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Abstract

This paper demonstrates that well-established biases in decision making under

uncertainty can generate poverty traps. A theoretical framework is developed to

demonstrate that: i) probability weighting and ambiguity attitude can lead in-

dividuals to erroneously undervalue profitable investments, and ii) poverty in-

creases the magnitude of these investment errors. The model predicts that poverty

is perpetuated by inducing poor individuals to underinvest in profitable opportu-

nities to a greater extent than rich individuals. We empirically validate these theo-

retical predictions using data from two experiments conducted on a representative

sample of American households.
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1. Introduction

The poor tend to forgo opportunities that could help them climb out of poverty. They

often underinvest in preventive health products (Dupas and Miguel, 2017), they ne-

glect to acquire insurance products designed to reduce their exposure to uncertainty

(Giné and Yang, 2009, Ashraf, 2009, Cole et al., 2013), and they undervalue the returns

on additional years of schooling (Jensen, 2010, Nguyen, 2008). This paper provides

a theoretical framework that can explain these behaviors and formalizes their conse-

quences.

Our claim, in a nutshell, is that behavioral biases in decision making under un-

certainty can create poverty traps. These biases impede the accurate evaluation of

uncertain but profitable investments, leading individuals to underinvest in these op-

portunities. Remarkably, poverty exacerbates these mistakes, making underinvest-

ment more severe among the poor. This behavior decreases their expected earnings

and thus increases the likelihood that they will be locked in a vicious circle of poverty.

We formalize our proposal using a simple theoretical framework, in which an in-

dividual endowed with some level of initial wealth decides how much to invest in a

good that generates uncertain returns in the future. While a high level of investment

does not guarantee a high future return, it does increase its probability. In other words,

we consider a situation in which returns are stochastic with respect to investment. In

such a setting, an individual who does not suffer from biases evaluates the costs and

benefits from investment using expected utility.

However, there is abundant empirical evidence that individuals deviate from ex-

pected utility as a result of probability weighting, i.e. preferences across risky alterna-

tives are not linear in probabilities (Tversky and Kahneman, 1992, Abdellaoui, 2000,

Abdellaoui et al., 2011, L’Haridon and Vieider, 2019a), and ambiguity attitude, i.e. a

preference or dislike for events with unknown probability relative to equally likely

events with known probability (Ellsberg, 1961, Trautmann and van de Kuilen, 2015).

We take this empirical evidence at face value and incorporate these biases into our

model by characterizing the decision maker’s preferences using rank-dependent util-

ity (Quiggin, 1982) and source theory (Abdellaoui et al., 2011, Baillon et al., 2023). No-

tably, it is assumed that all individuals, regardless of their initial wealth, suffer from

probability weighting and ambiguity attitude to the same degree. Thus, our results

are not driven by the assumption that the poor suffer more from such biases.

We first focus on probability weighting. The first theoretical result of the model is

that probability weighting generates the erroneous perception that investments with-

out extreme returns are not worthwhile. This occurs because an individual suffering
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from this bias assigns too much probability weight to extreme and unlikely returns,

while assigning insufficient weight to non-extreme and likely returns. Such misper-

ception generates an underestimation of the profitability of investments. For exam-

ple, a pessimistic individual, i.e. someone who underweights all probabilities because

she erroneously believes that worse outcomes are more likely, views an investment as

profitable only when it yields a sufficiently high minimum return. This causes her to

undervalue the higher returns that an investment might yield.

Our framework also predicts that the stronger the bias is, the more likely an indi-

vidual is to underinvest. This is not a straightforward result. Consider two individuals

who exhibit different types of probability weighting: one is pessimistic, i.e. she under-

weights all probabilities (as explained in the previous paragraph), while the other is

optimistic, i.e. she overweights all probabilities because she erroneously believes that

best outcomes are more likely. Despite their opposite perceptions of probabilities, they

may exhibit the same degree of underinvestment. That is due to the fact that they as-

sign too much probability weight to extreme returns, i.e. the best or the worst returns,

generating a corresponding tendency to assign too little weight to other possible re-

turns. Moreover, as their pessimism/optimism becomes more acute, the propensity to

underweight non-extreme returns—and consequently underestimate the profitability

of the investment—increases.

The second theoretical result is that poverty worsens underinvestment due to prob-

ability weighting. It turns out that the poor not only suffer worse consequences by

making these erroneous investment choices, due to their disadvantaged position, but

they also make more sizeable mistakes. This result emerges when the consumption

utility function is sufficiently concave. In that case, the property of diminishing marginal

utility implies that the utility gains from investment are the largest among the poor,

and in the absence of biases they would invest the most. Therefore, when probabil-

ity weighting blurs these benefits, the foregone utility gains are the largest among the

poor, and they tend to underinvest to a greater extent than wealthier individuals.

We test the theoretical results using two experiments conducted among represen-

tative samples of American households. The first was originally conducted by Dim-

mock et al. (2021) using the American Life Panel, and its most relevant feature is that

it elicits the probability weighting function of respondents using a series of binary

lotteries. We use these elicitations to determine whether probability weighting has a

negative relationship with income and wealth, as predicted by our model. We find

that the majority of respondents exhibit probability weighting characterized by pes-

simism and likelihood insensitivity, i.e. the tendency to assign excessive weight to the

probabilities associated with best and worst events while assigning too little weight to
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other probabilities (Wakker, 2010). More importantly, it turns out that these two com-

ponents of probability weighting are negatively associated with family income and

financial wealth.

While the aforementioned result supports the predictions of our model, it can be

explained in other ways. Specifically, it could be argued that causality flows in the op-

posite direction, i.e. individuals who suffer most from probability weighting become

poor as a result of their biases. To dismiss this alternative interpretation and provide

causal evidence that supports our theoretical predictions, we use the experiment con-

ducted by Carvalho et al. (2016) in the GfK Knowledge panel. In that experiment,

respondents were randomly assigned to fill out a survey before or after payday. We

leverage this exogenous variation in financial resources to determine whether poorer

respondents, that is those in the before-payday group, are more likely to make invest-

ment decisions that deviate from expected utility due to probability weighting. While

we find that the deviation from expected utility is on average similar between the ex-

perimental groups, it is more pronounced among respondents in the before-payday

group who exhibit a sufficiently concave utility function, a condition that also appears

in our model to guarantee the existence of a behavioral poverty trap. Thus, the exper-

imental data conclusively validate the predictions of our model.

Finally, in order to incorporate ambiguity attitude, we extend our model by having

the individual invest in one of two goods: a risky good, whose distribution of returns

is known, and an ambiguous good, whose distribution of returns is unknown. We use

Baillon et al. (2023)’s source theory to model the decision-maker’s preferences, which

are characterized by a different weighting function in the case of the ambiguous good.

We refer to this weighting function as the source function. The difference in curvature

between the probability weighting function, i.e. the weighting function in the case of

the risky good, and the source function generates ambiguity attitude. For example, a

source function that is more convex (concave) than the probability weighting function

generates ambiguity aversion (seeking), that is, an aversion (proneness) to invest in

the ambiguous good.

The model predicts that individuals with stronger ambiguity attitude are more

likely to underinvest in the ambiguous good relative to the the risky good. Moreover,

we find that this tendency is stronger among the poor and therefore they not only

heavily underinvest in risky though profitable goods, as shown in our simpler model

with only probability weighting, but also underinvest to a greater extent in ambiguous

though profitable goods. By not fully taking advantage of profitable opportunities for

which probabilistic inference is not available, they perpetuate their poverty. We con-

clude by discussing relevant empirical evidence that supports this prediction.
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1.1. Related literature

The paper contributes to several strands of the literature. The first is the emerg-

ing literature on behavioral economics and development to which it contributes by

formalizing a novel behavioral poverty trap. Previous theoretical research has fo-

cused on the relationship between poverty and other behavioral biases, such as time-

inconsistent preferences (Bernheim et al., 2015, Banerjee and Mullainathan, 2010) and

riskless reference-dependence with aspirations as reference points (Bogliacino and Or-

toleva, 2013, Dalton et al., 2016, Genicot and Ray, 2017). To the best of our knowledge,

we are the first to demonstrate that probability weighting and ambiguity attitude

can generate poverty traps. The core of our contribution is the association between

decision-making under uncertainty and economic decision-making by the poor.

Moreover, our framework can be extended to provide novel insights and alterna-

tive explanations of existing findings. Appendix B presents an extension of the theoret-

ical framework that includes risky reference dependence. The results of that extension

are in line with those in the literature on aspirations and poverty (Dalton et al., 2016,

Genicot and Ray, 2017), according to which a low reference point among the poor can

worsen their situation. This finding is a consequence of loss aversion, which motivates

individuals to overinvest in order to avoid falling short of their reference point. Thus,

in the case that the poor have a low reference point, because, for example, it is dictated

by their current wealth, they miss out on this effect and lag behind the rich in return on

investment. In addition, deviations from expected utility due to probability weighting

and ambiguity attitude can provide an alternative explanation for behaviors typically

attributed to hyperbolic discounting preferences, such as, such as poor farmers’ failure

to invest in fertilizer despite prior intentions to purchase it (Duflo et al., 2011).

The model also contributes to the literature on the economic consequences of bi-

ases in decision-making under uncertainty. Previous research shows that probability

weighting influences behavior in economically relevant situations such as insurance

choice (Barseghyan et al., 2013), portfolio choice (Polkovnichenko, 2005, Dimmock et

al., 2021), incentive design and contracting (González-Jiménez, 2024), and auctions

(Gershkov et al., 2022), among others. Similarly, ambiguity attitude has been shown

to also affect choices in these settings (Bose et al., 2006, Amarante et al., 2017, Grant et

al., 2018, Dimmock et al., 2016b, Bryan, 2019). Thus, another novelty of this paper is

that we are the first to show that these biases can perpetuate poverty.

Finally, our paper reconciles various results from the empirical literature on devel-

opment economics. It incorporates the finding that individuals in developing coun-

tries deviate from expected utility in the presence of risk (Humphrey and Verschoor,

2004, Harrison et al., 2010) and ambiguity (Li, 2017, Bryan, 2019). The model is also in
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line with the finding that these deviations from expected utility are of similar magni-

tude to those exhibited by individuals in developed countries (L’Haridon and Vieider,

2019a, l’Haridon et al., 2018). Moreover, by including these patterns of choice under

uncertainty in our theoretical framework, we are able to provide an alternative expla-

nation for the regularity that the poor exhibit a low demand for profitable investments.

The remainder of the paper is organized as follows. Section 2 presents a stylized

model that serves as an example to establish the intuition of the theoretical framework.

Section 3 focuses on risk and shows that the results from Section 2 can be extended to

a more general setting. It also shows that the model’s predictions are empirically val-

idated by data from two experiments. Section 4 extends the theoretical framework to

a setting of unknown probabilities and discusses existing empirical evidence that cor-

roborates the predictions of this more general framework. Finally, Section 5 discusses

extensions and robustness.

2. A Motivating Example

Consider an individual endowed with a level of initial wealth x0 ≥ 0. At period t = 0,

she decides on a level of investment e ≥ 0 that will affect her future returns, such

as, for instance, the amount of fertilizer to buy in order to enhance the growth of her

future crop. For simplicity, we suppose that there are two levels of investment: low,

eL, and high, eH , where eH > eL, which correspond to, say, not buying fertilizer and

buying fertilizer, respectively.

Investments carry an immediate disutility denoted by c(e). For simplicity, we con-

sider a setting in which only the higher level of investment is costly: c(eH) = c where

c > 0 and c(eL) = 0. At period t = 1, the individual learns whether the return on her

investment, which we denote by x, is high x = xH > 0 or low x = 0. Hence, at the

moment of decision, the individual does not know with certainty whether the invest-

ment will increae her income. It is assumed that the higher level of investment does

indeed increase her chances of obtaining the higher level of income. Formally, let p(e)

be the probability of obtaining xH for a given investment level e, where it is assumed

that 1 > p(eH) > p(eL) > 0.

In our setting, the assumption that the individual perceives probabilities accurately

is relaxed, and she may systematically misperceive probabilities. Specifically, p(eH)

and p(eL) are perceived by the individual as w(p(eH)) and w(p(eL)), respectively. To

limit the scope of mistakes that the individual can make, we assume that her misper-

ception of probabilities respects ordering. Thus, 1 > w
(
p(eH))

)
> w

(
p(eL))

)
> 0.
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A high level of investment is chosen when the resulting (weighted) utility is larger

than that resulting from a low level. That is:

w
(
p(eH)

)
u(xH + x0) +

(
1− w

(
p(eH)

))
u(x0)− c ≥

w
(
p(eL)

)
u(xH + x0) +

(
1− w

(
p(eL)

))
u(x0)

⇔ ∆w
(
u(xH + x0)− u(x0)

)
≥ c,

(1)

where u is the individual’s consumption utility and ∆w is defined as the difference

between the perceived probabilities, i.e. w
(
p(eH)

)
−w

(
p(eL)

)
. Equation (1) shows that

high investment is chosen when the disutility of that action, c, is outweighed by the

perceived utility gain, ∆w(u(xH + x0) − u(x0)). The agent is indifferent between high

and low investment for the cost level ĉr := ∆w
(
u(xH + x0)− u(x0)

)
.

If the individual correctly perceives probabilities, she would choose a high level of

investment when:

∆p
(
u(xH + x0)− u(x0)

)
≥ c, (2)

where ∆p is defined as the difference in probabilities p(eH) − p(eL). Let ĉe be the cost

which ensures that (2) binds with equality, i.e. ĉe = ∆p
(
u(xH + x0)− u(x0)

)
.

We are now in a position to compare the individual’s choice of investment with that

she would have made in the absence of probability weighting. To that end, subtract

the left-hand side of (2) from that of (1) to obtain:

(∆w −∆p)
(
u(xH + x0)− u(x0)

)
. (3)

Notice that (3) is equivalent to computing the difference ĉr − ĉe.
Suppose that the individual’s probability weighting reduces the perceived effec-

tiveness of a high level of investment, that is, let ∆p > ∆w. The expression in (3) is

now negative, which implies that ĉr < ĉe. Hence, for c ∈ (ĉr, ĉe) the individual does

not choose a high level of high investment because she erroneously perceives that the

utility gains from making that choice do not offset the costs. In this case, we say that

probability weighting prevents the individual from taking advantage of profitable in-

vestments.

We now show that the poor make these investment errors to a greater extent than

the rich. Assume that the consumption utility function is concave, that is, u′ > 0, u′′ <

0, and u(0) = 0, which implies that u′(xH + x0)− u′(x0) < 0. In other words, marginal

increases in initial wealth lead to diminishing utility gains. Hence, the expression in (3)

becomes more negative and the set c ∈ (ĉr, ĉe) is extended as initial wealth decreases.
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Therefore, the difference between ĉe and ĉr is the largest for the poorest individuals.

The utility lost by not opting for a high level of investment when c is just above ĉr is

greatest for the poor, leading to higher underinvestment than any other individuals in

the society.

This simple example illustrates the underlying mechanism of our poverty trap. The

poor, like everyone else in society, misperceive probabilities. However, this has more

severe consequences for the poor, since it leads them to underinvest in profitable op-

portunities to a greater extent. This behavior perpetuates their poverty, since they end

up with lower expected income than if they had accurately perceived probabilities.

3. Probability Weighting Functions and Poverty Traps

In this section, we focus exclusively on decision making under risk. We first demon-

strate that our proposed poverty trap emerges in a general framework. In particular,

investment choice in the model is a continuous variable; returns are also continuous;

the agent can exhibit different types of probability weighting not just underweighting

as in the example presented above; the agent exhibits discounting; and initial wealth is

not necessarily independent of income. Subsequently, we provide empirical evidence

from two experiments that validate our proposed poverty trap.

3.1. The Theoretical Framework

Consider an individual who lives for two periods, t = 0 and t = 1, and has initial

wealth x0 ∈ χ = [
¯
x, x̄], where

¯
x ≥ 0. At period t = 0, she chooses the investment level

e ∈ [0, ē], which affects her future income x ∈ χ. We assume throughout that a chosen

level of investment, e, generates disutility c(e) with the following properties:

Assumption 1. The disutility of investment is given by c(e) : [0, ē] → [0,+∞) which is

twice continuously differentiable and exhibits c(0) = 0, c′(e) > 0, and c′′(e) > 0.

The variable x captures returns on investment. We assume that the return is real-

ized at t = 1, making it uncertain at the time the individual chooses e. Thus, we model

x as a random variable with distribution F (x|e). We make the following assumption

on the function F (x|e):

Assumption 2. The cumulative density function F (x|e) is twice continuously differentiable

with respect to x and e, and fulfills the following conditions:

(i) Fx(x|e) = f(x|e) ≥ 0;
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(ii) Fee(x|e) > 0; and

(iii) d
dx

(fe(x|e)
f(x|e)

)
> 0.

Assumption 2 includes three properties that are central to our analysis. The first

is that F (x|e) admits a probability density function denoted by f(x|e). According to

the second, the cumulative density function is convex with respect to e, which, in

the absence of underweighting or overweighting of probabilities, ensures both an in-

terior solution and the validity of the first-order approach (Laffont and Martimort,

2002). The final property is the monotone likelihood ratio property, which implies

that, among other things, a higher level of investment leads to a higher probability of

obtaining a high return.

Final wealth is the result of the interplay between initial wealth x0 and the return

on investment x. We assume that the relationship between these two variables is gov-

erned by the function b(x, x0) about which we make the following assumption:

Assumption 3. The wealth production function b : χ × χ → R+ is twice continuously

differentiable and exhibits bx0(x0, x) > 0, bx(x0, x) > 0, and bx0,x(x0, x) ≥ 0.

Thus, final wealth is monotonically increasing with respect to wealth and income.

This assumption entails two possible relationships between initial wealth and income.

First, they may be complementary, i.e. bx,x0(x0, x) > 0, in which case they amplify each

other in generating final wealth. Second, they may be independent, i.e. bx,x0(x0, x) = 0,

as in the example in Section 2.

We now describe the individual’s risk preferences. Choosing an investment level

e not only generates disutility (Assumption 1), but also produces utility from the ex-

pected level of final wealth. These utility gains are described by the following expected

utility functional:

E
(
u(x, e)

)
= D(1)

∫ x̄

¯
x

u
(
b(x0, x)

)
dF (x|e)− c(e), (4)

whereD(1) ∈ (0, 1) is the discounting applied to the expected consumption utility that

will be derived in period t = 1.

Furthermore, consumption utility u is assumed to have the following properties:

Assumption 4. The function u : R+ → R is twice continuously differentiable and exhibits

u(0) = 0, u′(x) > 0, and u′′(x) < 0.

An implication of Assumption 4 is that the individual exhibits diminishing returns

to final wealth. Under expected utility (henceforth EU), this implies that the individual

is risk averse.
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3.1.a. Probability Weighting Functions and their Decomposition.– We deviate from ex-

pected utility by relaxing the assumption that the individual perceives probabilities

accurately. It is assumed instead that she can exhibit probability weighting, which

will affect her risk attitude. We model this feature by means of a probability weight-

ing function w(p) that transforms objective probabilities. The following assumptions

are imposed on w(p):

Assumption 5. Let p ∈ [0, 1]. The probability weighting function w : [0, 1] → [0, 1] is twice

continuously differentiable and exhibits the following properties:

(i) w(0) = 0 and w(1) = 1;

(ii) w′(p) > 0 for all p ∈ (0, 1) ;

(iii) For some p̃ ∈ [0, 1], w′′(p) < 0 if p < p̃ and w′′(p) > 0 if p > p̃;

(iv) limp→0w
′(p) > 1 and limp→1w

′(p) = 0 if p̃ = 0;

(v) limp→1w
′(p) > 1 and limp→0w

′(p) = 0 if p̃ = 1;

(vi) limp→1w
′(p) > 1 and limp→0w

′(p) > 1 if p̃ = 1;

(vii) If p̃ ∈ (0, 1), then there exists a p̂ ∈ (0, 1) such that w(p̂) = p̂.

The probability weighting function is a strictly increasing and continuous function

that maps the unitary interval onto itself. It exhibits at least two fixed points: one at

impossibility, i.e. p = 0, and one at certainty, i.e. p = 1. Moreover, w(p) can have three

possible shapes: concave, convex, or inverse-S, which are determined by the location

of the inflection point p̃ ∈ [0, 1]. It is worth emphasizing that when the function has

the inverse-S shape (because p̃ ∈ (0, 1)) an additional fixed point emerges which we

denote by p̂ ∈ (0, 1).

The risk preferences of the agent with probability weighting are characterized by

rank-dependent utility (henceforth RDU) (Quiggin, 1982):

RDU
(
u(x, e)

)
= D(1)

∫ x̄

¯
x

u
(
b(x0, x)

)
d
(
w
(
1− F (x|e)

))
− c(e), (5)

An RDU individual transforms probabilities as follows. For given return and in-

vestment levels, i.e. X ∈ χ and e′ ∈ [0, ē], she considers the rank or probability of

obtaining a higher level of return, where the probability is 1 − F (X|e′), and is per-

ceived by the decision maker as w
(
1 − F (x|e′)

)
. In other words, probabilities in our

setting are decumulative, such that p = 1 − F (x|e), and are transformed using the

function w with properties as described in Assumption 5.

Accordingly, note that a return which is infinitesimally worse than X generates a

marginal difference in perceived ranks captured by the expression d
(
w
(
1−F (X|e′)

))
,

which is the differential of the integral in (5). Therefore, the rank-dependent functional

given in (5) implies that the utility derived from a return X , i.e. u(X), is weighted by
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its contribution to the perceived rank d
(
w
(
1−F (X|e′)

))
, and those weighted utilities

are summed over all possible returns x ∈ χ.

Under RDU, the individual’s risk attitudes are jointly determined by the curvature

of the functions u and w. The risk attitude generated by the curvature of u is common

to both EU and RDU, while that generated by the curvature of w is exclusive to RDU.

This latter influence of probability weighting on risk attitude is known as probabilistic

risk attitude (Wakker, 1994) and it captures the influence of deviations from expected

utility in decision making under risk.

To comprehensively investigate the relationship between poverty and probability

weighting, we follow Wakker (2010) by distinguishing between two types of probabil-

ity weighting. The first is the result of pessimism or optimism. This type of probability

weighting captures the idea that the individual irrationally believes that favorable out-

comes, in the case of optimism, and unfavorable outcomes, in the case of optimism,

realize more often than they actually do.

We incorporate pessimism into the model using convex probability weighting func-

tions, which have the property that larger probability weights are assigned to the

probabilities associated with the lowest levels of return. In contrast, optimism is rep-

resented by concave probability weighting functions, which assign larger probability

weights to the probabilities associated with the highest levels of returns. Figure 1 pro-

vides examples of optimism and pessimism.

p

w(p)

0

(a) Example of Optimism

p

w(p)

0

(b) Example of Pessimism

Figure 1: Optimism and Pessimism

Definition 1. Optimism (pessimism) is characterized by a w(p) with the properties of As-

sumption 5 and p̃ = 1 (p̃ = 0)

We are interested in investigating the effect of more severe probability weighting

due to stronger optimism or pessimism on investment. The following definition, due

to Yaari (1987), provides a formal basis for understanding different degrees of opti-

mism and pessimism.
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p

w(p)

0

(a) Example of extreme likelihood insensitivity

p

w(p)

0

(b) Example of moderate likelihood insensitiv-
ity

Figure 2: Examples of likelihood insensitivity

Definition 2. An agent i with weighting function wi(p) is more optimistic ( pessimistic) than

an agent with weighting function wj if wi(p) = θ
(
wj(p)

)
where the function θ : [0, 1]→ [0, 1]

is twice continuously differentiable and exhibits θ′ > 0 and θ′′ < 0 (θ′′ > 0).

We are now in a position to establish the influence of stronger pessimism/optimism

on risk attitude. The following remark states that they have opposite effects: stronger

optimism makes the decision maker more risk seeking, while stronger pessimism

makes the decision maker more risk averse.

Remark 1. For a given investment level e, stronger optimism (pessimism) leads to more less)

risk aversion.

The second type of probability weighting is generated by likelihood insensitivity

(Tversky and Wakker, 1995, Wakker, 2010), which captures the idea that individuals

transform probabilities as a result of cognitive and perceptual limitations. More specif-

ically, individuals exhibit extremity-orientedness: they are overly sensitive to changes

in extreme probabilities and are not sufficiently sensitive to changes in intermediate

probabilities.

We characterize likelihood insensitivity using an inverse-S probability weighting

function (see Figure 2) An individual with such a probability weighting function as-

signs too much probability weight to the probabilities of extreme returns and too little

to the probabilities of intermediate returns.

Definition 3. Likelihood insensitivity is characterized by a w(p) with the properties of As-

sumption 5 and p̃ = 0.5 and p̂ = 0.5.

Note that our definition of likelihood insensitivity assumes that the probabilities of

intermediate outcomes are perceived to be close to 0.5. This property captures the idea

that when assessing the likelihood of intermediate outcomes, the insensitive individ-

ual will often have a crude perception of these probabilities as being close to “50-50.”

11



It will later become useful to characterize an individual according to her degree of

likelihood insensitivity. The following definition, based on Baillon et al. (2023), states

that stronger likelihood insensitivity is reflected in a probability weighting function

with a more accentuated inverse-S shape.

Definition 4. An individual i with weighting function wi is more likelihood insensitive than

an individual j with weighting function wj if wi = φ
(
wj(p)

)
where φ : [0, 1] → [0, 1] is a

function with likelihood insensitivity in the sense of Definition 3.

The following remark states that an individual with a strong degree of likelihood

insensitivity assigns more weight to the probabilities of the highest and lowest returns,

and less weight to the probabilities of intermediate returns.

Remark 2. If individual i is more likelihood insensitive than individual j in the sense of

Definition 4, then her weighting functions exhibits wi(p) > wj(p) for all p ∈ (0, 0.5) and

wi(p) < wj(p) for all p ∈ (0.5, 1).

Whether stronger likelihood insensitivity generates more risk aversion or more risk

seeking depends on the distribution of returns F (x|e). When that distribution is right-

skewed, stronger likelihood insensitivity generates more risk aversion. This is because

the larger weight given to probabilities associated with low returns together with more

probability mass being assigned to these outcomes reduces the attractiveness of invest-

ing. In this case, the individual overweights the already large probability of obtaining

a low return. The opposite is true for a left-skewed distribution, and stronger likeli-

hood insensitivity will generate more risk seeking.

The following lemma presents the crucial result that more extreme probability

weighting, regardless of whether it is caused by stronger optimism, stronger pes-

simism, or stronger likelihood insensitivity, generates a larger segment in which prob-

abilities are given insufficient weight.

Lemma 1. For a given investment level e, stronger pessimism, stronger optimism, or stronger

likelihood insensitivity generates a larger set of probabilities for which the probability weighting

function exhibits w′(p) < 1.

A higher degree of optimism leads to more weight being assigned to the probabil-

ity of the highest return. Since the probability weighting function must be on average

equal to one, i.e. −
∫ x̄

¯
x
w′(1 − F (x|e))f(x|e)dx = 1, this overweighting of the best out-

come implies that lower weights will be assigned to the probabilities of all other possi-

ble outcomes. Consequently, the set of probabilities that receive lower weight relative

to the expected utility benchmark—that is, a weight less than one—is augmented. The

12



opposite is true for a higher degree of pessimism. In that case, the set of probabilities

that receive insufficient weight relative to the EU benchmark is expanded and is lo-

cated at the high end of the outcome space. Moreover, a higher degree of likelihood

insensitivity leads an individual to assign more weight to the probabilities of extreme

returns at the expense of assigning less weight to all other returns. Therefore, the set

of probabilities that receive insufficient weight is again augmented and is located at

the probabilities associated with intermediate returns.

3.1.b. Behavioral Poverty Traps.– We are now in a position to investigate the influence

of probability weighting on the individual’s choices. To do so, we will contrast the

optimal investment level of an RDU decision maker to that of an otherwise identical

EU decision maker. The following proposition focuses on probability weighting due

to pessimism and shows that sufficiently strong pessimism leads the RDU individual

to underinvest relative to the hypothetical case in which she is EU.

Proposition 1. Assume that Assumption 1-5 hold and that w′′(p) > 0 for all p ∈ [0, 1].

There exists a threshold level of pessimism at which the RDU individual chooses a lower level

of investment than her EU counterpart. If the RDU individual is more pessimistic than that

threshold, in the sense of Definition 2, then again there is underinvestment.

The RDU individual with sufficiently strong pessimism underinvests relative to

the EU individual because her probability weighting generates the erroneous percep-

tion that investments that do not guarantee a high enough minimal return are not as

profitable as they actually are. For example, investments that are on average profitable

but have low minimal returns are unappealing to this individual.

In order to elucidate the mathematical rationale underlying Proposition 1, consider

two probabilities p1, p2 ∈ (0, 1) such that p2 = p1 + ε for small enough ε > 0. In the

context of our model, ε is the improvement in returns from choosing a higher level of

investment. Suppose that w′(p1) < 1, which by the definition of a derivative can be

rewritten as limε→0
w(p1+ε)−w(p1)

ε
< 1. This implies that w(p2)−w(p1) < p2 − p1 for close

enough p2 and p1. Recall from the example in Section 2 that by evaluating the proba-

bilities p1 and p2 in this way leads individuals to undervalue the benefits of choosing

the higher level of investment. Furthermore, Lemma 1 demonstrated that stronger

pessimism expands the set of probabilities that yield w′(p) < 1, which makes the as-

sumption w′(p1) < 0 less stringent and therefore valid for a larger set of probabilities

p1. Therefore, it can be said that stronger pessimism encourages underinvestment.

We can similarly analyze the influence of optimism and likelihood insensitivity on

an individual’s choices. The following proposition shows that stronger optimism or

stronger likelihood insensitivity increases the probability that a decision maker will

13



forgo a profitable investment. These types of probability weighting can therefore gen-

erate extreme underinvestment since they may cause the individual to avoid investing

altogether.

Proposition 2. Assume that Assumption 1-5 hold and that w′′(p) < 0 for some p ∈ [0, 1].

Under stronger likelihood insensitivity, in the sense of Definition 2, or stronger optimism, in

the sense of Definition 4, an RDU individual is more likely to choose an investment level of

zero while her EU counterpart chooses a strictly positive level of investment.

The RDU individual suffering from sufficiently strong optimism or likelihood in-

sensitivity might forgo profitable investments because her probability weighting leads

to the incorrect perception that investments which do not generate extreme returns are

not worthwhile. In the case of sufficiently strong optimism, the individual erroneously

perceives that only investments that guarantee a sufficiently high maximum return are

profitable. In the case of sufficiently strong insensitivity, the individual incorrectly per-

ceives that only investments with sufficiently high maximum and minimum returns

are profitable. Essentially, these individuals would pass over opportunities that do not

exhibit extreme even though they are profitable in expectation.

The mathematical rationale behind this result is similar to that of Proposition 1

given above. In particular, stronger likelihood insensitivity or optimism extends the

segment of probabilities in which the probability weighting function exhibits w′(p) <

1. This implies that more investments will be undervalued relative to the EU bench-

mark. Moreover, because of the non-convexities generated by the concavity of the

probability weighting function in the case of optimism and likelihood insensitivity,

the optimal solution is at the extremes of the set [0, ē]. Thus, the optimal solution is to

choose an investment level of zero when an investment is undervalued. This is in con-

trast to the choices that the individual would have made under EU, in which case the

non-convexities due to probability weighting are avoided and as a result the optimal

level of investment is an interior solution.

Thus far, Proposition 1 and 2 demonstrate that all individuals, regardless of their

initial wealth, may erroneously underinvest or forgo profitable opportunities if they

suffer from sufficiently strong probability weighting. The following proposition shows

that under reasonable conditions on consumption utility, poor individuals either ex-

hibit the greatest degree of underinvestment or forgo opportunities more often rela-

tive to wealthier individuals. Thus, poverty exacerbates the underinvestment caused

by probability weighting.

Proposition 3. Assume that Assumption 1-5 hold and the condition
−u′′
(
b(x0,x)

)
u′(x0,x)

>
bx,x0 (x0,x)

bx0 (x0,x)bx(x0,x)

hold for all x. As x0 decreases, the RDU individual:
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(i) invests less relative to her EU counterpart when her level of pessimism exceeds the thresh-

old characterized in Proposition 1; or

(ii) more frequently chooses an investment level of zero for a given level of likelihood insen-

sitivity or optimism.

Thus, although the poor may suffer from probability weighting to the same extent

as the rich, they experience more acute economic consequences as a result of proba-

bility misperception. They either underinvest to a greater extent or completely forgo

profitable investments more often. These behaviors reduce their prospects of escaping

poverty.

Importantly, Proposition 3 requires that the curvature of the consumption utility

function is sufficiently concave (Assumption 4) so as to outweigh the complementarity

between initial wealth and investment returns (Assumption 3). This condition guar-

antees the property of diminishing marginal utility of wealth, which implies that those

with the lowest initial wealth experience the largest gains in consumption utility from

investment. Consequently, when probability weighting gets in the way of investment,

the poor exhibit the largest gap in utility with respect to their EU counterparts.

Our behavioral poverty trap is characterized by Propositions 1-3, which show that

probability weighting can lead individuals to underinvest or to forgo profitable op-

portunities, and that this error is more pronounced among the poor. Consequently,

the poor will end up having the lowest final expected wealth even though they had

an opportunity to improve their initial condition by exploiting profitable investments.

Their poverty is perpetuated by a systematic misperception of probabilities. In the

next subsection, this hypothesis will be empirically examined.

3.2. Empirical Evidence

In order to determine the empirical validity of our behavioral poverty trap, we use

the data of Dimmock et al. (2021) who conducted an incentivized experiment among a

representative sample of American households. Their experiment elicited the prob-

ability weighting functions of respondents from the American Life Panel (ALP) to

analyze the relationship between household portfolio diversification and probability

weighting.

The experiment used the method of Abdellaoui (2000), which has the ability to

elicit the utility and probability weighting functions of each respondent in a non-

parametric way. This is achieved by implementing a set of binary lotteries that keep

probabilities fixed, in order to elicit utility function curvature, and a set of binary lot-

teries that keep outcomes fixed and vary probabilities in order to elicit probability
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weighting function curvature. Therefore, the data can be used to identify and separate

the two components of risk attitude in the case of RDU.

A disadvantage of Dimmock et al. (2021)’s elicitation is that it confounds prob-

ability weighting due to likelihood insensitivity with probability weighting due to

pessimism/optimism. To deal with this, we fit each respondent’s choices to paramet-

ric forms of probability weighting that identify these factors of probability weighting.

Specifically, we first fit the data to Prelec (1998)’s probability weighting function. This

is an empirically desirable function since it accounts for changes at both small and

large probabilities (Wakker, 2010). Formally, for each respondent i, we estimate the

functional:

w(pij) = exp
(
− βi

(
− ln(pij)

)αi). (6)

In the estimation, we only used the questions designed to elicit probability weighting

functions, which are indexed by j. The parameters αi and βi are estimated using non-

linear least squares, a method that has been widely used to estimate parameters of the

probability weighting function (Abdellaoui et al., 2011, Dimmock et al., 2021, Li et al.,

2018)

Importantly, the estimate α̂i captures the respondent i’s likelihood insensitivity

(Wakker, 2010). The closer α̂i is to zero, the more insensitive the respondent is, and

conversely a value of α̂i closer to one implies a perception of probabilities closer to EU.

Therefore, we use −α̂i (if α̂i < 1) as a continuous index of insensitivity that we refer to

as“Inverse-S.” Conversely, we use α̂i (if α̂i > 1) as a continuous index of oversensitivity

to probabilities that we refer to as“S-shape.” The larger is the latter index, the more

pronounced will be the S-shape of the respondent’s probability weighting function. In

this case, the decision maker also deviates from EU by assigning too much weight to

intermediate outcomes.

Furthermore, the estimate β̂i indicates whether participant i exhibits pessimism

or optimism (Wakker, 2010). If β̂i < 1, the respondent exhibits pessimism, while if

β̂i > 1, she exhibits optimism. That estimate also captures the degree of optimism or

pessimism. Accordingly, lower values of β̂i denote stronger pessimism when β̂i < 1,

while higher values of β̂i denote stronger optimism when β̂i > 1.

We also estimate the respondent’s consumption utility function. The questions in

the survey that were designed to elicit utility curvature were used to estimate the

following CRRA utility for each respondent i:

u(xij) = x1−γi
ij . (7)
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We used non-linear least squares to estimate the parameter γ. Importantly, the

estimation of the utility curvature parameter was performed simultaneously with the

estimation of probability weighting parameters.

Table 1 presents descriptive statistics of α̂i and β̂i. We applied a 95% winzorization

to the estimates of βi in order to reduce the effect of outliers.1 On average, respondents

exhibited likelihood insensitivity and pessimism, given that the average value of α̂i is

less than one and that of β̂i is greater than one. Figure 3a illustrates the median prob-

ability weighting function, which is also characterized by pessimism and likelihood

insensitivity.

These findings are further corroborated by analyzing the estimates at the individ-

ual level. We find that a majority of respondents, 2012 out of 2640, exhibit α̂i < 1,

which indicates likelihood insensitivity. Furthermore, a majority of subjects, 1872 out

of 2640, exhibit β̂i > 1, which indicates pessimism. These results are in line with

experimental findings (Abdellaoui, 2000, Abdellaoui et al., 2011, Bruhin et al., 2010,

L’Haridon and Vieider, 2019b).

Table 1: Estimates of Probability Weighting

Prelec (1998) Chateauneuf et
al. (2007)

Goldstein and
Einhorn (1987)

α̂i β̂i ŝi ĉi φ̂i δ̂i
Mean 0.815 1.855 0.594 0.028 0.885 0.934

25th perc. 0.361 0.932 0.257 -0.118 0.540 0.187
50th perc. 0.630 1.411 0.611 0.001 0.743 0.491
75th perc. 0.972 2.329 0.891 0.056 1.024 1.066
St. Dev. 1.211 1.550 0.358 0.067 0.615 1.268

This table presents the descriptive statistics for estimates of probability
weighting obtained at the respondent level. The first two columns present
the descriptive statistics of the parameters when the form w(pij) = exp

(
−

βi
(
− ln(pij)

)αi), due to Prelec (1998), is assumed. Columns 3 and 4
present the descriptive statistics of the parameters when the form w(pij) =

0 if p = 0,

ci + si · pij if p ∈ (0, 1),

1 if p = 1.

, due to Chateauneuf et al. (2007), is assumed.

Columns 5 and 6 present the descriptive statistics of the parameters when

the form w(pij) =
δip

φi
ij

δip
φi
ij +(1−pij)φi

, due to Goldstein and Einhorn (1987), is as-

sumed. All estimates were obtained using non-linear least squares.

Another advantage of these data is that in previous waves of the ALP, the same re-

spondents were also asked to report their levels of income and wealth, which makes it

1Prior to transforming the data, the mean of β̂i was equal 6.148, which is considerably higher than es-
timates reported in previous studies. Moreover, the standard deviation of β̂i was 27.92, which indicates
an exceptionally high variance.
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Figure 3: Median probability weighting functions
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Note: The blue lines represent the median probability weighting function in the sample while the
dashed lines represent the accurate perception of probabilities benchmark.

possible to analyze the relationship between the aforementioned indexes of insensitiv-

ity and pessimism, and those responses. In particular, we included in our analyses the

variables “Financial Wealth”, which is the household’s self-reported financial wealth;

“Return Stock”, which is the households’ self-reported return on individual stocks and

stock mutual funds in retirement accounts, “Family Income”, which is the household’s

self-reported income; and “Housing Wealth”, which is the household’s self-reported

housing wealth. Table 2 presents the descriptive statistics of these variables, which

shows these variables to be continuous and expressed either in dollars or thousands

of dollars. Furthermore, the standard deviation of each variable is larger than its mean,

which indicates substantial variance. To stabilize this variability, we work with natural

logarithms of these variables, as in Dimmock et al. (2021) and Dimmock et al. (2016b).

To examine the influence of probability weighting on self-reported income and

wealth, we regress each of the transformed income and wealth variables on our in-

dexes of probability weighting. The advantage of running regressions in which each

of these variables serves as the dependent variable in turn is that they capture differ-

ent dimensions of income and wealth, which can inform us about the specific context

in which our poverty trap operates. For example, Return Stock captures income with

lower liquidity relative to Family Income, and might therefore be less relevant in the

case of the poorest households. Similarly, Housing Wealth represents low-liquidity

asset relative to Financial Wealth, which, again, might be less important in the case of
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Table 2: Descriptive Statistics of Income and Wealth

Variable Unit Mean
25th
Perc.

50th
Perc.

75th
Perc.

St. Dev. Obs.

Financial Wealth 1000s USD 139.673 0 2.500 38 1897.933 1954
Return Stock 1 USD 260275.800 30000 114000 350000 439687.8 951
Family Income 1000s USD 76.516 32.5 67.500 112.5 53.350 2659
Housing Wealth 1000s USD 483.909 0 100 250 13054.750 1943

This table presents descriptive statistics for the variables that capture the respondents’ self-
reported income and wealth. The variables are “Financial Wealth” which captures the house-
hold’s self-reported financial wealth in thousands of US dollars, “Return Stock” which captures
the households self-reported return on individual stocks and stock mutual funds in retirement
accounts in US dollars, “Family Income” which captures the household’s self-reported income
in thousands of US dollars, and “Housing Wealth” which captures the household’s self-reported
housing wealth in thousands of US dollars.

the poorest households.

Moreover, we control for the respondent’s utility curvature in all the regressions,

with the goal of focusing on the effect of probabilistic risk attitudes above and be-

yond the risk attitude generated by utility curvature. In some specifications, we also

include other control variables that might moderate the relationship between probabil-

ity weighting and income (or wealth), such as the respondent’s age, gender, ethnicity,

level of education, state of residence, spoken language, and employment status.

The OLS estimates are presented in Table 3. Our main finding is that higher like-

lihood insensitivity, as captured by the index Inverse-S, is associated with lower fi-

nancial wealth, lower return on stocks, and lower family income. Furthermore, these

relationships remain highly significant even after the introduction of controls. These

results are in line with the prediction of our model that sufficiently strong insensi-

tivity generates underinvestment, which in turn lowers expected income and wealth,

and this underinvestment is more pronounced among the poor (Propositions 2 and 3).

Furthermore, the coefficient Inverse-S is not significant when Housing Wealth is the

dependent variable, suggesting that for the measures of low wealth liquidity, which as

mentioned above are less relevant in the case of poorest households, our hypothesis

cannot be empirically confirmed. The same qualitative results are obtained without

winsorization (see Table 7 in Appendix C).

Notably, the estimates in Table 3 also show that neither pessimism nor optimism

affects the respondent’s income and wealth. This result contradicts the prediction of

Propositions 1 and 3 that sufficiently strong pessimism or optimism generates under-

investment and that poverty amplifies this tendency. This lack of support for our

hypothesis can be explained by the fact that β̂i can be confounded by factors other

than pessimism or optimism, such as insensitivity and utility curvature (Gonzalez and
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Wu, 1999, Abdellaoui et al., 2011, Li et al., 2018). To overcome this potential problem,

we perform the same empirical exercise using other parametric forms of probability

weighting which are better able to separate optimism and pessimism from other de-

terminants of risk attitude.

Table 3: The Relationship between Prelec (1998)’s Probability Weighting Function and
Income or Wealth

(1) (2) (3) (4) (5) (6) (7) (8)
Ln Ln Ln Ln Ln Ln Ln Ln

Financial Return Family Housing Financial Return Family Housing
Wealth Stock Income Wealth Wealth Stock Income Wealth

Inverse-S -1.301∗∗∗ -1.520∗∗∗ -0.184∗∗∗ -0.138 -1.127∗∗∗ -1.236∗∗∗ -0.152∗∗ -0.099
(0.400) (0.434) (0.067) (0.212) (0.347) (0.406) (0.060) (0.184)

S-shaped -0.137 -0.087 -0.041∗∗ -0.079 -0.101 -0.027 -0.020 -0.054
(0.095) (0.098) (0.018) (0.049) (0.067) (0.090) (0.015) (0.041)

Opt./Pess. -0.037 -0.052 -0.011 -0.008 -0.084 -0.104 -0.014 -0.041
(0.096) (0.105) (0.017) (0.050) (0.087) (0.101) (0.016) (0.045)

U. Curv 0.013∗∗ 0.014∗∗ 0.001 0.004 0.012∗ 0.013∗∗ 0.001 0.004
(0.006) (0.006) (0.001) (0.003) (0.006) (0.006) (0.001) (0.003)

Constant 6.110∗∗∗ 4.373∗∗∗ 10.891∗∗∗ 3.409∗∗∗ 2.293∗ -3.305∗∗∗ 9.859∗∗∗ -3.126∗∗∗

(0.281) (0.300) (0.049) (0.147) (1.320) (1.266) (0.248) (0.742)
R2 0.015 0.012 0.010 0.004 0.217 0.129 0.153 0.234
N 1902 2245 2629 1921 1901 2244 2628 1920

This table presents OLS estimates of the model yi = b0 + b1Inverse-Si + b2S-shapedi + b3 Opt./Pess.i +
b3U.curvi.+Controls′iΓ + εi . The dependent variable yi are the respondent’s self-reported measures of in-
come and wealth. “Inverse-S” is an index of likelihood insensitivity, “S-shaped” is an index of oversensitivity
to probabilities, “Opt./pess.” is an index of optimism and pessimism, and “U.curv” captures the respondent’s
utility function curvature. The estimates presented in Columns 1-4 do not include additional control variables,
and the estimates presented in Columns 5-8 do include them. Robust standard errors are presented in paren-
theses. *** denotes significance at the 0.01 level, ** denotes significance at the 0.05 level, * denotes significance
at the 0.1 level.

In particular, we assume the parametric form of Chateauneuf et al. (2007):

w(pij) =


0 if p = 0,

ci + si · pij if p ∈ (0, 1),

1 if p = 1.

(8)

This probability weighting function is recommended when constructing indexes

of pessimism and insensitivity because its parameters have a clean and simple inter-

pretation (Wakker, 2010). We estimate the parameters c and s for each respondent

i, and simultaneously estimate the power utility function given in (7). We again use

non-linear least squares to perform the estimations.

Columns 3 and 4 in Table 1 present the descriptive statistics of the estimated param-
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eters ĉi and ŝi. We did not apply winsorization to these data.2 Our previous finding

that most respondents exhibit insensitivity and pessimism again emerges when using

this alternative parametric form of probability weighting. Specifically, respondents ex-

hibit insensitivity on average given that the average estimated value of ŝi is less than

one. They also exhibit pessimism on average given that, on average, 1 − ĉi − ŝi < 1.

Figure 3b shows that these conclusions also hold for the median probability weighting

function.

Following Wakker (2010), if ŝi < 1, then we use the estimate −ŝi as a continuous

index of likelihood insensitivity which we refer to as“Inverse-S.” If ŝi > 1, we use ŝi
as an index of oversensitivity to probabilities that we refer to as “S-shape.” Finally, we

use the fraction 2ŝi+ĉi
2

as an index of optimism and pessimism. That measure compares

the extent to which a respondent overweights the smallest probabilities, i.e. those of

best outcomes, to the extent to which that same respondent underweights the largest

probabilities, i.e. those of worst outcomes.3

The estimates using these alternative indexes of probability weighting are pre-

sented in Table 4. In line with our previous estimations, we find that higher likeli-

hood insensitivity is associated with lower financial wealth, lower return on stocks,

and lower family income. Notably, we also find that stronger pessimism is related to

lower family income and financial wealth, which are the relevant measures of income

and wealth for the poorest households. Hence, using this alternative parametric form

of probability weighting function, we find support for Propositions 1-3. Table 8 in

Appendix C shows that the results are similar when 95% winsorization is applied to

the estimate ĉi, which is the analog of β̂i in Prelec (1998)’s weighting function. Thus,

whether or not the data is transformed is not crucial to the findings.

We repeat the same exercise but this time using the parametric form proposed by

Goldstein and Einhorn (1987). It has been shown to fit data well because it correctly

accounts for heterogeneity (Wu et al., 2004) and fully separates likelihood insensitivity

from pessimism (Li et al., 2018). Formally, that functional is given by:

w(pij) =
δip

φi
ij

δip
φi
ij + (1− pij)φi

. (9)

We estimate the coefficients φi and δi for each respondent, and simultaneously es-

2When we apply a 95% winzorization to the estimated values of ci, which is the analog of the pa-
rameter βi in Prelec (1998)’s weighting function, its mean is 0.0261 and its standard deviation is 0.067,
which are very close to the mean and standard deviation in Table 1. Thus, these data are potentially less
prone to generate incorrect conclusions as a result of outliers.

3As p approaches zero, the weighting function becomes w(p) = c. In contrast, as p approaches one, it
becomes w(p) ≈ 1 = c+ s. Thus, comparing a respondent’s level of optimism to her level of pessimism
is equivalent to computing the difference c − (1 − c − s). The index 2ŝ+ĉ

2 is a linear transformation of
that difference (Wakker, 2010).

21



Table 4: The Relationship between Chateauneuf et al. (2007)’s Probability Weighting
Function and Income or Wealth

(1) (2) (3) (4) (5) (6) (7) (8)
Ln Ln Ln Ln Ln Ln Ln Ln

Financial Return Family Housing Financial Return Family Housing
Wealth Stock Income Wealth Wealth Stock Income Wealth

Inverse-S -1.943∗∗ -4.004∗∗∗ -0.453∗∗∗ -1.370∗∗∗ -0.421∗∗∗ -3.365∗∗∗ -0.421∗∗∗ -0.845∗

(0.959) (1.022) (0.153) (0.506) (0.146) (0.971) (0.146) (0.450)
S-shaped 0.070 1.781∗ 0.148 0.879∗ 0.202 1.629∗ 0.202 0.551

(0.879) (0.941) (0.142) (0.463) (0.135) (0.897) (0.135) (0.418)
Opt./Pess. -2.386 -4.358∗∗ -0.665∗∗ -2.280∗∗∗ -0.560∗∗ -2.942∗ -0.560∗∗ -1.143

(1.646) (1.735) (0.271) (0.881) (0.260) (1.665) (0.260) (0.796)
U.curv. 0.037 -0.052 -0.006 0.003 -0.005 -0.056 -0.005 -0.010

(0.040) (0.042) (0.006) (0.022) (0.005) (0.041) (0.005) (0.019)
Constant 6.412∗∗∗ 4.134∗∗∗ 10.913∗∗∗ 3.409∗∗∗ 9.887∗∗∗ -3.590∗∗∗ 9.887∗∗∗ -3.184∗∗∗

(0.290) (0.307) (0.046) (0.155) (0.256) (1.295) (0.256) (0.756)
Controls NO NO NO NO YES YES YES YES
R2 0.017 0.016 0.013 0.006 0.154 0.130 0.154 0.232
N 1902 2245 2629 1921 2628 2244 2628 1920

This table presents OLS estimates of the model yi = b0 + b1Inverse-Si + b2S-shapedi + b3 Opt./Pess.i +
b3U.curvi.+Controls′iΓ + εi . The dependent variable yi are the respondent’s self-reported measures of in-
come and wealth. “Inverse-S” is an index of likelihood insensitivity, “S-shaped” is an index of oversensitivity
to probabilities, “Opt./pess.” is an index of optimism and pessimism, and “U.curv” captures the respondent’s
utility function curvature. The estimates presented in Columns 1-4 do not include additional control variables,
and the estimates presented in Columns 5-8 do include them. Robust standard errors are presented in paren-
theses. *** denotes significance at the 0.01 level, ** denotes significance at the 0.05 level, * denotes significance
at the 0.1 level.
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timate the utility function in (7). As before, we use non-linear least squares to perform

the estimations. Table 1 presents the descriptive statistics of the estimates. As in the

previous analyses, we use the estimated φ̂i to construct an index of insensitivity and

the estimated δ̂i to construct an index of optimism and pessimism.4 The estimates

presented in Table 9 in Appendix C show that our results continue to hold when

using these alternative indexes of insensitivity and pessimism. In particular, higher

pessimism and likelihood insensitivity are associated with lower family income and

financial wealth.

All in all, the empirical evidence supports the predictions of our model. However,

the empirical analysis does not establish causality. Thus, these results are also in line

with the alternative explanation that individuals who suffer the most from probabil-

ity weighting end up in poverty as a consequence of their probabilistic misperception.

Notice that this conclusion is different from our hypothesis that poverty worsens the

consequences of probability weighting. In the next section, we provide experimen-

tal evidence that rules out this alternative explanation and conclusively confirms our

predictions.

3.3. Experimental Evidence

The data of Carvalho et al. (2016) will be used to conclusively demonstrate that poverty

worsens the consequences of probability weighting. They conducted experiments us-

ing two panels of representative American households in order to investigate the in-

fluence of financial resources on economic decision-making. In both experiments re-

spondents were randomly assigned to one of two groups, and each group completed

a survey either before or after payday. The survey included a battery of questions that

elicited risk preferences and time preferences, and measured decision-making quality.

Unfortunately, the elicitation of risk preferences included in their experiment does

not make it possible to cleanly elicit probability weighting and utility functions. How-

ever, we are able to obtain those from the questions originally designed to measure

decision-making quality. Those questions were included in the survey administered

to the participants of the GfK Knowledge panel and therefore, our empirical analysis

focuses on that sample.

Decision-making quality is measured using the method of Choi et al. (2007), which

essentially requires respondents to invest an endowment in two securities whose pay-

4Specifically, if φ̂i < 1, the estimate −φ̂i is used as an index of likelihood insensitivity that we refer
to as“Inverse-S.” If φ̂i > 1, the estimated φ̂i is an index of probability oversensitivity that we refer to as
“S-shaped.” δ̂i is an index of optimism and pessimism that we refer to as “Opt./Pess.” If δ̂i > 1, the
respondent is optimistic, and if δ̂i < 1, she is pessimistic.
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outs are risky. More specifically, in each question respondents were asked to choose

the fraction of their endowment to be invested in good x1 and the rest of their endow-

ment was automatically invested in good x2. When making the decision, respondents

knew that with probability 1/2 only their investment in good x1 or x2 would generate

a return. In total, the survey included 25 such questions, which differed in the relative

prices of x1 and x2. That is, the amount of investment that could be afforded in one

good relative to the other was varied in each question.

We recovered the participant’s risk preferences using the method of Halevy et al.

(2018). The most important property of this method for our analysis is its ability to

recover their probability weighting functions and utility functions for a given level of

decision-making quality. That is because it is based on a theoretical result that separates

the participant’s consistency of choices with respect to the maximization of a non-

satiated utility function, which is Carvalho et al. (2016)’s criterion for decision-making

quality, from misspecification, which refers to the fit of the parametric forms that are

assumed in order to recover risk preferences. This separation is advantageous since it

allows us to ignore decision-making quality and focus on risk preferences.

In line with our theoretical model, we assume that participant i makes choices in

each question using the following preferences:

RDUi = ωi · ui
(

max{x1, x2}
)

+ (1− ωi) · ui
(

min{x1, x2}
)
. (10)

The variable ωi captures her probability weighting, which is assumed to have the

parametric form:

ωi =
1

2 + βi
with βi > −1. (11)

Notice that when βi > 0, the probability associated with the better outcome, namely

max{x1, x2}, is overweighted, i.e. perceived to be larger than 1/2. This overweighting

of probabilities can be due to either optimism or likelihood insensitivity combined

with optimism. In contrast, when βi < 0, the probability associated with the better

outcome is underweighted. This can be due to either pessimism or insensitivity com-

bined with pessimism. Finally, when βi = 0 the decision maker is an expected utility

maximizer.

We also assume that the consumption utility function belongs to the CRRA family:

ui(z) =

 z1−ρi
1−ρi if ρi ≥ 0 and ρi 6= 1,

ln(z) if ρi ≥ 0 and ρi = 1.
(12)
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The parameter ρ captures risk aversion due to utility curvature. For the sake of ro-

bustness, and to avoid potential misspecification due to the assumption that the utility

function belongs to the CRRA family, we also estimate an alternative model in which

the utility functional is assumed to belong to the CARA family. In that specification,

we use the parametric form u(z) = − exp
(
− Az

)
where A ≥ 0.

We use the Money Metric Index (henceforth MMI) method of Halevy et al. (2018)

to estimate, for each respondent, the parameters β and ρ in (11), as well as to estimate

the parameters β and A in the model with CARA utility. We winsorized the variable

that includes all individual estimates of ρ̂i since it included a maximum value of 331

and had a variance of 528, which have no empirical interpretation. Table 5 presents the

descriptive statistics for the resulting estimates of ρ̂i and β̂i. The table shows that the

average estimate β̂i is equal to 0.393, which implies that the probability 0.5 is perceived

by participants to be, on average, equal to 0.417. This underweighting of probabilities

is also obtained when the consumption utility function is assumed to belong to the

CARA family. In that case, the probability 0.5 is perceived to be 0.390.

Table 5: Risk preference estimates obtained from the MMI method

CRRA utility CARA utility
β̂i ρ̂i β̂i Âi

Mean 0.393 0.624 0.566 0.501
25th perc. 0.102 0.265 0.164 0.023
50th. perc. 0.238 0.399 0.341 0.037
75th. perc. 0.526 0.817 0.703 0.067

St. Dev. 0.608 0.524 0.709 2.37
This table presents the descriptive statistics for estimates
of probability weighting and utility curvature obtained for
each participant using the MMI method (Halevy et al.,
2018). The first two columns present estimates obtained
when utility is assumed to belong to the CRRA family, i.e.

ui(z) =

{
z1−ρi

1−ρi if ρi ≥ 0 and ρi 6= 1,

ln(z) if ρi ≥ 0 and ρi = 1.
Columns 3 and 4

present estimates obtained when utility is assumed to be-
long to the CARA family, i.e. u(z) = − exp

(
− Az

)
, where

A ≥ 0. Probability weighting is assumed to follow the
parametric form ωi = 1

2+βi
with βi > −1.

Our theoretical framework predicts that being poor generates greater underinvest-

ment relative to the EU benchmark. Therefore, we examine whether respondents as-

signed to the treatment group, i.e. the group that was financially constrained, are more

likely to make investment decision that deviate from EU than the control group, i.e.

the group that was not financially constrained. To do so, we first classify each respon-

dent as EU or RDU based on the value of their estimated parameter β̂i. Specifically, a
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respondent i is classified as EU if we cannot reject the null hypothesis β̂i = 0, implying

that she does not exhibit probability weighting. In contrast, we classify the respon-

dent as RDU if the null hypothesis is rejected. The test is performed by computing

95% confidence intervals of the estimated parameter β̂i using resampling.

According to our classification, the majority of subjects are RDU. In particular, we

find that 509 respondents out of 1131 (45% of the sample) can be classified as EU, while

622 exhibit significant probability weighting. When the CARA utility function is used,

we find that 449 respondents can be classified as EU (39% of the sample) while 682

exhibit significant probability weighting.

In order to investigate the relationship between our classification and the treatment

assignment, we regress a binary variable referred to as “ EU” (which takes a value of

one if a respondent is classified as EU and zero otherwise) on a treatment indicator re-

ferred to as “Before Payday”. In all the regression specifications, we control for utility

curvature, which in the case of CRRA utility is given by the estimated ρ̂i. Furthermore,

in some of the regression specifications we control for decision-making quality using

Varian’s Index (Varian, 1982), and for cognitive abilities using the time spent on the

Stroop test, which was included in the survey administered to the GfK Knowledge

panel sample.5

Table 6 presents the probit estimates of the regressions. The estimates in columns

(1), (3) and (5) show that the treatment, on its own, does not lead to a lower probability

of being classified as EU, and this result is robust to the inclusion of control variables.

Moreover, this statistically insignificant finding is in line with the results of Carvalho

et al. (2016). It is also in line with model’s assumption that the poor and non-poor

exhibit similar probability weighting.

Recall that a condition for the existence of our proposed poverty trap is that utility

curvature is sufficiently concave (see Proposition 3). If that condition holds, then our

result that poverty exacerbates the underinvestment caused by probability weighting

follows. We account for this interplay between utility curvature and poverty by in-

cluding an interaction term between the variable Before Payday and the coefficient ρ̂i.

The results of regressions that include that interaction are presented in columns (2),

(4), and (6) of Table 6, while the average treatment effect for different average levels

of ρ̂i is depicted in Figure 4. These results imply that being financially constrained

and having a more concave utility curvature increases the likelihood that investment

choices deviate from the EU benchmark.

We interpret this as evidence of underinvestment relative to the EU benchmark

5We also control for demographic variables such as ethnicity, age, education, gender, employment
status, and type of occupation.
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Table 6: The Effects of Payday on the Probability of Expected Utility

(1) (2) (3) (4) (5) (6)
EU EU EU EU EU EU

Before Payday 0.024 0.204∗ 0.023 0.210∗ 0.028 0.240∗∗

(0.075) (0.116) (0.076) (0.119) (0.077) (0.120)
ρ̂i 0.162∗∗ 0.311∗∗∗ 0.378∗∗∗ 0.534∗∗∗ 0.395∗∗∗ 0.572∗∗∗

(0.071) (0.103) (0.082) (0.113) (0.082) (0.113)
Before Payday×ρ̂i -0.286∗∗ -0.295∗∗ -0.333∗∗

(0.143) (0.146) (0.146)
Varian Index 10.115∗∗∗ 10.171∗∗∗ 10.451∗∗∗ 10.550∗∗∗

(1.950) (1.959) (1.996) (2.007)
Time Stroop test -0.000 -0.001 0.000 -0.000

(0.003) (0.003) (0.004) (0.004)
Constant -0.240∗∗∗ -0.334∗∗∗ -0.451 -0.397 -0.681 -0.635

(0.070) (0.084) (1.207) (1.208) (1.326) (1.325)
Controls NO NO NO NO YES YES
Log-likelihood -775.677 -773.686 -748.394 -746.331 -733.984 -731.407
N 1131 1131 1116 1116 1116 1116

This table presents probit estimates of the model EUi = b0 + b1Before Paydayi + b2ρ̂i + b3Before
Payday×ρ̂i+Controls′iΓ + εi. The dependent variable EUi is a binary variable that takes a value of
one if respondent i is classified as an expected utility maximizer and zero otherwise. “Before Payday”
is a binary variable that takes a value of one if responent i is assigned to the group that completed the
survey before payday. The variable ρ̂i captures subject’s i utility curvature. “Varian Index” captures
the extent to which participant’s i responsens are consistent with the maximization of a non-satiated
utility function. Time Stroop Test captures the time in seconds that respondent i spent on answering
the Stroop test questions. *** denotes significance at the 0.01 level, ** denotes significance at the 0.05
level, * denotes significance at the 0.1 level.

Figure 4: Marginal effects of Payday for different levels of ρ
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since, on average, subjects underweight the probability associated with the highest

outcome. Thus, their probability perception will lead them to invest more in the lowest

outcome, which lowers their average earnings. Our findings indicate that this effect

is more pronounced among the poor who have a sufficiently concave consumption

utility function.

Table 10 and Figure 5 in Appendix C show that these results also emerge in the case

of a CARA consumption utility. The findings are therefore not an artifact of assuming

a specific functional of utility. In that appendix, we also show that our results are ro-

bust to excluding respondents who exhibit probability overweighting. Those subjects

constitute only 5.92% of the sample when it is assumed to be CRRA and 3.27% when

utility is assumed to be CARA. Thus, our conclusions are not driven by excluding or

including a few overoptimistic respondents.

4. Ambiguity Attitudes and Behavioral Poverty Traps

4.1. Extension of the Theoretical Framework

In this section, we incorporate ambiguity attitude within the model. To that end,

we slightly modify our framework by considering a setting in which the individual

chooses to invest in one of two goods: one that is risky, which means that the objec-

tive probabilities of obtaining a particular level of return are objectively known, and

another that is ambiguous, which means that those probabilities are not known. Intu-

itively, the ambiguous situation arises when an individual has limited experience with

the investment good, or when returns are determined by multiple factors external to

the control of the individual.

Notice that when the individual chooses to invest in the risky good, the results of

the previous section follow immediately. That case will serve as the benchmark of this

analysis. Specifically, our analysis involves comparing investment choices between

the ambiguous situation and the risky situation.

There is abundant empirical research on ambiguity attitude. In the context of our

model, it is commonly found that most individuals prefer betting on the event x > x̂,

where x̂ is a return threshold, in the case of a risky good rather than in the case of

an ambiguous good. In addition, the same individuals typically prefer betting on

the event x ≤ x̂ in the case of a risky good than in the case of an ambiguous good.

These preferences imply an aversion to betting on events in the ambiguous good that
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violates subjective expected utility (Savage, 1954).6 This type of behavior has been

documented in prominent laboratory experiments (Ellsberg, 1961, Halevy, 2007, Ab-

dellaoui et al., 2011, Baillon et al., 2018a). Moreover, recent research shows that when

the events under consideration are extreme, individuals typically exhibit ambiguity

seeking (Abdellaoui et al., 2011, Baillon et al., 2018b, Baillon and Emirmahmutoglu,

2018). We refer to “ambiguity attitude” as the conjunction of ambiguity seeking in the

case of unlikely events and ambiguity aversion in the case of likely ones.

In order to incorporate ambiguity attitude in our model, let χ be the set of possible

returns on the ambiguous good. Note that it coincides with the set of possible returns

on the risky good. An event in the context of the ambiguous good is any subset E ⊂ χ,

while the set of all such events is denoted by Σ, which we endow with the Borel σ-

algebra.

The most commonly used model for decision making under ambiguity is Choquet

Expected Utility (Schmeidler, 1989). In our context, it is described by the functional:

RDU
(
u(x, e)

)
= D(1)

∫
χ

u
(
b(x0, x)

)
dW − c(e), (13)

where W is a weighting function that exhibits W (∅|e) = 0 and W (χ|e) = 1, and for

which E1 ⊂ E2 implies W (E1|e) < W (E2|e). This model generalizes subjective ex-

pected utility by allowing W to be non-additive, a feature that accounts for ambiguity

attitudes by giving up probabilistic beliefs. For instance, the aforementioned aversion

to invest in the ambiguous good is incorporated in this model by assuming that W

is subadditive.7 The main problem in modeling ambiguity attitudes using (13) is that

there might be potentially many weighting functions W that can account for an indi-

vidual’s ambiguity attitude (Abdellaoui et al., 2011). This makes the identification of

ambiguity attitude indeterminate and renders a comparison between choices under

risk and choices under ambiguity imprecise.

We address this problem by adopting an alternative approach to model ambiguity

attitude known as source theory (Abdellaoui et al., 2011, Baillon et al., 2023). Accord-

ingly, we assume that each type of good generates an algebra of events, which we call

a source. Intuitively, each good is a distinct random mechanism generating a group

of events (Tversky and Fox, 1995). A crucial assumption of this theory is that proba-

bilistic beliefs hold within sources of uncertainty but not between them (Chew and Sagi,

6Formally, assume without loss of generality that in the case of the risky good it is known that
prob(x > x̂) = 0.6 and that u(0) = 0. The individual’s aversion to betting an amount M on the ambigu-
ous good implies that the subjective probability of the event x > x̂ is P (x > x̂) < 0.6. Similarly, the
individual’s aversion to betting on the event x ≤ x̂ implies P (x ≤ x̂) < 0.4. Note that the inequalities
P (x > x̂) < 0.6 and P (x ≤ x̂) < 0.4 violate probability laws.

7Using the example in footnote 6, subadditivity implies that W (x ≤ x̂) < 0.4 and W (x > x̂) < 0.6.
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2008). Accordingly, denote by Pu the probability measure generated by Σ, i.e. the al-

gebra of events generated by the ambiguous good, and, as before, let F (x|e) be the

probability measure when probabilities are known.

This approach makes it possible to define attitudes toward probabilities of different

sources. In the case of the ambiguous investment, there exists a function wu with the

properties of Assumption 5, such that, for any e:

W (E|e) = wu
(
1− Pu(E|e)

)
for any E ∈ χ. (14)

The function wu carries subjective probabilities to decision weights and is referred

to as the source function. It can exhibit a different shape than w, the probability weight-

ing function which carries objective probabilities to decision weights. The difference

in shape between wu and w fully identifies ambiguity attitude. For instance, when wu
is more convex (concave) than w, the individual exhibits ambiguity aversion (seek-

ing), i.e. she irrationally believes that unfavorable (favorable) events are more likely

in the case of the ambiguous good than in the case of the risky good. Moreover, if

wu exhibits a more pronounced inverse-S shape than w, the decision maker exhibits

a-insensitivity, i.e. she erroneously assigns more probability weight to extreme events

in the case of the ambiguous good than to equally unlikely events in the case of the

risky good (Baillon et al., 2018b).

Substituting (14) in (13) gives the following evaluation of returns in the case of the

ambiguous good:

RDU
(
u(x, e)

)
= −D(1)

∫
χ

u
(
b(x0, x)

)
dwu

(
1− pu(x|e)

)
− c(e). (15)

Equation (15) is analogous to (5) for unknown probabilities. Since it features the

source function wu, which is endowed with the properties of Assumption 5, and given

the regularity conditions imposed on the set Σ, the results presented in Propositions

1-3 immediately follow for the ambiguous good. Therefore, a poor individual with

sufficiently strong ambiguity attitude underinvests in the ambiguous good to a greater

extent than richer individuals with the same ambiguity attitude.

Nevertheless, the most relevant result of this analysis emerges when the optimal

investment of an individual with preferences characterized by (15) is contrasted with

that of the same individual when choosing the risky good. The following proposi-

tion states that ambiguity attitude, regardless of its type, worsens the poverty trap

described in Propositions 1-3.

Proposition 4. Assume that Assumption 1-5, exchangeability (Chew and Sagi, 2008), and

the condition bx,x0 (x0,x)

bx0 (x0,x)bx(x0,x)
<

u′′
(
b(x0,x)

)
u′(x0,x)

hold for all x. Then:
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(i) An ambiguity-averse individual chooses a lower level of investment in the ambiguous

good than in the risky good if her probability weighting function exhibits a level of pes-

simism exceeding the threshold characterized in Proposition 1.

(ii) An ambiguity-seeking or a-insensitive individual is more likely to forgo investing in the

ambiguous good relative to the risky good.

These differences in investment between the ambiguous and risky good become more pro-

nounced as x0 decreases.

Ambiguity attitude worsens the evaluation of investments because individuals as-

sign larger weights to the probabilities of extreme returns in the case of the ambiguous

good than to those of equally unlikely returns in the case of the risky good. This

tendency to focus on extreme events means that individuals assign smaller probabil-

ity weights to less extreme outcomes of investment in the ambiguous good, relative

to equally likely outcomes of investment in the risky good. This larger bias when

evaluating the probabilities of the ambiguous good causes individuals to mistakenly

perceive the ambiguous asset as less profitable than the risky asset when its returns

are not sufficiently extreme.

Proposition 4 also demonstrates that poverty exacerbates underinvestment in the

ambiguous good relative to the risky good. As a result, the poor suffer more severe

economic consequences from having ambiguity attitudeas the result of acute underin-

vestment.

4.2. Empirical Evidence

To conclude this section, we discuss empirical evidence that corroborates the predic-

tion of our model that poverty worsens the underinvestment generated by ambiguity

attitude. Li (2017) showed that poor rural adolescents in China exhibit more ambigu-

ity aversion and a-insensitivity than their poor urban counterparts. Since the former

group is poorer than the latter, her result suggests that ambiguity attitude increases as

poverty worsens.

Dimmock et al. (2016a) designed an experiment to elicit ambiguity attitude in a

representative sample of Dutch households. One of their main empirical results is that

strong a-insensitivity is related to low stock market participation and a lower level of

private business ownership. These results are in line with our theoretical prediction

that stronger a-insensitivity leads individuals to forgo investments.

Bryan (2019) found that ambiguity attitude causes poor individuals to forgo prof-

itable investments based on two randomized control trials. The first experiment showed

that ambiguity-averse farmers in Malawi are less inclined to adopt new crop types
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when doing so requires the purchasing of rainfall insurance. Notice that this require-

ment makes the adoption of new crop types more ambiguous, which disincentivizes

ambiguity-averse farmers from investing even though the complementarity between

rainfall insurance and the new seed type generates higher average returns. In the sec-

ond experiment, ambiguity-averse farmers in Kenya were less inclined to adopt new

crop types even when credit was made available. Hence, the farmer’s tendency to

underinvest in this new technology is indeed due to ambiguity attitude rather than

credit constraints.

5. Further extensions

5.1. Reference dependence

There is abundant empirical evidence that individuals tend to evaluate risky alterna-

tives relative to a reference point (Kahneman and Tversky, 1979, Tversky and Kah-

neman, 1992, Von Gaudecker et al., 2011, Baillon et al., 2020). This way of evaluat-

ing risky alternatives represents a deviation from expected utility because a decision

maker may exhibit a considerably different risk attitude toward outcomes that are

evaluated as gains, i.e.outcomes surpassing the reference point, than outcomes that

are evaluated as losses, i.e. outcomes that fall short of the reference point. One of the

factors responsible for this difference is loss aversion, which is the notion that losses

result in a greater reduction in utility than the increase in utility from commensurate

gains.

We incorporate reference dependence within our model by characterizing the in-

dividual’s risk preferences using Cumulative Prospect Theory (Tversky and Kahne-

man, 1992). In the interest of brevity, the complete analysis is presented in Appendix

C. Interestingly, we find that loss aversion exacerbates the poverty trap presented in

Propositions 1-3.

Unlike probability weighting, loss aversion leads to overinvestment because a high

level of investment increases the likelihood that the reference point will be surpassed

and losses avoided. In our model, the individual’s reference point is assumed be the

status quo or initial wealth, which has empirical support (Terzi et al., 2016, Baillon et al.,

2020). Thus, the poor have the lowest reference points and, as a result, are less prone

to overinvest as a result of loss aversion. This generates a disparity between the rich

who overinvest, thus taking advantage of profitable opportunities even though they

suffer from probability weighting, and the poor who forgo such opportunities due

to the combination of probability weighting and modest reference points. This result
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echoes the findings of Dalton et al. (2016) and Genicot and Ray (2017) who show that

low reference points among the poor can perpetuate their condition.

5.2. Dynamic inconsistency

Our theoretical framework considers an intertemporal setting in which the level of

investment is chosen in the present and returns are realized in the future. A possi-

ble extension of the model would be to incorporate time-inconsistent preferences, ac-

cording to which individuals will tend to exhibit preference reversals when they face

intertemporal tradeoffs (Thaler, 1981, Frederick et al., 2002, Halevy, 2015). The con-

ventional approach to capture these preferences is to use quasi-hyperbolic discounting

(Laibson, 1997), i.e. to assume that D(t) = βδt.

However, this approach ignores the fact that non-expected utility models, such

as RDU, imply dynamic inconsistency (Machina, 1989, Karni and Schmeidler, 1991).

Hence, RDU, on its own, can explain behaviors that are typically attributed to quasi-

hyperbolic discounting such as, for example, the low usage of fertilizer by poor farm-

ers (Duflo et al., 2011).

This alternative interpretation of the findings can be incorporated into our model

using a simple extension, which can be described using the simplified version of the

model presented in Section 2. Suppose that in period t = 0 the RDU individual eval-

uates the probability of obtaining a high level of return on an investment in fertilizer,

i.e. w(p(eH)). In period t = 1, she receives an independent signal about the expected

quality of the crop, such as a favorable weather forecast. Let r be the probability of a

high return when favorable weather is predicted. At t = 1, the decision-maker also

makes an investment choice, denoted by e. Finally, the return on the investment is

realized in period t = 2.

If the return on investment is sufficiently overweighted in t = 0, i.e. w(p(eH)) −
w(p(eL)) > p(eH) − p(eL), then the individual would be willing to buy fertilizer for

more values of c than her EU counterpart. However, if the weather forecast is not

sufficiently favorable, which makes the probability r small, then the optimistic or

likelihood-insensitive individual might overweight the gains from good weather with-

out investment, i.e. w(r(1 − p(eH))), which motivates her not to invest in fertilizer.

Thus, the individual exhibits a gap between her intention to buy fertilizer in t = 0 and

her action in t = 1.

This brief explanation illustrates how our model can be conveniently extended to

incorporate the dynamic inconsistency generated by probability weighting in order to

explain results that were hitherto attributed to time-inconsistent preferences.
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5.3. Overlapping generations model

Our theoretical framework considered stylized models characterized by short time

horizons and the absence of markets. To address the possibility that our results do

not hold in more complex economic settings, we investigate the effect of probability

weighting on investment decisions in an overlapping generations model. That frame-

work includes markets for credit and allows for long-run equilibria. Thus, it can be

used to establish whether our proposed poverty trap emerges as a stationary equilib-

rium, or whether the presence of a perfect credit market corrects the adverse conse-

quences of behavioral biases.

The detailed description of the model and its results can be found in Appendix D.

Our theoretical analysis reveals that probability weighting leads individuals to under-

invest in capital. This investment error can be costly in the long run because it po-

tentially traps individuals in a low steady-state equilibrium which they would have

avoided, and instead achieve a high steady state equilibrium, if they perceived proba-

bilities accurately. These results generalize Proposition 1 and 2.

6. Conclusion

We have introduced a poverty trap generated by an individuals tendency to misper-

ceive objective and subjective probabilities. Due to these biases, profitable opportu-

nities are not evaluated accurately, which explain why poor individuals often fail to

exploit investments that would improve their condition. We also showed that the con-

sequences of this misperception are stronger among the poor. Not only are they in a

more vulnerable position, and suffer more from their mistakes, their mistakes are also

the largest in scope. As a consequence, their chances of escaping poverty are slimmer.
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Appendix A. Proofs

For Online Publication Only

The following preliminary result is used to proof Remark 1 and Proposition 1.

Lemma 2. If agent i is more optimistic than agent j, then wi(p) > wj(p)∀p ∈ (0, 1). In

contrast, if agent i is more pessimistic than agent j, then wi(p) > wj(p)∀p ∈ (0, 1).

Proof. According to Definition 1, wi(p) = θ
(
wj(p)

)
. It is straightforward to show that,

under that equality

w′′i (p)

w′i(p)
=
θ′′i (p)

θ′i(p)
w′j(p) +

w′′j (p)

w′j(p)
. (A.1)

Since θ′′(p) < 0, the previous equation implies that

w′′i (p)

w′i(p)
<
w′′j (p)

w′j(p)
. (A.2)

Let p0, p1 ∈ [0, 1] such that p1 > p0. Integrate (A.2) over [p0, p1] to obtain∫ p1

p0

w′′i (s)

w′i(s)
ds <

∫ p1

p0

w′′j (s)

w′j(s)
ds⇔

w′j(p1)

w′j(p0)
>
w′i(p1)

w′i(p0)
. (A.3)

Integrating the resulting inequality with respect to p0 gives∫ p1

0

w′i(p1)w′j(s)ds <
∫ p1

0

w′j(p1)w′i(s)ds⇔
w′j(p1)

wj(p1)
>
w′i(p1)

wi(p1)
. (A.4)

Integrating again, but this time with respect to p1 gives∫ 1

p0

w′j(s)

wj(s)
ds >

∫ 1

p0

w′i(s)

wi(s)
< ds⇔ wi(p0) > wj(p0) for any p0 ∈ (0, 1). (A.5)

Similar steps lead to the conclusion that when i is more pessimistic than j, then

wj(p0) > wi(p0) for any p ∈ (0, 1).

�

Remark 1.
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Proof. Fix e. Denote by wj the probability weighting function of an individual j. Using

integration by parts, rewrite (5) as:

RDU
(
u(x, e)

)
= u

(
b(x0,

¯
x)
)

+

∫ x̄

¯
x

u′
(
b(x0, x)

)
bx(x0, x)wj

(
1− F (x|e)

)
dx− c(e). (A.6)

Denote by wi the probability weighting function of an individual i who is more

optimistic than j. Using (A.6) it can be established that

RDUi
(
u(x, e)

)
−RDUj

(
u(x, e)

)
⇔
∫ x̄

¯
x

u′
(
b(x0, x)

)
bx(x0, x)

(
wi
(
1−F (x|e)

)
−wj

(
1−F (x|e)

))
dx.

(A.7)

Since, wi(p) > wj(p) for any p ∈ (0, 1) (Remark 2), it can be established using (A.7)

that RDUi
(
u(x, e)

)
−RDUj

(
u(x, e)

)
> 0.

We next define a certainty equivalent for each individual. Denote by Fi the cer-

tain and fixed amount that makes the individual indifferent between investing e and

obtaining Fi, and by Fj the certain and fixed amount that makes the individual indif-

ferent between investing e and obtaining Fj . Since, RDUi
(
u(x, e)

)
−RDUj

(
u(x, e)

)
> 0

it must be that Fi > Fj , individual i tolerates more risk, as she strictly prefers to in-

vest e and obtain the utility RDUi
(
u(x, e)

)
over obtaining Fj whereas individual j is

indifferent between these two choices.

�

Remark 2.

Proof. According to Definition 3, the probability weighting function of wi can be writ-

ten as wi(p) = φ
(
wj(p)

)
. It is straightforward to show that the following equality

holds.

w′′i (p)

w′i(p)
=
φ′′i (p)

φ′i(p)
w′j(p) +

w′′j (p)

w′j(p)
. (A.8)

Because φ′′(p) < 0 in p ∈ (0, 0.5), it must be that in that segment

w′′i (p)

w′i(p)
<
w′′j (p)

w′j(p)
. (A.9)

Instead, if p ∈ (0.5, 1), then, using similar steps, we obtain w′′i (p)

w′i(p)
>

w′′j (p)

w′j(p)
.

Let p0, p1 ∈ [0, 0.5] such that p1 > p0. Integrate (A.9) over [p0, p1] to obtain∫ p1

p0

w′′i (s)

w′i(s)
ds <

∫ p1

p0

w′′j (s)

w′j(s)
ds⇔

w′j(p1)

w′j(p0)
>
w′i(p1)

w′i(p0)
. (A.10)
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Integrating (A.10) with respect to p0 gives∫ p1

0

w′i(p1)w′j(s)ds <
∫ p1

0

w′j(p1)w′i(s)ds⇔
w′j(p1)

wj(p1)
>
w′i(p1)

wi(p1)
. (A.11)

Integrating again (A.11) but this time with respect to p0 gives∫ 1

p1

w′j(s)

wj(s)
ds >

∫ 1

p1

w′i(s)

w′i(s)
ds⇔ wi(p0) > wj(p0) for any p0 ∈ (0, 0.5) (A.12)

Following similar steps it is possible to arrive to wi(p0) < wj(p0) for any p0 ∈
(0.5, 1).

�

Lemma 1.

Proof. Consider an individual j with probability weighting function wj and who ex-

hibits optimism in the sense of Definition 1. Due to the the continuity of wj(p) for

all p, and that at extreme probabilities that probability weighting function exhibits

limp→0w
′
j(p) > 1 and limp→1w

′
j(p) < 1 (Assumption 5), there must exist a probability

pk ∈ (0, 1) such that w′j(pk) = 1. Accordingly, for all p < pk then w′j(p) > 1 whereas for

all p > pk then w′j(p) < 1.

Consider now an individual i with probability weighting function wi who exhibits

stronger optimism than individual j (Definition 2). Using the same reasoning given

above, there exists a pl ∈ (0, 1) that satisfies w′i(pl) = 1, and for all p < pl then w′i(p) > 1

whereas for all p > pl then w′i(p) < 1.

According to Lemma 2, wi(p) > wj(p). Therefore, the second equivalence in eq.

(A.4) when evaluated at p1 = pk implies that

w′i(pk) < 1 = w′j(pk). (A.13)

We now proceed by contradiction. Assume that pl ≥ pk, then w′i(pl) = 1 ≤ w′i(pk),

which contradicts (A.13). Hence, it must be that pk > pl. Consequently, the set p > pl,

which generates w′i(p) < 1, is larger than the set p > pk. Under pessimism, i.e. when

i is more pessimistic than j, the arguments of the proof can be mirrored to obtain the

result that the set p < pl is larger than the set p < pk.

�

The following lemma is relevant to characterize a solution to the maximization

problem of the individual. It shows the conditions under which an interior solution is

guaranteed.
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Lemma 3. An interior solution to the individual’s problem of maximizing investment is guar-

anteed if the individual exhibits pessimism.

Proof. The second derivative of (A.6) with respect to e gives

∫ x̄

¯
x

u′
(
b(x0, x)

)
bx(x0, x)

(
w′j
(
1−F (x|e)

)
Fee(x|e)−w′′j

(
1−F (x|e)

)
(Fe(x|e))2

)
dx− cee(e).

(A.14)

A sufficient and necessary condition for an interior solution is that (A.14) is neg-

ative. Since cee(e) > 0 (Assumption 1), bx(x0, x) ≥ 0 (Assumption 3), and u′ ≥ 0

(Assumption 4), it suffices that

∫ x̄

¯
x

w′j
(
1− F (x|e)

)
Fee(x|e)dx <

∫ x̄

¯
x

w′′j
(
1− F (x|e)

)
(Fe(x|e))2dx (A.15)

Since w′j
(
1 − F (x|e)

)
> 0 for all x and e (Assumption 5), and Fe(x|e) > 0 and

Fee(x|e) > 0 for all x and e (Assumption 2), the inequality in (A.15) requires pessimism,

which implies w′′
(
1− F (x|e)

)
> 0 for all x and e. �

The following remark will also be useful to prove Proposition 1.

Remark 3. Assumption 2 implies the existence of a return level x̂ ∈ [
¯
x, x̄] such that fe(x|ẽ)

f(x|ẽ) ≤ 0

if and only if x < x̂.

Proof. The probability that a realized investment X is greater than a given x when

effort ẽ ∈ [0, ē] is exerted is 1 − F (X|ẽ). Let us check that increasing ẽ raises this

probability when Assumption 2 holds. We have

Fe(x|ẽ) =

∫ x

¯
x

fe(s|ẽ)
f(s|ẽ)

f(s|ẽ)ds =

∫ x

¯
x

η(s, ẽ)f(s|ẽ)ds (A.16)

where η(x, ẽ) = fe(x|ẽ)
f(x|ẽ) a given x. By Assumption 2, η(x, ẽ) increases in x. No-

tice that η(x, ẽ) cannot be everywhere negative, because, by definition, Fe(x̄|ẽ) = 0 =∫ x̄
¯
x
η(x, ẽ)f(x|ẽ)dx. Hence, there exists x̂ such that η(x, ẽ) ≤ 0 if and only if x ≤ x̂.

Fe(x|ẽ) is decreasing in x (resp. decreasing) on [
¯
x, x̂] (resp. [x̂, x̄]). Since Fe(

¯
x|ẽ) =

Fe(x̄|ẽ) = 0, we necessarily have Fe(x|ẽ) ≤ 0 for any x.

�

Proposition 1

Proof. According to Lemma 3, a probability weighting function with pessimism guar-

antees an interior solution. Hence, the optimal investment level, which we denote
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by e∗r , satisfies the following first-order condition obtained from deriving (A.6) with

respect to e:

−D(1)

∫ x̄

¯
x

u′
(
b(x0, x)

)
bx(x0, x)w′j

(
1− F (x|e∗r)

)
Fe(x|e∗r)dx− c′(e∗r) = 0. (A.17)

Expected utility holds when wj(p) = p. In the case of those preferences, equation

(A.17) becomes:

−D(1)

∫ x̄

¯
x

u′
(
b(x0, x)

)
bx(x0, x)Fe(x|e∗u)dx− c′(e∗u) = 0. (A.18)

where e∗u is the investment level that satisfies the first order condition given in

(A.18).

We proceed by contradiction. Suppose that e∗r ≥ e∗u for all x. This assumption can

be expressed, using (A.17) and (A.18), as:

−D(1)

∫ x̄

¯
x

w′j
(
1− F (x|e∗r)

)
Fe(x|e∗r)

)
dx ≥ −D(1)

∫ x̄

¯
x

u′
(
b(x0, x)

)
bx(x0, x)

(
Fe(x|e∗u)

)
dx,

(A.19)

which holds if:∫ x̄

¯
x

w′j
(
1− F (x|e∗r)

)
Fe(x|e∗r)dx ≥ −

∫ x̄

¯
x

Fe(x|e∗u)dx. (A.20)

Denote by Ω = {w1, w2, ...} the set of all probability weighting functions with pes-

simism in the sense of Definition 1. Assume that Ω is strict partial order with respect

to pessimism. Accordingly, w1 ∈ Ω is the function with the least possible pessimism

and wℵ ∈ Ω the function with most severe pessimism.

Suppose that wj = wℵ. Lemma 1 states that such degree of pessimism is character-

ized by limx→
¯
xw
′
j(1 − F (x|ẽ)) = +∞ for given ẽ ∈ [0, ē] and by w′j(1 − F (x|e)) < 1 for

all χ\{
¯
x}. Furthermore, Remark 3 shows that Fe(

¯
x|e) = 0. Therefore, when wj = wℵ

the inequality in (A.20) cannot hold and it must be that e∗u > e∗r .

Lemma 1 also implies that when wj ∈ Ω\{wn}, that is when pessimism is less

severe, less weight is given to
¯
x and more weight is given to all other possible returns.

The continuity of w′′(p) (Assumption 5) implies the existence of a wk ∈ Ω such that

e∗r = e∗u. Therefore, for the partition Ω\{w1, ..., wk} it holds that e∗r < e∗u.

�

Proposition 2
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Proof. Lemma 3 shows that an interior solution might not be guaranteed whenw′′(p) <

0 for some p ∈ [0, 1]. Suppose that an interior solution is indeed disregarded. In that

case, optimal investment is chosen from the set e = {0, ē}. Using Eq. (A.6), it can be

established that ē is chosen when:

RDUj(u(x, ē)) > RDUj(u(x, 0))⇔

D(1)

∫ x̄

¯
x

u′
(
b(x0, x)

)
bx(x0, x)

(
wj
(
1− F (x|ē)

)
− wj

(
1− F (x|0)

))
dx > c(ē).

(A.21)

Assumptions 2 and 5 imply wj
(
1 − F (x|ē)

)
− wj

(
1 − F (x|0)

)
≥ 0 and Assumption 3

states that u′ > 0. Therefore, the left-hand side of the second equivalence in (A.21) is

weakly positive.

Under EU, e = ē is chosen over e = 0 when:

D(1)

∫ x̄

¯
x

u′
(
b(x0, x)

)
bx(x0, x)

((
1− F (x|ē)

)
−
(
1− F (x|0)

))
dx > c(ē). (A.22)

Using eqs. (A.21) and (A.22), it can be established that probability weighting steers

the individual into choosing ē less often if

D(1)

∫ x̄

¯
x

∫ 1−F (x|ē)

1−F (x|0)

u′
(
b(x0, x)

)
bx(x0, x)

(
w′j(s)− 1

)
dsdx < 0, (A.23)

which holds if ∫ x̄

¯
x

∫ 1−F (x|ē)

1−F (x|0)

w′j(s)− 1 dsdx < 0. (A.24)

Equation (A.24) shows that w′j(p) < 1 over a large segment of p enhances the likeli-

hood that the RDU individual chooses e = 0 while her EU counterpart, if confronted

with the choice set e = {0, ē}, would choose e = ē. According to Lemma 1, w′j(p) < 1

occurs for larger segments of p for stronger optimism or likelihood insensitivity.

Next, we show that an interior solution can be disregarded. The inequality in (??)

can hold under optimism or likelihood insensitivity if w′′(p) < 0 holds for a small

segment of p and/or that concavity is moderate. In that case, the solution e∗r ∈)0, ē) is

given by (A.17). Following the rationale of the proof given for Proposition 1, it can be

stated that e∗r < e∗u holds for sufficiently strong likelihood insensitivity or optimism in

the sense of Definition 2 and Definition 4, respectively. However, this implies that the

concavity of w(p) is enhanced, making the inequality in (A.15) more stringent. Thus, it

must be that the optimal investment under strong levels of optimism and insensitivity

must belong in the set e∗r ∈ {0,¯e}.
Finally, we characterize underinvestment. The properties cee(e) > 0 and Fee)(x|e) <
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0 from Assumption 1 and 2, respectively, imply that the solution is interior if w(p) = p.

That solution is given by (A.18) and is denoted by e∗u > 0. As established above, as

optimism or insensitivity become stronger, the RDU individual chooses more often

e∗r = 0. Hence, underinvestment is given by e∗r = 0 < e∗u.

�

Proposition 3

Proof. Consider pessimism and assume that it is sufficiently strong so as to ensure

e∗u > e∗r (Proposition 1). Derive (A.20) with respect to x0 to obtain:

−D(1)

∫ x̄

¯
x

(
u′′
(
b(x0, x)

)
bx(x0, x)bx0(x0, x) + u′

(
b(x0, x)

)
bx,x0(x0, x)

)
·
(
Fe(x|e∗u)− w′j

(
1− F (x|e∗r)

)
Fe(x|e∗r)

)
dx.

(A.25)

The expression in (A.25) shows that if∫ x̄

¯
x

u′′
(
b(x0, x)

)
bx(x0, x)bx0(x0, x) + u′

(
b(x0, x)

)
bx,x0(x0, x)dx < 0, (A.26)

the investment difference given by the left-hand side of equation (A.20) becomes smaller

as x0 becomes higher. Equation (A.26) is implied by −u′′
(
b(x0,x)

)
u′
(
b(x0,x)

) > bx,x0 (x0,x)

bx(x0,x)bx0 (x0,x)
for all

x.

Consider now optimism or likelihood insensitivity and assume they are sufficiently

strong so as to ensure e∗u > e∗r (Proposition 2). Derive (A.23) with respect to x0 to obtain

D(1)

∫ x̄

¯
x

(
u′′
(
b(x0, x)

)
bx(x0, x)bx0(x0, x)+u′

(
b(x0, x)

)
bx,x0(x0, x)

)∫ 1−F (x|ē)

1−F (x|0)

(w′(s)−1)dsdx.

(A.27)

Equation (A.27) shows that if the inequality in (A.26) holds, then the left-hand side

of (A.23) becomes less negative as x0 increases, which implies that e∗r = 0 is more

likely with lower x0. Therefore, e∗u − e∗r > 0 is the largest when x0 is the lowest if

−u′′
(
b(x0,x)

)
u′
(
b(x0,x)

) > bx,x0 (x0,x)

bx(x0,x)bx0 (x0,x)
for all x.

�

The following corollary is useful for proving Proposition 4.

Corollary 1. A lower investment due to probability weighting among the poor (Propositions

1-3), is enhanced by stronger optimism, pessimism, or likelihood insensitivity in the sense of

Definitions 2 and 4.
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Proof. Consider an individual j with probability weighting function wj(p) exhibiting

pessimism (Definition 1). Assume that for this individual e∗r < e∗u (Proposition 1). Also,

consider an individual iwho is more pessimistic than j in the sense of Definition 2 and

denote her optimal investment level by e∗∗r . According to Lemma 1, the set p ∈ (pl, 1)

such that w′i(p) < 1 is larger than the set p ∈ (pk, 1) such that w′j(p) < 1. Hence, using

(A.20), we obtain:

−D(1)

∫ x̄

¯
x

u′
(
b(x0, x)

)
bx(x0, x)

(
Fe(x|e∗u)− w′i

(
1− F (x|e∗∗r )

)
Fe(x|e∗∗r )

)
dx >

−D(1)

∫ x̄

¯
x

u′
(
b(x0, x)

)
bx(x0, x)

(
Fe(x|e∗u)− w′j

(
1− F (x|e∗r)

)
Fe(x|e∗∗r )

)
dx > 0.

(A.28)

Equation (A.28) implies that stronger pessimism enhances the likelihood that e∗∗r < e∗r

and thus that underinvestment is exacerbated.

Assume now that individual j exhibits optimism or likelihood insensitivity and

denote her optimal level of investment by e∗r . Assume that the inequality in equation

(A.23) holds, which implies that e∗u > e∗r = 0 (Proposition 2). Moreover, let i be more

optimistic or insensitive than j, and denote her optimal investment level by e∗∗r . Due

to Lemma 1, the set p ∈ (pl, 1) such that w′i(p) < 1 is larger than the set p ∈ (pk, 1) such

that w′j(p) < 1. Using (A.23), it can be established that

−
∫ x̄

¯
x

u′
(
b(x0, x)

)
bx(x0, x)

∫ 1−F (x|ē)

1−F (x|
¯
e)

(w′i(s)− 1)dsdx ≤

−
∫ x̄

¯
x

u′
(
b(x0, x)

)
bx(x0, x)

∫ 1−F (x|ē)

1−F (x|
¯
e)

(w′j(s)− 1)dsdx < 0.

(A.29)

Therefore, e∗∗r − e∗u ≤ e∗r − e∗u.

�

Proposition 4

Proof. Part i) Let wj and wuj be the probability weighting function and source function,

respectively, of an individual j who suffers from ambiguity aversion. Chew and Sagi

(2008)’s exchangeability implies that for a given eventEk ∈ Σ, there exists a probability

pk such that 1− P (EK) = pk.

This property enables us to define ambiguity aversion as wuj(1−P (EK)) exhibiting

more pessimism than wj(pk) for all Ek ∈ Σ. Accordingly, let wuj = wi and let i be more

pessimistic than j. Denote by e∗r the optimal investment level of j and by e∗∗r that of i.
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Lemma 1 shows that ambiguity aversion implies that the set of subjective probabilities

p ∈ (0, pl) such that w′i(p) < 1 is larger than the set p ∈ (0, pk) such that w′j(p) < 1.

Hence, if e∗r < e∗u, then using Eq. (A.28) we obtain,

−D(1)

∫ x̄

¯
x

u′
(
b(x0, x)

)
bx(x0, x)

(
w′j
(
1− F (x|e∗r)

)
Fe(x|e∗r)− w′i

(
1− P (x|e∗∗r )

)
Pe(x|e∗∗r )

)
dx > 0.

(A.30)

Equation (A.30) shows that ambiguity aversion, in the sense of Definition 1, gen-

erates a larger difference between e∗∗r , the optimal investment level in the ambiguous

good, and e∗r , the optimal investment level in the risky good.

Deriving (A.30) with respect to x0 gives:

−δ
∫ x̄

¯
x

(
u′′
(
b(x0, x)

)
bx(x0, x)bx0(x0, x) + u′

(
b(x0, x)

)
bx,x0(x0, x)

)
(
w′j
(
1− F (x|e∗r)

)
Fe(x|e∗r)− w′i

(
1− P (x|e∗∗r )

)
Pe(x|e∗∗r )

)
dx > 0

(A.31)

Equation (A.31) shows that if the condition in (A.26) hold, then the investment

difference captured by equation (A.30) becomes smaller the higher x0 is. Notice that

that condition is implied by −u′′
(
b(x0,x)

)
u′
(
b(x0,x)

) >
bx,x0 (x0,x)

bx(x0,x)bx0 (x0,x)
for all x Thus, the difference

between e∗r and e∗∗r is the largest when x0 is the lowest.

Part ii) similar steps can be used to show that ambiguity seeking and ambiguity

aversion lead to a higher likelihood of low investment.

�
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Appendix B. Reference Dependence

For Online Publication Only

To incorporate reference dependence, we characterize risk preferences with Cumu-

lative Prospect Theory (Tversky and Kahneman, 1992). Accordingly, the individual

contrast final wealth to her reference point, r > 0. Final wealth levels that fall be-

low a reference point are classified as losses while final wealth levels above that point

are evaluated as gains. The main departure of CPT with respect to EUT and RDU is

that the individual can exhibit different risk preferences for gains and losses. This is

captured with two ingredients. First, wealth levels enter the agent’s utility differently

depending on whether they are classified as gains or losses, property that is captured

by the following assumption on the agent’s utility.

Assumption 6. The agent’s value function is the piece-wise function

V (w, r) =

v(b(x, x0)− r) if (b(x, x0) ≥ r,

−λv(r − b(x, x0)) if (b(x, x0) < r.

where λ > 1, r > 0, and v : R+ → R+ is a twice-continuously differentiable function that

exhibits u(0) = 0, u′ ≥ 0 and u′′ < 0.

Utility is assumed to be convex for losses, which generates risk seeking attitudes,

and concave for gains, which generates risk aversion. Furthermore, Assumption 6 in-

troduces loss aversion which means that losses loom larger than commensurate gains.

This property is captured by the parameter λ > 1.

The second ingredient is that the probability weighting function is defined sepa-

rately over gains and losses. Probabilities associated with gains are transformed by

the probability weighting function w, introduced in Assumption 5. On the other hand,

probabilities associated with losses are transformed with a probability weighting func-

tion which we denote by z that applies transformations to cumulative probabilities,

F (x|e) rather than to decumulative probabilities.

We simplify the problem by assuming that z adopts the properties of w.

Assumption 7. A probability weighting function for losses is a function z : [0, 1] → [0, 1]

that satisfies the duality condition z(F (x|e)) = 1− w(1− F (x|e)) for any x and e.

Throughout, we assume that r is exogenous to the alternatives faced by the decision-

maker. Specifically, we assume that the reference point is the status quo or the individ-
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uals’ initial wealth b(x0, x0), which has been received strong empirical support (Baillon

et al., 2020).

Assumption 8. The reference point is the individual’s initial wealth r = x0.

All in all, the utility of an agent with CPT preferences is

CPT
(
u(x, e)

)
=D(1)

∫
b(x0,x)≥x0

v
(
b(x0, x)− x0

)
d
(
w
(
1− F (x|e)

))
−

D(1)

∫
x0<b(x0,x)

v
(
x0 − b(x0, x)

)
d
(
z
(
F (x|e)

))
− c(e),

(A.32)

We present the solution to the investment problem when the individual exhibits

reference-dependent preferences. It turns out that the behavioral poverty trap defined

in Propositions 1-3 emerges under more stringent conditions as compared to the set-

ting in which the agent exhibits RDU preferences. This is a consequence of loss aver-

sion, which incentivizes individuals to exert high effort to avoid the potential losses

from failing short of their initial wealth. However, this effect vanishes as initial wealth

becomes lower.

Proposition 5. Suppose assumptions 1-8 hold. The CPT decision-maker is more likely to

choose lower investment as compared to the expected utility individual under more stringent

conditions than those in Propositions 1-3.

Proof. Using Assumption 7 and Assumption 8 , rewrite (A.32) as:

CPT
(
u(x, e)

)
=D(1)

∫ x0

x̄

u
(
b(x0, x)− x0

)
dw
(
1− F (x|e)

)
−D(1)

∫
¯
x

x0

λu
(
x0 − b(x0, x)

)
d
(

1− w(1− F (x|e))
)
− c(e),

(A.33)

Using integration by parts, rewrite (A.33) as

CPT
(
u(x, e)

)
=D(1)

∫ x̄

x0

u′
(
b(x0, x)− x0

)
bx(x0, x)w

(
1− F (x|e)

)
dx

−D(1)

∫ x0

¯
x

λu′
(
x0 − b(x0, x)

)
bx(x0, x)

(
1− w

(
1− F (x|e)

))
dx− c(e),

(A.34)

Optimal effort, e∗c , satisfies the following first-order condition obtained from de-

riving (A.34) with respect to e:
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−D(1)

∫ x̄

x0

u′
(
b(x0, x)− x0

)
bx(x0, x)w′

(
1− F (x|e∗c)

)
Fe(x|e∗c)dx

−D(1)

∫ x0

¯
x

λu′
(
x0 − b(x0, x)

)
bx(x0, x)w′

(
1− F (x|e∗c)

)
Fe(x|e∗c)dx− c′(e∗c) = 0,

(A.35)

Recall that the optimal effort level, e∗u, chosen by the expected utility decision-maker

satisfies the first-order condition given in (A.18). Suppose that e∗c > e∗u. From (A.34)

and (A.19), the assumed inequality can be rewritten as

−D(1)

∫ x̄

x0

bx(x0, x)

[
u′
(
b(x0, x)− x0

)
w′
(
1− F (x|e∗c)

)
Fe(x|e∗c)− u′

(
b(x0, x)

)
Fe(x|e∗u)

]
dx

−D(1)

∫ x0

¯
x

bx(x0, x)

[
λu′
(
x0 − b(x0, x)

)
w′
(
1− F (x|e∗c)

)
Fe(x|e∗c)− u′

(
b(x0, x)

)
Fe(x|e∗u)

]
dx ≥ 0.

(A.36)

Consider the first integral in (A.36). That expression is positive as long as

∫ x̄

x0

u′
(
b(x0, x)− x0

)
w′
(
1− F (x|e∗c)

)
Fe(x|e∗c)dx <

∫ x̄

x0

u′
(
b(x0, x)

)
Fe(x|e∗u)dx. (A.37)

In turn, equation (A.37) holds if

w′
(
1− F (x|e∗c)

)
>

u′
(
b(x0, x)

)
u′
(
b(x0, x)− x0

) · Fe(x|e∗u)
Fe(x|e∗c)

, (A.38)

for all x ∈ [x0, x̄]. Assumption 2 and Assumption 4 imply Fe(x|e∗c) > Fe(x|e∗u) and

u′
(
b(x0, x) − x0

)
> u′

(
b(x0, x)

)
, respectively. Thus, the condition in (A.40) contradicts

the property of probability weighting function that limx→x̄w
′(1 − F (x|e)) = 0 from

Assumption 5.

Similarly, the second integral in (A.36) is positive when∫ x0

¯
x

λu′
(
x0 − b(x0, x)

)
w′
(
1− F (x|e∗c)

)
Fe(x|e∗c)dx <

∫ x0

¯
x

u′
(
b(x0, x)

)
Fe(x|e∗u)dx,

(A.39)

which holds if
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λw′
(
1− F (x|e∗c)

)
>

u′
(
b(x0, x)

)
u′
(
x0 − b(x0, x)

) · Fe(x|e∗u)
Fe(x|e∗c) (A.40)

for all x ∈ [
¯
x, x0]. The inequality in (A.40) holds if w′

(
1 − F (x|e∗c)

)
≥ 1

λ
for all

x ∈ [x0, x̄]. Such condition is weaker than that included in (A.40) but nonetheless

contradicts limx→x̄w
′(1− F (x|e)) = 0 from Assumption 5.

Suppose now that e∗u > e∗c . The first integral in (A.36) is negative if

w′
(
1− F (x|e∗c)

)
<

u′
(
b(x0, x)

)
u′
(
b(x0, x)− x0

) · Fe(x|e∗u)
Fe(x|e∗c)

(A.41)

for all x ∈ [x0, x̄]. Assumption 2 and Assumption 4, imply Fe(x|e∗u)
Fe(x|e∗c)

> 1, and
u′
(
b(x0,x)

)
u′

(
b(x0,x)−x0

) < 1, respectively. Notice that as x → x0, the expression
u′
(
b(x0,x)

)
u′

(
b(x0,x)−x0

)
approaches one and the right-hand side of (A.41) becomes the largest. Instead, if

x → x̄ the right-hand side of (A.41) becomes smaller. Thus, the condition in (A.41)

precludes probability weighting functions defined by Assumption 5, such as any w

such that limx0→x̄w
′(1 − F (x|e)) > Fe(x|e∗u)

Fe(x|e∗c)
. Hence, It must be that e∗c < e∗u holds for

some x ∈ [x0, x̄]

Moreover, the second integral in (A.36) is negative if

λw′
(
1− F (x|e∗c)

)
<

u′
(
b(x0, x)

)
u′
(
x0 − b(x0, x)

) Fe(x|e∗u)
Fe(x|e∗c)

(A.42)

for all x ∈ [
¯
x, x0]. Eq. (A.42) shows that, relative to the condition in (A.41), more

probability weighting functions defined by Assumption 5 are precluded, such as any

w such that limx0→x̄w
′(1 − F (x|e)) > Fe(x|e∗u)

λFe(x|e∗c)
. Consequently, It must be that e∗c < e∗u

holds for some x ∈ [
¯
x, x0)

Next, we characterize the values x for which e∗c < e∗u holds. Equations (A.37) and

(A.39) show that e∗c < e∗u is less stringent when w′
(
1− F (x|e∗c)

)
< ε for arbitrary ε. Ac-

cording to Lemma 1 this property is obtained as pessimism, optimism, or insensitivity

become stronger. Moreover, the left-hand side of (A.39) is more stringent than that of

(A.37) since λ > 1; loss aversion makes e∗c < e∗u more stringent.

We conclude by showing that underinvestment is stronger among the poor. Differ-
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entiation of (A.35) with respect to x0 gives:

−D(1)

∫ x̄

x0

[
u′′
(
b(x0, x)− x0

)(
bx0(x0, x)− 1

)
bx(x0, x)

]
w′
(
1− F (x|e∗c)

)
Fe(x|e∗c)dx

−D(1)

∫ x̄

x0

[
u′
(
b(x0, x)− x0

)
bx,x0(x0, x)

]
w′
(
1− F (x|e∗c)

)
Fe(x|e∗c)dx

−D(1)λ

∫ x0

¯
x

[
u′′
(
x0 − b(x0, x)

)(
1− bx0(x0, x)

)
bx(x0, x)

]
w′
(
1− F (x|e∗c)

)
Fe(x|e∗c)dx

−D(1)λ

∫ x0

¯
x

[
u′
(
x0 − b(x0, x)

)
bx,x0(x0, x)

]
w′
(
1− F (x|e∗c)

)
Fe(x|e∗c)dx.

(A.43)

Equation (A.43) is negative if

u′′
(
b(x0, x)− x0

)(
bx0(x0, x)− 1

)
bx(x0, x) + u′

(
b(x0, x)− x0

)
bx,x0(x0, x)

]
< 0, (A.44)

for all [x0, x̄], and

u′′
(
b(x0, x)− x0

)(
bx0(x0, x)− 1

)
bx(x0, x) + u′

(
b(x0, x)− x0

)
bx,x0(x0, x)

]
< 0, (A.45)

for all [
¯
x, x0]. These conditions are implied by

−
u′′
(
b(x0, x)− x0

)
u′
(
b(x0, x)− x0

) >
bx,x0(x0, x)(

bx0(x0, x)− 1
)
bx(x0, x)

, (A.46)

and

−
u′′
(
x0 − b(x0, x)

)
u′
(
x0 − b(x0, x)

) >
bx,x0(x0, x)(

1− bx0(x0, x)
)
bx(x0, x)

, (A.47)

respectively. The inequalities in (A.46) and (A.47) are analogous to that of Proposition

3 and do not depend on λ. �

Loss aversion can counteract the behavioral poverty trap characterized in Proposi-

tions 1-3. The possibility of falling below the reference point, and experiencing disu-

tility from losses, motivates individuals to exert higher effort. This effect, however, is

nonexistent for the poorest individuals. Since the reference point is assumed to be ini-

tial wealth, the poor feel less of a motivation from losing what they have. Instead, for

the rich, this motivational effect is strong and might overcome the irrational decision
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of investing little due to probability weighting . Therefore, Proposition 5 implies that

the inequality between rich and poor can be exacerbated due to loss aversion.

Consistent with the result in Proposition C.1. is the notion that stronger loss aver-

sion makes the existence of a behavioral poverty trap from Proposition 1 and 2 more

stringent. This rationale is formalized in the next result.

Corollary 2. The stronger underinvestment among the poor is worsened as λ becomes larger.

Proof. Equation (A.43) becomes more negative if the inequality in (A.47) holds and λ

is increased. The difference between e∗u and e∗c is largest for lowest values x0 and is

enhances with higher values λ.

�
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Appendix C. Additional Empirical Analyses.

For Online Publication Only

Table 7: The Relationship between Prelec (1998)’s Probability Weighting Function and
Income or Wealth

(1) (2) (3) (4) (5) (6) (7) (8)
Ln Ln Ln Ln Ln Ln Ln Ln

Financial Return Family Housing Financial Return Family Housing
Wealth Stock Income Wealth Wealth Stock Income Wealth

Inverse-S -1.292∗∗∗ -1.506∗∗∗ -0.185∗∗∗ -0.140 -1.131∗∗∗ -1.243∗∗∗ -0.155∗∗∗ -0.108
(0.400) (0.435) (0.067) (0.212) (0.347) (0.407) (0.060) (0.185)

S-shape -0.132 -0.080 -0.039∗∗ -0.077 -0.084 -0.007 -0.017 -0.044
(0.092) (0.095) (0.018) (0.047) (0.063) (0.086) (0.014) (0.040)

Optimism -0.006 -0.009 -0.001 -0.000 -0.006 -0.008 -0.000 -0.001
(0.011) (0.010) (0.002) (0.006) (0.012) (0.011) (0.002) (0.006)

U. Curv. 0.008 0.006 0.000 0.004 0.009 0.009 0.001 0.005
(0.014) (0.014) (0.002) (0.007) (0.014) (0.014) (0.002) (0.008)

Constant 6.056∗∗∗ 4.302∗∗∗ 10.872∗∗∗ 3.394∗∗∗ 2.204∗ -3.409∗∗∗ 9.844∗∗∗ -3.168∗∗∗

(0.214) (0.230) (0.036) (0.113) (1.313) (1.261) (0.248) (0.743)
Controls NO NO NO NO YES YES YES YES
R2 0.015 0.012 0.010 0.004 0.217 0.129 0.153 0.233
N 1902 2245 2629 1921 1901 2244 2628 1920

This table presents OLS estimates of the model yi = b0 + b1Inverse-Si + b2S-shapedi + b3 Opt./Pess.i +
b3U.curvi.+Controls′iΓ+εi . The dependent variable yi captures the respondent’s self-reported measures of in-
come and wealth. “Inverse-S” is an index of likelihood insensitivity, “S-shaped” is an index of oversensitivity
to probabilities, “Opt./pess.” is an index of optimism and pessimism, and “U.curv” captures the respondent’s
utility curvature. The estimates presented in Columns 1-4 do not include additional control variables. The
estimates presented in Columns 5-8 include additional control variables. Robust standard errors are presented
in parentheses. *** denotes significance at the 0.01 level, ** denotes significance at the 0.05 level, * denotes
significance at the 0.1 level.
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Table 8: The Relationship between Chateauneuf et al. (2007)’s Probability Weighting
Function and Income or Wealth

(1) (2) (3) (4) (5) (6) (7) (8)
Ln Ln Ln Ln Ln Ln Ln Ln

Financial Return Family Housing Financial Return Family Housing
Wealth Stock Income Wealth Wealth Stock Income Wealth

Inverse-S -1.985∗∗ -4.020∗∗∗ -0.449∗∗∗ -1.406∗∗∗ -0.418∗∗∗ -3.356∗∗∗ -0.418∗∗∗ -0.851∗

(0.979) (1.046) (0.157) (0.516) (0.150) (0.994) (0.150) (0.460)
S-shaped 0.118 1.810∗ 0.146 0.920∗ 0.201 1.631∗ 0.201 0.560

(0.903) (0.971) (0.147) (0.476) (0.140) (0.925) (0.140) (0.429)
Opt./Pess. -2.479 -4.406∗∗ -0.658∗∗ -2.358∗∗∗ -0.555∗∗ -2.937∗ -0.555∗∗ -1.158

(1.696) (1.797) (0.282) (0.906) (0.270) (1.724) (0.270) (0.819)
U.curv. 0.037 -0.052 -0.006 0.003 -0.005 -0.056 -0.005 -0.010
Constant 6.415∗∗∗ 4.137∗∗∗ 10.913∗∗∗ 3.412∗∗∗ 9.885∗∗∗ -3.601∗∗∗ 9.885∗∗∗ -3.186∗∗∗

(0.291) (0.307) (0.046) (0.155) (0.256) (1.295) (0.256) (0.756)
Controls NO NO NO NO YES YES YES YES
R2 0.017 0.016 0.013 0.006 0.154 0.130 0.154 0.232
N 1902 2245 2629 1921 2628 2244 2628 1920

This table presents OLS estimates of the model yi = b0 + b1Inverse-Si + b2S-shapedi + b3 Opt./Pess.i +
b3U.curvi.+Controls′iΓ+εi . The dependent variable yi captures the respondent’s self-reported measures of in-
come and wealth. “Inverse-S” is an index of likelihood insensitivity, “S-shaped” is an index of oversensitivity
to probabilities, “Opt./pess.” is an index of optimism and pessimism, and “U.curv” captures the respondent’s
utility curvature. The estimates presented in Columns 1-4 do not include additional control variables. The
estimates presented in Columns 5-8 include additional control variables. Robust standard errors are presented
in parentheses. *** denotes significance at the 0.01 level, ** denotes significance at the 0.05 level, * denotes
significance at the 0.1 level.
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Table 9: The Relationship between Goldstein and Einhorn (1987)’s Probability Weight-
ing Function and Income or Wealth

(1) (2) (3) (4) (5) (6) (7) (8)
Ln Ln Ln Ln Ln Ln Ln Ln

Financial Return Family Housing Financial Return Family Housing
Wealth Stock Income Wealth Wealth Stock Income Wealth

Inverse-S -1.218∗∗ -0.853 -0.253∗∗∗ -0.110 -0.993∗∗ -0.591 -0.151∗∗ -0.009
(0.487) (0.526) (0.080) (0.257) (0.438) (0.500) (0.074) (0.224)

S-shaped -0.874∗∗∗ -0.696∗∗∗ -0.147∗∗∗ -0.126 -0.825∗∗∗ -0.525∗∗ -0.091∗∗∗ -0.105
(0.204) (0.223) (0.036) (0.108) (0.194) (0.215) (0.034) (0.097)

Optimism -0.000 -0.000 0.000 -0.000∗∗ -0.000 -0.000 0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

U.curv. 0.154 -0.054 -0.026 -0.012 0.154 0.041 -0.012 0.017
(0.172) (0.192) (0.032) (0.096) (0.162) (0.183) (0.029) (0.084)

Constant 7.424∗∗∗ 5.467∗∗∗ 11.095∗∗∗ 3.502∗∗∗ 3.314∗∗ -2.439∗ 9.999∗∗∗ -3.066∗∗∗

(0.310) (0.335) (0.050) (0.164) (1.318) (1.286) (0.251) (0.752)
Controls NO NO NO NO YES YES YES YES
R2 0.014 0.005 0.007 0.002 0.217 0.123 0.151 0.232
N 1902 2245 2629 1921 2628 2244 2628 1920

This table presents OLS estimates of the model yi = b0 + b1Inverse-Si + b2S-shapedi + b3 Opt./Pess.i +
b3U.curvi.+Controls′iΓ+εi . The dependent variable yi captures the respondent’s self-reported measures of in-
come and wealth. “Inverse-S” is an index of likelihood insensitivity, “S-shaped” is an index of oversensitivity
to probabilities, “Opt./pess.” is an index of optimism and pessimism, and “U.curv” captures the respondent’s
utility curvature. The estimates presented in Columns 1-4 do not include additional control variables. The
estimates presented in Columns 5-8 include additional control variables. Robust standard errors are presented
in parentheses. *** denotes significance at the 0.01 level, ** denotes significance at the 0.05 level, * denotes
significance at the 0.1 level.
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Table 10: The effects of Payday and Utility curvature on being unbiased

(1) (2) (3) (4) (5) (6)
EUT EUT EUT EUT EUT EUT

Before Payday -0.014 0.020 -0.015 0.018 -0.039 -0.005
(0.075) (0.077) (0.075) (0.077) (0.076) (0.078)

Âi 0.013 0.040∗∗∗ 0.016 0.043∗∗∗ 0.017 0.044∗∗∗

(0.015) (0.015) (0.015) (0.015) (0.015) (0.015)
Before Payday×Âi -0.071∗∗ -0.069∗∗ -0.071∗∗

(0.035) (0.035) (0.034)
Varian Index 2.077 1.916 1.774 1.599

(1.540) (1.546) (1.626) (1.630)
Time Stroop test 0.006∗ 0.006∗

(0.004) (0.004)
Constant -0.176∗∗∗ -0.188∗∗∗ -0.217∗∗∗ -0.226∗∗∗ -2.613∗∗ -2.603∗∗

(0.054) (0.055) (0.062) (0.063) (1.304) (1.299)
Controls NO NO NO NO YES YES
Log-likelihood -772.400 -770.465 -771.496 -769.700 -754.071 -752.202
N 1131 1131 1131 1131 1116 1116

This table presents probit estimates of the model EUi = b0 + b1Before Paydayi + b2ρ̂i + b3Before
Payday×ρ̂i+Controls′iΓ + εi. The dependent variable EUi is a binary variable that takes a value of
one if respondent i is classified as expected utility maximizer and zero otherwise. “Before Payday” is
a binary variable that takes a value of one if responent i is assigned to the group that completed the
survey before payday. The variable Âi is captures subject’s i utility curvature. “ Varian Index” captures
participant’s i consistency with the maximization of a non-satiated utility function. Time Stroop Test
captures the time in seconds that respondent i spent on answering the questions of the Stroop test. ***
denotes significance at the 0.01 level, ** denotes significance at the 0.05 level, * denotes significance at
the 0.1 level.
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Figure 5: Marginal Effects of treatment by different levels of A

-.2

-.15

-.1

-.05

0

.05

Pr
(E

U
T)

0 .5 1 1.5 2 2.5 3 3.5 4
A

Note: 95% confidence intervals

58



Appendix D. Overlapping Generations Model

For Online Publication Only

Consider a small open economy in which there is a constant population of agents

with unit mass. Each agent lives for two periods and belongs to a dynasty of overlap-

ping generations connected through capital transfers. Each parent has one parent and

one child, inheriting capital from the former and bequesting capital to the later. Each

agent is a potential capital investor when young, and a producer and consumer when

old.

Agents exhibit preferences defined over old-age consumption, xt+1, from which

they derive a lifetime utility ut = u(xt+1). Under EUT the agent’s objective is to maxi-

mize E
(
u(xt+1)

)
. We consider instead a setting in which the agent distorts probabilities

through the probability weighting function from Assumption 5.

In the first period of life, the agent makes a decision about a level of investment e.

As in our motivating example, we consider two levels of investment eH and eL such

that eH > eL. We assume that there is a fixed cost of investment c(e). For simplicity, we

assume that only the high investment level generates a cost, so c(eH) = c and c(eL) = 0

where c > 0.

Since all agents are endowed with zero resources, choosing to invest has to be fi-

nanced with borrowing. Whatever decision is made about investment, we assume that

an agent accumulates capital kt+1 according to

kt+1 = β + p(e)Hkt +
(
1− p(e)

)
Lkt, (A.48)

where p(e) is a probability that exhibits p(eH) > p(eL), β > 0, and 1 > H > L > 0.

Equation (A.48) shows that the agent is more likely to accumulate higher capital when

an investment is made. Note, however, that a high investment does not guarantee

higher capital accumulation. Our model incorporates uncertainty about the agents’

future income through uncertainty about productive efficiency.

In the second period, the agent produces output yt+1 using capital according to:

yt+1 = Akt+1. (A.49)

where A > 0. The agent realizes a final income of xt+1 which determines final con-

sumption and utility. This level of consumption depends on the agent’s past actions.

If she abstained from capital investment by choosing e = eL, then she consumes all re-
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alized output. However, if investment was performed, e = eH , she needs to pay back

lenders their return on the loan c. Throughout, we assume that agents have access

to competitive financial intermediaries which have access to a perfectly elastic sup-

ply of funds at the world interest rate of r. Since competition between intermediaries

drives their profits to zero, the rate of interest is equal to the intermediaries own cost

of borrowing. All in all, the consumption profile of agents is:

xt+1 =

A
[
β + kt(H − L)p(eL) + Lkt

]
if e = eL

A
[
β + kt(H − L)p(eL) + Lkt

]
− c(1 + r) if e = eL

(A.50)

Finally, we discuss the agent’s utility. When there is no investment, the agent’s

utility is given by

RDU(eL) = Aβ + A(H − L)ktw(p(eL)) + AktL. (A.51)

Under investment, the agent’s utility is given by

RDU(eH) = Aβ + Akt(H − L)w(p(eH)) + A[ktL]− (1 + r)c (A.52)

Thus, the RDU agent will decide to invest as long as

RDU(eH) ≥ RDU(eL)⇔ A(H − L)kt
(
w(p(eH))− w(p(eL))

)
≥ (1 + r)c. (A.53)

The following Proposition characterizes a threshold capital level k̂such that the

agent invests whenever her inherited capital surpasses is larger. We provide such

capital level for the RDU agent and also for her EU counterpart.

Proposition 6. There exist unique capital levels k̂r > 0 and k̂e > 0 such that the RDU agent

invests if kt > k̂r and the EUT agent invests if kt > k̂e. These capital levels are such that

ke < k̂r whenever w(p(eH))− w(p(eL)) < p(eH)− p(eL).

Proof. Fix c. Note that the expression A(H − L)kt
(
w(p(eH)) − w(p(eL))

)
smoothly in-

creases in kt over the domain [0,+∞). Moreover, the expression (1 + r)c is constant

in capital. Therefore, there exists a unique capital level such that (A.53) holds with

equality. Denote by k̂r the capital level that satisfies the following equality:

A(H − L)k̂r
(
w(p(eH))− w(p(eL))

)
= (1 + r)c. (A.54)

Given that the A(H−L)kt
(
w(p(eH))−w(p(eL))

)
is increasing in kt, any capital level

such that kt > k̂r implies RDU(eH) ≥ RDU(eL); the individual engages in investment.
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Under expected utility, the benefit from capital investment becomesA(H−L)kt
(
(p(eH))−

(p(eL))
)
, which also smoothly increases in kt over [0,+∞). Therefore, there also exists

a unique capital level k̂e such that

A(H − L)k̂r
(
p(eH − p(eL)

)
= (1 + r)c. (A.55)

Suppose that p(eH)− p(eL) > w(p(eH))− w(p(eL)). Then, using (A.55) it must be that

(1 + r)c = A(H − L)k̂e
(
p(eH)− p(eL)

)
> A(H − L)k̂e

(
w(p(eH))− w(p(eL))

)
. (A.56)

Hence, the capital level k̂e that guarantees (A.54) must exhibit k̂r > k̂e.

�

The decision to invest in capital is affected by the agent’s probability weighting.

When probabilities are underweighted, the decision to invest is made when capital

is sufficiently high. This behavior generates a behavioral poverty trap: at levels k ∈
(k̂e, k̂r the decision maker erroneously believes that returns to investment are lower

than they actually are and refrains from investing even though she would choose to

invest if she did not suffer from probability weighting.

Next, we show that stronger deviations from expected utility due to optimism,

pessimism, or insensitivity decrease the threshold level k̂r > 0. Therefore, the segment

under which the agent does not invest due to irrationalities, k ∈ (k̂e, k̂r, becomes larger

and the behavioral poverty trap happens for a wider range of capital levels.

Corollary 3. Stronger pessimism, optimism, and likelihood insensitivity leads to a lower k̂r.

It also enlarges the segment in which w(p(eH))− w(p(eL)) < p(eH)− p(eL) holds.

Proof. Lemma 1 shows that stronger optimism, likelihood insensitivity, or pessimism

lead to a larger segment in which w′(p) < 1. In this outcome environment, that condi-

tion implies that
∫ p(eH)

p(eL)
w′(s)ds <

∫ p(eH)

p(eL)
ds⇔ w(p(eH))− w(p(eL)) < p(eH)− p(eL) for

a wider range of values of p(eH) and p(eL).

Since A(H − L)kt
(
w(p(eH)) − w(p(eL))

)
is increasing in kt, then it must be that

stronger optimism, likelihood insensitivity, and pessimism, through their influence on

reducing the difference w(p(eH)) − w(p(eL)), lead to a lower value kr such that (A.54)

holds.

�

Given the above, the intergenerational evolution of capital for an individual dy-

nasty satisfies.
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kt+1 =

β + p(eH)Hkt +
(
1− p(eH)

)
Lkt if k ≥ k̂r

β + p(eL)Hkt +
(
1− p(eL)

)
Lkt if k < k̂r.

(A.57)

Each of these lineage transition equations correspond to a stable stochastic difference

equation. The intersections with the 45 degree line are given by the stationary points:

k∗∗ =
β

(1− p(eH)(H − L)− L)
, (A.58)

k∗ =
β

(1− p(eL)(H − L)− L)
. (A.59)

The transition equations are drawn under the restrictions β < 1−p(eH)(H−L)−L,

which makes our analysis non-trivial.

The long-run distribution of capital in our economy is such that only investors with

capital accumulation are those agents who are endowed with capital levels k0 > k̂r.

These agents converge to the high steady-state equilibrium. All other agents who start

off with k0 < k̂r remain forever as non-investors. Note that agents with k̂e > k0 > k̂r

will not engage in investment even though they would end-up in the high steady state

if they had an accurate perception of probabilities.
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