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Abstract 
How does the transmission of monetary policy change when a central bank digital currency 
(CBDC) is introduced in the economy? Do aspects of CBDC design, such as how substitutable 
it is with bank deposits and whether it is interest bearing, matter? We study these questions in 
a general equilibrium model with nominal rigidities, liquidity frictions, and a banking sector 
where commercial banks face a leverage constraint. In the model, CBDC and commercial bank 
deposits can be used as a means of payments, and they provide liquidity services to 
households. Banks issue deposits and extend loans to firms, and bank deposits are backed by 
loans and central bank reserves. We find that the effects of a canonical monetary policy shock, 
a shock to the Taylor rule that governs interest on central bank reserves, is magnified with the 
introduction of a fixed-interest-rate CBDC. More generally, whether CBDC magnifies or abates 
the response of the economy depends on the type of shock (e.g., interest rate or quantity of 
reserves shock). We also find that the response of the economy depends on the monetary 
policy framework—whether the central bank implements monetary policy through reserves or 
through CBDC—as well as central bank balance sheet rules that govern the quantity of CBDC 
and reserves. 

Topics: Digital currencies and fintech; Monetary policy; Monetary policy framework; Monetary 
policy transmission; Interest rates 

JEL codes: E31, E4, E50, E58, G21, G51 

Résumé 
Comment l’introduction d’une monnaie numérique de banque centrale (MNBC) dans 
l’économie influence-t-elle la transmission de la politique monétaire? Les caractéristiques de 
cette MNBC, notamment à quel point elle est substituable aux dépôts bancaires ou si elle porte 
intérêt, ont-elles de l’importance? Nous analysons ces questions au moyen d’un modèle 
d’équilibre général comportant des rigidités nominales, des frictions relatives à la liquidité et 
un secteur bancaire dans lequel les banques commerciales sont assujetties à une contrainte de 
levier d’endettement. Dans ce modèle, la MNBC et les dépôts dans les banques commerciales 
peuvent être utilisés comme modes de paiement et constituent un vecteur de liquidité pour les 
ménages. Les banques offrent des services de dépôt et octroient des prêts aux entreprises, et 
les dépôts bancaires sont garantis par des prêts et les réserves de la banque centrale. Nous 
constatons que les effets d’un choc de politique monétaire standard – c’est-à-dire un choc 
touchant le taux d’intérêt des réserves de la banque centrale, régi par la règle de Taylor – sont 
amplifiés par l’introduction d’une MNBC à taux d’intérêt fixe. De façon plus générale, c’est le 
type de choc (p. ex., choc au niveau des taux d’intérêt ou de la quantité de réserves) qui 
détermine si la MNBC amplifie ou atténue la réaction de l’économie. Nous notons aussi que 
cette réaction dépend du cadre de politique monétaire, soit le moyen utilisé par la banque 
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centrale pour mettre en œuvre la politique monétaire (les réserves ou la MNBC), et des règles 
qui encadrent le bilan de la banque centrale et régissent la quantité de MNBC et de réserves. 

Sujets : Monnaies numériques et technologies financières; Politique monétaire; Cadre de la 
politique monétaire; Transmission de la politique monétaire; Taux d’intérêt 

Codes JEL : E31, E4, E50, E58, G21, G51 



1 Introduction

Many central banks are contemplating issuing a central bank digital currency (CBDC) and
are concerned about the implications. As a means of payment, a CBDC would compete with
bank deposits and thereby have implications for the banking and financial system. As a store
of value, CBDC would be used along with bank deposits, government bonds, and other safe
assets, which would have macroeconomics implications. A growing body of literature has
studied such implications recently. However, most studies have focused on the steady-state
or long-run effects. Fewer papers have studied the transitory and short-run effects of shocks
on both banking and the macroeconomy in the presence of CBDC.1

In this paper, we propose a framework that can help understand the effects of shocks on
output, consumption, inflation, and investment through various channels in the presence of
a CBDC. The framework is built on a New Keynesian (NK) model with financial frictions
that includes two new key features. Firstly, CBDC competes with deposits in providing
liquidity services to households,2 with the elasticity of substitution between the CBDC and
deposits a design feature of the CBDC. Secondly, the model considers a general equilibrium
channel in that, on the one hand, the production of final goods relies on loans made by
banks. On the other hand, consumers use deposits issued by banks as a source of liquidity
needed to buy the final goods. As the demand or supply of CBDC changes, so does the
demand for bank deposits. This changes banks’ cost of funding, which in turn alters the cost
of loans for firms. Subsequently, the supply side of the economy is affected. Overall, our
framework offers a flexible approach to studying the impact of CBDC on monetary policy
transmission by considering its effects on both the demand and supply sides of the economy.

To understand the basic economic forces in the model, we first study the impact of a canonical
monetary policy shock, an increase in the interest rate on central bank reserves, in the
absence of a CBDC. There are three main channels through which the shock transmits to the
economy. Firstly, a standard NK channel, where an increase in bond interest rates leads to
lower current consumption and thus reduced aggregate demand and output, which impacts
inflation via the NK Phillips curve. Secondly, a New Monetarist (NM) channel, where a
narrower spread between illiquid bond and bank deposit rates reduces the opportunity cost
of holding deposits (cost of liquidity), thereby boosting deposit demand, consumption, labor
supply, and ultimately output. This offsets some effects of the initial shock. Lastly, a
supply channel, where higher capital costs arising from higher costs of bank funding reduces
investment, leading to a decline in output. These three channels together illustrate the
interplay of economic forces following a monetary policy shock, showing both contractionary
and expansionary effects on the economy.

1For steady-state effects, see for example, Barrdear and Kumhof (2022); Davoodalhosseini (2022); and
Chiu and Davoodalhosseini (2023). For transitory effects, see for example, Minesso et al. (2022), who examine
how a CDBC affects the international transmission of monetary policy and technology shocks.

2We extend the model in the appendix to include cash. In the main text, we do not include cash to make
the exposition simpler.
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We then turn to studying the effects of shocks in the presence of a CBDC. Given that
many central banks are considering a zero-interest CBDC, we focus on such a CBDC in
this exercise. The first takeaway from our paper is that the introduction of a zero-interest
CBDC magnifies the effects of a traditional monetary policy shock. This amplification
remains regardless of the substitutability between deposits and the CBDC. An increase in
the reserves interest rate means that the leverage constraint becomes less costly for banks.
Banks are therefore willing to offer more deposits. To attract depositors to hold more
deposits, the opportunity cost of holding deposits, i.e., the spread between illiquid bonds
and bank deposits (deposit spread), should fall. At the same time, the illiquid bonds interest
rate tends to rise in response to the increase in the reserves rate. In the absence of a CBDC,
the decline in the deposit spread suggests that the effective real wage increases, so there
will be a subsequent boost in labor supply, consumption, and output. This is the same NM
channel stated above. However, when a zero-interest CBDC is introduced, a fixed interest
rate on the CBDC implies that the rise in the illiquid bond rate elevates the opportunity
cost of holding CBDC. Consequently, the presence of a CBDC tends to heighten the overall
cost of liquidity in the economy, thereby attenuating the NM channel. As the NM channel
counteracts the NK channel, its attenuation means amplification of the decrease in output.

Whether a CBDC amplifies or abates the effects of a shock compared with the benchmark
model without a CBDC also depends on the type of monetary policy shock. In contrast to
the response to a standard monetary policy shock that is a shock to the interest on reserves,
we find that a CBDC abates the effects on consumption, output, and inflation of a reserve
quantity shock. A positive reserve quantity shock is expansionary with or without a CBDC.
Without a CBDC, investment declines considerably initially and starts recovering only after
a few quarters. With a CBDC, the decline in investment is much smaller. This explains why
the overall effect on output and consequently consumption is dampened with a CBDC.

Another takeaway from our paper is that the response of the economy depends on the
monetary policy framework, whether the central bank implements monetary policy through
reserves or through a CBDC. To see this point, we compare the outcomes in response to the
same shock with two monetary policy rules: one in which the central bank uses a Taylor
rule to set the CBDC interest rate and another one in which it uses a Taylor rule to set the
reserves interest rate. Our analysis focuses on the responses to a positive CBDC interest
rate shock under these two monetary policy rules. We find that when CBDC serves as the
primary tool for monetary policy, an increase in the CBDC interest rate is contractionary,
resembling traditional monetary policy effects observed in most NK models. Alternatively,
when reserves are the main tool, the shock to the CBDC interest rate is expansionary due to
the reduced opportunity costs of liquidity for households, leading to increased labor supply
and consumption—a mechanism akin to the NM channel.3 This result underscores the
importance of monetary policy framework in shaping economic responses.

Finally, we show that the response of the economy to a standard monetary policy shock
depends on balance sheet quantity rules that govern the evolution of the central bank balance

3Here, the CBDC interest rate changes exogenously and does not follow a Taylor rule.
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sheet variables. To best illustrate this point, we compare two scenarios, one in which the
central bank fixes the CBDC rate and one in which it fixes the CBDC quantity. In response
to a standard monetary policy shock (i.e., a shock in the Taylor rule that governs the
interest rate on reserves), fixing the CBDC interest rate leads to a significant fall in output
and consumption compared to fixing the CBDC quantity. When the CBDC interest rate
is fixed, the opportunity cost of holding CBDC rises with an increase in the illiquid bond
rate, making liquidity more expensive and reducing consumption and output further. When
the CBDC quantity is fixed and its interest rate is flexible, the CBDC rate increases in
response to pressure from rising deposit rates, activating the NM channel and mitigating
contractionary effects of the shock. This exercise thus highlights the importance of the
balance sheet quantity rules, which is in stark contrast to standard NK models where the
quantity of the real balance has no independent effect on real variables once the short-term
nominal rate is determined.

Literature. The literature on CBDCs has grown significantly in recent years, covering a
wide range of topics. First, we compare our results with some closely related papers including
Piazzesi et al. (2019), regarding the transmission of monetary policy shocks, and Chiu et al.
(2023), regarding the main economic forces at play in the steady state. Next, we discuss the
related literature more broadly.

Piazzesi et al. (2019) study an NK model with money in the utility function and complemen-
tarity between consumption and money. There are two key differences between our model
and theirs. First, in our model, the CBDC and bank deposits both provide liquidity to
households and could be substitutes or complements depending on the design of the CBDC.
In their paper, agents either use central bank money (Section 2) or bank deposits (Section
3) and it does not consider the effects of a CBDC on the banking system. Second, banks
in our model lend to firms to finance their capital expenditure. In Piazzesi et al. (2019),
banks simply invest in some assets with an exogenous rate of return. Modeling the inter-
actions between deposits and other means of payments provides insight into how changes
in the interest rate of a CBDC or its design features affect demand for bank deposits (the
first difference), which in turn changes the cost of funding for firms, eventually affecting the
supply side of the economy (the second difference).

In Chiu and Davoodalhosseini (2023), banks issue deposits and extend loans to firms, and
the CBDC and bank deposits compete in the sense that both can be used in a fraction of
transactions. The similarity between their model and ours is that in both models, the supply
side of the economy is affected by the demand for means of payments. They find that an
increase in the CBDC interest rate can improve intermediation, consumption, and output in
the steady state because an increase in the CBDC rate increases aggregate demand, leading
firms to demand more loans to finance production. Thus, intermediation, consumption, and
output can increase. A similar channel works in our model. However, Chiu and Davoodal-
hosseini (2023) do not study dynamic responses to shocks and focus only on the steady-state
analysis. Moreover, our model allows for a wider range of design features in terms of comple-
mentarity or substitutability between a CBDC and other payment methods. Finally, in our
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model, banks face financial frictions, which gives rise to demand for central bank reserves.
As a result, monetary policy affects this economy via a richer set of policy tools (i.e., inflation
rate, the CBDC interest rate and quantity, and the reserves rate and quantity) relative to
their paper, in which there is no demand for central bank reserves and the only central bank
policies are the inflation rate and the interest rate on the CBDC.

Abad et al. (2023) study the implications of a CBDC for macroeconomic variables, focusing
on frictions in the interbank market. Similar to our paper, they have a money-in-the-utility
function framework, but they do not consider the complementarity between consumption and
money that activates the NM channel in our paper. Moroever, most of their analysis focuses
on the long-term implications of a CBDC and only a smaller part addresses transitional
dynamics to an economy with a CBDC. They do not study effects of different shocks.

Paul et al. (2024) study the long-term welfare implications of introducing a CBDC as well
as the transitional dynamics following the introduction of a CBDC in a closed economy
framework. Again, they do not incorporate the NM channel. They also find that the
implementation of a CBDC and the choice of CBDC interest rate policy do not significantly
influence how the economy reacts to shocks. Assenmacher et al. (2023) incorporate NK
frictions in an NM model and, similar to our paper, study how a CBDC could change the
response of the economy to macroeconomic shocks. They find that having a CBDC does not
markedly change the model’s response to macroeconomic shocks, and it usually moderates
and smooths their transmission to key metrics like output and inflation. In contrast to the
last two aforementioned papers, we provide nuances for the response of the economy in the
presence of a CBDC and show that details matter substantively, i.e., the type of shocks,
the monetary policy framework, and the balance sheet quantity rules, for macroeconomic
outcomes.

In an extension of Minesso et al. (2022), Assenmacher et al. (2024) include financial frictions
and occasionally binding constraints in a two-country DSGE model. They find that the
transition from a non-CBDC regime to one with a CBDC triggers an initial surge in demand
for CBDC and money, leading to the displacement of bank deposits and a subsequent decline
in investment, consumption, and output. These results are consistent with empirical evidence
provided by Bidder et al. (2024) from European era of slow disintermediation of the banking
system. These papers focus mostly on the transitional dynamics of introducing a CBDC and
not so much on the transmission channels of standard monetary policy shocks or balance
sheet quantity shocks in the presence of a CBDC.4

4We organize related literature into four categories, noting that we cannot do justice to all. The first
category, CBDC and banking, examines the impact of CBDC on the traditional banking system: Andolfatto
(2021), Keister and Sanches (2023), and Chiu et al. (2023), as well as Garratt et al. (2022), Fernández-
Villaverde et al. (2021), Benigno et al. (2022), Niepelt (2020), and Williamson (2022a,b). The second
category, CBDC and monetary policy, examines the macroeconomic consequences of CBDCs in DSGE, NM,
and other models: Barrdear and Kumhof (2022), Assenmacher et al. (2023), Davoodalhosseini (2022), and
Benigno and Benigno (2021). The third category, CBDC and financial stability, investigates the implications
of a CBDC on the riskiness of banks, financial intermediation, the coordination runs faced by banks, and
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Finally, our paper is related to another strand of the literature, standard macroeconomic
models that take financial frictions and the role of liquidity seriously. Some related models
include Gertler and Karadi (2011), Gertler and Karadi (2015), Gertler and Kiyotaki (2010),
Sims and Wu (2021), Krishnamurthy and Vissing-Jorgensen (2012), Benigno and Benigno
(2021), and Bhattarai and Neely (2022). See also Ahnert et al. (2022), Chapman et al.
(2023), and Davoodalhosseini and Rivadeneyra (2020) for general discussions and literature
reviews regarding electronic monies and CBDCs.

2 Model

We use a relatively simple model to clarify the main channels through which CBDC affects
the economy. The model consists of households, firms, banks and the central bank (which
includes government). We describe them individually below. The time is discrete, t = 0, 1, ...,
and goes forever. Banks issue deposits to households and make loans to firms. Households
use these deposits as payment means, in addition to the CBDC issued by the government. In
our model, CBDC can be understood as central bank accounts accessible to households that
earn interest (if the central bank so decides) and can be used for payments.5 In this version
of the model, we do not include cash to simplify the analysis and clarify the mechanisms in
action.6 Finally, the central bank issues reserves solely available to banks to back deposits.

Banks in our model are relatively simple and somewhat similar to the banks in Piazzesi et al.
(2019). However, a key difference is that we incorporate the credit channel of monetary
policy. In our model, firms depend on banks for their capital funding, meaning that changes
in the cost of loans (stemming from shifts in the cost of reserves or deposits for banks)
impact the supply side of the economy. Thus, a feedback loop exists from bank credit to
firms’ investment in capital and overall aggregate supply. In contrast, the banks in Piazzesi
et al. (2019) invest in assets that do not affect the supply side of the economy.

The production side in our model follows standard NK models with financial frictions, e.g,
Gertler and Karadi (2011) and Gertler and Karadi (2015).

2.1 Households

The households in our model consume a final good for which they need to use means of
payments, including deposits and CBDC. We use the money-in-the-utility-function frame-

payment systems, and whether a perfectly safe bank could be a substitute for CBDC: Fernández-Villaverde
et al. (2021), Keister and Sanches (2023), Williamson (2022a), and Chiu et al. (2020). The fourth and
final category, digital currency design and platforms, explores the design features of digital currencies and
CBDCs, and some papers consider these currencies as competing platforms: Chiu and Wong (2015), Chiu
and Koeppl (2019), Kahn et al. (2022), Brunnermeier et al. (2022), and Cheng et al. (2024).

5Although we adopt this interpretation for the sake of simplicity, we are silent on the technology through
which CBDC is introduced. The verification of the identity of the CBDC holder may or may not be required.
CBDC can even be token based. We do not discuss details here. See the literature review by Chapman et al.
(2023) for further discussion on the design of a CBDC.

6In Appendix C, we add cash to the model and rewrite the equations affected by this addition. That
will help us to study other CBDC designs like a cash-like or universal CBDC. In Appendix D, we expand on
some special cases of the model.
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work and obtain a demand function for means of payments.7 Using this model , one can
study the implications of different design features of a CBDC for macroeconomic outcomes.
Preferences at time t over consumption good, means of payments, and labor are given by

U

(
Ct,

Dt

Pt

,
Ft

Pt

, Ht

)
=

1

1− 1
σ

(
C

1− 1
η

t + ωDLiq
1− 1

η

t

) 1− 1
σ

1− 1
η − ψ

1 + φ
H1+φ

t ,

where Liqt is a liquidity aggregator,

Liqt ≡
(
(Dt/Pt)

1− 1
υ +

ωFD

ωD

(Ft/Pt)
1− 1

υ

) 1

1− 1
υ
,

and Dt and Ft denote the nominal deposit and CBDC balances and bear interest rates iDt
and iFt , respectively; Ht denotes the units of labor supplied and Pt is the price level. As in
Piazzesi et al. (2019), the utility function features η, which denotes the intratemporal elas-
ticity of substitution between consumption and the liquidity aggregator, and σ denotes the
intertemporal elasticity of substitution between the consumption bundle today and tomor-
row. Several points are in order regarding this utility function. As long as σ = η, the utility
is separable in consumption and the liquidity aggregator. If σ > η (σ < η), consumption
and the liquidity aggregator are complements (substitutes).

There are two design features of a CBDC. These design features are determined by the
CBDC technology, and the government might be able to affect them. First, υ denotes the
elasticity of substitution between deposits and the CBDC. As υ increases, deposits and the
CBDC become better substitutes and remain substitutes as long as υ > η. Second, the term
ωFD

ωD
captures the relative transaction costs for households. For example, when the CBDC

and deposits are perfect substitutes (υ = ∞), ωFD

ωD
= 1.01 implies that CBDC is 1% more

effective than deposits in payments.

This specification for CBDC is new in the literature and allows for a rich set of design
features. As a result of this specification, the model nests several special designs for CBDCs
that have been discussed in the literature. For example, a deposit-like CBDC (as in Chiu
and Davoodalhosseini (2023) and Keister and Sanches (2023)) is a perfect substitute with
bank deposits: υ = ∞. One can map the market shares and merchants’ acceptability to
different values of υ, ωD, and ωFD and then experiment with different designs of the CBDC.

A household’s maximization problem at date 0 is given by

max E0

∞∑
t=0

βtU

(
Ct,

Dt

Pt

,
Ft

Pt

, Ht

)

s.t. PtCt +Dt + Ft + St

= WtHt − Tt +Πt +Dt−1

(
1 + iDt−1

)
+ Ft−1

(
1 + iFt−1

)
+ St−1

(
1 + iSt−1

)
.

7As summarized in Schmitt-Grohé and Uribe (2010), there are various ways in the literature to motivate
the money demand function: money in the utility function (Sidrauski (1967)), cash-in-advance constraint
(Lucas Jr (1982)), shopping time technology (Kimbrough (1986)), or a transactions-cost technology (Feenstra
(1986)).
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The budget constraint is standard. Households receive wage income, WtHt, and profits of
the firms, Πt, and pay taxes, Tt, to the government (which can be negative). Households
can invest in riskless private or public bonds, denoted by St with nominal interest rate iSt .
They receive interest on deposits, CBDC and bond holdings.

2.1.1 Households’ Optimality Conditions

Denote by λt the Lagrangian multiplier associated with the budget constraint. Households’
optimality conditions can be written as follows:

C :
UC,t

Pt

= λt,

J :
UJ,t

Pt

= λt − βEtλt+1

(
1 + iJt

)
for J ∈ {D,F} ,

S : λt = βEtλt+1

(
1 + iSt

)
,

H : UH,t = −λtWt.

The optimality conditions for S and each J ∈ {D,F} yields

UJ,t

Pt

= λt − βEtλt+1

(
1 + iSt − (iSt − iJt )

)
= βEtλt+1

(
iSt − iJt

)
= λt

iSt − iJt
1 + iSt

.

The money demand function for deposits and the CBDC are given by

iSt − iDt
1 + iSt

≥ ωDV
1
υ
D,tV

− 1
υ+ 1

η

FD,t with equality if Dt > 0, (1)

iSt − iFt
1 + iSt

≥ ωFDV
1
υ
F,tV

− 1
υ+ 1

η

FD,t with equality if Ft > 0, (2)

where

Velocity : VJ,t ≡
PtCt

Jt
for J ∈ {D,F} ,

and

VFD,t ≡
(
V

1
υ
−1

D,t +
ωFD

ωD

V
1
υ
−1

F,t

) 1
1
υ−1

.

The money demand function in our paper is a generalization of that in Piazzesi et al. (2019).
In their paper, there is neither a competition between the means of payments nor a rich
set of substitution/complementarity patterns between them. To understand these demand
functions, we focus on (2). Understanding the other one is straightforward.

The LHS of (2) shows the marginal cost (i.e., the opportunity cost) of holding a unit of
CBDC. By holding CBDC, households forgo the interest that they could get by holding
riskless bonds, iS. Instead, they receive interest on the CBDC, iF . The RHS shows the
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marginal benefit of holding a unit of CBDC, which comprises the benefit of using CBDC
in conjunction with deposits. The marginal benefit is equal to a combination of two terms,
including the velocity of the CBDC augmented by various elasticities and weights. By
velocity we mean the standard definition, i.e., how much consumption can be purchased
using one unit of money in circulation.

Now consider the first term on the RHS of (2). The marginal benefit of CBDC in the
deposit bundle increases in the velocity of the CBDC. A higher υ means that deposits are
a better substitute for CBDC, so the marginal benefit of a unit of CBDC is lower. The
marginal benefit of CBDC also depends on the term VFD (except for the special case of
υ = η). If CBDC and deposits are substitutes, the marginal benefit decreases in VFD, which
is the inverse of a CES aggregator between velocities of deposits and CBDC. Finally, note
that this equation is independent of σ, implying that the demand functions derived here are
unchanged whether the utility function is separable or not.

Using (1) and (2), we can relate the opportunity cost of holding CBDC with that of deposits:

iSt − iFt =
ωFD

ωD

(
Dt

Ft

) 1
v (
iSt − iDt

)
. (3)

Intuitively, one can think that once CBDC is introduced, it can serve the transactions in

addition to deposits. The coefficient, ωFD

ωD

(
Dt

Ft

) 1
v
, on RHS captures the relative usefulness

of CBDC relative to deposits. This is multiplied by the marginal cost of using deposits.
Therefore, the RHS of (3) captures the overall benefits of the CBDC in deposit transactions.
Finally, note that iD and iF can go below zero depending on the liquidity service they provide
to households.

The optimality condition for the labor supply is given by

C
1
σ
t ψH

φ
t = Q

η
σ
−1

t

Wt

Pt

, (4)

where

Qt ≡
(
1 + ωDV

1−η
η

FD,t

) 1
1−η

. (5)

Equation (4) describes a household’s labor supply decision and is similar to that obtained by
Piazzesi et al. (2019) except that the definition of Q has been modified. This equation states
that the marginal rate of substitution between consumption and labor supply is simply equal
to the relative price of the two, which is equal to the real wage. For the case of separable
utility (η = σ), the equation is self-explanatory. In the more general case of non-separable
utility (η ̸= σ), the marginal rate of substitution includes another term, Qt. To provide a
more concrete explanation, consider the case where consumption and means of payments
are complements (σ > η), the case that resembles closely the models with cash-in-advance
constraints. Empirical studies also confirm that σ > η is indeed the case. As the nominal
interest rate increases, the opportunity cost of holding money rises, which works effectively

9



as a tax on consumption and consequently a subsidy on leisure. Therefore, agents reduce
their labor supply as the opportunity cost of holding money increases. (See Chapter 3 of
Walsh (2017)). To see this effect clearly in our model, simply put υ = η as a special case,
which captures the case that all means of payments have the same elasticity with respect to
change in interest rates. As the nominal interest rate iS rises, the velocities rise too (from
the demand functions for means of payments), implying that Q increases. Therefore, the
supply of labor, H, should fall from (4), all else being equal.8

The Euler equation for illiquid bonds can be written as

βEt

[(
Qt+1

Qt

) η
σ
−1(

Ct+1

Ct

)− 1
σ Pt

Pt+1

] (
1 + iSt

)
= 1. (6)

The optimal choice of an illiquid bond requires the rate of return on the illiquid bond
discounted by the stochastic discount factor be equal to one. Again, the equation is standard
in the separable case. In the non-separable case, particularly when σ > η, as the nominal
interest increases, the opportunity cost of holding money increases. Therefore, the agent
discounts the future less (as mentioned above in the discussion about Q), leading to less
consumption today.

To put everything together regarding a household’s optimality conditions: (6) is a general-
ization of a standard Euler equation in a case where consumption and means of payments
are complements. This equation determines the relationship between the nominal interest
rate on illiquid bonds with the consumption of housholds. Equations (1) and (2) then relate
the velocity of different means of payments with the wedge between the nominal rate on
illiquid bonds and the nominal interest rate on that means of payment. This wedge arises
because of the liquidity that these means of payments provide to agents.

2.1.2 The Role of CBDC

CBDC serves two roles in this model. First, it changes the demand for deposits, and the
change depends on different parameters including the elasticity of substitution between de-
posits and the CBDC. Second, it provides liquidity to households just like deposits, so it
changes the incentives to supply labor and to consume through labor supply and Euler
equations. Now, we elaborate on them.

First, write VD and VF as functions of VFD,
9 then use (3) to solve for VFD:

VFD = ω
η

υ−1

D

(
ωυ
D

(
iS − iD

1 + iS

)1−υ

+ ωυ
FD

(
iS − iF

1 + iS

)1−υ
)− η

υ−1

. (7)

8This channel is referred to as the “cost channel” in some DSGE papers, although it is often given
relatively little attention. In contrast, models that incorporate cash-in-advance constraints or follow the NM
approach consider this channel central to their frameworks. For example, in NM models, an increase in the
opportunity cost of means of payments leads buyers to bring less real balances to the decentralized market.
This means that sellers work and produce less, so the output falls.

9We have V
1−υ
υ

D = ωυ−1
D

(
iS−iD

1+iS

)1−υ

V
− υ−η

η
1−υ
υ

FD and V
1−υ
υ

F = ωυ−1
FD

(
iS−iF

1+iS

)1−υ

V
− υ−η

η
1−υ
υ

FD .
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Using the equation for VD again, we obtain

V
1−υ
υ

D = ω
υ− η

υ
D

(
iS−iD

1+iS

)1−υ

(
ωυ
D

(
iS−iD

1+iS

)1−υ

+ ωυ
FD

(
iS−iF

1+iS

)1−υ
)υ−η

υ

. (8)

This equation is a modified demand function for deposits in the presence of a CBDC.
In the case that a CBDC does not exist (ωFD = 0), this equation reduces to VD =
ω−η
D

((
iS − iD

)
/
(
1 + iS

))η
. Like a typical money demand equation, (8) states that the ve-

locity of deposits depends on the opportunity cost of deposits (the numerator), but this
opportunity cost should be adjusted by an aggregator, which depends on the opportunity
costs of both deposits and the CDBC (the denominator). For example, when the CBDC and
deposits are perfect substitutes (υ → ∞), then the velocity of deposits would be too large
(i.e., no demand for deposits) if iF > iD and would be unaffected by CBDC if iF < iD.

Second, we calculate Q using (7):

Q =

1 + ω
υ−η
υ−1

D

(
ωυ
D

(
iS − iD

1 + iS

)1−υ

+ ωυ
FD

(
iS − iF

1 + iS

)1−υ
)− 1−η

υ−1


1

1−η

. (9)

This equation captures the fact that the CBDC provides real balances like deposits. A
higher opportunity cost of the CBDC increases Q, regardless of the elasticity of substitution
between deposits and the CBDC (υ) or the intratemporal substitution between consumption
and money composite (η). A higher Q implies that the adjusted real wage in (4) falls, leading
to lower consumption. Note, however, that the magnitude of the effect depends on both υ
and η.

2.2 Bank Problem

Banks are short-lived; they are born at the beginning of period t and die at the end of
period t + 1. They are perfectly competitive. It’s easy to allow for market power, but we
abstract from it to focus on the main contribution of the paper regarding monetary policy
transmission. On the liability side, they can issue liquid deposits, Dt, which are used in
transactions by households. They can also issue illiquid bonds, At, which are perfectly safe
and cost less to adjust.10 At can be negative too. On the asset side, they can buy reserves
from the central bank, Mt, or they can invest in real claims on capital, bt. The interest rate
on reserves is denoted by iMt , and the interest on deposits is equal to iDt . The cost of issuing
illiquid bonds is equal to iS, which is the nominal interest rate on government bonds too.
Public and private bonds are similar as there is no default for any of them here.

Banks are subject to

Nt = Mt + Ptbt −Dt − At,

Dt ≤ ℓ(Mt + ρPtbt).

10In Appendix B, we discuss the role of different model ingredients, for example, what if banks cannot
hold illiquid bonds.
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The first constraint is the bank’s balance sheet identity. The second constraint, similar to
that in Piazzesi et al. (2019), is a leverage constraint. We impose that ℓ < 1 and ρ < 1.
The latter means that other assets have a lower quality compared with reserves to be used
as collateral.

Bank profit at time t+ 1 is denoted by Ψt+1 and given by

Ψt+1 = Ptbt
(
1 + iKt+1

)
+Mt

(
1 + iMt

)
−
(
1 + iDt

)
Dt −

(
1 + iSt

)
At.

Banks maximize the expected value of discounted profits minus equity, which is given by the
following for time t:

Rt = Et

{
Λ̄t,t+1Ψt+1

}
−Nt

= Et

{
Λ̄t,t+1

[
Ptbt

(
1 + iKt+1

)
+Mt

(
1 + iMt

)
−
(
1 + iDt

)
Dt −

(
1 + iSt

)
At

]}
−Nt,

where Λ̄t,t+1 ≡ βUC,t+1/(πt+1UC,t) is the nominal stochastic discount factor.

We first eliminate N from the problem and then write the Lagrangian for banks’ problem as

Et

{
Λ̄t,t+1

[
Ptbt

(
1 + iKt+1 +Mt

(
1 + iMt

))
−
(
1 + iDt

)
Dt −

(
1 + iSt

)
At

]}
+ At −Mt − Ptbt +Dt

+λt (−Dt + ℓMt + ℓρPtbt) ,

where λt is the Lagrangian multiplier associated with the leverage constraint.

Write optimality conditions and manipulate them to obtain

Et

{
Λ̄t,t+1

(
iSt − iDt

)}
=

Et

{
Λ̄t,t+1

(
iSt − iMt

)}
ℓ

=
Et

{
Λ̄t,t+1

(
iSt − iKt+1

)}
ℓρ

= λt,

Et

{
Λ̄t,t+1

(
1 + iSt

)}
= 1.

Note that the terms in the expectation are all determinate at time t except the interest on
the claims on capital and the discount factor Λt+1, so the conditions can be more simply
written as

iSt − iDt
1 + iSt

=
iSt − iMt
ℓ (1 + iSt )

=
iSt − Et(Λ̄t+1iKt+1)

EtΛ̄t+1

ℓρ (1 + iSt )
= λt.

Note that in equilibrium, we must have iSt − iDt > 0 from the money demand equation, so
the constraint is always binding, i.e., λt > 0.

These equations relate to the spread of deposits, reserves and the return on capital. A higher
ℓ implies that the assets are better in backing liabilities, so the interest on reserves and the
rate of return on capital both decrease.

Sometimes it is useful to write this equation in terms of only the real return on capital, so we
will sometimes use 1 + iKt+1 =

(
1 + rKt+1

)
πt+1, where r

K
t+1 is the real interest rate on capital

and πt+1 is the inflation rate at t+ 1.
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2.3 Production

The production side of the economy is standard and borrowed from standard New Keynsian
models with financial constraints (a la Gertler and Kiyotaki (2010), Gertler and Karadi
(2015) and Gertler and Karadi (2011)). There are three types of non-financial firms: (i)
intermediate goods producers, (ii) capital producers, and (iii) monopolistically competitive
retailers subject to nominal price rigidity.

2.3.1 Intermediate Goods Producers

Intermediate goods producers use capital and labor according to the following production
function:

Yt = 𭟋tK
α
t L

1−α
t ,

where 𭟋t, Kt, and Lt denote productivity, capital and labor.

These producers buy new capital from capital-producing firms at the begining of each period
and then sell the depreciated capital at the end of the period. The producers do not have
funds, so they issue equity (or a perfectly state-contingent debt) to banks and pay back at
the end of the period. The price of the claims are denoted by Xt, so

XtKt+1 = Xtbt.

The evolution of capital stock can be written as follows:

Kt+1 = It + (1− δ)ξtKt,

where ξt denotes the capital quality shock and δ is the depreciation rate.

There are no frictions on the side of the intermediate goods producers when financed by
banks. As defined earlier, the rate of return on banks’ capital investment is 1 + iKt+1, so the
producer’s maximization problem is given by

max
Lt

{
pmt𭟋tK

α
t L

1−α
t − wtLt + ξtXt(1− δ)Kt

}
,

where pmt =
Pmt

Pt
is the real price of intermediate good. Similarly, wt ≡ Wt

Pt
is the real wage.

In a competitive market for labor, the demand for labor is given by

wt = pmt(1− α)
Yt
Lt

.

The profit per unit of capital is given by Zt = αpmt
Yt

Kt
.

The maximized value is the revenue of the firm after paying wages and selling the used capital
at the end of the period. Given the initial investment of Xt−1Kt, the return on investment
is given by

1 + rKt =
maxLt

{
pmt𭟋tK

α
t L

1−α
t − wtLt +Xtξt(1− δ)Kt

}
Xt−1Kt

.
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The rate of return on capital is thus summarized as follows:

1 + rKt =
Zt + (1− δ)ξtXt

Xt−1

. (10)

This denotes the payoff of the firm at time t per unit of capital divided by the price of the
claims issued to the banks.

2.3.2 Capital Producers

The capital producer turns the final output into capital, denoted by I, subject to adjustment
costs, denoted by f function:

maxEt

∞∑
τ=t

Λt,τ

{
X i

τIτ −
[
1 + f

(
Iτ
Iτ−1

)]
Iτ

}
,

where Λt,t+i ≡ βi Uc,t+i

Uc,t
denotes the stochastic discount factor. The price of capital goods in

terms of the final good is given by the following:

Xt = 1 + f

(
It
It−1

)
+

It
It−1

f ′
(

It
It−1

)
−EtΛt,t+1

(
It+1

It

)2

f ′
(
It+1

It

)
,

which is equal to the marginal cost of investment goods production.

2.3.3 Retailers

Consumption goods is the CES composite of intermediate goods with elasticity ϵ. That is,

Ct ≡
(∫ 1

0

Ct(i)
1− 1

ϵ di

) ϵ
ϵ−1

.

Firm i ∈ [0, 1] produces output yt(i) = ht(i) from the intermediate good using linear tech-
nology. Firm i sets prices Pt(i) for its good facing demand yt(i) = yt (Pt(i)/Pt)

−ϵ . The profit
at period t is given by Pτ (i)hτ (i)/Pτ − d (Pτ (i)/Pτ−1(i))− Pmτhτ (i). The firm chooses Pt(i)
and ht(i) to maximize expected discounted profits. We substitute out yt(i) to write the
maximization problem as

maxEt

∞∑
τ=t

Λt,τ

(
Pτ (i)

Pτ

yt

(
Pτ (i)

Pτ

)−ϵ

− d

(
Pτ (i)

Pτ−1(i)

)
− pmτyτ

(
Pτ (i)

Pτ

)−ϵ
)
.

The optimality conditions require[
(1− ϵ)

Pt(i)

Pt

+ ϵpmτ

](
Pt(i)

Pt

)−ϵ

yt −
Pt(i)

Pt−1(i)
d′
(

Pt(i)

Pt−1(i)

)
+Et

[
Pt+1(i)

Pt(i)
Λt,t+1d

′
(
Pt+1(i)

Pt(i)

)]
= 0.
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Assuming d(x) = κ
2
(x − 1)2, we have d′(x) = κ(x − 1). Imposing symmetry across firms’

responses (i.e., Pt = Pt(i) ), we obtain[
ϵ− 1

ϵ
− pmτ

]
ϵYt
κ

+
Pt

Pt−1

(
Pt

Pt−1

− 1

)
= Et

[
Λt,t+1

Pt+1

Pt

(
Pt+1

Pt

− 1

)]
. (11)

This is a standard Philips curve.

We assume zero capital adjustment costs for the benchmark model (not for calibration), so
we must have

Xt = 1.

For the case with no capital quality shock, that is, ξt = 1 for all t, (10) gives

1 + rKt = αpmt
Yt
Kt

+ 1− δ, (12)

or equivalently, pmt =
rKt +δ

α
Kt

Yt
.

2.3.4 Market Clearing Conditions

The market clearing condition for the final good is given by

Yt = Ct +

(
1 + f

(
It
It−1

))
It +

κ

2

(
Pt

Pt−1

− 1

)2

. (13)

Labor supply and demand equations together imply

Q
1− η

σ
t C

1
σ
t ψH

φ
t = wt = pmt(1− α)

Yt
Lt

.

We now can obtain pmt:

pmt = Q
1− η

σ
t C

1
σ
t ψ

L1+φ
t

(1− α)Yt
,

where we used the labor market clearing condition, Ht = Lt. This equation gives us Ht.

2.3.5 Government and Central Bank

Here, we describe the government’s and the central bank’s budget constraints as well as the
equilibrium condition for the illiquid bond issued by the government and banks.

The government’s budget constraint is given by

Tt + SG
t + TRt = (1 + iSt−1)S

G
t−1,

where TRt denotes the nominal transfer from the central bank to the treasury, Tt denotes
the net lump sum tax levied on households, and SG

t denotes the supply of safe illiquid bonds
by the government. The central bank’s budget constraint is given by

Ft +Mt = TRt + (1 + iFt−1)Ft−1 + (1 + iMt−1)Mt−1.
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The illiquid bonds are demanded by households and supplied by banks and the government,
so the market clearing condition for these bonds is given by

SG
t + At = St.

We don’t impose any constraint on, Tt, TRt, and S
G
t , so the equations in this subsection can

be solved in a separate block from the rest of equations of the model. That is, Tt, TRt, and
SG
t are adjusted by these three equations after the determination of equilibrium variables

including St and At. We abstract from matters related to fiscal policy and the relationship
between monetary and fiscal authority.

3 Steady-State Analysis

In this section, we characterize the steady-state equilibrium with a zero inflation rate. In
the next section, we analyse the effects of various shocks to this economy starting from the
zero-inflation rate steady state.

We assume that the central bank sets the interest rates on the CBDC and reserves, iM , iF .
An alternative policy could be that the central bank sets the real quantity of reserves, for
example. We set the aggregate price level to 1. We drop the subscript t to show the steady-
state levels. The unknown variables of the model are

• Output, consumption and labor: Y,C, L

• Deposits, CBDC and reserves balances: D,F,M

• Real assets: b

• Rates: iK , iD

Note that the nominal and real interest rates are equal because the inflation rate is zero, i.e.,
iK = rK and iD = rD. We now derive the steady-state values:

Intermediate good price: pm =
ϵ− 1

ϵ
,

Illiquid bond demand: β
(
1 + iS

)
= 1.

Block 1: Given iM , we can solve for iK and iD:

iS − iD

1 + iS
=

iS − iM

(1 + iS) ℓ
=

iS − iK

(1 + iS) ρℓ
. (14)

Block 2: Given iD from block 1 and iF from policy, we can pin down VD and VF :

Deposit demand:
iS − iD

1 + iS
= ωDV

1
υ
D V

− 1
υ
+ 1

η

FD , (15)

CBDC demand:
iS − iF

1 + iS
= ωFDV

1
υ
F V

− 1
υ
+ 1

η

FD , (16)

Velocity of D: VFD = (V
1
υ
−1

D +
ωFD

ωD

V
1
υ
−1

F )
1

1
υ−1 , (17)
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Moreover, we have

b = K =
I

δ
,

and

Q ≡
(
1 + ωDV

1
η
−1

FD

) 1
1−η

.

Block 3: Given iK (from block 1) and Q (from block 2), the following four equations pin
down Y, L, C and b :

Y = C + δK,

pm =
ϵ− 1

ϵ
=

(
iK + δ

)
K

αY
→ K =

ϵ− 1

ϵ

αY

iK + δ
, (18)

Y = AKαL1−α,

ϵ− 1

ϵ
Y = Q1− η

σC
1
σψ

L1+φ

1− α
.

We can now calculate Y as a function of C andK and then use the market clearing condition:

Y
1+φ
1−α

−1 =
ϵ− 1

ϵ

(1− α)A
1+φ
1−αKα 1+φ

1−α

Q1− η
σC

1
σψ

,

Y = C + δK → C = Y

(
1− ϵ− 1

ϵ

αδ

iK + δ

)
. (19)

Given that K and C are now given in terms of Y from (18) and (19), we obtain

Y φ+ 1
σ =

α
α(1+φ)
1−α (1− α)A

1+φ
1−α

(
ϵ−1
ϵ

)α(1+φ)
1−α

−1

ψQ1− η
σ

(
1− ϵ−1

ϵ
αδ

iK+δ

) 1
σ (iK + δ)

α(1+φ)
1−α

. (20)

This equation is important because it gives Y simply as a function of Q and iK . Given Y ,
one can easily solve for L, C and b.

First, consider the case of the separable utility function, η = σ. The output is only a
function of iK , which is pinned down by iM , given that the bank’s constraint is binding. In
this case, the interest rate on the CBDC changes only the velocity of money but does not
affect output, consumption or investment. The intuition is simple. With a separable utility
function, there is no complementarity between money balances and consumption, so the
typical channel that exists in CIA models would be absent. In this case, an additional unit
of money does not help in terms of actual consumption, so the only channel for transmission
of monetary policy is through the change in the opportunity cost of lending for banks. As
the central bank increases iM , the opportunity cost of lending rises, so banks tend to hold
more reserves and lend less. Lemma 1 states conditions under which investment, capital,
output and consumption decrease.
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Lemma 1 Assume η = σ. Then,

(i) Real variables depend on policy only through iK . So, if iM is kept fixed, a change in
elasticities, ω’s, or the CBDC rate does not change real variables.

(ii) An increase in iM decreases output, capital and investment; also consumption decreases
if δ is sufficiently close to zero.

Proof. (i): obvious from (20).
(ii): note that an increase in iM increases iK through (14), which decreases output through
(20) and capital through (18), and consequently I decreases because I=δK. For C, combine
(19) and (20) to obtain

C = const.

(
1− ϵ− 1

ϵ

αδ

iK + δ

) σφ
1+σφ (

iK + δ
) −α(1+φ)σ

(1−α)(1+σφ)

→ ∂ lnC

∂iK

(
iK + δ

σ

)(
1 + σφ

φ

)
=

1
(iK+δ)
ϵ−1
ϵ

αδ
− 1

− α

1− α

1 + φ

φ

→ ∂ lnC

∂iK
< 0 ⇔ 1 +

1− α

α

φ

1 + φ
<
iK + δ
ϵ−1
ϵ
αδ

,

which is true if δ is sufficiently close to zero.

Next, consider the case of a non-separable utility function. For concreteness, assume
consumption and money balances are complements. In this case, Y is not only a function of
iK (which is a function of the interest rate on reserves, iM , as mentioned above) but is also
a function of Q, which in turn is a function of the CBDC interest rate. As the interest rate
on the CBDC rises, there are two effects. Directly, the opportunity cost of holding CBDC
balances falls, so the “inflation” tax imposed on consumption declines and consumption
increases. Moreover, leisure becomes less valuable, so the supply of labor increases and more
output is produced. This result is summarized in Lemma 2.

Lemma 2 Assume η < σ. Then, an increase in iF increases output, capital and investment;
also consumption increases.

Proof. An increase in iF decreases Q according to (9), which increases Y from (20).

There is an indirect effect of the CBDC interest rate as well, which operates in the tran-
sitional dynamics, not in the steady state though. An increase in the CBDC interest rate
puts pressure on banks to increase the interest on deposits to the extent that CBDC and
bank deposits are substitutes. This increases the cost of funding for banks, pushing up the
cost of loans for firms. Therefore, the supply side of the economy is negatively affected. This
channel does not operate in the steady state because the nominal interest rate is fixed, so
the interest rates on deposits and loans are solely determined by the interest on reserves (as
long as the leverage constraint is binding) and there is no transmission from the funding to
lending sides of the banks.
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Block 4, a binding leverage constraint gives M/P :

D

P
= ℓ

(
M

P
+ ρb

)
, (21)

where b = K comes from block 3 and D/P = CV −1
D comes from block 1 (for VD) and block

3 (for C).

At the end, w = ϵ−1
ϵ
(1− α)Y

L
gives w, and I = δK. Also, F/P = CV −1

F gives F .

We cover some special cases in Appendix A.

4 Responses to Shocks

In this section and the next, we study the effects of various shocks to this economy by log-
linearizing the model around the steady state. In Appendix A, we collect the equilibrium
conditions in a benchmark model without a CBDC as well as equilibrium conditions of the
main model with a CBDC. We do not repeat those equations here except for a few of them
that provide insights new to the literature.

In terms of notation, the log-linearized version of Xt is denoted by x̂t. Also, x̃t ≡ x̂t − p̂t for
x ∈ {d, f,m} denotes the real balances for deposits, the CBDC and reserves. Parameters
αFD, βJ , αm, αc, αy, and αDD are all constant and defined in the appendix. Finally, we
define π̂t ≡ ∆p̂t.

4.1 Solving the Model Off the Steady State

The unknown variables are as follows:

• Output, consumption and labor: ŷt, ĉt, l̂t

• Output price inflation, real intermediate price, real wage, and variable Q: π̂t, p̂mt, ŵt,
q̂t

• Real balances: d̃t, m̃t, f̃t

• Capital and investment: k̂t and ît

• Real bank loans: b̂t

• Rates: iSt , r
K
t , i

D
t , i

F
t , i

M
t

There are 15 equations describing the equilibrium optimality and market clearing conditions.
See the log-linearized equations (49) to (63) in Appendix A. Given that there are 18 unknowns
and 15 equations, 3 policy equations are needed to close the model. These equations should
describe the policy variables regarding the rate or quantity of various types of liabilities
issued by the central bank. The choice of these three variables is at the central bank’s
discretion, which is described below for different exercises. In the next section, we report
the impulse responses comparing different exercises.
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4.1.1 Benchmark Exercise: Traditional Monetary Policy Rule without a CBDC

In the benchmark exercise, we assume that a CBDC does not exist. Given that two unknowns
(rate and quantity of CBDC) and one equation (CBDC demand) is removed, the central bank
needs to set only 2 policy equations. We set a rule for interest on reserves and fix the quantity
of reserves:

iMt = rM + ϕM
π ∆p̂t + ϕM

y ŷt + uMt , (22)

m̃t = umt . (23)

The terms uMt and umt are shocks to the reserves interest rate and reserves quantity, respec-
tively. We shock these variables one by one and report results in the next section. Also, the
next few exercises all include CBDC in the model.

4.1.2 Exercise A1: Traditional Monetary Policy Rule

In the full model with a CBDC, we need to set 3 policy equations. We set a Taylor rule for
reserves interest rate and fix the quantity of reserves and CBDC. Therefore, we use the same
equations as in the benchmark exercise, (22) and (23), as well as the following:

f̃t = uft , (24)

where the term uft denotes the shock to the CBDC quantity.

4.1.3 Exercise A2: CBDC Rule Instead of Reserves Rule

The monetary policy in the above economy works through the interest rate on reserves. In
principle, we can investigate many other rules that the central bank can follow, like rules on
the quantity of CBDC or reserves. In particular, we want to compare the implications of the
benchmark economy with an economy in which CBDC is the main tool for MP. Therefore,
we replace (22) with

iFt = rF + ϕF
π∆p̂t + ϕF

y ŷt + uFt . (25)

The other two equations to close the model are the same as those in A1, i.e., (23) and (24).

4.1.4 Exercise A3: Fixed-Interest CBDC

Many central banks consider only a zero-interest rate CDBC and do not plan to use the
interest rate of a CBDC as an active monetary policy tool. Here, we use the same monetary
policy rule as in A1, i.e., (22), but we assume that the interest rate on the CBDC is zero in
the steady state but changes according to an exogenous process:

iFt = uFt , (26)

where uFt is the shock to the interest rate on the CBDC. We now only need one equation to
close the model. We use the same reserves quantity rule as in A1, (23).
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4.2 Monetary Policy Transmission

Before presenting the results formally, we discuss at an abstract level how monetary policy
transmission works in this model. The monetary policy here can work through the interest
rate on reserves, the interest rate on CBDC, and the quantity of real balances of reserves
and the CBDC.

To elaborate, combine (3) and bank optimality conditions to obtain

iSt − iFt
1 + iSt︸ ︷︷ ︸

CBDC spread

−


(
1− ωD

ωFD

(
Ft

Dt

) 1
v

)
iSt − iFt
1 + iSt︸ ︷︷ ︸

CBDC spread


︸ ︷︷ ︸

Spread between CBDC and deposits

=
iSt − iDt
(1 + iSt )︸ ︷︷ ︸

Deposits spread

=
1

ℓ

iSt − iMt
(1 + iSt )︸ ︷︷ ︸

Reserves spread

=
1

ρℓ

iSt − Eti
K
t+1

(1 + iSt )︸ ︷︷ ︸
Capital return spread

. (27)

This equation is key for understanding monetary policy transmission in this paper.

First, let’s take a special case of υ = ∞ and ωD = ωFD. These assumptions represent
the case where the CBDC and deposits are perfect substitutes. As a result, the interest on
deposits and CBDC should be identical, otherwise one would not be used in equilibrium; so,
iDt = iFt . We will then have

iSt − iMt
(1 + iSt ) ℓ

=
iSt − iFt
1 + iSt

=
iSt − Eti

K
t+1

(1 + iSt ) ρℓ
.

This equation reveals that in the case of perfect substitution and binding reserve requirement,
the transmission of MP through CBDC or reserves is identical. For any given iMt , one can
find an iFt that keeps the demand for deposits and the bank FOCs unchanged. Precisely

setting iFt =
iMt −(1−ℓ)iSt

ℓ
replicates the same allocation as iMt . The rest of the equations in the

model are unchanged.11

In the general case of (27) where CBDC and deposits are not perfect substitutes (where iD

and iF are different), effects of iMt and iFt could be different because the spread (the large
term in (27)) changes in a complicated way.

In the monetary policy regime based on interest on reserves, iMt , a change in the monetary
policy interest rate changes the demand side of the economy by changing the rate on deposits.
The deposit rate then changes the demand side of the economy through money demand, the
Euler equation, and the labor supply. It also changes the supply side of the economy through
the change in the rate of return on capital.

In the monetary policy regime based on the interest on CBDC, iFt , a change in the monetary
policy interest rate changes the demand side of the economy through money demand, the
Euler equation, and the labor supply. This also changes the interest on deposits. The change
in the deposit rate then changes the rate of return on capital, which affects the supply side
of the economy.

11In particular, note that Q remains the same given that iDt = iFt and ωD = ωFD.
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5 Quantitative Exercise

In this section, we first calibrate the model. We then study the impulse responses of the
model to different shocks in the next subsections. In particular, we shock the interest rate
on and quantity of reserves and the interest rate on CBDC.

5.1 Calibration

The calibration parameters are summarized in table 1.

Table 1: Calibration
Parameter Value Note Parameter Value Note

β 1/1.04 utility discount factor Ā 1 steady-state TFP
ρ 0.4 collateral ϵ 6 intermediate good demand elasticity
l 1/1.1 financial constraint δ 0.05 capital depreciation rate
ωD 0.5 utility weight of deposit κ 75 price stickness
ωFD 0.5 utility weight of deposit - CBDC cost 3 investment adjustment cost
η 1.5 substitute between consumption and money ϕπ 1.5 Taylor rule, response to inflation
υ 0.8 or 2 substitute between deposit and CBDC ϕY 0 Taylor rule, response to output
σ 2 relative risk aversion µiM 0.75 persistence: reserves interest rate
φ 1 Frisch elasticity of labor supply µiF 0.75 persistence: CBDC interest rate
ψ 1 disutility of labor µM 0.75 persistence: monetary supply
α 0.35 technology: capital share µF 0.75 persistence: CBDC supply

For most parameters, we use the estimates in the literature.

For the zero inflation steady state, we have to set the following parameters. We set the real
rate to be around 4%, so the nominal rate should be 4% as well given the zero inflation rate.
The nominal rate on reserves is set to iM = 0.25%, which was the prevailing rate for several
years before the COVID-19 pandemic. We also set the interest rate on the CBDC to iF = 0
for the steady state. The values for elasticity of substitution between consumption and
means of payments is set as σ = 2, and the inter-temporal elasticity of substitution between
the consumption bundle today and tomorrow is set as η = 1.5, both following Piazzesi et al.
(2019).

For the substitution between CBDC and deposits, of course, we don’t have data. We set it
to υ = 0.8 or 2 to capture either the case where the CBDC and deposits are complements or
where they are substitutes. The model is flexible enough and allows experimentation with
different values of design parameters. For example, σ and υ need not be the same. The
value for the rest of the parameters are standard in the literature.

5.2 Results without a CBDC

In this part, we first consider the case without a CBDC and study the reserves interest
rate shock and the reserves quantity shock. The impulse response functions (IRFs) of the
endogenous variables to the two shocks are shown in the following figures. In most cases, the
directions of responses are as expected. With a positive shock to interest on reserves, output,
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Figure 1: Results without a CBDC: Reserve Interest Rate Shock

consumption, and inflation all decrease. With a positive shock to quantity of reserves, all of
them increase.

Since the banks are the only agents in this economy holding reserves, a change in the reserves
rate affects only banks and the rest of the actions follow from banks’ responses. According
to the banks’ optimality condition, (27), in response to the increase of the reserves interest
rate, there is (i) upward pressure on the interest rate of the bond, (ii) downward pressure on
the interest rate spread between the bond and the deposit, and (iii) upward pressure on the
real return on capital.12 These three channels interplay, illustrating the mechanisms through
which a monetary policy shock influences economic variables.

First, as iSt increases, the traditional NK channel is triggered. An increase in the nominal
bond interest rate (iSt ) leads to adjustments in Euler’s equation, resulting in reduced current
consumption (Ct). This decrease in consumption dampens aggregate demand and hence
aggregate output (Yt), subsequently reducing inflation (πt) through the NK Phillips curve.

Second, the NM channel comes into play, wherein the spread between the short-term nom-
inal interest rate (iSt ) and the deposit rate (iDt ) affects the cost of liquidity. A narrower
spread lowers the cost of liquidity, encouraging higher deposit demand and thus stimulating

12In our discussion here when we say that there is an upward (downward) pressure on a certain variable,
we mean that an increase (decrease) in that variable is consistent with equilibrium conditions. For some
variables, a change in another direction could also be consistent with equilibrium conditions from a theoretical
perspective under a counterfactual calibration.
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Figure 2: Results without a CBDC: Reserve Quantity Shock

consumption. This increase in consumption subsequently boosts labor supply and output
levels, counteracting the initial dampening effect of the monetary policy shock. Figure 1
compares a scenario when money is a complement to consumption (σ > η) with one when
money is neutral (σ = η), which indicates that the NM channel is shut down. This com-
parison elucidates the contribution of the NM channel to overall economic dynamics. As
we can see from the graph and consistent with our explanation, the response of output and
consumption will slightly increase when the NM channel is shut down.

Lastly, the supply channel plays a role whereby the higher marginal cost of capital in the
following period (t+ 1) discourages investment, leading to a decline in current output (Yt).
This explains the overall decline in investment along the transition path. There is also a
sharp increase in the real rate of capital from the first to second period after the shock. This
increase is due to the fact that the capital stock (Kt) is predetermined, with lower output
(Yt) resulting in a decrease in the profit per unit of capital and subsequently real rate of
return on capital in the current period t (see (10)) but an increase in the subsequent period
t+ 1 due to the decrease in current investment.

The IRFs of a reserve quantity shock are reported in Figure 2. Compared with a reserve
interest rate shock, a reserve quantity shock triggers a different series of adjustments. An
increase in reserves supply relaxes the leverage constraint, leading to an expansion of deposits
and a reduction in capital accumulation. That is, an expansion of reserves crowds out real
investment opportunities in the model.
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The reserves expansion leads to several consequential effects. Firstly, it contributes to a
decrease in the bond-deposit spread, as depicted by the deposit demand equation. This
reduction in the spread is consistent with lower bond returns, thus stimulating higher con-
sumption, as indicated by the Euler equation. Additionally, the complementarity between
money and consumption further amplifies this effect, resulting in a larger increase in con-
sumption levels. Simultaneously, the decrease in capital accumulation leads to a decline in
output, but the overall effect on aggregate output is still positive given the large response of
comsumption.

The comparison between complementary money and neutral money in Figure 2 shows that
despite the absence of complementarity between money and consumption, output and con-
sumption both expand, revealing that the standard NK channel dominates the supply chan-
nel.

5.3 No CBDC vs. Zero-Interest CBDC

In this section, we compare the effects of shocks with or without a fixed-interest-rate CBDC,
and the interest rate is assumed to be zero unless otherwise noted, as in Section 5.4. A
fixed-interest-rate CBDC represents one of the simplest methods of introducing CBDC and
is advocated by many policymakers. The shocks we consider here are a standard monetary
policy shock (uimt ) as well as a reserves quantity shock (umt ). We find that the effects
of CBDC depends on the type of shocks hitting the economy. The response to an
interest rate shock is amplified with a fixed-interest-rate CBDC. However, the response to
a quantity shock is dampened with a fixed-interest-rate CBDC compared to the case with
a CBDC.

5.3.1 Reserves Interest Rate Shock

The IRFs of a reserves interest rate are reported in Figure 3. Comparing the IRFs of the
model incorporating CBDC with the baseline model lacking CBDC, as illustrated in Figure
1, reveals that the introduction of a CBDC amplifies the impact of a contrac-
tionary traditional monetary policy shock. This amplification remains irrespective of
the elasticity of substitution between deposits and CBDC (υ). The difference between the
response of investment is relatively small here because the behavior of interest rates is almost
identical across these scenarios except for the illiquid bonds interest rates that are slightly
different.

To better understand why the effects of a traditional monetary policy shock are amplified,
we combine the log-linearized version of the demand functions for the CBDC and the deposit
to obtain

d̃t − f̃t = v

(
iSt − iFt
iS − iF

− iSt − iDt
iS − iD

)
,

which suggests that the difference between the demands of different assets depends on the
difference of the spreads. Using this equation, we can eliminate qt and simplify the demand
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Figure 3: No CBDC vs. Zero-Interest CBDC: Reserves Interest Rate Shock

functions for the deposit and CBDC:

iSt − iDt
iS − iD

− 1− (1− βD)

(
v

η
− 1

)(
iSt − iFt
iS − iF

− iSt − iDt
iS − iD

)
=

1

η
ĉt −

1

η
d̃t (28)

iSt − iFt
iS − iF

− 1 + βD

(
υ

η
− 1

)(
iSt − iFt
iS − iF

− iSt − iDt
iS − iD

)
=

1

η
ĉt −

1

η
f̃t. (29)

We use these two equations to eliminate the quantity of the deposit and CBDC in the
definition of Q to obtain

q̂t = αDD

(
βD

(
iSt − iDt
iS − iD

− 1

)
+ (1− βD)

(
iSt − iFt
iS − iF

− 1

))
, (30)

where αDD and βD are parameters and βD depends on the steady-state fraction of the
deposit in the composition of Q. Equation (30) is essential to the analysis of an increase in
the reserve interest rate shock. In the baseline model in the absence of a CBDC, βD = 1
and, hence, the equation will only depend on the spread between iS and iD. When the
reserves interest rate increases, again using the bank optimality condition, the bond interest
rate tends to increase and the spread between iS and iD tends to decrease. In the absence
of a CBDC, the decrease in iS − iD suggests that Q will decrease. This is the NM channel
discussed earlier that can reduce the decrease in total output.

However, with a zero-interest-rate CBDC, iFt is zero and, hence, iS − iF will increase. Given
that βD always lies between 0 and 1, the introduction of a CBDC diminishes the impact
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Figure 4: No CBDC vs. a Zero-Interest CBDC: Reserves Quantity Shock

stemming from the decrease in the spread between iS and iD. Consequently, the NM channel
is attenuated. Since the NM channel serves to mitigate the decline in output, its attenuation
amplifies the decrease in output.

5.3.2 Reserves Quantity Shock

The IRFs of a reserves quantity shock are reported in Figure 4. Conventional wisdom would
suggest that the reserves interest rate should fall following an increase in the quantity of
reserves. However, in this model, a higher quantity of reserves means that banks’ leverage
constraint becomes less tight, so they can issue more deposits, for which banks are required
to pay a higher interest rate. Banks’ optimality conditions then imply that the interest on
reserves should rise as well. Since interest on deposits rises, consumption and labor supply
both increase significantly because of complementarity between consumption and money
balances. Given that consumption increases significantly but output does not increase as
much, investment should fall. Changes in the investment are supported by a higher rate of
return on capital for some periods.

Comparing the effects of the quantity shock across the two scenarios, with and without a
CBDC, reveals that the response of consumption, output, and inflation is weaker in the
case with a CBDC almost irrespective of the design of the CBDC. Interesting, without a
CBDC, investment declines considerably in the first few periods and starts recovering only
after that. With a CBDC, the decline is much smaller. CBDC, even though not interest
bearing, dampens the response of investment and subsequently consumption and output.
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This dampened response seems to be implied by a modest increase in the interest rate of
reserves and deposits in the case with a CBDC.

When CBDC and deposits are better complements (υ < 1), their quantities move in the
same direction. When they are better substitutes (υ > 1), their quantities move in op-
posite directions. We do not observe this in the reserves interest rate shock case, mainly
because the change in iS is large enough to dominate the effects arising from substitution
or complementary between the CBDC and the deposit. Unlike in the reserves interest rate
shock, the reserves quantity shock leads to an expansion in deposit supply, thereby reducing
the opportunity cost of holding deposits. This will make the change in iS much smaller in
magnitude.

In order to explain the milder effects on output and consumption in the presence of a CBDC,
we again turn to equation (28). We compare it to the same log-linearized deposit demand
function in the baseline model but in the absence of a CBDC:

iSt − iDt
iS − iD

− 1 =
1

η
ĉt −

1

η
d̃t.

We observe that the right-hand side of the two equations are the same. Once a CBDC is
added, the demand for deposits is not only affected by the spread on bank deposits but
also by the spread on the CBDC. In response to the change in the reserves quantity, the
banks will increase the supply of deposits, d. In the baseline model, this will decrease the
opportunity cost of holding deposits, iS − iD. In the model with a CBDC, the increase in
the overall demand for deposits can be accommodated by the decrease in the opportunity
cost of holding deposits and/or opportunity cost of holding CBDC. The smaller change in
iS − iF consequently weakens the NM channel. An attenuated NM channel dampens the
effect of the shock on output and consumption.

5.4 CBDC vs. Reserves as the Main Monetary Policy Tool

Here, we compare the dynamics of two different policy scenarios. In the first case, the
central bank uses the interest rate on CBDC as the main monetary policy tool, and the
quantities of the reserves and CBDC are fixed. In the second case, the central bank uses
the reserves interest rate as the main policy tool, but the interest rate of CBDC follows a
simple pre-determined AR(1) process. See (26). We compare these two cases in terms of the
response to a positive CBDC interest rate shock. The results are reported in Figure 5. The
figure indicates that different policy rules will produce different and, in some cases, opposite
responses.

The main point in this exercise is that the main monetary policy tool that is used in response
to a CBDC interest rate shock matters significantly. If reserves are used as the main monetary
policy tool (red curves), the CBDC interest rate shock is expansionary. CBDC interest rate
payments reduce the opportunity cost of money for households, encouraging higher labor
supply and more consumption, the main mechanism that exists in NM models. The NM
channel plays an important role in this case, wherein the cost dynamics of money influence
economic behavior, ultimately shaping overall economic outcomes. Also, it is interesting to
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Figure 5: Monetary Policy Tool: CBDC vs. Reserves

note here that, although output and consumption both expand, investment and consequently
capital reduce significantly. Intuitively, CBDC offers an interesting investment opportunity,
but this crowds out real investment in this economy.

When CBDC is utilized as the main tool of monetary policy (blue curves), an increase in
the CBDC interest rate is contractionary, akin to that observed with traditional reserves in
most NK models.

5.5 Balance Sheet Quantity Rule Matters

In this section, we demonstrate that the reaction to a standard monetary policy shock
depends on whether the central bank fixes the quantity of CBDC. In other words, the
quantity rule of CBDC matters. To illustrate this point, we consider two scenarios: one
where the central bank fixes the quantity of CBDC and the CBDC interest rate adjusts
endogenously; and another where the central bank fixes the CBDC interest rate and the
quantity of CBDC adjusts endogenously. Figure 6 reports the results.

The policy rule that fixes the CBDC interest rate yields a significant decline in output
and consumption compared with the case of the central bank fixing the CBDC quantity. A
positive shock to the reserves interest rate puts pressure on illiquid bonds and deposit interest
rates in both cases. When the CBDC rate is flexible, the interest rate on CBDC increases
as well, given that CBDC and deposits are imperfect substitutes, activating the NM channel
and partially mitigating the contractionary effects on consumption and output. When the
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Figure 6: Fixed Quantity of CBDC vs. Fixed Interest Rate of CBDC

interest rate on CDBC is fixed, the opportunity cost of holding CBDC rises following a
rise in the illiquid bonds interest rate. Given the higher opportunity cost of CBDC, the
liquidity becomes effectively more expensive, leading to a lower level of consumption and
output. Moreover, the quantity of CBDC adjusts downwards according to the money demand
equation for it.

This exercise illustrates that in a world with CBDC, the quantity rule with respect to CBDC
matters for determining the response of the economy to a standard monetary policy shock.
This is in sharp contrast to standard NK models in which quantity of money is irrelevant
for real variables.

6 Conclusion

Our paper explores the transmission of monetary policy shocks with or without a CBDC
using a New Keynesian framework that incorporates financial frictions and a novel liquid-
ity mechanism. Our analysis reveals that a CBDC can amplify or mitigate the effects of
shocks, depending on the nature of the shock and the monetary policy framework. More-
over, different choices on design features of the CBDC can give rise to different implications
on investment and other variables.

In response to a traditional monetary policy shock, the introduction of a zero-interest CBDC
tends to magnify the contractionary effects. This occurs because the presence of a zero-
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interest CBDC raises the overall cost of liquidity, weakening the New Monetarist channel
that typically offsets some of the downturn in output and consumption. Conversely, in the
case of a positive reserve quantity shock, our results indicate that a CBDC could mitigate
the effects on investment, consumption, and output.

Furthermore, our paper underscores the importance of the monetary policy framework
adopted by a central bank. Different approaches to setting the interest rate, whether through
a CBDC or, traditionally, through reserves, can lead to markedly different outcomes. When
the CBDC interest rate is used as the primary tool of monetary policy, the economy re-
sponds to the CBDC interest rate shock in the same manner as it responds to a traditional
monetary policy shock in the standard monetary policy framework. However, when reserves
are used as the main tool, the response to a CBDC interest rate shock can be expansionary,
enhancing labor supply and consumption through mechanisms akin to the NM channel.

Our framework can be used flexibly to study other questions that we did not address in this
paper. For example, in the appendix we have added cash to the model, which naturally
brings about an effective lower bound for nominal rates in this model. One could use this
extended version of the model to study the effects of supply shocks or shocks to banks’
financial conditions. Another research topic is the introduction of quantitative easing in
this framework and comparing its effects with those of a CBDC, as they look like similar
measures in some papers (such as Barrdear and Kumhof (2022)). All these topics are left
for future research.
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Appendix

A Equilibrium conditions in other cases

This appendix consists of several sections.

A.1 Equilibrium conditions for the benchmark model (without a CBDC and
cash)

Illiquid bond demand: βEt

[(
Qt+1

Qt

) η
σ
−1(

Ct+1

Ct

)− 1
η Pt

Pt+1

] (
1 + iSt

)
= 1

Deposit demand:
iSt − iDt
1 + iSt

= ωD

(
PtCt

Dt

) 1
η

Bank FOCs:
iSt − iDt
1 + iSt

=
iSt − iMt
(1 + iSt ) ℓ

=
iSt − Eti

K
t+1

(1 + iSt ) ρℓ

Production and market clearing: Yt = AtK
α
t L

1−α
t = Ct + It +

κ

2

(
Pt

Pt−1

− 1

)2

Kt+1 = bt = It + (1− δ)Kt

Labor demand: wt = pmt(1− α)
Yt
Lt

Capital demand: 1 + rKt = αpmt
Yt
Kt

+ 1− δ

Labor supply: wt = Q
1− η

σ
t C

1
σ
t ψL

φ
t

→ pmtYt =

(
δ + rKt

)
Kt

α
= Q

1− η
σ

t C
1
σ
t ψ

L1+φ
t

(1− α)

Optimal pricing:

[
ϵ− 1

ϵ
− pmt

]
ϵYt
κ

+
Pt

Pt−1

(
Pt

Pt−1

− 1

)
= Et

[
Λt,t+1

Pt+1

Pt

(
Pt+1

Pt

− 1

)]

Qt ≡
(
1 + ωDV

−(1− 1
η
)

D,t

) 1
1−η
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Leverage constraint
Mt

Pt

=
1

ℓ

Dt

Pt

− ρbt

Unknowns:

• C, Y,K,L, I,Q

• pmt,
Pt+1

Pt

• b, Dt

Pt
, Mt

Pt

• iSt , i
D
t , i

K
t

These are 13 equations and 14 unknowns, so we need an equation to close the model:

Market clearing for reserves:
MS

t

Pt

=
Mt

Pt

.

Exogenous: iMt ,
MS

t

Pt
. 13 14

Steady State Conditions:

Intermediate good price: pm =
ϵ− 1

ϵ
,

Illiquid bond demand: β
(
1 + iS

)
= 1.

Block 1: Given iM , we can solve for iK and iD:

iS − iD

1 + iS
=

iS − iM

(1 + iS) ℓ
=

iS − iK

(1 + iS) ρℓ
. (31)

Block 2: Given iD from block 1, we can pin down VD ≡ PC
D
:

Deposit demand:
iS − iD

1 + iS
= ωDV

1
η

D .

Moreover, we have:

b = K =
I

δ
.

13Note that the leverage constraint must be binding all the time. If the constraint is slack, we must have
iSt = iDt = iMt = Eti

K
t+1; but in that case, the deposit demand equation implies that D should be very large,

which means that the constraint cannot be slack!
14If the central bank sets the nominal value of reserves, then we have the following unknowns:

C, Y,K,L, I; pmt, Pt; b,Dt,Mt; i
S
t , i

D
t , iKt .The market clearing for reserves remains the same, MS

t = Mt.
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Block 3: Given iK (from block 1) and Q ≡
(
1 + ωDV

−(1− 1
η
)

D

) 1
1−η

(from block 2), the

following four equations pin down Y, L, C and b :

Y = C + δK,

pm =
ϵ− 1

ϵ
=

(
iK + δ

)
K

αY
→ K =

ϵ− 1

ϵ

αY

iK + δ
, (32)

Y = AKαL1−α,

ϵ− 1

ϵ
Y = Q1− η

σC
1
σψ

L1+φ

1− α
.

We can now calculate Y as a function of C andK, and then use the market clearing condition:

Y
1+φ
1−α

−1 =
ϵ− 1

ϵ

(1− α)A
1+φ
1−αKα 1+φ

1−α

Q1− η
σC

1
σψ

,

Y = C + δK → C = Y

(
1− ϵ− 1

ϵ

αδ

iK + δ

)
. (33)

Given that K and C are now given in terms of Y from the last two numbered equations, we
obtain

Y φ+ 1
σ =

α
α(1+φ)
1−α (1− α)A

1+φ
1−α

(
ϵ−1
ϵ

)α(1+φ)
1−α

−1

ψQ1− η
σ

(
1− ϵ−1

ϵ
αδ

iK+δ

) 1
σ (iK + δ)

α(1+φ)
1−α

. (34)

Log-Linearized Version:

Euler equation: ĉt = Et [ĉt+1]− σ
(
βiSt − Et [π̂t+1] + β − 1

)
+ (σ − η) (Et [q̂t+1]− q̂t) (35)

Deposit demand:
iSt − iDt
iS − iD

− 1 =
1

η
ĉt −

1

η
d̃t (36)

Bank equations:

Bank FOC: iSt − iDt = ℓ−1
(
iSt − iMt

)
(37)

Bank FOC : iSt − Etr
K
t+1 −

(
1 + rK

)
Et [π̂t+1] = ρ

(
iSt − iMt

)
(38)

Bank Leverage : d̃ = αmm̃+ (1− αm) b̂t (39)

Philips curve:

π̂t =
(ϵ− 1)Y

κ
p̂mt + βEt [π̂t+1] (40)
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The rest of the equations:

ŷt = αk̂t + (1− α) l̂t (41)

ŷt = αcĉt + (1− αc) ît (42)

k̂t+1 = b̂t (43)

k̂t+1 = δ̂it + (1− δ) k̂t (44)

ŵt = p̂mt + ŷt − l̂t (45)

rKt − rK

1 + rK
= αy

(
p̂mt + ŷt − k̂t

)
(46)

ŵt =
(
1− η

σ

)
q̂t +

1

σ
ĉt + φl̂t (47)

q̂t =
1

η
αDDV̂D,t =

1

η
αDD

(
ĉt − d̃t

)
,

where

αDD ≡ ωDV
1
η
−1

D

1 + ωDV
1
η
−1

D

.

Reserves interest rate (Taylor) rule : iMt = rM + ϕM
π ∆p̂t + ϕM

y ŷt + uMt (48)

Reserves quantity rule : m̃ = uReserves
t

A.2 Problem with a CBDC

Using the following definitions:

x̃ = x̂t − p̂t for x ∈ {d, f,m},
αFD ≡ 1,

βD ≡ V
−(1− 1

υ
)

D

V
−(1− 1

υ
)

D + ωFD

ωD
V

−(1− 1
υ )

F

,

αm ≡ M/P

M/P + ρb
,

αc ≡ C

Y
,

αy ≡
α ϵ−1

ϵ
Y
K

α ϵ−1
ϵ

Y
K
+ 1− δ

,

αDD ≡ ωDV
1
η
−1

FD

1 + ωDV
1
η
−1

FD

.
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Here is a summary of the log-linearized version of equilibrium conditions:

Euler equation: ĉt = Et [ĉt+1]− σ
(
βiSt − Et [π̂t+1] + β − 1

)
+ (σ − η) (Et [q̂t+1]− q̂t) (49)

CBDC demand:
iSt −iFt
iS−iF

− 1 = 1
η
ĉt −

(
1
η
− 1

υ

)
βDd̃−

(
1−βD

η
+ βD

υ

)
f̃ (50)

Deposit demand:
iSt −iDt
iS−iD

− 1 = 1
η
ĉt −

(
1−βD

v
+ βD

η

)
d̃−

(
− 1

υ
+ 1

η

)
(1− βD)f̃ (51)

Bank FOC: iSt − iDt = ℓ−1
(
iSt − iMt

)
(52)

Bank FOC: iSt − Etr
K
t+1 −

(
1 + rK

)
Et [π̂t+1] = ρ

(
iSt − iMt

)
(53)

Bank Leverage: d̃ = αmm̃+ (1− αm) b̂t (54)

Philips curve: π̂t =
(ϵ− 1)Y

κ
p̂mt + βEt [π̂t+1] (55)

The rest of equations:

ŷt = αk̂t + (1− α) l̂t (56)

ŷt = αcĉt + (1− αc) ît (57)

k̂t+1 = b̂t (58)

k̂t+1 = δ̂it + (1− δ) k̂t (59)

ŵt = p̂mt + ŷt − l̂t (60)

rKt − rK

1 + rK
= αy

(
p̂mt + ŷt − k̂t

)
(61)

ŵt =
(
1− η

σ

)
q̂t +

1

σ
ĉt + φl̂t (62)

q̂t =
1

η
αDD

(
ĉt −

(
βDd̃+ (1− βD)f̃t

))
(63)
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Here are the exercises we plan to do.

Exercise A1:

iMt = rM + ϕM
π ∆p̂t + ϕM

y ŷt + uMt . (64)

We need 2 more equations to close the model:

f̃t = uft . (65)

m̃t = umt . (66)

We can shock these variables, iMt , f̃t , m̃t one by one.

Exercise A2:

iFt = rF + ϕF
π∆p̂t + ϕF

y ŷt + uFt . (67)

We need 2 more equations to close the model:

f̃t = uft . (68)

m̃t = umt . (69)

We can shock these variables, iFt , f̃t , m̃t one by one.

Steady State Equations when the CBDC and deposits are perfect substitutes

υ = ∞ and ωD = ωFD.

Steady State Equations:

• Output, consumption and labor: Y,C, L

• Deposits, CBDC and reserves balances: D,F,M

• Real assets: b

• Rates: iK , iD

Note that the nominal and real interest rates are equal because the inflation rate is zero, i.e.,
iK = rK and iD = rD. We now derive the steady state values:

Intermediate good price: pm =
ϵ− 1

ϵ
,

Illiquid bond demand: β
(
1 + iS

)
= 1.

Given the perfect substitution assumption, we have
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Perfect substitution: iD = iF .

Note that iM and iF cannot be two independent policy tools. Rather, one can be calculated
from the other. Here, we assume iM is given.

Block 1: Given iM , we can solve for iK and iD = iF :

iS − iD

1 + iS
=

iS − iM

(1 + iS) ℓ
=

iS − iK

(1 + iS) ρℓ
. (70)

Block 2: Given iD from block 1 and iF from policy, we can pin down VD and VF :

Deposit and CBDC demand:
iS − iD

1 + iS
= ωDQ

− 1
η

D . (71)

Given QD = D+F
PC

, we can calculate Q ≡
(
1 + ωDQ

1− 1
η

D

) 1
1−η

.

Moreover, we have

b = K =
I

δ
.

Block 3: Given iK (from block 1) and Q (from block 2), the following four equations pin
down Y, L, C and b:

Y = C + δK,

pm =
ϵ− 1

ϵ
=

(
iK + δ

)
K

αY
→ K =

ϵ− 1

ϵ

αY

iK + δ
, (72)

Y = AKαL1−α,

ϵ− 1

ϵ
Y = Q1− η

σC
1
σψ

L1+φ

1− α
.

We can now calculate Y as a function of C andK and then use the market clearing condition:

Y
1+φ
1−α

−1 =
ϵ− 1

ϵ

(1− α)A
1+φ
1−αKα 1+φ

1−α

Q1− η
σC

1
σψ

,

Y = C + δK → C = Y

(
1− ϵ− 1

ϵ

αδ

iK + δ

)
. (73)

Given that K and C are now given in terms of Y from (72) and (19), we obtain

Y φ+ 1
σ =

α
α(1+φ)
1−α (1− α)A

1+φ
1−α

(
ϵ−1
ϵ

)α(1+φ)
1−α

−1

ψQ1− η
σ

(
1− ϵ−1

ϵ
αδ

iK+δ

) 1
σ (iK + δ)

α(1+φ)
1−α

. (74)
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QD ≡ V −1
D + V −1

F =
D + F

PC

Q ≡
(
1 + ωDV

1
η
−1

FD

) 1
1−η

.

Block 4, a binding leverage constraint gives M/P :

D

P
= ℓ

(
M

P
+ ρb

)
, (75)

where b = K comes from block 3 and (D+F )/P = CQD comes from block 1 (for VFD) and
from block 3 (for C).

At the end, w = ϵ−1
ϵ
(1− α)Y

L
gives w, and I = δK.

IMPORTANT: We need to know either M/P or F/P to pin down the other
quantities.

The log-linearized version of equilibrium conditions is no different than the model with
general υ. We just need to set υ to a sufficiently large number.
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B Role of Different Model Ingredients

B.1 The Role of Illiquid Bonds

We look at households and banks separately.

What if HHs cannot hold illiquid bonds?

We can define interest on illiquid bonds via the following equation:

λt = βE
[
λt+1

(
1 + iSt

)]
If we define it this way, the equations should not be changed for households.

In this case, iSt can be calculated as follows:

1 + iSt =
λt

βEλt+1

=
UC,t

βPtE
UC,t+1

Pt+1

.

This shows that the FOCs for households are unchanged compared with the case where
households can hold illiquid bonds.

What if banks cannot hold illiquid bonds?

If banks cannot hold illiquid bonds, their problem can be written as

Et

{
Mt

(
1 + iMt

)
+ Ptbt

(
1 + iKt+1

)
−Dt

(
1 + iDt + c

)}
,

subject to

Dt = Mt + Ptbt,

Dt ≤ ℓ(Mt + ρPtbt),

where ρ < 1 and ℓ ∈ (1, 1/ρ).

If the constraint is binding, then we must have

Dt =Mt + Ptbt = ℓ(Mt + ρPtbt).

Hence,

Ptbt =
ℓ− 1

1− ℓρ
Mt

Dt =
ℓ (1− ρ)

1− ℓρ
Mt.

Therefore, banks solve
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MtEt

{(
1 + iMt

)
+

ℓ− 1

1− ℓρ

(
1 + iKt+1

)
− ℓ (1− ρ)

1− ℓρ

(
1 + iDt + c

)}
.

In equilibrium, we must have

1+iSt
1+iMt

Eti
K
t+1 − iMt
1 + iSt

=

(
1 +

1− ℓρ

ℓ− 1

)
︸ ︷︷ ︸

>1

iDt + c− iMt
1 + iSt

(
Eti

K
t+1 − iSt

)
−
(
iMt − iSt

)
1 + iSt

=

(
1 +

1− ℓρ

ℓ− 1

)
︸ ︷︷ ︸

>1

(
iDt − iSt

)
+ c−

(
iMt − iSt

)
1 + iSt

.

This equation implies that iMt < iDt + c and iMt < Eti
K
t+1. In the last one or two decades, the

interest on deposits has been generally lower than the interest on reserves, i.e., iMt − iDt > 0,
which implies 0 < iMt − iDt < c .

Compare this against our original formulation, (81).

B.2 Role of Financial Frictions

To see the role of financial frictions (FF), let’s remove FFs and then rewrite the equations.

The bank problem without FFs/regulation can be written more simply as

Et

{
Mt

(
1 + iMt

)
+ Ptbt

(
1 + iKt+1

)
−Dt

(
1 + iDt

)
− At(1 + iSt )

}
st. At = Mt + Ptbt −Dt.

In equilibrium, iDt < iSt because of deposits’ liquidity premium, so banks do not hold
illiquid bonds. The problem can be more simply written as

max
m,b

mt

(
iMt − iDt

)
+ bt

(
Eti

K
t+1 − iDt

)
.

FOCs:

iMt = Eti
K
t+1 = iDt < iSt , and mt > 0, dt = mt + bt (76)

iMt < Eti
K
t+1 = iDt < iSt , and mt = 0, dt = bt (77)

A corollary is that the policy cannot set iMt > iSt because then banks would have incentive
to accumulate arbitrarily large quantity of reserves by issuing illiquid bonds. Similarly, if
iMt > iDt , banks would have incentive to accumulate an arbitrarily large quantity of reserves
by issuing deposits. Altogether, the reserves rate is a floor for the illiquid bond rate and
deposit rate in this economy.
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All equilibrium conditions of the simple model without FF, but reserves are used

We assume reserves are used, mt > 0, which is a more realistic case. Also, it enables us to
compare the MP framework that uses reserves with the MP framework that uses CBDC.

Steady State We can solve for the steady state similarly in 4 blocks as in the benchmark
model, with only two differences: Equation (14) should be replaced by

iM = iD = iK ,

and (21) should be replaced by
d = m+ b.

Log-linearized form Note that all equilibrium conditions are the same as in (98)-(113)
except that Equations (102)–(104) should be replaced by the following:

Bank FOC 1: iMt = iDt (78)

Bank FOC 2: iMt = Etr
K
t+1 +

(
1 + rK

)
Et (πt+1 − 1) (79)

Balance sheet identity: d̃ = αmm̃+ (1− αm) b̂t (80)

where

αm ≡ M/P

M/P + b
.

The third equation is the same as (104), but notice that there is no ρ in the denomi-
nator of αm.

In principle, we can do the same exercises that we did in the benchmark economy where
banks faced financial frictions.15

All equilibrium conditions of the simple model without FF and reserves

If mt = 0, then iMt < iDt = Eti
K
t+1, so i

M
t is irrelevant.

Steady State We can solve for the steady state similarly in 4 blocks as in the benchmark
model, with only two differences:

Equation (14) should be replaced by
iD = iK ,

and (21) should be replaced by
dt = bt.

15Note that here, iMt should not be too low because then m̃ would be too low and m > 0 may be violated.
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Banks’ problem if banks cannot hold equity

Rt = Et

{
Λ̄t+1Ψt+1

}
= Et

{
Λ̄t+1

[
Ptbt

(
1 + iKt+1

)
+Mt

(
1 + iMt

)
−
(
1 + iDt

)
Dt −

(
1 + iSt

)
At

]}
,

where Λ̄t+1 is the nominal stochastic discount factor.

We write the Lagrangian for banks’ problem as

Et

{
Λ̄t+1

[
Mt

(
1 + iMt

)
+ Ptbt

(
1 + iKt+1

)
−
(
1 + iDt

)
Dt −

(
1 + iSt

)
(Mt + Ptbt −Dt)

]}
+λt (−Dt + ℓMt + ℓρPtbt) ,

where λt the Lagrangian multiplier associated with the constraint.

FOCs are given by

M : Et

{
Λ̄t+1

(
1 + iMt

)}
− Et

{
Λ̄t+1

(
1 + iSt

)}
+ λtℓ = 0

b : Et

{
Λ̄t+1

(
1 + iKt+1

)}
− Et

{
Λ̄t+1

(
1 + iSt

)}
+ λtℓρ = 0

D : Et

{
Λ̄t+1

(
1 + iDt

)}
− Et

{
Λ̄t+1

(
1 + iSt

)}
+ λt = 0

Et

{
Λ̄t+1

(
iSt − iDt

)}
=

Et

{
Λ̄t+1

(
iSt − iMt

)}
ℓ

=
Et

{
Λ̄t+1

(
iSt − iKt+1

)}
ℓρ

= λt

It is easily observed that these equations are identical to those with equity.

iSt − iDt
1 + iSt

=
iSt − iMt
(1 + iSt ) ℓ

=
iSt − Eti

K
t+1

(1 + iSt ) ρℓ
= λt. (81)

These equations relate the spread of deposits, reserves and the return on capital. A higher
ℓ implies that the assets are better in backing liabilities, so the interest on reserves and the
rate of return on capital both decrease.

Let’s calculate the rents:

Et

{
PtbtΛ̄t+1

(
1 + iKt+1

)
+MtΛ̄t+1

(
1 + iMt

)
−Λ̄t+1

(
1 + iDt

)
Dt − Λ̄t+1

(
1 + iSt

)
At

}
= Et

{
Ptbt

[
Et

{
Λ̄t+1

(
1 + iSt

)}
− λtℓρ

]
+Mt

[
Et

{
Λ̄t+1

(
1 + iSt

)}
− λtℓ

]
−
[
Et

{
Λ̄t+1

(
1 + iSt

)}
− λt

]
Dt − Λ̄t+1

(
1 + iSt

)
(Mt + Ptbt −Dt)

}
= Et

{
Et

{
Λ̄t+1

(
1 + iSt

)}
Ptbt − λtℓρPtbt + Et

{
Λ̄t+1

(
1 + iSt

)}
Mt − λtℓMt

−Et

{
Λ̄t+1

(
1 + iSt

)}
Dt + λtDt − Λ̄t+1

(
1 + iSt

)
(Mt + Ptbt −Dt)

}

= λtEt {−ℓρPtbt − ℓMt +Dt} = 0

It is observed that the rents are zero in the case without equity.
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C The Model with Cash

C.1 Derivation of HH’s optimality conditions in the full model with cash

Modified utility function with cash is given by:16

U

(
Ct,

Dt

Pt

,
Et

Pt

,
Ft

Pt

, Ht

)

=
1

1− 1
σ


C

1− 1
η

t

+ωD

(
(Dt/Pt)

1− 1
υ + ωFD

ωD
(Ft/Pt)

1− 1
υ

) 1− 1
η

1− 1
υ

+ωE

(
(Et/Pt)

1− 1
ϱ + ωFE

ωE
(Ft/Pt)

1− 1
ϱ

) 1− 1
η

1− 1
ϱ



1− 1
σ

1− 1
η

− ψ

1 + φ
H1+φ

t

Optimality conditions:

C :
UC,t

Pt

= λt

J :
UJ,t

Pt

= λt − βEλt+1

(
1 + iJt

)
for J ∈ {D,E, F}

S : λt = βEtλt+1

(
1 + iSt

)
J,S
=⇒ UJ,t

Pt

= λt − βEλt+1

(
1 + iSt − iSt + iJt

)
= βEλt+1

(
iSt − iJt

)
= λt

iSt − iJt
1 + iSt

H : UH,t = −λtWt

The FOCs can be summarized as

UC

Pt

=
UD

Pt

1 + iS

iS − iD
=
UE

Pt

1 + iS

iS
=
UF

Pt

1 + iS

iS − iF
=

−UH

Wt

= λt = βEt

[
λt+1(1 + iSt )

]

1 =
UD

UC

1 + iS

iS − iD
=
UE

UC

1 + iS

iS
=
UF

UC

1 + iS

iS − iF
=

1

UC

−UH

Wt/Pt

=
λtPt

UC

The money demand function for deposits and cash are given by

iS − iD

1 + iS
= ωD

(
PtCt

Dt

) 1
v

Q
1
υ− 1

η

D,t

iS

1 + iS
= ωE

(
PtCt

Et

) 1
ϱ

Q
1
ϱ− 1

η

E,t

16A cash-like CBDC is a perfect substitute for cash, which can be modeled by ϱ = ∞. A universal CBDC
(as in Chiu and Davoodalhosseini (2023)) is a perfect substitute for cash and deposits: υ = ϱ = ∞.
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whereQD,t ≡
((

Dt

PtCt

)1− 1
υ
+ ωFD

ωD

(
Ft

PtCt

)1− 1
υ

) 1

1− 1
υ
andQE,t ≡

((
Et

PtCt

)1− 1
ϱ
+ ωFE

ωE

(
Ft

PtCt

)1− 1
ϱ

) 1

1− 1
ϱ
.

FOC for CBDC:

1 =

(
ωFD

ωD

(
Dt

Ft

) 1
v UD

UC

+
ωFE

ωE

(
Et

Ft

) 1
ϱ UE

UC

)
1 + iS

iS − iF

so iS − iF =
ωFD

ωD

(
Dt

Ft

) 1
v (
iS − iD

)
+
ωFE

ωE

(
Et

Ft

) 1
ϱ

iS

or
iS − iF

1 + iS
= ωFD

(
PtCt

Ft

) 1
v

Q
1
υ− 1

η

D,t + ωFE

(
PtCt

Ft

) 1
ϱ

Q
1
ϱ− 1

η

E,t (82)

For labor:

ψHφ
t = λtWt =

Wt

Pt

C
− 1

η

t XX
1− 1

σ
1− 1

η
−1

=
Wt

Pt

C
− 1

η

t

(
Qt

C
1
η

t

)(1−η)

(
1− 1

σ
1− 1

η
−1

)
=
Wt

Pt

C
− 1

σ
t Q

η
σ−1

t

⇒ Q
1− η

σ
t C

1
σ
t ψH

φ
t =

Wt

Pt

Note that Qt ≡

(
XXt

C
η−1
η

t

) 1
1−η

⇒ XXt =

(
Qt

C
1
η
t

)1−η

.

Demand for assets:

Demand for bonds:

λt = C
− 1

η

t P−1
t XX

− 1
σ+ 1

η

1− 1
η

t , λt+1 = C
− 1

η

t+1P
−1
t+1XX

− 1
σ+ 1

η

1− 1
η

t+1 , λt = βEt

[
λt+1(1 + iSt )

]
⇒ 1 = βEt

[
λt+1

λt
(1 + iSt )

]
= βEt

((XXt+1

XXt

) 1
1−η

) η
σ
−1(

Ct+1

Ct

)− 1
η Pt

Pt+1

 (1 + iSt )

= βEt

C 1
η
− 1

σ

t+1 Q
η
σ
−1

t+1

C
1
η
− 1

σ

t Q
η
σ
−1

t

C
− 1

η

t+1

C
− 1

η

t

Pt

Pt+1

 (1 + iSt )

⇒ Euler Eq: βEt

[(
Qt+1

Qt

) η
σ
−1(

Ct+1

Ct

)− 1
σ Pt

Pt+1

] (
1 + iSt

)
= 1 (83)
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We have used a change of variables from XX to Q:

Qt ≡

XXt

C
η−1
η

t

 1
1−η

=


1 + ωD

(
(Dt/Pt)

1− 1
υ +

ωFD
ωD

(Ft/Pt)
1− 1

υ

C
1− 1

υ
t

) 1− 1
η

1− 1
υ

+ωE

(
(Et/Pt)

1− 1
ϱ+

ωFE
ωE

(Ft/Pt)
1− 1

ϱ

C
1− 1

ϱ
t

) 1− 1
η

1− 1
ϱ



1
1−η

Qt =


1 + ωD

(
(Dt/Pt)

1− 1
υ +

ωFD
ωD

(Ft/Pt)
1− 1

υ

C
1− 1

υ
t

) 1− 1
η

1− 1
υ

+ωE

(
(Et/Pt)

1− 1
ϱ+

ωFE
ωE

(Ft/Pt)
1− 1

ϱ

C
1− 1

ϱ
t

) 1− 1
η

1− 1
ϱ



1
1−η

Qt =

(
1 + ωDQ

1− 1
η

D,t + ωEQ
1− 1

η

E,t

) 1
1−η

.

Now, we derive similar equations for deposits, cash and CBDC:

1 = βEt

[(
Qt+1

Qt

) η
σ
−1(

Ct+1

Ct

)− 1
σ Pt

Pt+1

](
1 + iDt +

iSt − iDt
1 + iSt

(
1 + iSt

))

1 = βEt

[(
Qt+1

Qt

) η
σ
−1(

Ct+1

Ct

)− 1
σ Pt

Pt+1

] (
1 + iDt

)
+
iSt − iDt
1 + iSt

1 = βEt

[(
Qt+1

Qt

) η
σ
−1(

Ct+1

Ct

)− 1
σ Pt

Pt+1

] (
1 + iDt

)

+

(
PtCt

Dt

) 1
v

ωD

[(
Dt

PtCt

)1− 1
υ

+
ωFD

ωD

(
Ft

PtCt

)1− 1
υ

] 1
υ− 1

η

1− 1
υ

Therefore:

Deposit demand: 1 = βEt

[(
Qt+1

Qt

) η
σ
−1(

Ct+1

Ct

)− 1
σ Pt

Pt+1

] (
1 + iDt

)
+ ωD

(
PtCt

Dt

) 1
v

Q
1
υ
− 1

η

D,t ,

Cash demand: 1 = βEt

[(
Qt+1

Qt

) η
σ
−1(

Ct+1

Ct

)− 1
σ Pt

Pt+1

] (
1 + iEt

)
+ ωE

(
PtCt

Et

) 1
ϱ

Q
1
ϱ
− 1

η

E,t ,

CBDC demand: 1 = βEt

[(
Qt+1

Qt

) η
σ
−1(

Ct+1

Ct

)− 1
σ Pt

Pt+1

] (
1 + iFt

)
+ωFD

(
PtCt

Ft

) 1
v

Q
1
υ
− 1

η

D,t + ωFE

(
PtCt

Ft

) 1
ϱ

Q
1
ϱ
− 1

η

E,t .
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All equilibrium conditions of the full model with cash

Illiquid bond demand: βEt

[(
Qt+1

Qt

) η
σ
−1(

Ct+1

Ct

)− 1
σ Pt

Pt+1

] (
1 + iSt

)
= 1

Deposit demand:
iSt − iDt
1 + iSt

= ωDV
1
υ
D,tV

− 1
υ
+ 1

η

FD,t

Cash demand:
iSt − iEt
1 + iSt

= ωEV
1
ϱ

E,tV
− 1

ϱ
+ 1

η

FE,t

CBDC demand:
iSt − iFt
1 + iSt

= ωFDV
1
υ
F,tV

− 1
υ
+ 1

η

FD,t + ωFEV
1
ϱ

F,tV
− 1

ϱ
+ 1

η

FE,t

Production: Yt = AtK
α
t L

1−α
t

Market clearing: Yt = Ct + It +
κ

2

(
Pt

Pt−1

− 1

)2

Kt+1 = bt.

Kt+1 = It + (1− δ)Kt.

Labor demand: wt = pmt(1− α)
Yt
Lt

Capital demand: 1 + rKt = αpmt
Yt
Kt

+ 1− δ

Labor supply: wt = Q
1− η

σ
t C

1
σ
t ψL

φ
t

→ pmtYt =

(
δ + rKt

)
Kt

α
= Q

1− η
σ

t C
1
σ
t ψ

L1+φ
t

(1− α)

Optimal pricing:

[
ϵ− 1

ϵ
− pmt

]
ϵYt
κ

+
Pt

Pt−1

(
Pt

Pt−1

− 1

)
= Et

[
Λt,t+1

Pt+1

Pt

(
Pt+1

Pt

− 1

)]

Binding leverage constraint: Dt = ℓ(Mt + ρPtbt)

Bank FOCs:
iSt − iDt
1 + iSt

=
iSt − iMt
(1 + iSt ) ℓ

=
iSt − Etr

K
t+1 −

(
1 + rK

)
Et (πt+1 − 1)

(1 + iSt ) ρℓ
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where

Velocity:VJ,t ≡
PtCt

Jt
for J ∈ {D,E, F}

VFD,t ≡
(
V

−(1− 1
υ
)

D,t +
ωFD

ωD

V
−(1− 1

υ )
F,t

) −1

1− 1
υ

VFE,t ≡
(
V

−(1− 1
ϱ)

E,t +
ωFE

ωE

V
−(1− 1

ϱ)
F,t

) −1

1− 1
ϱ

Qt ≡
(
1 + ωDV

1
η
−1

FD,t + ωEV
1
η
−1

FE,t

) 1
1−η

Steady state equations with cash

Unknowns:

• Output, consumption and labor: Y,C, L

• Deposits, cash, CBDC and reserves balances: D,E, F,M

• Real assets: b

• Rates: iK , iD

Note that the nominal and real interest rates are equal because the inflation rate is zero, i.e.,
iK = rK and iD = rD. We now derive the steady state values:

Intermediate good price: pm =
ϵ− 1

ϵ
,

Illiquid bond demand: β
(
1 + iS

)
= 1.

The price of the intermediate good is ϵ−1
ϵ

in terms of the final good. This gives the markup
of 1

ϵ−1
, which is simply due to the market power. We solve the model in four blocks below.

This solution method also reveals the transmission of monetary policy in the steady state.

Block 1: Given iM , we can solve for iK and iD:

iS − iD

1 + iS
=

iS − iM

(1 + iS) ℓ
=

iS − iK

(1 + iS) ρℓ
. (84)

Block 2: Given iD from block 1 and iE = 0 and iF from policy, we can pin down VD, VE
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and VF :

Deposit demand:
iS − iD

1 + iS
= ωDV

1
υ
D Q

− 1
υ
+ 1

η

D , (85)

Cash demand:
iS − iE

1 + iS
= ωEV

1
ϱ

E Q
− 1

ϱ
+ 1

η

E , (86)

CBDC demand:
iS − iF

1 + iS
= ωFDV

1
υ
F Q

− 1
υ
+ 1

η

D + ωFEV
1
ϱ

F Q
− 1

ϱ
+ 1

η

E . (87)

Note that QD and QE are functions of VJ ’s. We can then calculate Q.

Moreover, we have

b = K =
I

δ
.

Block 3: Given iK (from block 1) and Q (from block 2), the following four equations pin
down Y, L, C and b:

Y = C + δK,

pm =
ϵ− 1

ϵ
=

(
iK + δ

)
K

αY
→ K =

ϵ− 1

ϵ

αY

iK + δ
, (88)

Y = AKαL1−α,

ϵ− 1

ϵ
Y = Q1− η

σC
1
σψ

L1+φ

1− α
.

We can now calculate Y as a function of C andK and then use the market clearing condition:

Y
1+φ
1−α

−1 =
ϵ− 1

ϵ

(1− α)A
1+φ
1−αKα 1+φ

1−α

Q1− η
σC

1
σψ

,

Y = C + δK → C = Y

(
1− ϵ− 1

ϵ

αδ

iK + δ

)
. (89)

Given that K and C are now given in terms of Y from (88) and (89), we obtain

Y φ+ 1
σ =

α
α(1+φ)
1−α (1− α)A

1+φ
1−α

(
ϵ−1
ϵ

)α(1+φ)
1−α

−1

ψQ1− η
σ

(
1− ϵ−1

ϵ
αδ

iK+δ

) 1
σ (iK + δ)

α(1+φ)
1−α

. (90)

Log-linearization around the zero-inflation-rate steady state in the full model with cash

We generally use small-case letters for log-linearized form, i.e., ĉt is log-lin of Ct.

Definition of constants:
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x̃ = x̂t − p̂t for x ∈ {d, e, f,m}

αFD ≡ ωFDV
1
v
F V

1
η− 1

υ

FD

ωFDV
1
v
F V

1
η− 1

υ

FD + ωFEV
1
ϱ

E V
1
η− 1

ϱ

FE

βJ ≡ V
−(1− 1

υ
)

D

V
−(1− 1

υ
)

D + ωFD

ωD
V

−(1− 1
υ )

F

,

βE ≡ V
−(1− 1

ϱ
)

E

V
−(1− 1

ϱ
)

E + ωFE

ωE
V

−(1− 1
ϱ)

F

.

αm ≡ M/P

M/P + ρb
.

αc ≡
C

Y
, and αy ≡

α ϵ−1
ϵ

Y
K

α ϵ−1
ϵ

Y
K
+ 1− δ

.

αJJ ≡ ωDV
1
η
−1

FD

1 + ωDV
1
η
−1

FD + ωEV
1
η
−1

FE

, J ∈ {D,E}

Derivations of log-linearized HHs’ FOCs:

We start with HHs’ FOC:

FOC:
iSt − iFt
1 + iSt

= ωFDV
1
v
F,tV

1
η− 1

υ

FD,t + ωFEV
1
ϱ

E,tV
1
η− 1

ϱ

FE,t

The LHS:

log

(
iSt − iFt
1 + iSt

/
iS − iF

1 + iS

)
= log

(
iSt − iFt
iS − iF

)
− log

(
1 + iSt
1 + iS

)
log

(
iSt − iFt
iS − iF

)
= log

(
1 +

iSt − iS −
(
iFt − iF

)
iS − iF

)
≈ iSt − iFt
iS − iF

− 1

log

(
1 + iSt
1 + iS

)
= log

(
1 +

iSt − iS

1 + iS

)
≈ 1

iS − iF

(
iSt − iS

) (
iS − iF

)
(1 + iS)

≈ 0

Note that the last approximation is due to the fact that
(
iSt − iS

) (
iS − iF

)
is a second-

order term while iSt − iFt is a first-order one, so we can ignore the former against the latter.
Therefore,

log

(
iSt − iFt
1 + iSt

/
iS − iF

1 + iS

)
≈ iSt − iFt
iS − iF

− 1.
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The RHS:

log

ωFDV
1
v
F,tV

1
η− 1

υ

FD,t + ωFEV
1
ϱ

E,tV
1
η− 1

ϱ

FE,t

ωFDV
1
v
F V

1
η− 1

υ

FD + ωFEV
1
ϱ

E V
1
η− 1

ϱ

FE


≈ αFD

(
1

v
V̂F,t +

(
1

η
− 1

υ

)
V̂FD,t

)
+ (1− αFD)

(
1

ϱ
V̂E,t +

(
1

η
− 1

ϱ

)
V̂FE,t

)
= αFD

(
1

v

(
p̂t + ĉt − f̂t

)
+

(
1

η
− 1

υ

)(
βD

(
p̂t + ĉt − d̂t

)
+ (1− βD)

(
p̂t + ĉt − f̂t

)))
+(1− αFD)

(
1

ϱ

(
p̂t + ĉt − f̂t

)
+

(
1

η
− 1

ϱ

)(
βE (p̂t + ĉt − êt) + (1− βE)

(
p̂t + ĉt − f̂t

)))

=

 αFD

(
1
v
+
(

1
η
− 1

υ

)
(1− βD)

)
+(1− αFD)

(
1
ϱ
+
(

1
η
− 1

ϱ

)
(1− βE)

) (p̂t + ĉt − f̂t

)
+αFD

(
1

η
− 1

υ

)
βD

(
p̂t + ĉt − d̂t

)
+ (1− αFD)

(
1

η
− 1

ϱ

)
βE (p̂t + ĉt − êt)

Therefore,

iSt − iFt
iS − iF

− 1 =
1

η
(p̂t + ĉt)− αFD

(
1

η
− 1

υ

)
βDd̂t − (1− αFD)

(
1

η
− 1

ϱ

)
βE êt

−
[
αFD

(
1− βD

η
+
βD

υ

)
+ (1− αFD)

(
1− βE

η
+
βE

ϱ

)]
f̂t (91)

where we have used

αFD ≡ ωFDV
1
v
F V

1
η− 1

υ

FD

ωFDV
1
v
F V

1
η− 1

υ

FD + ωFEV
1
ϱ

E V
1
η− 1

ϱ

FE

βD ≡ V
−(1− 1

υ
)

D

V
−(1− 1

υ
)

D + ωFD

ωD
V

−(1− 1
υ )

F

βE ≡ V
−(1− 1

ϱ
)

E

V
−(1− 1

ϱ
)

E + ωFE

ωE
V

−(1− 1
ϱ)

F

V̂J,t = log

(
VJ,t
VJ

)
= p̂t + ĉt − ĵt for J ∈ {D,E}

V̂FJ,t = βJ V̂J,t + (1− βJ)V̂F,t = βJ

(
p̂t + ĉt − ĵt

)
+ (1− βJ)

(
p̂t + ĉt − f̂t

)
for J ∈ {D,E}
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Similarly, we can derive ”money demand” for deposits and cash:

iSt − iDt
iS − iD

− 1 =
1

v
V̂D,t +

(
1

η
− 1

υ

)
V̂FD,t

=
1

v

[
p̂t + ĉt − d̂t

]
+

(
1

η
− 1

υ

)[
βD

(
p̂t + ĉt − d̂t

)
+ (1− βD)

(
p̂t + ĉt − f̂t

)]
→

iSt − iDt
iS − iD

− 1 =
1

η
(p̂t + ĉt)−

(
1− βD

v
+
βD

η

)
d̂t −

(
1

η
− 1

υ

)
(1− βD)f̂t (92)

iSt
iS

− 1 =
1

ϱ
V̂E,t +

(
1

η
− 1

ϱ

)
V̂FE,t

=
1

ϱ
[p̂t + ĉt − êt] +

(
1

η
− 1

ϱ

)[
βE (p̂t + ĉt − êt) + (1− βE)

(
p̂t + ĉt − f̂t

)]
→

iSt
iS

− 1 =
1

η
(p̂t + ĉt)−

(
1− βE

ϱ
+
βE

η

)
êt −

(
1

η
− 1

ϱ

)
(1− βE)f̂t (93)

Qt ≡
(
1 + ωDV

1
η
−1

FD,t + ωEV
1
η
−1

FE,t

) 1
1−η

q̂t =
1

η

(
αDDV̂FD,t + αEEV̂FE,t

)
=

1

η

(
αDD

(
βDV̂D,t + (1− βD)V̂F,t

)
+ αEE

(
βEV̂E,t + (1− βE)V̂F,t

))
=

1

η

 αDD

(
βD

(
p̂t + ĉt − d̂t

)
+ (1− βD)

(
p̂t + ĉt − f̂t

))
+αEE

(
βE (p̂t + ĉt − êt) + (1− βE)

(
p̂t + ĉt − f̂t

)) 
=

1

η

(
(αDD + αEE) (p̂t + ĉt)−

(
+αDDβDd̂t + αEEβE êt

+ [αDD(1− βD) + αEE(1− βE)] f̂t

))
(QLL)

where

αDD ≡ ωDV
1
η
−1

FD

1 + ωDV
1
η
−1

FD + ωEV
1
η
−1

FE

,

αEE ≡ ωEV
1
η
−1

FE

1 + ωDV
1
η
−1

FD + ωEV
1
η
−1

FE

.
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Now we log-linearize the Euler equation for illiquid bond demand:

Et

[(
Qt+1

Qt

) η
σ
−1(

Ct+1

Ct

)− 1
σ Pt

Pt+1

](
1 +

iSt − iS

1 + iS

)
= 1

(η
σ
− 1
)
(Et [q̂t+1]− q̂t)−

1

σ
(Et [ĉt+1]− ĉt)− Et [p̂t+1] +

iSt − iS

1 + iS
= 0(η

σ
− 1
)
(Et [q̂t+1]− q̂t)−

1

σ
(Et [ĉt+1]− ĉt)− Et [∆p̂t+1] + βiSt + β − 1 = 0

ĉt = Et [ĉt+1]− σ
(
βiSt − Et [∆p̂t+1] + β − 1

)
+ (σ − η) (Et [q̂t+1]− q̂t)

Log-lin of Philips curve:

Using xt ≈ x(1 + x̂t), we can write Λt,t+1 ≈ β(1 + Λ̂t+1) and Λt,t+1 ≡ β Uc,t+1

Uc,t
= β

(
Ct+1

Ct

)− 1
η
,

so Λ̂t+1 = − 1
η
(ĉt+1 − ĉt) .

Et [Λt,t+1πt+1] = Et [Λt,t+1πt+1] ≈ Et

[
β(1− 1

η
(ĉt+1 − ĉt))πt+1

]
≈ Et [βπt+1]

We have

[
ϵ− 1

ϵ
− pmt

]
ϵYt
κ

+
Pt

Pt−1

(
Pt

Pt−1

− 1

)
= Et

[
Λt,t+1

Pt+1

Pt

(
Pt+1

Pt

− 1

)]
[
ϵ− 1

ϵ
− pm(1 + p̂mt)

]
ϵY (1 + ŷt) + κ (1 + π̂t) π̂t ≈ κEt [Λt,t+1 (1 + π̂t+1) π̂t+1]

π̂t ≈ (ϵ− 1)Y

κ
p̂mt + βEt [π̂t+1] (94)

where we used the following notation: π̂t ≡ ∆p̂t ≡ log Pt

Pt−1
.

Rest of equations:

Yt = AtK
α
t L

1−α
t → ŷt = αk̂t + (1− α) l̂t

Yt = Ct + It +
κ

2

(
Pt

Pt−1

− 1

)2

→ ŷt = αcĉt + (1− αc) ît (95)

k̂t+1 = b̂t
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Kt = It + (1− δ)Kt → k̂t+1 = δ̂it + (1− δ) k̂t

wt = pmt(1− α)
Yt
Lt

→ ŵt = p̂mt + ŷt − l̂t

1 + rKt = αpmt
Yt
Kt

+ 1− δ → rKt − rK

1 + rK
= αy

(
p̂mt + ŷt − k̂t

)
(96)

wt = Q
1− η

σ
t C

1
σ
t ψH

φ
t

ŵt =
(
1− η

σ

)
q̂t +

1

σ
ĉt + φl̂t

=
σ − η

ση

(
(αDD + αEE) (p̂t + ĉt)−

(
+αDDβDd̂t + αEEβE êt

+ [αDD(1− βD) + αEE(1− βE)] f̂t

))
+

1

σ
ĉt + φl̂t(97)

where

αc ≡ C

Y

αy ≡
α ϵ−1

ϵ
Y
K

α ϵ−1
ϵ

Y
K
+ 1− δ

Note that rK = iK because inflation is zero in the SS.

We have also used labor market clearing condition Ht = Lt.

Summary of log-linearized equations with cash:

Define x̃ = x̂t − p̂t for x ∈ {d, e, f,m}.

Parameters αFD, βJ , αm, αc, αy and αJJ for J ∈ {D,E} are all constants and defined in the
appendix. Also define π̂t ≡ ∆p̂t. We have the following log-lin equations.

Here is the summary of log-linearized version of equilibrium conditions:

Euler equation: ĉt = Et [ĉt+1]− σ
(
βiSt − Et [π̂t+1] + β − 1

)
+ (σ − η) (Et [q̂t+1]− q̂t) (98)

CBDC demand:
iSt −iFt
iS−iF

− 1 = 1
η
ĉt − αFD

(
1
η
− 1

υ

)
βDd̃− (1− αFD)

(
1
η
− 1

ϱ

)
βE ẽ

−
[
αFD

(
1−βD

η
+ βD

υ

)
+ (1− αFD)

(
1−βE

η
+ βE

ϱ

)]
f̃ (99)

Deposit demand:
iSt −iDt
iS−iD

− 1 = 1
η
ĉt −

(
1−βD

v
+ βD

η

)
d̃−

(
− 1

υ
+ 1

η

)
(1− βD)f̃ (100)

Cash demand:
iSt
iS

− 1 = 1
η
ĉt −

(
1−βE

ϱ
+ βE

η

)
ẽ−

(
−1

ϱ
+ 1

η

)
(1− βE)f̃ (101)
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Bank equations:

iSt − iDt = ℓ−1
(
iSt − iMt

)
(102)

iSt − Etr
K
t+1 −

(
1 + rK

)
Et [π̂t+1] = ρ

(
iSt − iMt

)
(103)

d̃ = αmm̃+ (1− αm) b̂t (104)

Philips curve:

π̂t =
(ϵ− 1)Y

κ
p̂mt + βEt [π̂t+1] (105)

The rest of the equations:

ŷt = αk̂t + (1− α) l̂t (106)

ŷt = αcĉt + (1− αc) ît (107)

k̂t+1 = b̂t (108)

k̂t+1 = δ̂it + (1− δ) k̂t + ξ̂t+1 (109)

ŵt = p̂mt + ŷt − l̂t (110)

rKt − rK

1 + rK
= αy

(
p̂mt + ŷt − k̂t

)
+ ξ̂t+1 (111)

ŵt =
(
1− η

σ

)
q̂t +

1

σ
ĉt + φl̂t (112)

q̂t =
1

η

 (αDD + αEE) ĉt

−

(
+αDDβDd̃+ αEEβE ẽ

+ [αDD(1− βD) + αEE(1− βE)] f̃t

)  (113)
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D Special cases of the model

Now consider the general model with cash. Within this general model, we discuss some
special cases that have been studied in the literature before: the no-CBDC case, a cash-like
CBDC and a deposit-like CBDC. The goal is to show how this model can easily nest other
models in the literature.

Special case: No CBDC
Here, we assume ωFD = ωFE = 0. The optimality conditions are modified to

Deposits :
iS − iD

1 + iS
= ωD

(
PtCt

Dt

) 1
η

,

Cash :
iS

1 + iS
= ωE

(
PtCt

Et

) 1
η

,

where

QD,t ≡ V −1
D,t =

Dt

PtCt

, QE,t ≡ V −1
E,t =

Et

PtCt

,

Qt ≡
(
1 + ωDV

−(1− 1
η
)

D,t + ωEV
−(1− 1

η
)

E,t

) 1
1−η

.

This case nests Piazzesi et al.’s (2019) description of households. However, our description
is still more general because not only deposits but also cash provides liquidity services here.

Special case: ϱ = υ = η
In this case, agents have the love-of-variety feature in their means of payments, and the
elasticity of consumption with respect to different means of payments are identical. The
introduction of a CBDC here just enriches the set of means of payments that agents have
available. The optimal conditions here imply that

iS − iD

1 + iS
≥ ωD

(
PtCt

Dt

) 1
η

with equality if Dt > 0 (114)

iS

1 + iS
≥ ωE

(
PtCt

Et

) 1
η

with equality if Et > 0 (115)

iS − iF

1 + iS
≥ (ωFD + ωFE)

(
PtCt

Ft

) 1
η

with equality if Ft > 0 (116)

Here, the demand for different means of payments are not inter-related. The opportunity
cost of each means of payment pins down the velocity and demand for that. This is true
even if the utility function is not separable. The effect of non-separability will be reflected
in the labor supply equation.

CBDC is a perfect substitute for deposits: v = ∞
Here, we study a CBDC that is a perfect substitute for bank deposits, i.e, υ = ∞. It is similar
to a deposit-like CBDC which has been discussed in the literature, but also offers some
degree of substitution with cash.17 In this case, QD,t is modified to QD,t = V −1

D,t +
ωFD

ωD
V −1
F,t =

17A solely deposit-like CBDC would require ωFE = 0.
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Dt+
ωFD
ωD

Ft

PtCt
. Therefore, the optimality conditions imply

Deposits:
iS − iD

1 + iS
= ωD

(
PtCt

Dt +
ωFD

ωD
Ft

) 1
η

Cash:
iS − iF

1 + iS
= ωFD

(
PtCt

Dt +
ωFD

ωD
Ft

) 1
η

+ ωFE

(
PtCt

Ft

) 1
ϱ

Q
1
ϱ− 1

η

E,t

assuming that the CBDC is used in equilibrium. One can divide the second optimality
condition by the first to obtain an equation for the opportunity cost of holding CBDC
relative to that of deposits. For simplicity, assume ϱ = η, then we have

iD − iF

iS − iD
=
ωFD − ωD

ωD

+
ωFE

ωD

(
Dt

Ft

+
ωFD

ωD

) 1
η

.

This equation implies that the wedge between the interest rate of this type of CBDC and
deposits depends on the relative usefulness of CBDC in deposit transactions as well as the
liquidity service it provides in cash transactions. This equation is especially useful because
it is a function of the relative quantity of deposits and CBDC and does not depend on the
quantity of cash used in transactions (which is a direct implication of ϱ = η).

Finally, in a special case where CBDC can be used in exactly the same set of transactions as
deposits with the same importance, ωFD = ωD, we will have i

D ≥ iF . The central bank pays
less interest on CBDC compared with bank deposits as long as CBDC provides liquidity not
only to deposit transactions but also in some transactions where cash can currently be used.

CBDC is a perfect substitute for cash: ϱ = ∞
Here we study a CBDC that is a perfect substitute for cash, i.e, ϱ = ∞. It is similar to the
cash-like CBDC discussed in the literature but also offers some degree of substitution with
deposits. In this case, the optimality conditions imply:

Cash:
iS

1 + iS
≥ ωEQ

− 1
η

E,t with eq if Et > 0,

CBDC:
iS − iF

1 + iS
≥ ωFD

(
PtCt

Ft

) 1
v

Q
1
υ− 1

η

D,t + ωFEQ
− 1

η

E,t with eq if Ft > 0.

If cash and CBDC are both used in equilibrium, then:

−iF

1 + iS
= (ωFE − ωE)Q

− 1
η

E,t + ωFD

(
PtCt

Ft

) 1
v

Q
1
υ− 1

η

D,t .

Note, for example, that when ωFE = ωE, a positive interest on CBDC (iF ≥ 0) implies that
cash will be out of circulation as it is strictly dominated by CBDC. In general, the higher
the difference ωFE − ωE or the higher the usefulness of CBDC in other transactions (higher
ωFD), the lower the CBDC rate can go.

Now we analyze the steady state of various special cases.

The zero inflation rate steady state with an endogenous quantity of reserves
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Special case when η = σ = 1. As iM goes up, iK goes up too.

We first assume η
σ
= 1 and δ = 0, for simplicity. An increase in iM makes loans more

expensive for firms, so output goes down. However, notice that because η
σ
= 1, the

payment side does not have any effects on the opportunity cost of lending and on deposit
rates because they are both determined only by cost of reserves.

Notice that in this case, if CBDC and deposits are substitutes to some extent, as iF goes
down, then D goes down too, and at some point, D/P goes less than ℓρb, at which point
M ≥ 0 will be binding. This means that banks cannot attract enough deposits to raise
resources for their lending.

Altogether, when η
σ
= 1, the disintermediation channel does not operate in this model and

the lending side is separated from the deposit side given that the reserve requirement is
binding and the interest on CBDC is low enough.

Result: When σ = η , the output depends only on interest on reserves, iM (and
not on the interest on CBDC iF ), and iF only determines the quantity of real
balances demanded.

Special case when ϱ = υ = η. In this special case, we can calculate Q in a closed form.
Rewrite FOCs:

Deposit demand:
iS − iD

1 + iS
= ωDV

1
η

D (117)

Cash demand:
iS − iE

1 + iS
= ωEV

1
η

E (118)

CBDC demand:
iS − iF

1 + iS
= ωFV

1
η

F (119)

where ωF ≡ ωFD + ωFE. Hence, Q is given by

Q ≡
(
1 + ωDV

1
η
−1

FD + ωEV
1
η
−1

FE

) 1
1−η

=

(
1 + ωDV

1
η
−1

D + ωEV
1
η
−1

E + ωFV
1
η
−1

F

) 1
1−η

=

(
1 +

∑
J

ωη
J

(
iS − iJ

1 + iS

)1−η
) 1

1−η

(120)

Result:

• When σ ̸= η, the output depends on policy from two channels. First, Y is a function
of iK directly and iK is determined by iM . Second, Y is a function of Q, which depends
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on the CBDC rate (as a decreasing function) and also depends on iD, which is again
determined by iM .

More specifically, when σ > η, there is complementarity between consumption and
other means of payments. Paying more interest on CBDC decreases Q and increases
Y.

Note that in this case (ϱ = υ = η), we do not see the disintermediation channel because
CBDC is not a perfect substitute for deposits.

Another special case: CBDC and deposits are perfect substitutes: υ = ∞, ωD =
ωFD and ωFE = 0

Deposit and CBDC demand:
iS − iD

1 + iS
= ωDV

1
η

FD =
iS − iF

1 + iS
(121)

Cash demand:
iS − iE

1 + iS
= ωEV

1
ϱ

E V
− 1

ϱ
+ 1

η

FE (122)

VFD ≡
(
V −1
D + V −1

F

)−1
=

PC

D + F
VFE ≡ VE

Q ≡
(
1 + ωDV

1
η
−1

FD + ωEV
1
η
−1

E

) 1
1−η

In this case, interest on deposits is pinned down by iM , on the one hand. On the other hand,
it is determined by the CBDC interest rate.

More specifically, for a given iM :

• If iF > iD, bank cannot raise deposits. Therefore, iD ≥ iF .

• If iF < iD, demand for CBDC is zero and CBDC is not used.

• If iD = iF , then agents are indifferent between CBDC and deposits.

For a given iF , the maximum deposit demand is given by

PC

VFD

=
PC(

iS−iF

ωD(1+iS)

)η .
• If iM implies an iD strictly lower than iF , then banks cannot raise deposits, implying
that production cannot take place, which is not possible. This means our initial as-
sumption that banks hold reserves is violated. In this case, banks increase their rate to
iF to compete with CBDC and be able to raise deposits. They don’t invest in reserves
because their rate is too low. (They would have borrowed reserves if we had allowed
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them). In this case, iS−iD

1+iS
= iS−iF

1+iS
= iS−iK

(1+iS)ρℓ
< iS−iM

(1+iS)ℓ
. The CBDC interest rate is the

floor for deposit rates. (This case is close to Keister and Sanches (2023)).

• In the knife-edge case, iM implies an iD exactly equal to iF . In this case, agents are
indifferent between the CBDC and deposits.

• If iM implies an iD higher than iF , then the CBDC is not used.

It is easy to incorporate market power into the model. In that case, we can compare our
results with Chiu et al. (2023).

The zero inflation rate steady state with a fixed quantity of reserves

The only difference is that here iM is endogenous and M/P (real supply of reserves) is
exogenous and set by the policy.

Endogenous variables:

• Price level, output and consumption and labor: Y,C, L

• Nominal balances: D,E

• Real assets: b

• Rates: iM , iK , iD

Policy tools: M/P, iF .

We follow the same three steps as before. However, since we do not know iM , we
have to start with a guess for iM and then solve for a fixed point. More specifically:

• Start with a guess for iM and derive the value forM/P (demand for reserves) by solving
the three blocks in the previous subsection. That is, for the given iM , start from Block
1 and follow the same steps summarized in Equations (14) to (21) and derive M/P
from (21). Call it m0, which is the demand for reserves.

• If m0 is higher than the exogenous M/P set by the policy, we have to decrease iM in
the next iteration; otherwise, we have to increase iM .

• Continue this until we converge and get the value for iM .

Note that a higher iM means that banks receive more benefits for reserves, so their demand
for reserves goes up.

Analytical derivation of Q for the case with cash

We assume ϱ = υ so that we can simplify the analytical derivation of Q as much as possible:

Deposit demand:
iS − iD

1 + iS
= ωDV

1
υ
D Q

− 1
υ
+ 1

η

D , (123)

Cash demand:
iS − iE

1 + iS
= ωEV

1
v
E Q

− 1
v
+ 1

η

E , (124)
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These imply that

V
1−υ
υ

D = ωυ−1
D

(
iS − iD

1 + iS

)1−υ

Q
υ−η
η

1−υ
υ

D ,

V
1−υ
υ

E = ωυ−1
E

(
iS − iE

1 + iS

)1−υ

Q
υ−η
η

1−υ
υ

E ,

or equivalently,

V
−1
υ

D = ωD

(
iS − iD

1 + iS

)−1

Q
υ−η
η

−1
υ

D ,

V
−1
υ

E = ωE

(
iS − iE

1 + iS

)−1

Q
υ−η
η

−1
υ

E .

Remember we had

Q
1− 1

v
D,t ≡ V

1
υ
−1

D,t +
ωFD

ωD

V
1
υ
−1

F,t ,

Q
1− 1

v
E,t ≡ V

1
v
−1

E,t +
ωFE

ωE

V
1
v
−1

F,t .

CBDC demand:

CBDC demand:
iS − iF

1 + iS
= ωFDV

1
υ
F Q

− 1
υ
+ 1

η

D + ωFEV
1
υ
F Q

− 1
v
+ 1

η

E ,

⇒ iS − iF =
ωFD

ωD

(
VD
VF

)−1
v (

iS − iD
)
+
ωFE

ωE

(
VE
VF

)−1
v

iS.

⇒ V
−1
v

F =

[
ωFDQ

υ−η
η

−1
υ

D + ωFEQ
υ−η
η

−1
υ

E

](
1 + iS

iS − iF

)
⇒ V

1−v
v

F =

[
ωFDQ

υ−η
η

−1
υ

D + ωFEQ
υ−η
η

−1
υ

E

]v−1(
1 + iS

iS − iF

)v−1

Hence, we have

Q
1− 1

v
D ≡ ωυ

D

ωD
Q

υ−η
η

1−υ
υ

D

(
iS−iD

1+iS

)1−υ

+ ωFD

ωD

[
ωFDQ

υ−η
η

−1
υ

D + ωFEQ
υ−η
η

−1
υ

E

]v−1 (
iS−iF

1+iS

)1−υ

,(125)

Q
1− 1

v
E ≡ ωυ

E

ωE
Q

υ−η
η

1−υ
υ

E

(
iS−iE

1+iS

)1−υ

+ ωFE

ωE

[
ωFDQ

υ−η
η

−1
υ

D + ωFEQ
υ−η
η

−1
υ

E

]v−1 (
iS−iF

1+iS

)1−υ

,(126)

These two equations give us two unknowns. We can then put them into the following equation
to derive Q:

Qt ≡
(
1 + ωDQ

1− 1
η

D,t + ωEQ
1− 1

η

E,t

) 1
1−η

.
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