it. It follows that

Var(yit|xit) = τ 2 + σ2
it

Cov(yit, yis|xit) = τ 2 for t ̸= s

and

Cor(yit, yis|xit) = ρits =
τ 2√

τ 2 + σ2
it

√
τ 2 + σ2

is

for t ̸= s

which means that within-unit correlations vary unless σ2
it = σ2

is for all t ̸= s. In fact, for

a given τ 2, the correlation is smaller the larger the variances σ2
it and σ2

is. This may be an

unwanted implication in some application.

In principle, the GLS estimator (3) can be computed by first inverting each block of the

covariance matrix, Ωi. The inverse of Ω can then be substituted as weighting matrix W

into the formula for β̂GLS. Based on (7), the marginal variance-covariance matrices can be

written as

Ωi = τ 2Ji + Σ2
i (8)

where Σ2
i is an Ti×Ti diagonal matrix with ith diagonal entry equal to σ2

it and Ji is a Ti×Ti

matrix of ones. The inverses of these matrices have the form

Ω−1
i = Σ−2

i − δiΣ
−2
i JiΣ

−2
i , where δi =

(
1

τ 2
+

Ti∑
t=1

1

σ2
it

)−1

. (9)

Feasible least squares requires estimation of a single parameter, τ 2, and a natural estimator

uses the residuals êit from an unweighted least squares regression of yit on xit and estimates
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τ 2 from the off-diagonal elements:

τ̂ 2 =
1∑N

i=1 Ti(Ti − 1)/2− p

N∑
i=1

Ti−1∑
t=1

Ti∑
t′=t+1

êitêit′ (10)

A GLS transformation for this case has been derived by Randolph (1998), allowing to ob-

tain the GLS estimator as an ordinary least squares estimator applied to the transformed

data. However, the transformation is quite complicated, and there seem to be no empirical

applications in the literature.

2.2.2 A scaled random effects model

Let

yit = x′
itβ + σitui + εit (11)

The difference to model (7) is that the random effect is now multiplied by the standard

deviation of εit. To the best of our knowledge, such a model has not previously been discussed

in the panel data literature, with the exception of Stanley and Doucouliagos (2008) in the

related context of meta-regressions.3 In one interpretation, ui can be thought of as a common

factor and σit as the factor loading. It follows that

Var(yit|xit) = τ 2σ2
it + σ2

it = σ2
it(τ

2 + 1)

Cov(yit, yis|xit) = τ 2σitσis for t ̸= s

and

ρits =
τ 2σitσis√

σ2
itσ

2
is(τ

2 + 1)2
=

τ 2

τ 2 + 1
for t ̸= s

3Typically, in a meta-regression, σit itself is included as a regressors to account for publication bias.

Stanley and Doucouliagos (2008, p. 69) argue that such a scaled random effects specification is reasonable

when ”study effects operate largely through an unobserved differential propensity to select for statistical

significance.”
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so the model shares many properties of the standard random effects model: the within-unit

correlations ρits are constant within units, and they are increasing in τ 2. The standard model

is nested when σ2
it = σ2 = 1 for all i, t and s.

The scaling of the random effect makes intuitively sense in cases where the general error

is heteroskedastic because of a bounded support of the outcome. For example, when yit is

non-negative, the variance of the error must decrease as the linear index x′
itβ approaches

zero. Similarly, for binary or fractional responses, the variance must decrease as predictions

approach the upper or lower bound of the unit interval. But what holds for εit must also

hold for the additive random effect, and the σ2
it-scaling is a simple way to ensure that the

variance of the product uiσit decreases, and eventually goes to zero, as the regression function

approaches the respective bounds.

Model (11) can be implemented using standard software, after appropriate weighting, as long

as σ2
it is known (at least up to a multiplicative constant). Divide (11) by σit:

yit
σit

=
x′
it

σit

β + ui +
εit
σit

(12)

So this is a homoskedastic random effects model for the transformed variables y∗it = yit/σit

and x∗
it = xit/σit. Therefore, estimation requires only two simple steps. In a first step, the

transformed variables y∗it and x∗
it are obtained. In a second step, the usual random effects

transformation (Baltagi, 2008) is applied to y∗it and x∗
it. In particular, it can be shown that

the random effects estimator is obtained by quasi-demeaning the dependent and independent

variables, i.e., regressing

y∗it − θ̂ȳ∗i on x∗
it − θ̂x̄∗

i

where θ̂ = 1−1/
√
1 + T τ̂ 2 and τ̂ is obtained as in (10), using the residuals from a regression

of y∗it on x∗
it.
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2.2.3 The linear probability model

The linear probability model (LPM) for a binary response yit ∈ {0, 1} is heteroskedastic by

construction. Under the additive random effect assumption, we can write

yit = x′
itβ + ui + εit (13)

where εit = 1− (x′
itβ + ui) when yit = 1, εit = −(x′

itβ + ui) when yit = 0. In order to ensure

consistent estimation of β, we need to assume that 0 ≤ x′
itβ + ui ≤ 1 for all i and t (see

Theorem 1 in Horrace and Oaxaca, 2006).

This is not a typical linear random effects panel data model, because the requirement 0 ≤

x′
itβ + ui ≤ 1 imposes restrictions on both the distribution of xit and that of ui. To give

an example, the model is well defined if xit is uniform between 0.3 and 0.7, with zero

constant and unit slope, and ui is uniform between -0.2 and +0.2; predictor distributions

with unbounded support are naturally ruled out in this context.

Under these assumptions, we can derive the implied skedastic function of the general error

term εit. From

Var(εit|xit, ui) = (x′
itβ + ui)(1− (x′

itβ + ui)), (14)

it follows that

Var(εit|xit) = Eu[Var(εit|xit, ui)]

= Eu[(x
′
itβ + ui)(1− (x′

itβ + ui))|xit]

= Eu[x
′
itβ(1− x′

itβ)− 2x′
itβui + ui − u2

i |xit] = v2it − τ 2 (15)

where v2it = x′
itβ(1 − x′

itβ) and where we have used the facts that E(εit|xit, ui) = 0 and

E(ui|xit) = 0. Since the expectation in (15) is taken over a concave function of ui, it must

be smaller than the function of the expectation (which would simply be v2it). Moreover, it is

always the case that v2it ≥ τ 2, due to the specific restriction the LPM puts on the distribution

of ui. The largest possible variance of the random effect ui arises for a binary distribution,
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where ui takes the values {−a, a} with equal probability. In order to satisfy 0 ≤ x′
itβ+ui ≤ 1,

a is bound from above by min(x′
itβ, 1− x′

itβ) for all i and t. Therefore,

τ 2 ≤ [minxit
(x′

itβ, 1− x′
itβ)]

2

which is necessarily smaller than x′
itβ(1− x′

itβ).

From (15), we get that Var(yit|xit) = Var(ui + εit|xit) = v2it, which defines the appropriate

weights to correct for heteroskedasticity. The idiosyncratic error variances Var(yit|xit) are

largest when x′
itβ equals 0.5.

The situation is slightly different, when we combine the LPM with the scaled random effects

assumption of the previous Section 2.2.2:

yit = x′
itβ + uivit + εit (16)

In this case, the variance function (15) can be re-written as Var(εit|xit) = v2it − v2itτ
2 =

v2it(1 − τ 2). Once again, this leads to Var(yit|xit) = v2it. So premultiplying the data by

v−1
it = 1/

√
x′
itβ(1− x′

itβ), before performing random effects estimation, yields the correct

GLS weights to account for heteroskedasticity regardless of whether a linear probability

model of type 1 or 2 generated the data.

2.3 Discussion

The two estimators for the heteroskedastic random effects model rest on a number of assump-

tions that may not hold in applied work. The two key assumptions are the uncorrelatedness

between ui and xi, as well as a specific type of serial dependence generated by the error

components structure. Typically, the first concern is addressed by using a fixed effects es-

timator that allows for arbitrary correlation between the random effect and the regressors.4

But there are important applications where this is not an option, such as when the main

objective of the analysis is predicting new observations (for which a fixed effects estimate

4See Wooldridge, 2002, for a distinction between fixed and random effects estimators.
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is unavailable by definition), when the overall constant is the object of interest (such as in

meta analyses) and / or when there are time-invariant predictors.

The assumption of a specific correlation structure implied by (7) and (11) is a working

assumption. The idea is that even if the assumption is not entirely correct, it is better (in

terms of estimation efficiency) to use it rather than relying on an unweighted estimator. Of

course, the standard errors will be affected by any misspecificaton of the weighting functions,

and hence it is important to complement the analysis with cluster-robust standard errors

(see Romano and Wolf, 2017, for a general advocacy of such an approach).

3 Simulation experiments

In this part, we study the small sample performance of our suggested estimators, with a focus

on efficiency and confidence interval coverage. In Section 3.1, we consider data generated

from a linear model with a continuous dependent variable . Section 3.2 provides simulation

results for the linear binary response model. In each case, we estimate the model parameters

(intercept and slope) using five different methods: OLS, GLS adjusting for heteroskedasticity

only (H), GLS adjusting for the random effect only (RE), and our new estimators that account

for within-unit dependence as well as known heteroskedasticity, called HRE1 and HRE2, where

HRE1 is based on the additive random effects model described in Section 2.2.1 (Model 1),

whereas HRE1 is based on the scaled random effects model of Section 2.2.2 (Model 2).

The H estimator uses OLS for the transformed data {y∗it, x∗
it}, obtained by dividing yit, xit

as well as the constant by σit. HRE2 uses the same transformed values, but then estimates a

standard random effects model, following the procedure outlined in Baltagi (2008). Lastly,

HRE1 reconstructs the covariance matrix Ω using the estimated variance of the random effect

based on equation (10) and the known σ2
it. The estimates are obtained using the standard

feasible GLS approach, with Ω̂−1 as weighting matrix and untransformed data.

Naturally, we expect all estimators to be centered at the true parameter values, but to find
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substantial differences in the variances of the sampling distributions. HRE2 should domi-

nate HRE1, when the data are generated from Model 2, and vice versa. Estimators using a

misspecified variance-covariance matrix, e.g. because they ignore heteroskedasticity and/or

the correlation due to the random effect, can be expected to have wrong coverage of their

implied confidence intervals, unless cluster-robust standard errors are used.

3.1 Linear models

The parameters of the simulations are set as follows: there are N = 100 units observed for

T = 3 periods each. The data generating process (DGP) includes a constant and a single

time-varying regressor drawn from a χ−squared distribution with 6 degrees of freedom, that

is then standardized to have a mean of zero and a variance of 0.25; The true values of the

regression parameters are β0 = 1 and β1 = 0.1. The random effect is normally distributed

with mean 0 and variance 4. The general error term is also normally distributed, centered at

zero and with a standard deviation that is drawn from a uniform distribution with support

over (1,3) to introduce heteroskedasticity. The H, HRE1 and HRE2 estimators utilise the true

standard deviation of the general error term in their estimation. This is in the spirit of the

proposed methodology, whereby the variances of the general error term are assumed to be

known.

The simulation results, based on 5000 replications each, are shown in Tables 1 and 2. Table

1 uses data generated according to Model 1 where the random effect is assumed to have a

constant variance. Table 2 data were generated according to Model 2, where the variance

of the random effect is proportional to the variance of the general error term. As seen in

Table 1, all estimators for the intercept β0, as well as the slope β1, are centered roughly

at the true parameter values. However, OLS and heteroskedasticity-only corrected GLS are

very inefficient. The variance of these two estimators exceeds that of HRE1 (which in Table

1 is the correct one) by a factor of almost 2. The random-effect-only estimator RE already

leads to substantial efficiency gains, but allowing for both heteroskedasticity and random

effects is better, in particular, when the “correct” weighting is used, in this case HRE1 rather
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than HRE2. The efficiency gains are most pronounced for the slope estimator, and less so for

the intercept. We also find as expected that cluster robust standard errors lead to better

confidence interval coverage. The differences to using unadjusted standard errors are larger

for the intercept than for the slope in these simulations.

-------------------------

Tables 1 and 2 about here

-------------------------

Table 2 shows the results for the second DGP. The parameters of the simulations remain

the same as before, with the exception that the random effect, drawn from a Normal(0,4)

distribution, is now multiplied with the standard deviation of the general error, drawn from

a uniform(1,3) distribution. The results repeat many of the patterns already found in Table

1: All estimators are centered at the true parameter values, and nominal confidence interval

coverage for both parameters is achieved if the cluster-robust variance estimator is used.

Regarding efficiency, OLS and H perform very poorly in this context, in particular as far

as estimation of the slope is concerned. RE offers a considerable improvement in terms

of efficiency, but it is clearly dominated by both HRE1 and HRE2. Their relative ranking

is reversed compared to that found in Table 1. This was to be expected, since data are

indeed generated from the scaled random effects model, corresponding to the HRE2 estimator.

Overall, the efficiency gains are much larger in this DGP relative to the one employed in

Table 1: the OLS variance of the slope exceeds the variance of the HRE2 estimator by a factor

of more than five.

Clearly, the efficiency results depend on the specific values for τ 2 and SD(σit). In order to

assess the sensitivity to these parameter, Figures 1 and 2 display variance ratios for the slope

parameters as a function of τ and SD(σit). Specifically, SD(σit) is allowed to vary between

0 and 0.7, while τ varies between 0 and 2 (and τ 2 therefore between 0 and 4).

For computational simplicity, we use analytical results for the variance ratios. We therefore

abstract from sampling error and report the ratio of the asymptotic variances of β̂1, as given
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in equation (5) above. Ω−1 and W can differ depending on whether the DGP corresponds

to Model 1 or 2, and depending on whether HRE1 or HRE2 is used for estimation.

The x-distribution is the same as before, a standardized variable obtained from a χ-squared(6)

distribution. We sample 105 data points from that distribution, corresponding to T = 50

observations on N = 2000 units, and use the same x-matrix for all simulations. The results

depend neither on the scale of x (linear transformations lead to the same variance ratios)

nor on the values of β0 and β1 that do not affect the variance of the estimators.

-------------------------------

Figures 1 and 2 about here

-------------------------------

The left panel of Figure 1 shows the efficiency gains of HRE1 compared to OLS. The gains in

efficiency increase with increasing values of SD(σit) and τ , reaching a nearly 5-times lower

variance of HRE1 compared to OLS for the largest amount of heteroskedasticity and variance

of the random effect. The comparison of HRE1 and HRE2 in the right panel of Figure 1 shows

that for most combinations of SD(σit) and τ , HRE1 and HRE2 behave quite similarly in terms

of efficiency. Only for very high values of the two parameters does the use of the correct

HRE1 estimators lead to a substantial benefit.

These findings are mirrored when considering data generated under the Model 2 assumption,

where the random effect ui is scaled by σit, as seen in Figures 2. Again, the use of HRE2 yields

a much more efficient estimator than OLS, unless the amount of heteroskedasticity and /

or variance of the random affect is minor. Again, there is a benefit of using the “correct”

estimator, in this case HRE2 rather than HRE1, in particular when the two parameters take

large values. Otherwise, the performance of the two estimators is quite comparable.
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3.2 Binary dependent variable

Recall that the panel linear probability model with a single predictor and random effect can

be written as

Pr(yit = 1|xit, ui) = pit = β0 + β1xit + ui

To simulate a binary response, we simply draw yit from a Bernoulli distribution with success

probability pit. However, the parameter values and distributional assumptions made in the

previous section cannot be used in this context, because they would violate the condition

that 0 ≤ pit ≤ 1.

Hence, we adapt the specification as follows: In a first DGP, based on the additive model

with constant-variance random effect, we let β0 = 0.4 and β1 = 0.2. xit is standard uniform,

and ui has a discrete distribution that takes the values ±0.35 with probability 0.5 each.

This ensures that 0 ≤ pit ≤ 1 for all i and t. Because the linear index is bound between 0.4

and 0.6, v2it = x′
itβ(1 − x′

itβ) varies only between 0.24 and 0.25. So there is relatively little

scope for heteroskedasticity, and substantial within-unit dependence due to the relatively

high variance of ui (0.35
2 = 0.122).

In order to implement the simulations for the LPM, we need to keep in mind that while the

form of the skedastic function is known, it depends on the parameters β0 and β1 which need

to be estimated first. Hence, we implement a two-step procedure, whereby an unweighted

OLS regression provides estimates β̂0 and β̂1, which are then used to obtain the weights v̂it.

Otherwise, we use the same set-up as before, i.e. there are N = 100 cross-sectional units,

with T = 3 observation years for each unit, and we report the sample means, variances and

95% confidence interval coverage of the estimates obtained for 5000 repeated samples from

the DGP.

Results for the first DGP are given in the top panel of the Table 3. All five estimators are

unbiased for the true parameters, β0 = 0.4 and β1 = 0.2. Just accounting for heteroskedas-

ticity in H does not improve the variance of the estimator. Because of the minor incidence of

heteroskedasticity in this DGP, this was to be expected. However, allowing for the within-
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unit correlation stemming from the random effect leads to substantial improvements. In this

case, it does not matter whether RE, HRE1 or HRE2 is used. For all three estimators, the

variance drops by around one third relative to OLS.

The second DGP introduces substantially more heteroskedasticity. To do so, we let ui = ±0.1

with equal probability, reducing its variance to a mere 0.01. As a consequence the spread of

the linear index can be much larger without violating the bounds of the LPM. Specifically,

xit is drawn from a uniform distribution with support between −1.4 and 2.4, such that

0.12 ≤ x′
itβ ≤ 0.88 and Var(εit|xit) has a lower bound of 0.1056 and an upper bound of 0.25.

The middle panel of Table 3 shows the results for this second DGP. Since it is dominated

by heteroskedasticity, the two estimators that ignore this aspect, OLS and RE, don’t perform

very well in terms of efficiency. The other three estimators reduce the variance by about

10% relative to OLS. While they are very similar, HRE1 based on the correct DGP has the

smallest variance. The variance is about 1% below that of its closest competitors.

For our third DGP, based on the scaled random effects model, we use the same β values for

the constant and the slope as before. By drawing xit from a uniform distribution bounded

between -1 and 2, we maintain a substantial amount of heteroskedasticity. At the same

time, we allow for more spread in the random effect, as ui = ±0.5. For example, when

β0 + β1xit = 0.8 and ui = 0.5, the scaled random effect is 0.5 ×
√
0.8(1− 0.2) = 0.2, and

β0 + β1xit + uivit = 1, its largest admissible value. It is easy to verify that the probability

bounds are satisfied for all values of xit and ui

-------------------------

Table 3 about here

-------------------------

The bottom panel of Table 3 gives results for the linear probability model with scaled random

effects. None of the five estimators is subject to bias, and the coverage of the 95% confidence

interval based on cluster-robust standard errors is quite accurate in all cases. In terms

of efficiency, the difference between the least efficient slope estimator, OLS, and the most
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efficient slope estimator, HRE2, amounts to 14%. Both heteroskedasticity and within cluster-

correlation play a role here, that is: isolated weighting to account only for the random

effect reduces the variance, as does isolated weighting to account only for heteroskedasticity,

but less so. The full efficiency gain is realized when both departures from i.i.d. errors are

accounted for in the weighting. The estimator with the smallest variance is the scaled-

random effects estimator, that first transforms the data, dividing each pair (yit, xit) by v̂it,

and then applies the standard random effects estimator to the transformed data.

4 Application: Meta-Analysis of Empirical Estimates

of Loss Aversion

In a recent paper, Brown et al. (2024) collected and analyzed 607 empirical estimates of loss

aversion from 150 articles published between 1992 and 2017.5 One goal of the meta-analysis

was to determine the extent to which effect size differences can be attributed to observable

differences in study design. The number of estimates per study varied between papers, the

largest number being 53. It can be expected that study specific unobserved factors generate

within-study correlations between these estimates that should be accounted for when running

meta-regressions, and the authors used a Bayesian hierarchical model to address this issue.

Alternatively, we can apply our proposed methodology, i.e. perform GLS estimation of linear

random effects models with known heteroskedasticity. Figures 3 and 4 contain results for

two predictors and six different estimators, namely OLS, H, RE, HRE1, HRE2 and the results of

Brown et al. (2024).6

When comparing our estimates to those reported by Brown et al. (2024), one should note

5The data available via the OSF repository: https://osf.io/9un34/.

6Table 4 in the appendix shows 13 of the 31 employed predictors. Omitted are 3 indicators of the subject

pool, 4 indicators of the utility functional form, 3 indicators of the reference point, 3 indicators of the

definition of λ, and 5 geographic indicators plus a constant.
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that they a) use a Bayesian analysis that makes assumptions on prior distributions, and

b) focus on the posterior median rather than posterior mean. Nevertheless, the results are

qualitatively similar, as demonstrated in Figure 3 for the example of the type of estimate

produced by a study, a qualitative variable with three categories, “individual level mean”,

“individual level median”, and “aggregate level”, respectively. This information is recoded

into two dummy variables, with the first category as omitted baseline. Both “median” and

“aggregate” are associated with decreases in the estimated loss-aversion coefficient, which is

plausible since loss aversion cannot be negative and its distribution is therefore skewed to

the right.

Based on a 95% confidence interval, the difference between individual level mean and median

is statistically significantly different from zero for all estimators. Strikingly, the two estima-

tors that ignore heteroskedastcity, OLS and RE, remain statistically significant despite of

their large standard errors, because the effect sizes are large as well, much larger than the

ones obtained from the other methods. While all estimators are consistent in theory, in a

practical application like this one, using different weights can obviously lead to large differ-

ences in point estimates as well. Among the estimators that allow for heteroskedasticity, our

HRE1 results are closer to those reported in Brown et al. (2024) than HRE2, which is plausible

since their Bayesian model also assumes a purely additive structure.

----------------------------

Figures 3 and 4 about here

----------------------------

The similarity between HRE1 and the Bayesian estimates is also visible when estimating

the association with publication status, as shown in Figure 4. Generally speaking, results

being published in non-econ journals, or being unpublished, are associated with smaller risk

aversion estimates than those published in econ journals. However, these differences tend

to be statistically insignificant, except when using HRE2, which has a substantially smaller

standard error than HRE1 in this case. Based on the HRE2 point estimate, one would conclude
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that papers published in the field of economics, as opposed to non-econ or unpublished

papers, report a loss aversion that is about twice as large (about 2, rather than 1).

5 Conclusions

The panel data random effects model with its strong exogeneity assumptions is unlikely to

be the first choice among researchers interested in estimating causal effects. It nevertheless

deserves its place in the applied economist’s toolkit, because it allows for an efficient ag-

gregation of information and estimates all model parameters, including coefficients of time

invariant regressors as well as the overall constant. This is important for prediction, and

also in situations where the constant is of substantive interest, such as is the case in meta-

regressions, for instance.

The paper presented two estimators for the linear random effects panel data model with

known heteroskedasticity. Heteroskedasticity can be treated as known, for example, in panel

regressions for averaged data, where the variance of the sampling error is inverse propor-

tional to the known number of observations over which the averages are taken, in the linear

probability model, and in meta regressions, where the reported standard error of the effect

size estimates varies from study to study.

The key difference between the two estimators is whether or not the random effect is allowed

to interact with the heteroskedasticity. In some applications, like the linear probability

model and meta-regression, such a “scaled random effect” is an appealing assumption, but

it is a departure from the standard approach. Simulation results showed that substantial

efficiency gains can be realized with either of the two estimators, and correct confidence

interval coverage can be obtained if cluster-robust standard errors are used.

Since the relative performance of the two estimators is quite similar, there is good reason to

recommend the scaled random effects estimator because it is very simple to implement: it

can be computed in a straightforward manner in any standard panel data software without
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the need for further programming.

While the estimators are robust to misspecification of the feasible GLS weights, they will

identify different parameters when the underlying regression model departs from the chosen

specification. This points to a limitation of our application to the linear probability model:

If the true DGP is the logit model, then the LPM is misspecified. While the unweighted

estimator gives the best linear approximation to the true conditional expectation function,

this is no longer the case for the weighted estimators. Moreover, the structural parameter

β is not identified, and naturally, in such a situation, efficient estimation is a secondary

concern.
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Tables

Table 1 (Model 1)

OLS H RE HRE1 HRE2

Mean of the estimated coefficients

Intercept 0.9967 0.9966 0.9967 0.9970 0.9975

Slope 0.0916 0.0964 0.0993 0.1015 0.1021

Variance of the estimated coefficients

Intercept 0.0544 0.0560 0.0544 0.0512 0.0608

Slope 0.1102 0.1204 0.0727 0.0563 0.0683

95% Coverage (standard variance)

Intercept 0.8342 0.7908 0.9480 0.9474 0.8792

Slope 0.9494 0.8968 0.9556 0.9542 0.9232

95% Coverage (cluster robust variance)

Intercept 0.9502 0.9464 0.9496 0.9460 0.9412

Slope 0.9478 0.9438 0.9472 0.9472 0.9384

Notes: Model 1 refers to the standard random effects model with heteroskedastic gen-

eral error term. For the true DGP, β0 = 1, β1 = 0.1, N = 100, and T = 3. εit is

heteroskedastic and drawn from a normal distribution with mean 0 and variance σ2
it.

σit is drawn from a uniform distribution with support over (1,3). The normally dis-

tributed additive random effect has mean 0 and variance 4. Columns 2-5 show results

for different GLS estimators: H accounts for heteroskedasticity only, RE for the random

effect only, and HRE1 and HRE2 for both heteroskedasticity and the within-unit corre-

lation induced by the random effect.
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Table 2 (Model 2)

OLS H RE HRE1 HRE2

Mean of the estimated coefficients

Intercept 0.9949 0.9946 0.9949 0.9960 0.9991

Slope 0.0826 0.0917 0.0998 0.1030 0.1036

Variance of the estimated coefficients

Intercept 0.1771 0.1201 0.1772 0.1388 0.0730

Slope 0.2841 0.1859 0.1005 0.0790 0.0511

95% Coverage (standard variance)

Intercept 0.7874 0.7844 0.9442 0.9674 0.9458

Slope 0.9482 0.9428 0.9612 0.9234 0.9556

95% Coverage (cluster robust variance)

Intercept 0.9472 0.9486 0.9462 0.9484 0.9418

Slope 0.9496 0.9464 0.9500 0.9462 0.9432

Notes: See Table 1. Model 2 refers to the scaled random effects model where general

error term and random effect are both heteroskedastic.
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TABLE 3: Linear Probability Models

OLS H RE HRE1 HRE2

Model 1 (little heteroskedasticity)

Mean of the estimated coefficients

Intercept 0.3988 0.3988 0.3991 0.3990 0.3990

Slope 0.2017 0.2017 0.2012 0.2014 0.2014

Variance of the estimated coefficients

Intercept 0.0041 0.0041 0.0032 0.0033 0.0032

Slope 0.0098 0.0098 0.0065 0.0067 0.0065

95% Coverage (cluster robust variance)

Intercept 0.9424 0.9418 0.9436 0.9416 0.9406

Slope 0.9442 0.9448 0.9476 0.9410 0.9428

Model 2 (substantial heteroskedasticity)

Mean of the estimated coefficients

Intercept 0.3999 0.4005 0.3999 0.4005 0.4005

Slope 0.1999 0.1989 0.1999 0.1989 0.1988

Variance of the estimated coefficients (10−3)

Intercept 0.8393 0.7821 0.8494 0.7818 0.7837

Slope 0.4509 0.4177 0.4499 0.4119 0.4165

95% Coverage (cluster robust variance)

Intercept 0.9440 0.9420 0.9426 0.9398 0.9372

Slope 0.9448 0.9374 0.9410 0.9320 0.9316

DGP 3 (scaled random effect)

Mean of the estimated coefficients

Intercept 0.3991 0.3994 0.3991 0.3994 0.3994

Slope 0.2003 0.1998 0.2004 0.1999 0.1999

Variance of the estimated coefficients (×10−2)

Intercept 0.1278 0.1247 0.1262 0.1232 0.1228

Slope 0.0857 0.0833 0.0778 0.0754 0.0752

95% Coverage (cluster robust variance)

Intercept 0.9456 0.9454 0.9456 0.9416 0.9406

Slope 0.9472 0.9448 0.9446 0.9424 0.9414

Notes: Simulation results based on 5000 replications. In all three panels, N = 100,

T = 3, β0 = 0.4 and β1 = 0.2. x has a continuous uniform distribution with support

[a, b], while u has discrete uniform distribution with masspoints (−c, c) were a, b, and c

were chosen such that the probabilities implied by the linear model are always between

0 and 1. See the text for further detail.
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6 Graphs

Figure 1: Efficiency gains for Model 1

(a) HRE1 vs OLS (b) HRE1 vs HRE2

Notes: Efficiency gains of the OLS, HRE1 and HRE2 estimators relative to each other in

a standard random effects model with heteroskedastic general error term (Model 1).

εit is heteroskedastic and drawn from a normal distribution with mean 0 and variance

σ2
it. σit is drawn from a uniform distribution with mean 1.5 and variable standard

deviation SD(σit). The normally distributed additive random effect has mean 0 and

variable standard deviation τ .
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Figure 2: Efficiency gains for Model 2

(a) HRE2 vs OLS (b) HRE2 vs HRE1

Notes: Efficiency gains of the OLS, HRE1 and HRE2 estimators relative to each other

in the scaled random effects model with heteroskedastic general error term (Model 2).

εit is heteroskedastic and drawn from a normal distribution with mean 0 and variance

σ2
it. σit is drawn from a uniform distribution with mean 1.5 and variable standard

deviation SD(σit). The normally distributed additive scaled random effect has mean

0 and variable standard deviation τ .

.
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Figure 3: Meta-regression for loss aversion coefficients

Notes: Coefficient plot for the effect of the type of estimates on loss aversion coefficients.

”Individual-level mean” is the baseline for the coefficients. Colored dots give the point

estimate and lines indicate confidence and credibility intervals at the 95% level. See

Table D.1 as well as Figure 8 in Brown et al. (2024) for results based on bayesian

hierarchical modelling and https://osf.io/9un34/ for the data.
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Figure 4: Meta-regression for loss aversion coefficients

Notes: Coefficient plot for the effect of publication status on loss aversion coefficients.

”Published (econ)” is the baseline for the coefficients. Colored dots give the point

estimate and lines indicate confidence and credibility intervals at the 95% level. See

Table D.1 as well as Figure 8 in Brown et al. (2024) for results based on bayesian

hierarchical modelling and https://osf.io/9un34/ for the data.
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Appendix

TABLE 4. Meta-regression for loss aversion coefficients

OLS H RE HRE1 HRE2 Brown et al.

Type of estimates (Individual-level mean is baseline)

Individual-level median -1.0792 -0.4530 -1.2628 -0.3303 -0.4363 [-0.272, -0.170]

(0.4273)* (0.2249)* (0.4263)* (0.1582)* (0.1411)*

Aggregate-level -0.8441 -0.1393 -0.9148 -0.4410 -0.1056 [-0.602, -0.125]

(0.4545) (0.2742) (0.3625)* (0.1231)* (0.1288)

Type of data (Lab experiment is baseline)

Field experiment 0.5716 0.4136 0.5494 0.1828 0.3874 [-0.014, 1.072]

(0.5143) (0.5314) (0.3437) (0.2600) (0.2280)

Class experiment -0.5358 -0.3644 -0.5857 -0.1710 -0.4256 [-0.486, 0.650]

(0.6817) (0.7273) (0.4002) (0.2051) (0.2418)

Online experiment -0.3494 0.6519 -0.2753 0.3542 0.6017 [-0.623, 0.413]

(0.6125) (0.6255) (0.3417) (0.2438) (0.2478)*

Other field data -0.2550 -0.4382 -0.2472 -0.4953 -0.4324 [-0.671, 0.223]

(0.4978) (0.4381) (0.3654) (0.2439)* (0.2044)*

Reward (Hypothetical money is baseline)

Real money -0.5511 0.0684 -0.5936 -0.2115 0.0503 [-0.337, 0.232]

(0.4517) (0.3626) (0.3107) (0.1140) (0.1605)

Non-money -0.1681 0.0121 -0.2619 0.3013 0.0201 [-0.458, 0.205]

(0.4841) (0.3693) (0.3036) (0.1771) (0.1715)

Method (Binary choice is baseline)

Survey 0.2998 0.7367 0.3818 0.2830 0.7620 [-0.284, 0.818]

(0.5738) (0.4008) (0.3661) (0.2936) (0.2089)*

Matching -0.0243 0.7618 -0.0465 0.5030 0.7826 [-0.864, 1.493]

(0.8150) (0.5580) (0.6104) (0.2757) (0.2243)*

Other 0.1826 0.2592 0.2022 0.3348 0.2520 [-0.012, 0.541]

(0.3460) (0.2619) (0.2494) (0.1772) (0.1186)*

Publication status (Published (econ) is baseline)

Published (non-econ) 0.0443 -0.9609 0.0319 -0.4536 -0.9881 [-0.295, 0.292]

(1.4795) (0.8186) (0.9536) (0.7058) (0.3001)*

Unpublished -0.4407 -1.2459 -0.4593 -0.7957 -1.2641 [-0.670, 0.153]

(1.5146) (0.8044) (0.9813) (0.7215) (0.2902)*

Source: See Table D.1 as well as Figure 8 in Brown et al. (2024), and also https://osf.io/9un34/ . Robust

standard errors in parenthesis. * indicates statistical significance at the 5% level. Results for Brown et al.

are 95% credibility intervals for the median.
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