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Abstract

This paper examines the effect of growth-enhancing policies in an R&D-based endoge-

nous growth model when the government does not have the ability to raise taxes to

finance the required expenses. We show that the government can increase the economic

growth rate by debt-financed R&D subsidies while perpetually rolling over the debt, if

the productivity of research workers in product development is higher than a threshold.

If the condition is not met, the government debt becomes unsustainable, or the growth

rate is reduced by subsidy.
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1 Introduction

Once one starts to think about [growth], it is hard to think about anything else

— Robert Lucas Jr. (1988)

As Lucas (1988) mentioned, economic growth is one of the most important objectives

in economics. How can we achieve faster economic growth? Modern theories of endogenous

growth provide a surprisingly simple answer. Economic growth, in the long run, is deter-

mined by technological change. Technological change is realized by R&D. Therefore, by

promoting R&D, e.g., by government subsidies on R&D, economic growth can be acceler-

ated. Still, many economies are struggling with slower economic growth than they desire.

Even when they know that R&D promotion policies will enhance growth, there are often

insufficient funds to implement those policies. Constraints on the governmental budget

limit the ability of the government to promote R&D and, therefore, economic growth.

Recent literature on political economy suggests that it is difficult for the government

to raise tax rates because of political constraints. For example, Jiang, Sargent, Wang and

Yang (2022) assume there is an upper bound for the tax rate based on Keynes (1923)’s

political considerations.1 However, existing studies of R&D-based growth typically disre-

gard such constraints by implicitly assuming that the government can levy lump-sum taxes

to implement policies. (e.g. Grossman and Helpman, 1991a,b; Jones and Williams, 2000).

Some studies include the distortions caused by factor-income taxation but still assume that

the government can set any tax rate (Grossmann, Steger and Trimborn, 2013).

In contrast, this paper considers an extreme situation where the government cannot

raise (extra) taxes at all. If the government wants to support R&D, it must be financed

entirely by public debt. It also does not have the ability to raise taxes in the future to repay

the debt. Therefore, the debt must be rolled over infinitely. In other words, we consider the

environment in which any growth promotion policies must be financed by a Ponzi scheme.

While common sense suggests such policies would not be sustainable, O’Connell and Zeldes

(1988) show that the government indeed can run a “rational” Ponzi scheme if the rate of

1In an overlapping generations political economy model, Song, Storesletten and Zilibotti (2012) shows

the possibility that the inter-generational conflict causes the government to raise no tax if the political

power of the old is stronger than the young. See also Alesina and Passalacqua (2016) and Yared (2019) for

the literature review.
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economic growth is higher than the interest rate on the governmental debt; g > r for short.

Mehrotra and Sergeyev (2021) report that, in the 1946-2006 period, the median value

of g − r is 1.0 for the United States and 0.8 for the average of 17 advanced countries.

Blanchard (2019) also mentions that g > r have been more historical the rule rather than

the exception in the U.S. since 1950. Mauro and Zhou (2020) analyzed data on average

effective borrowing costs for 55 countries over up to 200 years and found that g > r prevails

for both advanced and emerging economies.

Given these findings, we examine whether the growth rate can be enhanced when the

government finances the R&D subsidies entirely by perpetually rolled-over debts. The

result is not obvious because such policies affect both g and r. The direct effect of R&D

subsidies is to induce private firms to do more R&D, which will speed up technological

progress. However, the government’s debt may crowd out private R&D investments by

raising the equilibrium interest rate in the financial markets. More precisely, a higher

interest rate implies that the present value of future profits realized by R&D is lower,

thereby discouraging R&D. Additionally, if the increase in r is larger than g, then the g−r

gap will shrink with the R&D promotion policies. When g falls below r, the public debt

becomes unsustainable, given that the government has no ability to raise taxes.

We find that the overall effects of such policies crucially depend on the productivity

of R&D; i.e., how many innovations can be realized per R&D workers. We show that the

g > r holds in equilibrium if the productivity of R&D is high enough. However, this does

not always mean that the growth rate can be enhanced by debt-financed R&D promotion

policies. For these policies to raise the long-run growth rate, the productivity of R&D has

to be even higher. Even in such a case, there is a maximum rate of economic growth that

can be achieved because when the rate of subsidies becomes too high, its effect on raising

r dominates the positive effect on g. Moreover, there is a level of subsidies above which no

balanced growth exists; i.e., the Ponzi scheme becomes unsustainable. We also calculate

the maximal debt-GDP ratio that can be supported without raising taxes. We find that

while debt-financed R&D subsidies may increase the long-run growth rate, they reduce the

fiscal space in the sense the highest level of the debt-GDP ratio from which the economy

can come back to a steady state is now lower. Those results indicate that the government’s

ability to promote growth is not limitless if it is unable to raise taxes, even when g > r.

There is a strand of literature that examines the sustainability of government debt in
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an environment where g > r holds in equilibrium (e.g. Blanchard, 2019; Reis, 2021; Ball

and Mankiw, 2023; Barro, 2023). Similarly to some of those studies, we use a continuous-

time overlapping generations model to explain why the interest rate can be lower than

the growth rate in the long run. However, in existing studies, the long-run growth rate is

exogenous, and the focus is mostly on the effect of policies on the safe interest rate. The

exceptions are Saint-Paul (1992) and King and Ferguson (1993), who developed AK-type

endogenous growth models in which g > r holds in equilibrium. They have shown that the

economy is dynamically efficient even when g > r because, in endogenous growth models,

the social return on investment is higher than the interest rate, which also holds true in

our model. The most important difference from those studies is that we consider an R&D-

based variety-expansion growth model rather than an AK model, where long-term growth

is determined solely by capital accumulation. By explicitly modeling the R&D process, we

are able to examine the effect of debt-financed R&D promotion policies on the incentives for

technological innovations, which are unarguably an important source of economic growth.

This paper is also related to Angeletos, Lian and Wolf (2024) in that both show that future

tax increases are not necessary after debt-financed policies are implemented. While they

consider a short-term stimulus policy in a New Keynesian setting, we consider a long-term

growth promotion policy in an R&D-based endogenous growth model.

2 Model

2.1 Individuals

We consider a variant of the continuous-time overlapping generations model by Blanchard

(1985) and Yaari (1965). The economy is populated by individuals who face a constant

Poisson death rate of µ > 0. For simplicity, we assume that the birth rate per population

is also µ so that the total population is unchanged, which we denote by L. Let us denote

by Ns,t the number of individuals who are born at time s and still alive at time t. Then,

Ns,t = µLe−µ(t−s), (1)

which adds up to L by integrating over s from −∞ to t. To capture aging and their lifetime

motive of savings, we also assume that the productivity of individuals decreases with age
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at the rate of δ > 0. Specifically, each individual of generation s inelastically supplies

ℓs,t =
δ + µ

µ
e−δ(t−s) (2)

units of labor. The productivity at age 0 is normalized to (δ + µ)/µ so that the aggregate

supply of labor is L.2

The expected utility of a generation s individual, taking into account their mortality,

is given by

Us =

∫ ∞

s
(ln cs,t)e

−(ρ+µ)(t−s)dt, (3)

where cs,t is the amount of consumption by a generation-s individual at time t, and ρ >

0 is the discount rate. Observe that they further discount the future by their survival

probability, e−µ(t−s). We assume that the discount rate is not too high. In particular, we

assume that ρ < δ, so that the individuals have incentives to save for their later age. (See,

Rachel and Summers, 2019).

Let ks,t be the real asset holding by a generation s, and rt be the real interest rate on

bonds. Following Blanchard (1985), we assume that there is a perfect market for annuities.

Then, the return from the annuities is rt + µ for survivors. Since rt + µ > rt, individuals

hold all their assets in the form of annuities. We also normalize the price of the final good

to be one. Then, the budget constraint is given by

k̇s,t = (rt + µ) ks,t + ℓs,twt − cs,t, (4)

where wt is the real wage per unit of labor. The newborn generation has zero financial

assets, which means kt,t = 0. Given those, each individual maximizes the expedited utility

(3) subject to the budget constraint (4), initial condition kt,t = 0, and the usual non-Ponzi-

game condition.

Let us define aggregate consumption and the aggregate asset of individuals by

Ct =

∫ t

−∞
cs,tNs,tds, Kt =

∫ t

−∞
ks,tNs,tds. (5)

In Appendix A.1, we show that Ct evolves according to

Ċt = (rt − ρ+ δ)Ct − (ρ+ µ)(δ + µ)Kt. (6)

2This can be shown from
∫ t

−∞ ℓs,tNs,tds = δ+µ
µ

L
∫ t

−∞ e−(µ+δ)(t−s)ds = L.

4



The (rt − ρ)Ct part comes directly from the Euler equation for individuals. In addition,

generational change affects the growth rate of aggregate consumption both positively and

negatively. The newly-born generation has a higher productivity than the population that

it replaces, and the difference in the productivity between the young and the old is more

pronounced when δ is larger. This effect allows the newborns to consume more than those

replaced. Therefore, δ in the first term positively affects Ċt. However, the newborns do

not have financial assets, while those who pass away on average have Kt. This effect lets

the newborns consume less than those replaced. Therefore, Kt negatively affects Ċt.
3

2.2 Supply Side

The supply side of this economy is purposefully close to that of the standard variety-

expansion model of Grossman and Helpman (1991a). It consists of three sectors: the final

goods sector, the intermediate goods sector, and the R&D sector. In the final goods sector,

a representative firm competitively produces final goods Xt from a continuum of varieties

of intermediate goods xt(i). The production function is given by

Xt =

[∫ nt

0
xt(i)

αdi

]1/α
, (7)

where nt is the number of intermediate goods available at time t and α ∈ (0, 1) is a

production parameter. Let pt(i) be the price of intermediate good i. The representative

final-good firm maximizes its profit,

Xt −
∫ nt

0
pt(i)xt(i)di. (8)

The first-order condition for profit maximization implies that the demand function of the

intermediate goods is

xt(i) = pt(i)
− 1

1−αXt. (9)

In the intermediate goods sector, there are nt intermediate-good firms, each of which

produces its own variety of goods, xt(i). The production of one unit of xt(i) requires one

unit of labor, and therefore its profit is given by πt(i) = (pt(i)−wt)xt(i). Given that xt(i)

3The second effect depends on the assumption that all individuals fully invest their assets in annuities

and leave no bequests for new generations.
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is determined by the demand function (9), the profit-maximizing pricing implies

pt(i) =
wt

α
, xt(i) =

(
α

wt

) 1
1−α

Xt, (10)

πt(i) = (1− α)

(
α

wt

) α
1−α

Xt. (11)

The above result shows that all intermediate firms produce the same amount of output.

The output of each intermediate firm can be written as xt(i) = LP
t /nt for all i, where LP

t

is the total amount of labor employed in this sector. By substituting it to the final goods

production function (7), we obtain

Xt = n
1−α
α

t LP
t . (12)

The R&D sector has a representative R&D firm, which competitively creates new goods

according to

ṅt = antL
R
t , (13)

where LR
t is the amount of labor used for R&D and a > 0 is a parameter that specifies

the efficiency of R&D. We follow a standard setting in the variety-expansion model and

assume that there is an externality from the past R&D to the current one. The term nt in

the RHS of (13) reflects this externality.

Equation (13) implies that the creation of a new intermediate good requires 1/ant units

of labor. We assume that the government subsidizes the fraction θ ∈ [0, 1) of the R&D

cost. Then, the private cost of developing a new intermediate good is (1− θ)wt/ant. Now,

let vt be the value of an intermediate-good firm. Then, the free entry condition for the

R&D is

vt ≤ (1− θ)
wt

ant
with equality if ṅt > 0. (14)

2.3 Government

As explained above, the government subsidizes the fraction θ of the cost of R&D. Since

the pre-subsidy aggregate cost of R&D is wtL
R
t , the amount of government expenditure

is θwtL
R
t . We assume that the government cannot collect taxes and that all expenditure

is financed by government debts. Then, the amount of the government debts, Bt, evolves

according to

Ḃt = rtBt + θwtL
R
t . (15)
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Since the government bond is never repaid (or repaid entirely by issuing new bonds), the

government is running a Ponzi scheme.4 We investigate the possibility that the government

can run a rational Ponzi game, similar to the one examined by O’Connell and Zeldes (1988),

and use the revenue to promote economic growth.

3 Analysis of the Model

3.1 Growth Rate and Interest Rate

Given the economy described in the previous section, here we derive the relationship be-

tween the growth rate and the interest rate in equilibrium. First, we derive the real interest

rate. The consumers hold all their assets in the form of annuities, and the annuity company

invests the assets in government bonds and the shares of intermediate firms. Therefore,

the equilibrium in the asset market is

Kt = Bt + ntvt. (16)

Since risks are fully diversified, the expected return on holding the share of one intermediate-

good firm should be equal to the interest rate on bonds. This no-arbitrage condition can

be written as

rt =
πt + v̇t

vt
, (17)

where πt is given by (11). In the main text, we focus on the case where the amount of

R&D is positive, leaving the discussion of the case of ṅt = 0 for Appendix A.3. Then, vt

is given by (14) with equality. Both πt and vt depend on the wage level, which we now

derive. Since the final-good sector is competitive, the maximized profit of the final good

firm in equation (8) should be zero. By substituting xt(i) and pt(i) into (8), this condition

determines the market wage,

wt = αn
1−α
α

t . (18)

4Note that this is in contrast to individuals, who maximize their lifetime utility subject to the no-Ponzi

game condition. The difference in the ability to borrow between the government and individuals reflects the

reality. Without collateral, individuals usually cannot borrow large amounts of money for various reasons

(e.g., the risk of running away). We can rewrite the model with a borrowing constraint for individuals,

which yields the same result as the present setting in the steady state.
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Substituting the values of πt and vt into (17) yields the real interest rate in equilibrium.5

rt =
a

α

(
1− α

1− θ
LP
t − (2α− 1)LR

t

)
. (19)

Next, we turn to the growth rate. The GDP of this economy is defined by the sum of

consumption expenditure Ct, private investment expenditure for R&D, (1 − θ)wtL
R
t , and

government expenditure, θwtL
R
t . Note that the final output is used only for consumption,

and therefore the equilibrium in the goods market means Ct = Xt. Then, using (12) and

(18), the GDP can be written as

GDPt = n
1−α
α

t (LP
t + αLR

t ). (20)

Since α < 1, the GDP is higher when more labor is used for production, given the value of

nt. This is because there is a positive markup in the intermediate goods sector, whereas

none in the R&D sector. Let us also define the potential GDP, Yt, as the level of GDP

when all labor is used for production. With LP
t = L and LR

t = 0, (20) reduces to

Yt = n
1−α
α

t L. (21)

This is the upper bound for GDPt given nt. Yt can also be viewed as the supply capacity

of the economy. From (13), the growth rate of the potential GDP in (21) is given by

gt ≡
Ẏt
Yt

= g
LR
t

L
, (22)

where g ≡ (1−α)aL/α is the maximum growth rate of the potential GDP that is realized

when all labor is used for R&D. Note that when gt becomes constant in a steady state,

gt also represents the growth rate of the GDP.6 We simply call gt the growth rate unless

otherwise noted.

Now, we are ready to show the relationship between the interest rate and the growth

rate. The labor market equilibrium condition is

LP
t + LR

t = L. (23)

5Using (18), the values of πt and vt can be obtained as follows. From (12) and (18), equation (11) gives

πt = (1 − α)n
(1−2α)/α
t LP

t . From (14) with equality and (18), the value of firm is vt = (1 − θ)wt/ent =

((1 − θ)α/a)n
(1−2α)/α
t . Using (13), its derivative is v̇t = −((2α − 1)/α)aLR

t vt. Substituting these results

into (17) yields (19).

6When gt is constant, (22) means LR
t is constant and the same for LP

t = L− LR
t . Then, from (20) and

(21), the growth rate of GDPt coincides with Ẏt/Yt.
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rt = gt gt

gt − rt

g

1− θ′

ĝ(θ′)
g

1− θ

ĝ(θ)

g

a

(θ′ > θ)

Figure 1: Relationship between gt − rt and the growth rate for a given level of research subsidy.

The dashed line shows the relationship when the rate of research subsidy is increased

from θ to θ′.

By eliminating LP
t and LR

t from (19) using (22) and (23), we obtain the gap between the

growth rate and the interest rate as a function of gt.

gt − rt = s(θ)(gt − ĝ(θ)), where (24)

s(θ) =
1− αθ

(1− α)(1− θ)
> 1, ĝ(θ) =

1− α

1− αθ
g ∈ (0, g].

As shown in Figure 1, given parameters, gt − rt is positively and linearly related to gt,

with the slope of s(θ) > 1. In particular, gt is higher than rt when gt is greater than the

threshold at ĝ(θ). This means that keeping the growth rate high is crucial to maintain

gt > rt, and hence to run the government’s Ponzi scheme.

Observe that, when the rate of R&D subsidy, θ, is increased, the thick line in Figure 1

rotates counter-clockwise, which makes gt − rt lower for a given growth rate. Accordingly,

the threshold, ĝ(θ) in (24), increases with θ. While research subsidy may raise the growth

rate, gt needs to be even higher to maintain gt > rt. In the following subsections, we

analyze the equilibrium dynamics that determine the path of gt, first without the research

subsidy and then with it.
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3.2 Equilibrium Dynamics

The dynamics of this economy can be examined by focusing on two variables, gt and

Dt ≡ Bt/Yt. Here, Dt is the ratio of the government debt to the potential GDP.7 We

simply call it the debt-GDP ratio. Using (15), (18), (22) and (24), its time derivative is

given by

Ḋt = −s(θ) (gt − ĝ(θ))Dt +
θαL

g
gt. (25)

The first term of the RHS represents (rt − gt)Dt. With a balanced budget, the debt-GDP

ratio would expand or shrink at the rate of rt − gt. The second term is the ratio of the

government spending on subsidies to the potential GDP.8 It accelerates the increase in Dt.

Next, we derive the time evolution of gt. In this model, final goods are used only for

consumption. Therefore, Xt = Ct from the equilibrium of the goods market. Then, using

(6), (12), (14), (16), (18), (21), (22) and (24), we obtain9

ġt = (g − gt)
(
s(θ) (gt − ĝ(θ))− δ + ρ

)
+ g(ρ+ µ)(δ + µ)

(
Dt +

α(1− θ)

aL

)
. (26)

In the first term, s(θ) (gt − ĝ(θ)) − δ + ρ represents gt − (rt − ρ + δ). There is a positive

effect of gt on ġt because growth in Yt means that fewer production workers are required

to produce a given amount of Ct. Also, as explained in Section 2.1, the Euler equation for

aggregate consumption (equation 6) implies that a rise in rt − ρ + δ increases Ċt, which

means less labor is allocated to R&D, reducing ġt. In the second term, Dt + α(1− θ)/aL

represents the sum of government debt and the value of all firms, divided by the potential

7A benefit of focusing on Dt ≡ Bt/Yt rather than Bt/GDPt is that Yt depends only on state variable nt,

and therefore Dt is predetermined. It means that we can use Dt as an initial condition for the equilibrium

dynamics. In contrast, since GDPt depends on jump variable LP
t and LR

t , it is not possible to use Bt/GDPt

as an initial condition.

8The ratio of the government spending on subsidies to the potential GDP is θwtL
R
t /Yt. Note that

wt = αYt from (18) and (21), and that LR
t = gt/g from (22). Using these, θwtL

R
t /Yt = θαgt/g.

9 From (22) and (23), ġt = −g(L̇P
t /L). Also, from (12), (21) and Xt = Ct, we have LP

t = LXt/Yt =

LCt/Yt. Since L is constant, the rate of change of this equation is L̇P
t /L

P
t = Ċt/Ct − Ẏt/Yt. Therefore,

ġt = −g(LP
t /L)(L̇

P
t /L

P
t ) = −g(LP

t /L)(Ċt/Ct − Ẏt/Yt). In the RHS, Ċt/Ct is given by the Euler equation

(6) and Ẏt/Yt = gt. The Euler equation depends on aggregate asset Kt. From (14), (18), and (21),

ntvt = α(1 − θ)Yt/aL. Substituting this into (16) yields Kt/Yt = Dt + α(1 − θ)/aL. Substituting these

results and (24) into ġt = −g(LP
t /L)((Ċt/Ct − gt) yields (26).
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GDP (i.e., Kt/Yt).
10 A larger amount of the aggregate asset negatively affects Ċt since

those who pass away, on average, have an asset of Kt and they are replaced by newborns

who do not have financial assets. Then, ġt increases since more labor will be allocated to

R&D.

3.3 Dynamics without Government Expenditure

While we are interested in the effect of research subsidies, it is informative to start the

analysis of the phase diagram with the case of no research subsidy (θ = 0). We first

look at the Ḋt = 0 locus. With θ = 0, Ḋt in (25) becomes zero when either gt = ĝ(0) or

Dt = 0 holds. On the gt = ĝ(0) line, rt = gt holds, which means that the government debt is

growing at the same rate as potential GDP, and therefore the debt-GDP ratio is stationary.

Dt is also stationary on the Dt = 0 line because there is no income or expenditure by the

government. Those lines are drawn in red in Figure 2(a)-(c).

Next, we turn to the ġt = 0 locus. With θ = 0, ġt in (26) becomes zero when

Dt =
g − gt

g(ρ+ µ)(δ + µ)

(
δ − ρ− s(0) (gt − ĝ(0))

)
− α

aL
. (27)

As depicted by a blue curve, the ġ = 0 locus is a parabola that opens toward the right.

Recall that gt can only take the values between [0, g], where g ≡ (1−α)aL/α is the growth

rate of potential GDP when all labor is used for R&D. Therefore, we limit the attention

to the area of gt ∈ [0, g].

At the upper end of gt = g, the ġ = 0 parabola starts from Dt = −α/aL, as shown in

Figure 2(a)-(c). Since this value is negative, the parabola intersects with the Dt = 0 line

at most once. When the intersection exists (as in Figure 2(a)-(b)), it is a steady state with

Ḋt = ġt = 0, which we label S1 and denote its coordinate as D∗
1 = 0 and g∗1 ∈ [0, g). Also,

the parabola crosses the gt = ĝ(0) line exactly once before reaching the lower end of 0. We

call this crossing point S2. The coordinate of S2 is D∗
2 = D and g∗2 = ĝ(0), where

D ≡ α(δ − ρ)

(ρ+ µ)(δ + µ)
− α

aL
. (28)

The pattern of the dynamics changes depending on whether D is positive or negative and

whether S1 exists or not. We explain three cases in turn.

Case 1: Saddle-stable steady state with gt > rt (a > a)

10See footnote 9.
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O
Dt

gt

gt = g

S1

S2

ġt = 0

gt = ĝ(0)

− α

aL

DD

Ḋt = 0

(a) When a > a, S1 is a saddle with g∗1 > r∗1

and S2 is a source with g∗2 = r∗2.

O
Dt

gt

gt = g

S1

S2

ġt = 0

gt = ĝ(0)

D

− α

aL

D

Ḋt = 0

(b) When a ∈ (a, a), S2 is a saddle with

r∗2 = g∗2, and S1 is a source with g∗1 < r∗1.

O
Dt

gt

gt = g

A1

S2

ġt = 0

gt = ĝ(0)

A2D

− α

aL

D

Ḋt = 0

(c) When a ∈ (0, a), S2 is a saddle with

r∗2 = g∗2, which is the only steady state in

the gt > 0 region.

Dt
O

νt ≡ vtnt/Yt
νt = α/aL

A1

ν̇t = 0
Ḋt = 0

Ḋt = 0 S1

A2

1/a

(d) When a ∈ (0, a), there is another unsta-

ble steady state in the gt = 0 region.

Figure 2: Phase diagram when there is no government expenditure (θ = 0). The Ḋt = 0 loci are

depicted in red, while ġt = 0 loci are in blue.

Since we assumed δ > ρ, D∗
2 = D is positive if and only if the research productivity

parameter a is higher than11

a ≡ (ρ+ µ)(δ + µ)

(δ − ρ)L
> 0. (29)

When a > a, as shown in panel (a) of Figure 2, Steady state S1 is above the gt = ĝ(0)

line (i.e., g∗1 ∈ (ĝ(0), g)). From (24), this implies that the growth rate in the steady state

is higher than the interest rate. In Appendix A.2, we show that S1 is saddle-stable, while

S2 is totally unstable (a source). Therefore, there is a stable arm that originated from S2

and converges to S1.
12 Therefore, whenever the initial value of the debt-GDP ratio D0 is

11Note that a > 0 because δ > ρ.

12 Strictly speaking, the economy can converge to the steady state only when D0 ∈ [D,D], where D < 0 is
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less than D∗
2, there is an equilibrium path that converges to S1, where the debt-GDP ratio

is zero in the long run.13 This implies that, even when the government has no revenue, its

debt-GDP ratio can be stabilized as long as the initial amount is not too large, given that

a > a.

Case 2: Saddle-stable steady state with gt = rt (a < a)

When a < a, steady state S2 is located in the Dt < 0 region.14 Still, if the ġt = 0

parabola crosses the Dt = 0 line, another steady state S1 exists, with g∗1 ∈ (0, ĝ(0)), as

depicted in Figure 2(b). This happens when a < a < a, where the threshold is given by

a ≡
−(δ − ρ) +

√
(δ − ρ)2 + 4(1− α)(ρ+ µ)(δ + µ)

2((1− α)/α)L
> 0. (30)

In this case, as formally discussed in Appendix A.2, S2 is saddle-stable and S1 totally

unstable (a source). Therefore, the stability property is the opposite of Case 1. There is a

stable arm originating from S1 and converging to S2. Therefore, given that the economy

starts from a positive government net asset (Dt < 0), then there is an equilibrium path that

stabilizes the net asset-GDP ratio in the long run.15 In this steady state, the government

asset grows at the same rate as the potential GDP (rt = gt), hence stabilizing the ratio.

However, there is no equilibrium path converging to the saddle-stable steady state if the

amount of initial net debt is positive. The government will go bankrupt when starting

from Dt > 0.

When a < a, there is only one steady state in the phase diagram shown in Figure

2(c). Similarly to Case 2, S2 is saddle-stable, and there is a stable arm converging to it.

However, the stable arm starts from point A2, which is located to the left of the origin.

This means that the stable arm exists only in the region where Dt is significantly

negative, at least in this diagram. Then what happens if the economy starts from an

the point where the downward-sloping stable arm crosses the gt = g line. Intuitively, if the initial asset/GDP

ratio of the government is too large, and given that it does not use the asset at all, the asset/GDP explodes,

and there is no steady state. Numerically, we find that the absolute value of D is very large under various

parameter values, so it is not realistic to consider the case of Dt < D. Therefore, in the main text, we

disregard this possibility.

13Note that gt = gLR
t is a jump variable from (22).

14We ignore the border case of a = a because the case has a measure zero possibility.

15Strictly speaking, the economy converges to the stable steady state when D0 ∈ [D, 0]. See the discussion

in footnote 12.
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initial debt that is around zero? Note that the phase diagram in Figure 2 is drawn under

the assumption that the free entry condition (14) holds with equality. In fact, this model

economy has another phase diagram in the Dt and νt = ntvt/Yt space that applies when

the amount of R&D is zero (i.e., gt = 0), where the free entry condition does not need to

hold with equality. In Appendix A.3, we show that there is an unstable steady state in

this region if a < a. Also, there is a stable arm that originates from this steady state and

connects to point A2, as shown in Figure 2(d). Therefore, if the economy starts from a

slightly negative Dt, it will experience a period of zero growth before arriving at point A2,

and then gt gradually increases until the economy reaches the saddle-stable steady state

S2.
16

The following proposition summarizes the results from the three cases.

Proposition 1 Suppose that that θ = 0. The growth rate in the saddle-stable steady state

is higher than the interest rate if and only if a > a. There is an equilibrium path converging

to this steady state if the amount of initial debt is less than D > 0. If a < a, the growth rate

in the saddle-stable steady state is the same as the interest rate. There is an equilibrium

path converging to this steady state only when the initial debt is less than zero.

In a simplified setting where there is no revenue or expenditure by the government,

the proposition shows that the productivity of R&D, a, is critical for keeping the growth

rate higher than the interest rate. If it is below the threshold a, the economy can reach a

steady state only when the government holds a net positive asset, and the growth rate will

be equalized to the interest rate.

The proposition implies that the government is able to roll over the debt infinitely if the

productivity of R&D is higher than a and the initial debt is less than D. A natural question,

then, is whether it can use some government money without collecting taxes. Better yet,

the revenue could be used to enhance growth. The following subsection considers the effects

of R&D subsidies not backed by any revenue.

16Therefore, the economy converges to the stable steady state if D0 ∈ [D, 0] similarly to the case of

a < a < a.
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Dt
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gt = g

S1

S2

ġt = 0

Ḋt = 0

gt = ĝ(θ)

αθL

gs(θ)

Ḋt = 0

D∗
2(θ)D∗

1(θ)

(a) Case 1: When a > a and θ is not large,

S1 is a saddle with g∗1(θ) > r∗1(θ).

Dt

gt

gt = g

S2

S1

αθL

gs(θ)

gt = ĝ(θ)

D∗
1(θ)D∗

2(θ)

ġt = 0

Ḋt = 0

Ḋt = 0

(b) Case 2-1: When a < a and θ is not

large, S2 is a saddle with g∗2(θ) < r∗2(θ).

O
Dt

gt

gt = g

S2

αθL

gs(θ)

gt = ĝ(θ)

D∗
2(θ)

ġt = 0

Ḋt = 0

Ḋt = 0

(c) Case 2-2: Similar to (b), but there is no

S1 in the gt > 0 region.

O
Dt

gt

gt = g

αθL

gs(θ)

gt = ĝ(θ)

ġt = 0 Ḋt = 0

Ḋt = 0

(d) Case 3: No equilibrium

Figure 3: Phase diagram when θ ∈ (0, 1)

3.4 Research Subsidy Financed by Perpetually Rolled-Over Debt

Now we consider the effect of the research subsidy on the dynamics of the economy while

keeping the assumption that the government does not have any revenue. With the rate of

research subsidy of θ ∈ [0, 1), equation (26) implies the ġ = 0 locus is

Dt =
gt − g

g(ρ+ µ)(δ + µ)

(
s(θ) (gt − ĝ(θ))− (δ − ρ)

)
− α(1− θ)

aL
. (31)

From (25), the Ḋ = 0 locus is

Dt =
αθL

gs(θ)

gt
gt − ĝ(θ)

. (32)

The ġ = 0 locus is a parabola, and the Ḋ = 0 is a rectangular hyperbola, with its

asymptotes are Dt = αθL/gs(θ) and gt = ĝ(θ). They may or may not intersect with each

other depending on parameter values, in particular on θ. Figure 3 shows three possible

cases.
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Case 1: Saddle-stable steady state with gt > rt (a > a and θ is not too large)

Recall that, if a > a, the economy has a saddle-stable steady state with g∗ > r∗ when

θ = 0. (See Figure 2(a).) Because the phase diagram moves continuously with θ, the

economy still has a saddle-stable steady state with gt > rt if a > a and θ is not too large,

as shown by S1 in Figure 3(a). We denote the coordinate of S1 in the Dt-gt space by

(D∗
1(θ), g

∗
1(θ)) since it changes with θ. As long as the ġt = 0 locus intersects with the upper

right portion of the Ḋt = 0 locus, the value of gt in the steady state is always higher than

the horizontal asymptote gt = ĝ(θ). Then, (24) implies gt is larger than rt.

Also, note that the long-term level of the debt-GDP ratio, D∗
1(θ), is positive since

the stable steady state S1 is to the right of the asymptote line at Dt = αθ/gs(θ) > 0.

Intuitively, the government issues a new bond each year to finance the research subsidy

and pays the interest on it forever. Still, the debt-GDP ratio converges to a positive

constant because the economy is growing faster than the interest rate.

Another steady state S2 at (D∗
2(θ), g

∗
2(θ)) is a source (totally unstable). There is a

saddle path originating from S2 and converging to S1. Therefore, the debt-GDP ratio can

be stabilized in the long run if the initial debt-GDP ratio if less than D∗
2(θ).

Case 2: Saddle-stable steady state with gt < rt (a < a and θ is not too large)

Contrary to Case 1, if a < a and θ is not too large, the ġt = 0 locus intersects with

the lower left portion of the Ḋt = 0 locus, as shown in Figure 2(b)-(c). In this case, S2 at

(D∗
2(θ), g

∗
2(θ))is a saddle-stable steady state, and there may or may not exist an unstable

steady state (S1) in the gt > 0 region depending on parameters, as discussed in Case 2 of

Section 3.4.

Observe that the value of g∗2(θ) is always lower than the horizontal asymptote at ĝ(θ).

Therefore, from (24), the interest rate in this steady state, denoted by r∗2(θ), is higher

than the growth rate g∗2(θ). Also, D∗
2(θ) is negative because the hyperbola is downward

sloping and goes through the origin. It means that, in steady state S2, the government

holds a positive net asset that grows at the rate of economic growth so that the asset-

GDP ratio is constant at |D∗
2(θ)|. Given that r∗2(θ) > g∗2(θ), the government can use

(r∗2(θ)−g∗2(θ)) |D∗
2(θ)|Yt portion of out of the interest revenue r∗2(θ) |D∗

2(θ)|Yt, while keeping

the asset-GDP ratio constant. In the steady state, the amount of this surplus is just enough

to finance the expenditure for the research subsidy.

While the situation might seem desirable, it might be difficult to reach this steady state.
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Suppose that the unstable steady state S1 exists in the gt > 0 region, as depicted in Figure

3(b). Then the stable steady state S2 can be reached only when the initial value of Dt

is less than D∗
1(θ), the debt-GDP ratio of S1. Since D∗

1(θ) < 0, the government needs to

start by holding a net asset, and the asset-GDP ratio must be greater than |D∗
1(θ)|. When

a < a, it is not possible for the government to subsidize R&D while not collecting taxes

unless it has enough initial assets.

Case 3: No steady state (θ is larger than a certain threshold)

If θ is too large, there is no intersection between the ġt = 0 locus and the Ḋt = 0 locus

in the phase diagram, as shown Figure 3(d). Therefore, regardless of the initial value of

Dt, the economy cannot reach a steady state. Such a large debt-financed subsidy is not

sustainable regardless of the initial GDP-debt or GDP-asset ratio.

3.5 The Growth Effect of Research Subsidy

In Case 1 of the previous subsection, we have shown that the government can provide

research subsidies for firms while rolling over its debts if the research productivity a is

higher than a and the initial GDP-debt ratio is less than D∗
2(θ). Here, we examine whether

such a policy can actually enhance the long-term growth rate.

The research subsidy has two opposing effects on the growth rate. First, it promotes

the research activity by reducing the R&D cost. Second, the government expense for the

subsidy will raise the long-term debt-GDP ratio D∗
1(θ), which increases the equilibrium

interest rate and reduces the value of firms. The following proposition shows that the first

effect dominates if a is sufficiently large.

Proposition 2 A marginal increase in θ from θ = 0 raises the growth rate in the saddle-

stable steady state if and only if

a > 2a+
δ − ρ

2L
≡ â. (33)

Proof: in Appendix A.4.

Figure 4 numerically plot how the growth rate, the interest rate and the debt-GDP

ratio in the steady state respond to the rate of research subsidy θ when the parameters
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(a) When the productivity of R&D a is smaller than â. (a=0.1)

(b) When a is slightly higher than â (a=0.3)

(c) When a is significantly higher than â (a=0.5)

Figure 4: The effect of research subsidy rate θ on the growth rate D∗
1(θ), the interest rate r∗1(θ)

and the debt-GDP ratio D∗
1(θ) in the saddle-stable steady state.

D∗
2(θ) indicates the maximum amount of the debt-GDP ratio from which the economy can

converge to the saddle-stable steady state.
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satisfy the condition for Proposition 2.17 The results are shown for three different values

of a. We can confirm the result of Proposition 2 in the left panel of Figure 4(a), which

shows that g1 ∗ (θ) is always decreasing with θ when a < â. In contrast, in Figure 4(b)-(c)

shows the case of a > â. The value of g∗1(θ) is increasing in θ when θ is small, but further

increases in θ will reduce g∗1(θ). This is because, as shown in the right panels, the steady-

state debt-GDP ratio, D∗
1(θ), sharply increases with θ when θ is high, and therefore the

interest rate in the steady state, r∗1(θ), follows the same pattern.18 Eventually, when the

subsidy rate θ reaches a threshold, which we call θ, the phase diagram changes from Figure

3(a) to (c), and the economy does not have a steady state under such a policy. Observe

also that, as long as the saddle steady state exists, g∗1(θ) is always higher than ĝ(θ), and

therefore, from (24), g∗1(θ)− r∗1(θ) is always positive. In other words, the government can

roll over its debt only when its policy allows the existence of a steady state with gt > rt.

In the right panel of Figure 4, D∗
2(θ) gives the maximum value of the debt-GDP ratio

from which the economy can converge to the saddle steady state (See the phase diagram

in Figure 3). Observe that D∗
2(θ) is decreasing in θ, and it eventually connects to D∗

1(θ)

just before the steady state disappears. Therefore, even though a higher θ may increase

the growth rate, it entails two kinds of costs: it increases the steady state level of the debt

GDP ratio, D∗
1(θ), and reduces the maintainable debt-GDP ratio, D∗

2(θ). When θ reaches

θ, D∗
1(θ) and D∗

2(θ) coincide, which means that the steady state is not maintainable beyond

this point.

Figure 5 contour-plots the long-term growth rate, g∗1(θ), against a and θ. The growth

rate is higher when the color is lighter. The thick black curve delineates the value of θ as a

function of a. Since it is upward-sloping, a higher rate of research subsidy is maintainable

when the research productivity in the first place is higher. The area above the θ curve,

shown in dark blue, indicates that there is no steady state with gt > rt for the given

combination of a and θ; i.e., such a policy is not sustainable. Recall that, from Proposition

17 In the numerical examples of Figures 4 and 5, we set population L = 1, discount rate ρ = 0.01,

mortality rate µ = 1/(76.4 − 20), where 76.4 is the average life expectancy in the U.S, and 20 is the age

from which we assume the agents starts economic activities. The deterioration rate of labor productivity

is set to 1/45, and the inverse of markup is 3/4. Given these, we can calculate that the value of â in

Proposition 2 is 0.19.

18From (24), the interest rate in steady state S1 is obtained by r1(θ) = s(θ)ĝ(θ)− (s(θ)− 1)g∗1(θ).
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no steady
state region

Figure 5: Contour plot of the growth rate in the steady state g∗1(θ) against the productivity of

R&D a and the R&D subsidy rate θ

1, the government can roll over the debt only when a > a.19 Therefore, the θ(a) curve

intersects with the horizontal axis to the right of the origin at a = a.

The results so far demonstrate the importance of research productivity, a. When the

productivity of R&D is not sufficiently high, the research subsidy financed by perpetually

rolled-over debt is neither effective for growth nor maintainable. While subsidizing R&D is

a standard policy for enhancing growth, the results suggest that we may need to focus on

other policies that directly improve research productivity in the long run, such as enhancing

education and public-funded basic research.

4 Conclusion and Future Research

This paper has examined the effect of R&D subsidies in an R&D-based endogenous growth

model, assuming that the government cannot raise taxes. Such a policy is sustainable only

when the interest rate is lower than the growth rate. We find that g > r is realized in

the steady state if the productivity of R&D is high enough. Given that the findings in

19With the parameter values explained in footnote 17, a is 0.091.
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the recent literature that g > r is more historical the rule rather than the exception, we

focused on the case where the above condition is satisfied.

Given this, we find that the government can subsidize R&D by perpetually rolling over

the government debt. As long as the subsidy rate and the initial debt-GDP ratio are not

too high, the economy converges to a saddle-stable steady state with g > r. However, such

a policy does not necessarily raise the growth rate. When a is high enough to support g > r

but is lower than another higher threshold, the R&D subsidy actually lowers the growth

rate because the effect of the increased government debt on the interest rate dominates the

positive direct effect of the subsidy. When a is higher than this threshold, the policy can

indeed enhance the growth rate. Still, it is to be reminded that such a policy will reduce

the upper bound in the debt-GDP ratio (or fiscal space) from which the economy can

recover to a steady state. Once the subsidy rate exceeds a certain value, the economy has

no equilibrium path. It means that such a policy cannot be implemented in the rational

expectation equilibrium; the government will go bankrupt.

This paper has shown the importance of the productivity of private R&D, a, which

represents how many innovations can be realized per R&D worker. While we treat this

parameter as exogenous, the government may be able to influence this parameter by other

policies. For example, when private R&D is reliant on science and basic research, public

funding for these will enhance the value of a. Also, education (particularly higher educa-

tion) will improve the ability of R&D workers, and therefore a. Both of those policies will

need time to take effect, but if the initial level of a is low, it will be more effective than

subsidizing private R&D directly. Those policies could also be financed by perpetually

rolled-over debts. Future work is required to determine the feasibility and the effectiveness

of those alternative policies.
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A Appendix

A.1 Derivation of the Dynamics for Aggregate Consumption

In this section, we derive the dynamics of aggregate consumption in (6). As explained in

the main text, each individual maximizes the expedited utility (3) subject to the budget

constraint (4), initial condition kt,t = 0, and the non-Ponzi-game condition,

lim
T→∞

e−
∫ T
t (rm+µ)dmks,T ≤ 0. (A.1)

The Euler equation of individuals is dcs,t/dt = (rt − ρ)cs,t. From (4), (A.1), and this Euler

equation, we obtain

cs,t = (ρ+ µ)(ks,t + hs,t), (A.2)

where hs,t is the present value of future labor income, or “human wealth” of an individual

of generation s evaluated at time t. It is defined by

hs,t ≡
∫ ∞

t
ℓs,t′wt′e

−
∫ t′
t (rm+µ)dmdt′. (A.3)

Equation (A.2) implies a relationship between aggregate variables

Ct = (ρ+ µ) (Kt +Ht) , (A.4)

where Ct and Kt are defined by (5), and

Ht ≡
∫ t

−∞
Ns,ths,tds (A.5)

is the aggregate present value of future labor income of currently living individuals. Equa-

tion (A.4) means that the aggregate consumption is a constant fraction of the total wealth

of currently living individuals. Therefore, the movement of aggregate consumption is given

by

Ċt = (ρ+ µ)
(
K̇t + Ḣt

)
. (A.6)

Now, we want to express the RHS of (A.6) in terms of Ct and Kt. Differentiating the

definition of Kt in (5) with respect to t and using individual budget constraint (4) and

initial condition kt,t = 0, we obtain the dynamics for the aggregate capital:

K̇t = rtKt + wt − Ct. (A.7)
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Next, we consider Ḣ. Note that equation (1) implies that Ṅs,t = −µNs,t. Differentiating

the definition of Ht in (A.5) with t and using Ṅs,t = −µNs,t yields

Ḣt =

∫ t

−∞
ḣs,tNs,tds+ µ(ht,t −Ht). (A.8)

In the RHS of (A.8), ht,t is the human wealth of a newborn at time t. Equation (2)

implies that the human wealth of an age t − s individual is e−(t−s)δ ∈ (0, 1) times that of

a newborn, ht,t. Substituting this relation, hs,t = e−δ(t−s)ht,t, into the definition of Ht in

(A.5) gives Ht = (µ/(δ + µ))ht,t. Also, by differentiating (A.3) with respect to t, we have

ḣs,t = (rt + µ)hs,t − ℓs,twt. Using these, we can eliminate ḣs,t and ht,t from (A.8),

Ḣt = (rt + µ+ δ)Ht − wt. (A.9)

Note that, using (A.4), Ht in the RHS of (A.9) can be represented in terms of Ct and Kt.

Substituting this result, (A.7), and (A.9) into (A.6) yields (6).

A.2 Stability of the Steady State when There is no Subsidy

Substituting θ = 0 into (25) and (26) and linearlizing the system around steady states (S1

and S2) yields Ḋt

ġt

 = J

Dt −D∗

gt − g∗

 ,

where the Jacobian matrix is

J ≡

−s(0)(g∗ − ĝ(0)) −s(0)D∗

g(ρ+ µ)(δ + µ) s(0)(ĝ(0) + g − 2g∗) + δ − ρ

 , (A.10)

where s(0) = 1/(1− α), ĝ(0) = (1 − α)g, and g = ((1 − α)/α)aL. Since D∗
1 = 0 in steady

state S1, the determinant and the trace of of J in S1 are

detJ |S1
= −s(0)(g∗1 − ĝ(0)) {s(0)[(2− α)g − 2g∗1] + δ − ρ} , (A.11)

trJ |S1
= δ − ρ+ s(0)

(
2ĝ(0) + g − 3g∗1

)
. (A.12)

In steady state S2, D
∗
2 = D, g∗2 = ĝ(0), and therefore

detJ |S2
= g(ρ+ µ)(δ + µ)D, (A.13)

trJ |S2
= aL+ δ − ρ > 0. (A.14)
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In the following, we examine the stability of the steady states (S1 and S2) in the three

cases as discussed in the main text.

Case 1: a > a. First, we show that S1 is saddle stable. As explained in the main

text, ġt = 0 parabola cuts the gt = g line at Dt = −α/aL < 0. It implies that the vertex of

the parabola is in the Dt < 0 region, and given that S1 exists, the g∗1 is necessarily lower

than the g-coordinate of the vertex of the parabola, gvertex = [(δ−ρ)(1−α)+(2−α)g]/2 is

the g-coordinate of the ġt = 0 parabola. In the right-hand side (RHS) of (A.11), the term

s(0)[(2−α)g− 2g∗1] + δ− ρ is a decreasing function of g∗1 and becomes 0 when g∗1 = gvertex.

Since g∗1 < gvertex as shown above, this term is positive. Also the term g∗1 − ĝ(0) is positive

since since g∗1 > ĝ(0) in Case 1. From these, detJ |S1 in (A.11) is negative. It means that

only one eigenvalue is negative, and hence S1 is saddle stable.

Since D > 0 in Case 1, (A.13) implies detJ |S2 > 0 in S2. Together with trJ |S2 > 0 in

(A.14), S2 has two positive eigenvalues and is hence totally unstable.

Case 2: a < a < a. Similarly to Case 1, s(0)[(2− α)g − 2g∗1] + δ − ρ > 0 holds from

g∗1 < gvertex. However, since g∗1 < ĝ(0), det |S1 > 0 from (A.11). Also, substituting g∗1 <

ĝ(0) into (A.12), which is an decreasing function of g∗1, we have trJ |S1 ≥ δ−ρ+αs(0)g > 0.

From detJ |S1 > 0 and trJ |S1 > 0, S1 has two positive eigenvalues and is therefore totally

unstable.

Since D < 0 in Case 2, (A.13) implies detJ |S2 < 0 in S2. Therefore, S2 has only one

negative eigenvalue and is hence saddle stable.

Case 3: a < a. Similarly to Case 2, S2 is saddle stable. There is no S1 steady state

in the gt > 0 region. However, we show in Appendix A.3 that there is an unstable steady

state (S1) in the dynamics where gt = 0.

A.3 Dynamics in the gt = 0 region

This section explains the dynamics of the economy when gt becomes 0, which means ṅt = 0,

LP = L, and LR = 0. For simplicity, we focus on the case of θ = 0 in the model, but the

analysis can be extended to the case of θ > 0.

The aggregate consumption Ct is also constant from the equilibrium of the goods market

Ct = Xt(= Yt). Let us define νt ≡ vtnt/Yt, which represents the ratio of the total market

value of firms to the potential GDP. Then, when ṅt = 0, the free entry condition (14) holds

whenever νt ≤ α/aL. Substituting Ċt = 0 and Kt = Bt + vtnt from the equilibrium of the
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asset market yields into the Euler equation (6) the interest rate.

rt = (δ − ρ)
(
aL(Dt + νt)− 1

)
(A.15)

The dynamics of the economy when gt = 0 can be examined by νt and Dt.
20 Since the

government has no revenue or expense in the gt = 0 region, its debt Bt grows at the rate

of rt. Also, since Yt is constant, Ḋt/Dt = Ḃt/Bt = rt. Therefore,

Ḋt = (δ − ρ)
(
aL(Dt + νt)− 1

)
Dt. (A.16)

Again, since Yt and nt are constant in νt ≡ ntvt/Yt, we get ν̇t/νt = v̇t/vt. Also from

LP = L, πt = (1− α)Yt/nt.
21 Then the no-arbitrage condition (17) implies

ν̇t = (δ − ρ)
(
aL(Dt + νt)− 1

)
νt − (1− α). (A.17)

From (A.16) and (A.17), the phase diagram of the economy when gt = 0 can be represented

as follows:

The Ḋt = 0 locus: Dt + νt =
1

aL
, and (A.18)

Dt = 0. (A.19)

The ν̇t = 0: locus Dt + νt =
1

aL
+

1− α

(ρ+ µ)(δ + µ)

L

νt
. (A.20)

Recall from the free entry condition that the diagram for the case of gt = 0 is defined

only for ν ∈ [0, α/aL]. The phase diagram is shown in Figure (A.1) for the case when the

Ḋt = 0 locus intersects with the νt axis (a < a) and when it does not (a > a). From (A.20),

the Dt coordinate of the ν̇t = 0 locus at νt = α/aL (denoted as point A1 in Figure A.1) is

1− α

(ρ+ µ)(δ + µ)

aL

α
− α

aL
+

1

aL
, (A.21)

which is positive if and only if a > a. Moreover, (A.21) coincides with the Dt-intercept of

the ġt = 0 locus in Figure 2(b) and 2(c).

We now consider the steady state. From (A.20), we see that the ν̇t = 0 locus is

downward sloping, is always above the sloping part of Ḋt = 0 locus (A.18), and Dt tends

20Depending on whether the free entry condition (14) holds with equality or not, either gt or nt can

move, while the other is fixed.

21See footnote 5.
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Dt
O

νt ≡ vtnt/Yt
νt = α/aL

A1

ν̇t = 0
Ḋt = 0

Ḋt = 0 S1

A2

1/a

(a) When a < a, S1 exists in the Dt − νt

plane.

Dt
O

νt ≡ vtnt/Yt

νt = α/aL
A1

ν̇t = 0

1/a

Ḋt = 0

Ḋt = 0

(b) When a > a, no S1 in the Dt − νt plane.

Figure A.1: Phase diagram when gt = 0

to infinity as νt → 0. Therefore, the ν̇t locus intersects with the vertical portion of the

Ḋt = 0 locus given that a < a; i.e., when point A1 is to the left of the vertical axis, as

shown in Figure A.1(a). We call the steady state S1 in this case and let ν∗ > 1/aL denote

its νt value.
22 If a > a, there is no steady state as shown in Figure A.1(b).

Next, we show that S1 is unstable. Linearlizing (A.16) and (A.17) around (0, ν∗) yieldsḊt

ν̇t

 = J1

 Dt

νt − ν∗

 , where,

J1 ≡

L(ρ+ µ)(δ + µ)ν∗ − (δ − ρ) 0

L(ρ+ µ)(δ + µ)ν∗ 2L(ρ+ µ)(δ + µ)ν∗ − (δ − ρ)

 . (A.22)

Its determinant is

detJ1 = 2L2(δ − ρ)2a2
(
ν∗ − 1

aL

)(
ν∗ − 1

2aL

)
, (A.23)

which is positive since ν∗ > 1/aL. The trace of J1 is positive:

trJ1 = 3L(ρ+ µ)(δ + µ)ν∗ − 2(δ − ρ) > δ − ρ > 0, (A.24)

where the first inequality comes from ν∗ > 1/aL. From (A.23) and (A.24), we can conclude

that both eigenvalues are positive.

Finally, we explain there is a saddle path that originates from S1 and connects to the

saddle-stable steady state S2 in Figure 2(c). As shown in 2(c), there is a saddle path

that originates from a point on the horizontal axis (i.e., gt = 0). This point is located

22We can confirm ν∗ > 1/a by substituting Dt = 0 in (A.20).
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Dt
0

gt

Ḋt = 0
(θ = 0) Ḋt = 0 (θ = dθ)

ġ = 0 (θ = 0)

ġ = 0 (θ = dθ)

g∗1(dθ)

g∗1(0)

MDdθ Mgdθ

(a) The shifts of the ġt = 0 and Ḋt = 0 loci

and the movement of the steady state.

0
Dt

gt

gt = g

g∗1(0)ġt = 0

gt = g∗

Fg(g
∗; 0)

(b) Condition g∗1 > g∗ holds if and only if

Fg(g
∗; 0) > 0.

Figure A.2: Proof of Proposition 2

between the origin and the intercept of the ġt = 0 locus (point A1), and we call it point

A2. Note that point A2 also belongs to Figure A.1(a) because A2 satisfies both gt = 0

and νt = vtnt/Yt. Since steady state S1 is completely unstable, there exists a point in the

neighborhood from which the path leads to A2. This is the saddle path of this economy.

Once the economy reaches A2 in Figure A.1(a), it experiences a phase transition to Figure

2(c).

The case of θ > 0: So far, we focused on the case of θ = 0. Even when θ is positive,

the phase diagram within the gt = 0 region is almost the same as the case of θ = 0 because

gt = 0 means no firms do R&D, and therefore the government expenditure is zero. The only

difference is that the border between the phase diagrams. With θ > 0, the νt = (1−θ)α/aL

line in the diagram of the gt = 0 region will be connected to the gt = 0 line in the phase

diagram of the gt > 0 region. Intuitively, with θ > 0, firms are more eager to start R&D

even when the index of firm values, νt, is not as high as in the case of θ = 0. Therefore,

the economy transitions from the gt = 0 region to the gt > 0 region with a smaller νt.

A.4 Proof of Proposition 2

Before the increase in the subsidy, the economy is in a saddle-stable steady state. As

illustrated as S1 in Figure 2(a), this steady state is given by an intersection between the

ġt = 0 locus and the Ḋt = 0 locus.
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We consider the situation where the rate of the R&D subsidy, θ, is increased from 0

marginally by dθ. Then, both the ġt = 0 locus and the Ḋt = 0 locus shift to the right.

The location of the steady state always moves to the right, which means that Dt in the

new steady state is higher than before. Whether gt in the SS rises or falls depends on the

relative magnitude of the size of the shifts of the two loci. As illustrated in panel (a) of

A.2, gt in the new steady state should be higher than before if and only if the size of the

shift of the ġ = 0 locus (Mgdθ), measured at the point of the saddle-stable steady state

(Dt = 0, gt = g∗1), is larger than that of the Ḋ = 0 locus (MDdθ).

Let Fg(gt; θ) be the RHS of (31), and FD(gt; θ) the RHS of (32). Then, Dt = Fg(gt; θ)

and Dt = FD(gt; θ) respectively represent the ġ = 0 locus and the Ḋ = 0 locus. Then, Mg

and MD are calculated as

Mg ≡ ∂Fg(g
∗
1; 0)

∂θ
=

α

aL
+

(g∗1 − g)2

g(ρ+ µ)(δ + µ)
, (A.25)

MD ≡ ∂FD(g
∗
1; 0)

∂θ
=

α2g∗1
aL

1

g∗1 − ĝ(0)
. (A.26)

From (A.25), (A.26) and ĝ(0) < g∗1 < g, we find Mg −MD > 0 holds if and only if

(g − g∗1)(g
∗
1 − ĝ(0)) > (1− α)2(ρ+ µ)(δ + µ). (A.27)

The fact that the steady state before the shift (Dt = 0, gt = g∗1) is on the ġt = 0 locus

means Fg(g
∗
1; 0) = 0. This equation can be rearranged to

(1− α)2(ρ+ µ)(δ + µ) = (g − g∗1) ((1− α)(δ − ρ) + ĝ(0)− g∗1) . (A.28)

Substituting (A.28) to the RHS of (A.27) and rearranging yields

g∗1 >
(1− α)(δ − ρ)

2
+ ĝ(0) ≡ g∗. (A.29)

This inequality shows that the growth rate on the saddle-stable steady state will increase

when θ is slightly increased from 0 if and only if g∗1 > g∗.

As illustrated in panel (b) of Figure A.2, g∗1 is higher than g∗ if and only if the inter-

section of the ġt = 0 locus and the gt = g∗ line. Because the ġt = 0 locus is downward

sloping, this condition holds if and only if Fg(g
∗; 0) > 0. When we solve this condition for

a, we can confirm it is equivalent to (30).
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