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Abstract

This paper investigates the contribution of Artificial Intelligence (AI) to environmental inno-
vation. Leveraging a novel dataset of USPTO patent applications from 1980 to 2019, it explores
the domain of Green Intelligence (GI), defined as the application of AI algorithms to green
technologies. Our analyses reveal an expanding landscape where AI is indeed used as a general-
purpose technology to address the challenge of sustainability and acts as a catalyst for green
innovation. We highlight transportation, energy, and control methods as key applications of GI
innovation. We then examine the impact of inventions by using measures and econometric tests
suitable to establish 1) how AI and green inventions differ from other technologies and 2) what
specifically distinguishes GI technologies in terms of quality and value. Results show that AI and
green technologies have a greater impact on follow-on inventions and display greater originality
and generality. GI inventions stand out even further in these dimensions. However, when we
examine the market response to these inventions, we find positive results only for AI, indicating
a mismatch between the technological vis-à-vis market potential of green and GI technologies,
arguably due to greater uncertainty in their risk-return profiles.
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1 Introduction

The urgent need to limit the rise in global temperatures requires a comprehensive transition

towards a sustainable and low-carbon future (IPCC, 2018). The importance of achieving a net-

zero transition is underscored by the robust evidence now available on the escalating impacts of

climate change, from extreme weather events to ecosystem losses (IEA, 2021). As nations around

the world consider ambitious climate targets, decoupling economic growth from carbon emissions

becomes imperative. Central to this objective is the convergence of environmental protection and

technological innovation, with digital technologies emerging as important catalysts of the net-

zero transition. Among the relevant digital technologies, Artificial Intelligence (AI) is expected

to help mitigate urgent environmental problems in different contexts (Vinuesa et al., 2020;

Tomašev et al., 2020; Ardabili et al., 2020). As a general-purpose technology (GPT), AI can be

adopted for multiple purposes in a broad range of sectors, and – when used as a research tool –

even generate new waves of inventions with the potential to create widespread economic impacts

(Trajtenberg, 2018). Researchers and companies are indeed “hoping to leverage AI to address

one of the most pressing concerns of the modern era”.1 In practice, companies are engaging in

new projects to leverage AI algorithms for developing and improving green technologies, seeking

the so-called “Green Intelligence”. One example is Microsoft’s initiative “AI for Earth”, a huge

commitment to finance projects and harness AI to solve global environmental challenges in key

focus areas of climate, agriculture, water, and biodiversity conservation.

Through AI algorithms and machine learning, firms could radically transform their products

and processes to achieve greater organizational efficiency and flexibility. For example, these

techniques can be easily applied in smart grid management to reduce energy production and

waste. Furthermore, AI technologies are enablers of change because they can help to incorporate

eco-design principles into new product development, optimize heating and cooling systems in

production plants, and re-engineer whole processes for efficient waste disposal.

It must also be stressed, however, that despite the potential to improve the efficiency and

environmental impact of production and distribution processes, AI technologies could also lead

to higher demand for computing power, higher carbon emissions, unanticipated changes in

electricity demand patterns, and an accelerated depletion of natural resources (Brevini, 2023).

Indeed, ongoing policy and scholarly debates are very concerned as to whether AI will have a

positive or negative environmental impact and, as these concerns grow quickly over time, there

is a call for new regulations against a backdrop of technological uncertainty (Swiatek, 2024).

This suggests the need to develop better ways to identify, measure, and characterize AI

innovations in technologies capable of positive environmental impacts. As a GPT and arguably

the most disruptive among all digital technologies (Martinelli, Mina, and Moggi, 2021), AI can,

in principle, provide considerable support to green innovations and their diffusion. However,

there is a lack of comprehensive evidence on the green inventions that rely on AI technologies –

1https://impact.economist.com/perspectives/sustainability/green-intelligence-ai-could-boost-efforts-fight-
climate-change [Last accessed June 27, 2024].
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Green Intelligence (GI) inventions hereafter.

The interaction between green and digital technologies has sparked growing research interests

in the so-called ”twin” (green and digital) transition (Diodato et al., 2023). Existing studies in

this area have primarily examined its antecedents (Montresor and Vezzani, 2023), environmental

impact (Bianchini, Damioli, and Ghisetti, 2023), and implications for employment (Santoalha,

Consoli, and Castellacci, 2021). This literature has described the emergence of a twin transition

at the regional level (Damioli, Bianchini, and Ghisetti, 2024; Fazio, Maioli, and Rujimora, 2024)

and demonstrated that digital skills foster the development of circular economy technologies

in European regions (Fusillo, Quatraro, and Santhià, 2024). The limited research exploring

the twin transition at the firm level has predominantly treated green and digital technologies

as distinct entities, even when jointly adopted (see, e.g., Cattani, Montresor, and Vezzani,

2023). However, these studies have largely overlooked the identification of ”twin” (green-digital)

inventions. In this paper, we map the landscape of GI technologies, as the most promising

subset of “twin” inventions, and document whether and how AI contributes to the development

of green innovations. We start by identifying the main application domains and the most

common AI techniques applied to green inventions. We then focus on the most important

companies developing GI technologies and examine their geographical distribution compared to

other AI and green technologies. Finally, we explore the quality of inventions by designing and

implementing econometric tests suitable to establish whether GI inventions are more impactful

and valuable than other AI and green technologies.

To provide a precise picture of the GI technology landscape, we leverage a unique patent

dataset identifying both green and AI technologies. We focus on AI technologies rather than

broadly defined digital technologies on which the literature has focused so far. To this end, we

combine the World Intellectual Property Organization (WIPO) classification for Artificial In-

telligence (WIPO, 2019) with the OECD Env-Tech classification by Haščič and Migotto (2015)

for green patents. Applying this search strategy to patent data retrieved from PATSTAT 2023

(Autumn edition), we select 1,249,798 AI and green patent applications filed with the United

States Patent and Trademark Office (USPTO) from 1980 to 2019. Despite well-known limita-

tions, patent data are established indicators of innovation activity (Griliches, 1990) and have

been extensively used to study the backbone and evolution of technological knowledge (Hall,

Jaffe, and Trajtenberg, 2001). They serve as a valuable data source and a reliable proxy that has

already been used to analyze trends in both AI (WIPO, 2019; Cockburn, Henderson, and Stern,

2018; Iori, Martinelli, Mina, et al., 2022) and green technologies (Dechezleprêtre, Martin, and

Mohnen, 2013; Popp, 2019; Barbieri, Marzucchi, and Rizzo, 2020; Fusillo, 2023) independently

from one another. We then combine these data with the OECD Patent Quality Indicators

dataset (Squicciarini, Dernis, and Criscuolo, 2013) and the stock market-based indicators of

patent value proposed by Kogan et al. (2017) to obtain a multidimensional perspective on the

quality of GI inventions.

Our exploratory analyses show a scenario where AI clearly emerges as a catalyst for green
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innovation, highlighting its potential role in achieving environmental sustainability. We identify

transportation, energy, and control methods as critical areas of development for GI innovation,

with significant efforts observed in the United States, followed by Japan, South Korea, and

China. At the sector level, GI inventions are particularly important for automotive and elec-

tronics, suggesting a strategic convergence between mobility needs and advanced electronics in

the direction of greener technical solutions. Regarding the quality of GI inventions, we find that

the convergence of AI and green technologies is associated with a greater impact on further

inventions as measured by forward citations. Moreover, green, AI, and GI patents are all more

original and general than other patents, thus confirming their GPT features. However, when

we inspect the value of patents by using Kogan et al., 2017’s ex-ante market value indicator, we

find positive and significant results for AI technologies, negative and significant results for green

technologies, and non-significant results for GI technologies. These differences are arguably due

to greater perceived uncertainty and lower expected returns for green technologies. A direct

comparison of GI technologies with AI and green technologies reveals that GI technologies dis-

play higher citation impacts, originality, and generality, but no higher (ex-ante) value, suggesting

the existence of a gap between the pace of technological progress and market perceptions.

The remainder of this paper is structured as follows. Section 2 provides an overview of AI

in environmental technologies. Section 3 describes data and methods. Sections 4 and 5 report

our exploration of the GI patent landscape, and section 6 concludes.

2 The role of AI in environmental innovation

The economic significance of AI lies in its foundational role in spurring technological advance-

ments while also influencing industrial dynamics (Cockburn, Henderson, and Stern, 2018). Con-

sidered the latest exemplar of General Purpose Technology (GPT), AI and related methodolo-

gies - spanning machine learning, natural language processing, and data analytics - exhibit

strong complementarities with other innovations, driving systemic change and altering the en-

tire competitive landscape. A recent WIPO report (WIPO, 2019) reveals an explosive growth

in AI inventions, pointing to the technology’s widespread adoption and integration into various

domains, including environmental technologies (Vinuesa et al., 2020; Swiatek, 2024). Environ-

mental (or green) technologies, embody a variety of innovations designed to mitigate or adapt

to changing environmental conditions, enhance resource efficiency, and adhere to environmental

standards (Sun et al., 2023). Previous literature highlights that green technologies have a larger

and more pervasive impact on future inventions (Barbieri, Marzucchi, and Rizzo, 2020). Con-

sidering the nature of AI as GPT (Martinelli, Mina, and Moggi, 2021), the integration of AI into

green technologies is expected to enhance the impact of these technologies further. In addition,

sinceKogan et al., 2017 show that the market response to the grant of a patent is positively

associated with its impact, proxied by the number of future citations, all these technologies

should also be associated with higher value. However, it should be considered that emerging
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technologies may initially face a less positive short-term market response due to uncertainty

and perceived risks associated with new innovations. All in all, we expect the integration of AI

in green technologies to ultimately gain a higher positive response from the markets as their

combined potential and long-term benefits become more evident. The unique combination of

AI capabilities with green technologies can lead to innovations that address not only critical

environmental challenges but also drive economic growth through increased efficiency and new

market opportunities (Cowls et al., 2023).

Despite the growth of scholarly efforts aimed to identify direct and indirect effects of green

innovation across sectors and regions (Crespi, Ghisetti, and Quatraro, 2015; Ghisetti and Qua-

traro, 2017) and combined effects in association with digital technologies (Bianchini, Damioli,

and Ghisetti, 2023), systematic evidence on the specific contributions of AI to environmental

technologies is scant. Illustrations of these contributions include innovations in environmental

monitoring, renewable energy optimization, and AI-based greenhouse gas reduction applications.

For instance, among others,(Robinson, Dilkina, and Moreno-Cruz, 2020) study a simulation

model based on AI to predict the impacts of climate-induced migration. Rolnick et al. (2022)

identify, instead, machine learning’s potential to impact solutions across energy systems and

ecosystem management significantly, a sentiment echoed by the International Energy Agency

(IEA, 2021), which highlights AI’s role in enhancing energy efficiency and supporting the shift

to renewable energy through smart grids and demand forecasting. An example of this potential

impact is a technology developed by Siemens that uses AI-driven solutions to optimize energy

distribution and consumption through smart grids. This AI system analyzes vast amounts of

data to make real-time decisions on energy distribution, thereby balancing supply and demand,

reducing energy waste, and enhancing the grid’s reliability. Similarly, IBM has harnessed AI to

promote sustainable agriculture. IBM AI-powered tools assist farmers in making data-driven

decisions regarding crop management, using data from weather stations, satellite imagery, and

Internet of Things (IoT) sensors. These tools enable precision farming, which reduces waste and

environmental impact by optimising the application of water, fertilizers, and pesticides. This

application of AI in agriculture not only improves yield but also enhances resource efficiency

and helps farmers adapt to changing climatic conditions (for an example of patented technology

in this field, see Figure A1).

AI’s transformative impact extends to climate prediction and modelling, where advanced

techniques have markedly improved the processing of large datasets, thereby increasing the ac-

curacy of climate projections and deepening our understanding of climate dynamics. Among

other techniques, convolutional neural networks have been used to analyze satellite imagery

to gain new insights into deforestation, urbanization, and ecosystem changes (Reichstein et

al., 2019) (for an example of patented technology in this field, see Figure A2). In agricul-

ture, AI-driven tools optimize resource use, water conservation, and carbon footprint reduction

(Kamilaris, Kartakoullis, and Prenafeta-Boldú, 2017). Expanding the scope of AI’s impact,

Verendel (2023) perform an extensive analysis of over 6 million US patents to explore AI’s role
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in climate-related innovations, identifying significant contributions in transportation, energy,

and industrial production. This study highlights AI’s catalytic effect on generating subsequent

inventions, with climate patents incorporating AI linked to a considerable increase in techno-

logical advancements. In a similar line of research, Li et al. (2023) provides a spatial analysis

of climate-related patents in China that reveals the dominance of eastern provinces in innova-

tion and suggests policies to spread clean technology and tailor technical support, highlighting

the importance of geographical factors and network dynamics in the diffusion of AI-enhanced

climate technologies.

Our study provides a broader assessment of the technologies leveraging AI for green and en-

vironmental purposes. The intersection between AI and green technologies is, indeed, a domain

largely under-explored in current research. Unlike previous analyses, which use digital innova-

tions as a very broad category of enabling technologies, we take AI apart from other digital

technologies and focus sharply on AI and its subcomponents. This approach allows us to un-

cover specific areas where integrating AI algorithms with green technologies creates innovative

solutions to address environmental challenges (Swiatek, 2024). This intersection leverages the

capabilities of AI to enhance the efficiency, effectiveness, and scalability of green technologies,

thereby fostering sustainable development. In what follows, we will refer to these technologies

as Green Intelligence (GI).2

3 Data and methods

3.1 Sample construction

Our empirical analysis is based on a dataset of AI and green patent applications filed at the

United States Patent and Trademark Office (USPTO)3 from 1980 to 2019 and retrieved by PAT-

STAT 2023 (Autumn edition). Due to the recent emergence of GI inventions, we consider patent

applications because, contrary to granted patents, they allow us to capture more recent trends

in this technology. However, since the USPTO does not consistently report patent applications

before 2001, we also perform our analysis on the sub-sample of granted patents.

To identify AI and green patents, we rely on two well-established classifications, namely

the WIPO classification for Artificial Intelligence WIPO (2019) and the OECD Env-Tech Clas-

sification (Haščič and Migotto, 2015) for technologies with positive environmental outcomes.

Both classification schemes use the technology classification codes assigned to each patent – the

International Patent Classification (IPC) and Cooperative Patent Classification (CPC) codes

– to detect inventions in the sector of interest. The WIPO classification for AI identifies the

2It is worth noticing that the term “Green Intelligence” has been used in other domains with different meanings
(see, for instance, Laurent, 2008; Soleimanpouromran and Ahmadimoghadam, 2021; Juo and Wang, 2022). In this
paper, we follow the definition provided by the Economist (see Section 1 and Footnote 1).

3We focus on USPTO patents because, in this legislation, it is possible to patent software inventions, contrary to
what happens in other patent offices.
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use or definition of AI algorithms in inventions by integrating technology codes (e.g., Y10S706

– “Data processing; artificial intelligence” and subcategories of G06N – “Computing arrange-

ments based on specific computational models”) with a keyword-based search to collect patents

referring to new AI techniques that may lack specific classification codes (e.g., deep learning).

The resulting dataset comprises 794,588 green inventions and 142,032 AI patents, as reported in

Table 1. While green patents include climate change mitigation technologies with applications

to several sectors (e.g., transportation, energy, and building) and inventions for environmental

management, AI technologies refer to the application of AI algorithms (e.g., machine learning

and expert systems) to various settings. We then consider the intersection between AI and green

patents to identify GI inventions, i.e. the application of AI-based software to green technolo-

gies. Only a small fraction of green and AI patents (7,166) belong to both sets and have been

classified as GI inventions. They represent about 1% of green patents and 4.8% of AI patents.

For all patents in our dataset, we also retrieved information about patent applicants and

identified 483,747 different applicants according to the OECD Harmonised Applicant Name

(HAN) database.

Table 1: Dataset composition

Period of analysis 1980-2019

# of patent applications 8,995,626
among which:

# AI patent applications 141,632
# Green patent applications 792,330
# GI patent applications 7,158

# of granted patents 6,959,125
among which:

# AI granted patents 105,518
# Green granted patents 602,435
# GI granted patents 5,263

# Patent applicants 483,747

GI patents firmly rely on both AI and green technologies. Assuming that patent backward

citations map inventions’ sources of knowledge, patents cited by GI inventions primarily belong

to green (26.8%) and AI (22.9%) technologies, signalling a predominant role of these technologies

in GI development and confirming the reliability of our classification. 6% of GI’s backward

citations refer to other GI patents. The primary reliance of GI on AI and green knowledge is

also confirmed when we account for the size of these fields by building a Configuration Null

Model (Bollobás, 2001). The models allow us to compare observed backward citations by fields

with those expected given the citation-network structure and the occurrence of each field in
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the sample of patents across time.4 By comparing the expected number of citations with the

observed one, we detect a predominant role of AI knowledge, which is cited by GI patents 16.4

times more than expected in the case where citations were random. The same occurs for green

technologies since GI cites green inventions 4.4 times more than expected. The reliance on

GI patents is even more evident (83.3 times more than expected), suggesting the emergence of

a small but coherent technology field. Interestingly, a general AI patent does not cite green

inventions (the ratio between observed and expected citations is 0.46), and green patents do

not usually rely on AI inventions (the ratio is 0.26). Since the WIPO classification for AI is

based on the identification of AI algorithms, we can conclude that GI inventions are a unique

combination of AI and green knowledge resulting in AI algorithms applied to green technologies,

as illustrated also by the examples of GI patents reported in Figures A1, A2 A3 in Appendix

A. Patent US9898688B25 protects a system that analyzes and classifies agricultural conditions,

such as water-imposed damage, based on data recorded by one or more drones, relying on a

neural network technology applied to precision farming. Patent US11555701B26 instead covers

a system to auto-determine the height and elevation of a building from the terrain. Such

information is used to perform a flood risk assessment. In this case, the underlying invention is

a clear example of climate change adaptation technology. Finally, Patent US10318821B27 refers

to a driver assistance apparatus that supports the navigation of a vehicle with a Stop and Go

function controlling the engine. This system is conceived to improve fuel efficiency and reduce

the vehicle’s carbon dioxide emissions.

To further improve our understanding of GI inventions, our analysis considers subclassifica-

tions of AI and green technologies. The WIPO report provides fine-grained patent subclassifica-

tions according to the AI technique described or applied in the patent, its functional application,

and its application field.8 AI techniques refer to the AI algorithms described or applied in the

patent. They include logical programming for expert systems, fuzzy logic for machine control,

and machine learning. Although early AI patents relied on expert systems, machine learning

has been the most popular approach in recent years. Since AI technologies have a variety of

application settings, the classification of functional applications categorised the operations that

can be realised using AI techniques. They include computer vision, control methods for dy-

namic systems, knowledge representation and reasoning to solve complex tasks, planning and

scheduling activities and assignments, robotics, and speech recognition. Finally, AI application

4We compute the expected number of GI’s backward citations to AI, green, and GI patents by defining 10 random
networks that preserve the number of links (citations) of each patent and the application year of each cited invention
(to account for the emergence of new fields and citation heterogeneity across time) but assign citations randomly. By
averaging the number of citations between fields obtained in these random networks, we define the expected number
of backward citations from GI to AI, green, and GI.

5patents.google.com/patent/US9898688B2.
6patents.google.com/patent/US11555701B2.
7patents.google.com/patent/US10318821B2.
8See www.wipo.int/tech trends/en/artificial intelligence/patentscope.html for more details on the subclassifica-

tion of AI patents [Last accessed June 27, 2024].
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fields describe the invention’s sectors of applications.9 Since AI subclassifications are based on

technology codes and keyword searches, each patent could belong to multiple subclasses or none

of them. We consider only classes with at least 150 patents to select out relatively unimportant

classes and streamline the analysis.

The OECD Env-Tech Classification divides green technologies into six subclasses. They

range from technologies for environmental management (including air and water pollution abate-

ment, waste management, soil remediation, and environmental monitoring) and water-related

adaptations to climate change mitigation technologies (CCMT) across various sectors such as

energy, transportation, building, and carbon capture and storage.

We complement our dataset with a set of patent-level indicators to proxy various dimensions

of invention impact and quality. First, we rely on the OECD Patent Quality Indicators (Squic-

ciarini, Dernis, and Criscuolo, 2013) to retrieve measures widely used in the literature. Second,

to proxy the private value of inventions, we use the measure of patent value developed by Kogan

et al., 2017.10 The use of this wide range of measures accounts for the multidimensional nature

of patent quality (Higham, Rassenfosse, and Jaffe, 2021).

3.2 Variables

To account for the impact and value of inventions, we consider three well-established variables

drawn from the OECD Patent Quality Dataset (Squicciarini, Dernis, and Criscuolo, 2013). Our

primary dependent variable is the number of forward citations received by patents over a period

of 5 years after the publication date. Forward citations are a standard indicator of technological

relevance for follow-on innovation and a well-known proxy for patent impact (Trajtenberg, 1990).

It is defined as:

fwd citi =

Pi+5∑

Pi

∑

j∈J(t)

Cj,t, (1)

where i is the focal patent, Pi is the publication year, J(t) is the collection of patent applications

filed in year t, and Cj,t is a dummy variable indicating whether patent j cites i in year t.

We also consider other dimensions of quality (Higham, Rassenfosse, and Jaffe, 2021) by

using the originality and generality of a patent as alternative dependent variables. Originality

measures the diversity of technological fields on which a patent relies. Following Hall, Jaffe, and

9Among others, we identify agriculture, business (including customer service, e-commerce, and enterprise comput-
ing), energy management, physical sciences and engineering, industry and manufacturing, life and medical sciences
(including bioinformatics, biological engineering, nutrition/food science, drug discovery, and neuroscience), personal
devices/computing/HCI, networks (including Internet of Things, smart cities, and social networks), security (in-
cluding anomaly detection, authentication, cryptography, cybersecurity, and privacy), telecommunications (including
computer networks and internet, radio/television broadcasting, telephony, and videoconferencing), and transportation
(including aerospace, aviation, autonomous vehicles, vehicle recognition, transportation, and traffic engineering).

10The data are available here: https://github.com/KPSS2017.
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Trajtenberg (2001), we define originality as:

originalityi = 1 −

ni∑

j

s2ij , (2)

where sij is the share of citations made by patent i to technology class j, considering the set ni

of International Patent Classification (IPC) 4-digit codes assigned to patent cited by i.

Similarly, generality measures the range of technological fields relying on the knowledge

codified in the focal patent, reflecting its capacity to enable advancements across multiple tech-

nological areas. We can consider generality as an alternative indicator of patent impact since it

accounts both for the number of citations and their spread across fields. Generality is defined

as:

generalityi = 1 −

ni∑

k

r2ik, (3)

where rik is the percentile of citations received by patent i from the technology class j belonging

to the set ni of International Patent Classification (IPC) 4-digit codes assigned to patent citing

i.

We complement this analysis by including the indicator of stock market patent value as

defined by Kogan et al. (2017). This indicator captures the stock market response to news about

granted patents. By construction, it is available for patents granted by listed companies only.

Contrary to previous indicators capturing the technological dimension of inventions’ quality, this

index adds the market dimension to our technology impact analysis. In this way, our analysis

allows us to test both the degree of technological impact and the response and expectations of

the market to these emerging technologies.

In the patent quality analysis of AI and green inventions, we also control for the number of

backward citations and the number of citations to the non-patent literature (NPL) contained in

a patent, patent family size (i.e., the number of patents regarding the same inventions, possibly

filed in different jurisdictions), the number of inventors, and the number of claims.11

3.3 Methods

To test whether GI inventions have a higher quality and are more valuable than other AI and

Green inventions, we rely on an OLS regression to estimate the impact of GI inventions on the

different proxies of impact and value we use as outcome variables. Specifically, we estimate the

following model:

Yi,f,t = β0Greeni + β1AIi + β2Greeni × AIi + χi + γf + δt + ϵi,t,y, (4)

11As the number of claims is available only for granted patents, the analyses including this control variable are
performed only on the subset of granted patents.
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where Yift is a proxy for patent impact or value, while Greeni and β1AIi are dummy variables

signalling green and AI patents, respectively. We also include a set of controls at the patent

level (χi), such as the number of backward citations and the patent family size. The analysis

incorporates time- and technology-fixed effects (γf and δt, respectively) to account for time-

and field-specific variations. Yift includes the variables defined in the previous section, namely

the number of forward citations (Equation 1), originality (Equation 2), generality (Equation

3), and patent value as defined by Kogan et al., 2017. The regression model is specified as

follows: first, we include dummy variables for patents classified as Green or AI to observe their

individual effects. Then, we examine the interaction between these two variables to assess any

combined impact on the outcome variables. We also consider other model specifications to refine

our analysis by including the relevant control variables.

Given the potential presence of confounding factors that could undermine the validity of our

findings, we estimate the Average Treatment Effect (ATE) of being classified as GI patents, con-

sidering the outcome variables previously introduced, via IPWRA (Inverse Probability Weight-

ing Regression Adjustment) methods (Wooldridge, 2007; S loczyński and Wooldridge, 2018).

IPWRA addresses selection bias by re-weighting the observations, allocating more weight to ob-

servations that are underrepresented and less weight to those overrepresented in the treatment

group based on their covariates. The IPWRA estimates use weighted regression coefficients to

compute averages of treatment-level predicted outcomes, with the weights being the inverse of

the probabilities of receiving treatment (propensity scores). These scores are derived from a

preliminary linear probability model that takes the GI dummy as the dependent variable and

patent characteristics as covariates. The ATE is then calculated by contrasting the averages of

predicted outcomes across treated and untreated units:

ATE = E(Y m|T = m) − E(Y l|T = m), (5)

where m denotes the treatment level, l represents the comparison group (the treatment level

to which m is compared, termed matched controls by Czarnitzki, Ebersberger, and Fier, 2007),

and Y m and Y l denote outcomes in states m and l respectively. While Inverse Probability

Weighting (IPW) may be sensitive to the correct specification of the propensity scores, and

Regression Adjustment (RA) heavily relies on the assumption that the relationship between the

outcome and propensity scores is correctly specified, IPWRA is doubly robust and allows for

explicit checking of overlap assumptions. This property makes IPWRA less sensitive to model

misspecification as compared, for instance, to propensity score matching (PSM), which relies

solely on the propensity score model (Waernbaum, 2012). We also define multiple control groups

to better account for the double nature of GI inventions. First, we compare GI and AI patents,

matched by both AI techniques and AI functional applications. Second, we consider GI vs.

green inventions, controlling for green subclassifications.
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4 Exploring Green Intelligence

In this section, we explore the role of AI in green innovations and examine the quantity, trends,

and evolution of GI inventions. We analyze the sectors where AI spurs green technologies,

the most impactful AI technologies and applications, and applicants’ profiles and geographical

distribution.

Figure 1a shows the differences in the number of patents across AI, green, and GI technologies

and the 5-year growth rates for GI inventions12. We observe a significant increase in green

technology patents over time, with a sharp rise beginning in the early 2000s. Even if they

are fewer than green patents, AI patents also display an upward trend, indicating growing

innovation investments in this area, especially after 2010. The data show a general increase in the

growth rate of GI inventions from around 2010 onwards, reflecting a more and more pronounced

convergence between green and AI technologies in patent filings. This convergence suggests that

innovators progressively integrate AI capabilities with green technology developments, indicating

the growth of a more systemic approach to environmental challenges through AI solutions.

This preliminary finding is confirmed by Figure 1b, which reports the trends of GI inventions

compared to AI and green patents, respectively. Although the proportion of GI patents relative

to AI patents is higher, it is noteworthy to observe a significant increase in the GI patents share

within green patents after 2010. This suggests that GI inventions are becoming an important

component of green innovations, highlighting a potential shift in the innovation landscape where

AI is increasingly applied to environmental challenges.

4.1 Key application domains

In exploring the GI patent landscape, we are also interested in detecting specific features of

these technologies. Therefore, we analyze the distribution of GI inventions across AI and green

domains and compare them with more general trends observed in other AI and green inventions.

Table 2 reports the number of GI inventions considering all possible subclassifications of AI

and green technologies.13 To complement this information with trends in AI and green tech-

nologies, we also include information on the share of GI inventions over the number of AI or

green patents in the same class. While machine learning is the most common AI technique

used in GI inventions in absolute terms, GI patents represent less than 4% of machine learning

patents. The prevalence of GI inventions in expert systems and fuzzy logic is, instead, close to

10% of all AI patents in these subclasses. This comparison suggests an extensive use of AI in

green technologies for control systems, automated processes, and planning. The intuition is con-

firmed by the distribution of patents among functional applications. The most prevalent class,

in both absolute and relative terms, is control methods, followed by knowledge representation

and reasoning and computer vision, indicating the demand for understanding and interpreting

12For greater details on the number of green, AI and GI patent applications over time, see the Table A1.
13Patents may belong to zero, one or multiple subclasses for each categorization.
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Figure 1: Patenting trends over time
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(a) AI subclasses

# GI

inventions

% GI inventions

in same-class AI

patents

Techniques

Machine Learning 2,744 3.98%
Logic Programming 645 9.14%
Fuzzy Logic 190 8.85%

Functional applications

Control Methods 2,784 10.00%
Knowledge Representation & Reasoning 963 4.92%
Computer Vision 9,46 2.79%
Robotics 600 9.58%
Speech Processing 506 1.82%
Planning & Scheduling 153 8.17%

Application Fields

Transportation 4,316 6.01%
Life & Medical Sciences 1,434 7.38%
Telecommunications 1,427 5.05%
Industry & Manufacturing 967 16.42%
Energy Management 810 57.82%
Physical Sciences & Engineering 726 21.28%
Security 714 6.24%
Business 524 5.92%
Agriculture 318 17.74%
Personal Devices, Computing & HCI 181 3.30%
Networks 175 12.88%

(b) Green subclasses

# GI

inventions

% GI inventions

in same-class

green patents

CCMT Transportation 2,473 1.75%
Environmental Management 791 0.37%
CCMT Energy 750 0.31%
CCMT Buildings 494 0.73%
Water Related Adaptation 72 0.35%
CCMT Carbon Capture & Storage 4 0.05%

Table 2: Subclassification of AI and Green technologies
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complex data in environmental applications. Along the same line, robotics and planning and

scheduling show a high prevalence of GI inventions in their category. Concerning application

fields, transportation is the prevalent application of GI inventions, counting 4,316 patents, fol-

lowed by life and medical sciences patents and telecommunications. Interestingly, nearly 58%

of the energy management patents based on AI are GI inventions. High shares of GI inventions

are also present in AI patents with applications in physical science and engineering, agriculture,

and industry and manufacturing.

The importance of transportation needs in GI inventions is confirmed in the green subclas-

sification, where a high share of GI patents belongs to climate change mitigation technologies

for transportation. A not negligible fraction of the GI inventions also describe AI applications

to environmental management, CCMT energy, and CCMT buildings. Water-related adaptation

and CCMT carbon capture and storage technologies represent only a minority of GI patents.

Therefore, we will discard these categories in the following empirical analysis.

To uncover more fine-grained developmental patterns of GI technologies, we chart the evolu-

tion of GI patents across different application domains and periods (decades) compared to the

trends observed for other AI and green technologies. Specifically, we test whether the share of

GI patents in one domain exceeds, over time, the share of AI and green patents in the same

application sector. By applying this normalization, we disentangle patterns specific to GI tech-

nologies from more general trends in AI and green inventions. Figure 2 shows those patterns in

the different GI classifications. To discern domains in which GI is more present than expected,

we add a straight line corresponding to ordinate 1: all values above this line indicate a high

prevalence of GI in the corresponding domain compared to AI and green technologies in general;

the opposite occurs for values below the straight line.

Figure 2a reports the trends of GI patents within AI functional applications by decade.

Throughout all decades, planning and scheduling, robotics, and control methods have been

relevant among GI technologies. While planning and scheduling applications show a constant

decrease in importance, we observed a growth in patents related to robotics and control meth-

ods in the last few years. This shift suggests a growing interest and investment in physical

automation and control systems, likely driven by their potential to enhance efficiency and re-

duce environmental impact in various applications. Conversely, areas such as speech processing,

computer vision, and knowledge representation, despite being foundational components of AI

research, remain relatively less prominent within the context of GI patents.

Figure 2b shows the evolution of GI patents across AI techniques. Although machine learning

is the predominant AI technique in GI patents in absolute terms (see Table 2a), its evolution

mirrors the trend observed in all AI patents since the relevance of machine learning is the same

in AI and GI inventions. We observe less than expected GI patents using machine learning

only in the 1980s, signalling a possible delay in the application of this emerging methodology to

green technologies. The most relevant AI techniques in relative terms are, on the contrary, logic

programming and fuzzy logic. The latter is significantly relevant in the 1990s and 2000s, being
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even six times more present in GI inventions than in all AI patents. This picture confirms the

extensive use of AI in green technologies for rule-based applications, such as control methods,

planning and scheduling.

For what concerns AI application fields reported in Figure 2c, green technologies are, by far,

the most relevant applications of AI-based energy management. Its prevalence in GI, around

ten times higher than in AI inventions, increased in the last decade after a stagnating period.

We also observe a prevalence of industrial, engineering, and physical AI applications in green

technologies. Finally, it is interesting to note that the importance of green technologies is

systematically increasing in AI applications for agriculture and network systems.

Finally, Figure 2d makes explicit that the first field of application of AI in green technologies

is transportation. The prevalence of this field has been constant over time, except for the 1990s,

in which we detected a significant number of AI applications to CCMT for buildings. Despite

the initial spike, AI applications for green buildings have had low relevance in recent years. At

the same time, AI applications are still marginal in environmental management and CCMT for

energy systems.

4.2 Top corporate applicants and patenting by country

Table 3 reports the list of the top applicants for AI, green, and GI patents. Large high-tech

American companies such as IBM, Microsoft, Google, and Amazon dominate the AI patent land-

scape, showcasing the capacity for digital and cognitive technological advancements. Japanese

companies such as Toyota, Panasonic, and Honda show a strong presence in green technologies.

German companies (e.g. BOSCH and Siemens) account for significant contributions across both

AI and green patent categories, reflecting their focus on engineering and technology that inter-

sects with green innovation. When examining GI patents, it becomes apparent that the top

applicants are divided between automotive and electronics, suggesting these sectors’ strategic

convergence toward greener technology pathways. This pattern is interesting because it indi-

cates a broader systemic approach to innovation, where the integration of AI in environmental

technologies is becoming a highly relevant aspect of new product development.

Figure 3 reports time trends for the top countries of origin of applicants filing AI, green, and

GI patents. The US dominates all three technological domains. However, it is noteworthy that

despite their absence from the list of top applicants, Chinese companies have recently experi-

enced a significant increase in the number of patents across all three categories, particularly in

GI patents. Concerning green patents only (Figure 3a), we observe a significant increase in green

inventions, especially in the US, around 2005. For top applicants’ countries – including the US,

Japan, South Korea, and Germany, – this period of growth has been replaced by a steady state

in the last decade. Different patterns are present in AI patents (Figure 3b). Contrary to green

technologies, this field has been growing consistently since 2015 in all countries. Specifically, we

have observed an exponential increase in AI patents in the US in the last decade. While they

are still behind the US, Japan, South Korea, and China have followed a similar trend in recent
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Table 3: Top applicants by number of patents in the entire period

AI patents Green patents GI patents

Country Company # Share Country Company # Share Country Company # Share

US IBM 8,739 6.15% JP TOYOTA 17,005 2.14% JP TOYOTA 196 2.74%
US MICROSOFT 3,597 2.53% KR SAMSUNG 15,392 1.94% US FORD 152 2.12%
US GOOGLE 3,097 2.18% US GE 13,286 1.67% US IBM 134 1.87%
KR SAMSUNG 2,858 2.01% DE BOSCH 8,480 1.07% US INTEL 126 1.76%
US AMAZON 2,017 1.42% US FORD 7,757 0.98% KR LG 108 1.51%
JP TOYOTA 1,978 1.39% JP HONDA 7,300 0.92% KR SAMSUNG 105 1.47%
JP SONY 1,728 1.22% JP PANASONIC 7,263 0.91% US BOEING 97 1.35%
KR LG 1,540 1.08% DE SIEMENS 6,903 0.87% US DEXCOM 93 1.30%
US INTEL 1,495 1.05% US UTC 5,615 0.71% US GE 89 1.24%
DE SIEMENS 1,324 0.93% KR HYUNDAI 5,283 0.66% US GOOGLE 88 1.23%
JP HONDA 1,252 0.88% US U. CAL 5,190 0.65% DE SIEMENS 86 1.20%
US FORD 1,243 0.88% US IBM 5,140 0.65% US IROBOT 84 1.17%
JP NEC 1,067 0.75% US GM 4,912 0.62% KR HYUNDAI 73 1.02%
US GM 915 0.64% JP HITACHI 4,764 0.60% JP HONDA 70 0.98%
US NUANCE 897 0.63% US INTEL 4,706 0.59% US MICROSOFT 68 0.95%
DE BOSCH 889 0.63% KR LG 4,671 0.59% JP HITACHI 64 0.89%
US BOEING 852 0.60% JP DENSO 4,471 0.56% US GM 60 0.84%
JP FUJITSU 808 0.57% JP NISSAN 4,455 0.56% US WALMART 53 0.74%
IS APPLE 796 0.56% JP TOSHIBA 4,178 0.53% KR KIA 51 0.71%
JP TOSHIBA 790 0.56% JP SONY 3,569 0.45% DE BOSCH 51 0.71%

Harmonised names from PATSTAT are used. An additional manual cleaning is applied to the harmonised names. Patent assertion
entities are excluded from the list.

18



years. Despite being at a lower order of magnitude, similar patterns are observed in GI patents

(Figure 3c), as already noted in Figure 1b. Differently from what happens in AI, the growth of

Japanese GI patents appears to have stopped in the last few years, while countries such as the

US, China, and South Korea still show strong growth in this area.

5 The impact of Green Intelligence

This section studies the impact of Green Intelligence inventions compared to other USPTO

patents, especially those belonging only to the AI and green domains. Specifically, we report

how AI, green and GI technologies correlate with various dimensions of patent quality and

value. Table 4 displays the OLS estimates of the model presented in Equation 4. Our dependent

variable is the number of forward citations a patent receives within five years. All models include

fixed effects for the application year and technology field. The first and second columns include

dummy variables representing whether a patent is classified as green or AI, respectively. The

third column reveals, instead, the coefficient of interaction between these two dummies. The

fourth and fifth columns also account for the number of backward citations and the patent family

size as additional control variables. Finally, the last columns include the number of citations to

the NPL, the number of inventors, and the number of claims. Across all model specifications,

we observe that green and AI technologies positively correlate with patent quality, measured as

the number of forward citations. Notably, the interaction coefficient’s magnitude is particularly

high, suggesting that the nature of GI inventions increases the likelihood of forward citations14.

GI is, indeed, a more novel and promising sector that combines two highly cited technological

domains. In the following analyses, we will not observe this inflation in the magnitude of GI

coefficients, which suggests that technological exploration in GI is still ongoing and its potential

is arguably yet to be realised.

By using the complete regression specification (Table 4, column 8), we also test whether

results hold with alternative measures that capture different dimensions of invention quality and

value. More specifically, in columns 1 and 2 of Table 5 we evaluate the originality and generality

of inventions. Our findings indicate a positive association of AI, Green, and GI patents with

both indicators of patent quality. This result is not unexpected, and a plausible explanation is

related to the recent emergence of these fields and their wide range of possible applications. It

also suggests the capacity of these fields to build on a diversified set of pre-existing technologies

and confirms that AI can be seen as a very promising GPT in the green sector.

Finally, in the last column, we test whether the positive associations persist when we use an

ex-ante measure of value as computed by Kogan et al., 2017. Contrary to the previous quality

indicators, this measure captures the market perceptions of a new invention, going beyond the

14Note that by adding the number of claims as a control variable (column 8) the number of observations drops
because this information is missing for non-granted patents in the dataset. Therefore, by including this control, our
main regression specification focuses on granted patents only, significantly reducing the number of AI and GI patents
in the sample (see Table 1).
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Figure 3: Trends by applicants’ country of residence
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Table 4: The impact of green, AI and GI patents

DV: forward citations 5yrs

1 2 3 4 5 6 7 8

Green = 1 4.602*** 4.622*** 4.053*** 3.853*** 3.006*** 2.909*** 2.757*** 2.835***
(0.074) (0.074) (0.068) (0.066) (0.065) (0.065) (0.064) (0.076)

AI =1 8.739*** 5.993*** 5.831*** 5.867*** 5.609*** 5.349*** 5.967***
(0.255) (0.227) (0.223) (0.222) (0.222) (0.222) (0.269)

Green = 1 × AI =1 53.46*** 50.13*** 49.22*** 49.17*** 49.18*** 38.07***
(2.541) (2.493) (2.460) (2.456) (2.459) (2.295)

bwd cits 0.124*** 0.120*** 0.105*** 0.104*** 0.102***
(0.001) (0.001) (0.001) (0.001) (0.001)

family size 1.404*** 1.340*** 1.281*** 1.132***
(0.008) (0.008) (0.008) (0.008)

NPL cits 0.136*** 0.135*** 0.139***
(0.005) (0.004) (0.005)

nr inventors 0.956*** 0.933***
(0.012) (0.015)

nr claims 0.181***
(0.002)

Observations 8,995,626 8,995,626 8,995,626 8,995,626 8,995,626 8,995,626 8,995,510 6,959,125
R-squared 0.022 0.023 0.024 0.078 0.092 0.096 0.097 0.116
Year FE YES YES YES YES YES YES YES YES
Tech. Field YES YES YES YES YES YES YES YES

OLS estimates. Robust standard errors in parentheses. Time period: 1980-2019.
Legend: *** p<0.01, ** p<0.05, * p<0.1.
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pure technological content of the patent. The results show a positive association between AI

technologies and the ex-ante value of technologies as captured by the stock market response

to patent grants. When using this outcome variable, the coefficient turns negative for green

technologies. No significant relation is found between GI patents and ex-ante value.15 These

results are in line with the idea that AI technologies are expected to generate strong returns for

investors and shareholders, whereas there is much more uncertainty over the future profitability

of green technologies, which are generally associated with lower stock market valuations. As an

emerging and relatively new field, GI is still perceived as a higher risk, arguably because of the

complexity and costs of environmental challenges.

To further examine this relation and ensure the most appropriate comparisons between

patents, Table 6 reports the estimated ATEs of being classified as GI inventions against AI

and green inventions, respectively (see Equation 5).16 This approach allows us to validate our

findings by reweighting observations to mimic a randomised control trial, thus reducing bi-

ases associated with nonrandom assignment. This aspect makes IPWRA a robust method to

validate and strengthen causal inferences drawn from OLS estimates. Appendix B provides

IPWRA treatment model estimations and diagnostics. As shown in Table B1, control meth-

ods and robotics are highly represented as GI functional applications, while the predominant

techniques are fuzzy logic and logic programming. Conversely, machine learning and computer

vision are underrepresented in the GI domain. Within green subclasses, instead, GI stands out

in transportation. In all the dimensions of quality and value we consider, results on GI patents

presented in Table 6 are consistent with those reported in tables 4 and 5. Compared to green

or AI technologies, GI innovations have greater technological impact, as well as higher original-

ity and generality. The same does not hold in terms of stock market response, for which GI

technologies are not seen as more valuable than green and AI inventions.

5.1 Heterogeneity across countries of applicants

Our main analysis focuses on patents filed at the USPTO since not all other jurisdictions allow

the patenting of software technologies. Still, some heterogeneity may emerge across the countries

of origin of the patent applicants. In Table 7, we test this source of heterogeneity by showing

the results of a split sample by applicants’ countries of origin considering only main countries as

detected in Figure 3. In this additional analysis, we test whether the impact of green, AI, and

GI technologies, captured by forward citations, varies across countries. Our findings indicate

that green technologies are always of greater impact than other patents, except for patents filed

by Korean and UK assignees. The same holds for AI patents, with the exception of Canadian

applicants (where the coefficient is positive but not significant). The main differences across

15The measure of patent value developed by Kogan et al., 2017 is available for patents granted by listed companies
only, causing a considerable drop in the number of observations (Table 5, column 3).

16Treatment model in the case of GI vs AI patents is computed considering AI technologies as well as AI functional
applications as reported in Table 6.
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Table 5: Originality, generality and KPSS value of green, AI and GI patents

originality generality KPSS value

Green = 1 0.0298*** 0.0412*** -1.083***
(0.000) (0.000) (0.075)

AI =1 0.0405*** 0.161*** 1.310***
(0.001) (0.001) (0.194)

Green = 1 × AI =1 0.0325*** 0.0222*** -0.486
(0.002) (0.003) (0.683)

bwd cits 7.86e-05*** 1.47e-05*** 0.00493***
(0.000) (0.000) (0.000)

family size 0.00220*** 0.00332*** 0.205***
(0.000) (0.000) (0.009)

NPL cits 0.000275*** 0.000298*** 0.0256***
(0.000) (0.000) (0.001)

nr inventors 0.00244*** 0.00348*** 0.274***
(0.000) (0.000) (0.013)

nr claims 0.00100*** 0.00144*** 0.120***
(0.000) (0.000) (0.002)

Observations 6,902,236 5,822,795 2,343,535
R-squared 0.120 0.097 0.067
Year FE YES YES YES
Tech. Field YES YES YES

OLS estimates. Robust standard errors in parentheses.
Time period: 1980-2019. Legend: *** p<0.01, ** p<0.05, * p<0.1.

Table 6: Average treatment effects of GI on the quality and value of patents

GI vs AI

fwd cits 5y originality generality KPSS value
GI vs AI (Techniques) ATE 0.03820*** 0.01332*** 0.08528*** -0.00006

(0.00004) (0.00438) (0.00302) (0.00002)
GI vs AI (Functional appl.) ATE 0.02340*** 0.05387*** 0.06612*** -0.00003

(0.00002) (0.00401) (0.00325) (0.00002)

GI vs Green

GI vs Green ATE 0.04621*** 0.05310*** 0.05136*** 0.00032
(0.00133) (0.00342) (0.00321) (0.00001)

IPWRA model. Robust standard errors in parentheses. Time period: 1980-2019.
Legend: *** p<0.01, ** p<0.05, * p<0.1.
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Table 7: The value of GI - split sample by main countries of the applicants

US JP CN DE KR FR GB CA

Green = 1 4.809*** 0.621*** 2.653*** 1.114*** -0.249 1.474*** 0.317 1.783***
(0.138) (0.090) (0.316) (0.098) (0.156) (0.183) (0.291) (0.428)

AI =1 7.860*** 0.689*** 2.265*** 1.503*** 0.922*** 3.006*** 7.511*** 0.982
(0.408) (0.136) (0.440) (0.285) (0.309) (0.879) (2.170) (1.010)

Green = 1 × AI =1 57.88*** 0.505 -0.560 2.502 3.816*** -2.412 1.841 27.48**
(3.484) (0.567) (2.725) (1.641) (1.222) (1.583) (4.625) (13.144)

bwd cits 0.102*** 0.273*** 0.201*** 0.0757*** 0.187*** 0.102*** 0.202*** 0.110***
(0.001) (0.010) (0.040) (0.012) (0.017) (0.007) (0.022) (0.008)

family size 1.485*** 0.889*** 0.656*** 0.394*** 1.465*** 0.314*** 0.841*** 1.372***
(0.013) (0.024) (0.079) (0.018) (0.040) (0.013) (0.041) (0.062)

NPL cits 0.161*** 0.00878 0.194*** 0.297*** 0.243*** 0.115*** 0.0422* 0.163***
(0.005) (0.014) (0.034) (0.029) (0.031) (0.014) (0.022) (0.018)

nr inventors 1.056*** 0.705*** 0.149*** 0.376*** 0.361*** 0.587*** 1.475*** 1.293***
(0.025) (0.021) (0.027) (0.029) (0.025) (0.048) (0.090) (0.080)

nr claims 0.149*** 0.122*** 0.148*** 0.147*** 0.0605*** 0.0922*** 0.100*** 0.0775***
(0.003) (0.005) (0.016) (0.010) (0.007) (0.006) (0.012) (0.010)

Observations 3,667,544 1,328,159 151,776 433,502 294,076 170,053 140,943 139,962
R-squared 0.124 0.084 0.123 0.140 0.125 0.096 0.136 0.119
Year FE YES YES YES YES YES YES YES YES
Tech. Field YES YES YES YES YES YES YES YES

OLS estimates. Robust standard errors in parentheses. Time period: 1980-2019.
Legend: *** p<0.01, ** p<0.05, * p<0.1.
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countries occur for GI inventions. GI patents are, indeed, characterised by greater impact only

in the case of US, Korean, and Canadian applicants, while for the rest of the countries, the

coefficient displayed is not significant. This result might be partially driven by the distribution

of GI patents across countries, as shown in Figure 3, and by connections between US and

Canadian markets. However, it might also suggest the presence of competitive advantages

among US companies in this relatively new and expanding field.

5.2 Robustness

In this section, we discuss the results of some additional exercises to test the robustness of our

findings (see Appendix C for detailed results). First, we use alternative dependent variables to

measure the quality of patents (Squicciarini, Dernis, and Criscuolo, 2013). Specifically, we use

the breakthrough indicator, which identifies patents appearing in the top 1% of cited patents as

breakthrough inventions (Ahuja and Morris Lampert, 2001), as an alternative measure of impact.

We consider, instead, patent scope, defined as the number of distinct 4-digit International

Patent Classification subclasses assigned to a patent (Lerner, 1994), as an alternative measure of

diversification across technological domains. Given its definition, this measure should produce

results in line with those we obtain with the use of the originality and generality measures. As

shown in Table C1 (columns 1 and 2), our findings are indeed robust if we use these alternative

dependent variables in our analysis. In addition, as the number of forward citations may be

subject to different strategies across technological domains, in the third and fourth columns

of Table C1 we test the robustness of our results by including the interaction between the two

fixed effects of year and technological field (column 4) and by normalising the number of forward

citations by the average number of citation in the field-year.17

Second, as shown in Table C2, very similar results are found if we restrict the period of

analysis to the last decade (2010-2019). As shown in Table 1a, the emergence of AI and GI

patents is a recent trend that has picked up in the last decade. However, the quality and value

of these technologies does not change over that period.

Finally, as our main dependent variable in the regression analysis (forward citations) is a

count variable, as a third robustness check we use a Poisson model in our estimations, and all

our results are confirmed (see Table C3).

6 Conclusion

Through a comprehensive analysis of patent data, this paper explores the intersection between

AI and green technologies, shedding new light on how progress in AI can contribute to sus-

tainability. Our results unveil a landscape where the role of AI algorithms is expanding and is

harnessed to spur green innovation. This kind of innovation spans various domains, showcas-

17Note that the use of the normalised number of citations changes the interpretation of the coefficient magnitude.
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ing AI’s versatility of application and impact in relation to several environmental challenges.

The study pinpoints transportation, energy, and control methods as key areas where GI inven-

tions are most prevalent. We also observe a high concentration of GI activities in the United

States, with growing innovative efforts from Japan, South Korea, and China. From a techno-

logical viewpoint, GI inventions are characterised by strong technological impact (as proxied by

forward citations), alongside greater originality and generality. However, indicators of market

perceptions suggest some misalignment relative to these advancements. The observed discrep-

ancy between the high technological impact of Green Intelligence inventions and their expected

market value is a likely indication of stronger uncertainty and the presence of barriers that might

require policy intervention. Further research could focus on the specific need for and potential

of financial incentives for companies pioneering GI inventions, public-private partnerships to

foster GI innovation ecosystems, schemes fostering growth in the supply of GI skills, and educa-

tional campaigns to raise awareness about the benefits of GI technologies. The balance between

efficiency gains generated by the application of GI and the energy needs of these technologies

should arguably be an integral part of this assessment.

The lack of positive stock market reactions to green intelligence patents compared to AI

patents suggests that the barriers reside on the ‘green side’. However, some barriers to innova-

tion might be specific to Green Intelligence technologies relative to the broader pool of green

inventions. In their careful assessment of eco-innovation barriers, De Jesus and Mendonça (2018)

note that these barriers concern different dimensions of the green transition, and vary across

fields. Moreover, these barriers differ from one another in terms of strength. They argue that

there are high-order institutional, legal, social, and cultural barriers, but the ‘hardest’ barriers

to overcome seem to be technical and financial. Both technical bottlenecks and financial con-

straints are arguably slowing down innovation in green products, processes and services. For the

sectors and subsectors where this occurs, useful policy interventions could take the form of di-

rect support to business R&D through innovation grants, which can target the specific aims and

objectives of the green transition (Howell, 2017; Santoleri et al., 2022). Where the slow adoption

of eco-innovation can be attributed to weak demand (hence a weaker, absent or even negative

stock market reaction to green inventions), useful policy measures can include both information

diffusion and demand-building interventions. A detailed assessment of sector-specific barriers to

innovation is beyond the scope of this contribution, but more granular analyses could identify

which actions constitute the most effective mix among the options available to policy-makers

(Steinmueller, 2010; Bloom, Van Reenen, and Williams, 2019). This mix could accelerate the

market’s recognition and adoption of GI innovations, ensuring that technological advancements

translate into tangible environmental and economic benefits.

The study is of course not without limitations. Primarily, our reliance on patent data as

the sole indicator of innovation in Green Intelligence may not fully capture the complexities of

GI technology development, let alone the dynamics of GI adoption. Consequently, more could

be done to explore, on the one hand, how organizations or sectors are financing, researching
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and commercialising these technologies, and, on the other, how the demand for GI solutions is

shaped by market and non-market forces. Moreover, our focus on the United States Patent and

Trademark Office (USPTO), as the sole legislation where software inventions can be patented,

may not give the full picture of global investments in GI inventions. This geographical limitation

underscores the need for a more expansive view that should include multiple regions to capture

the global landscape of GI technological advancement, its global value chains, and global market

outcomes.

Future research could also address how companies integrate GI inventions into their oper-

ations and the impact on their economic performance, as well as the market performance of

GI innovators applying different corporate strategies to heterogeneous market conditions and

regulatory environments.

As the world struggles with the urgent need for effective solutions to environmental chal-

lenges, the role of AI in advancing green innovations could become increasingly important.

Further explorations of GI technologies and GI markets could also inform collaborative efforts

among researchers, policymakers, and industry players and help to design new ways to harness

the potential of AI for sustainability.
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Appendix A Additional figures and tables

Figure A1: Patent US9898688B2
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Figure A2: Patent US11555701B2
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Figure A3: Patent US10318821B2

3



Table A1: Number of green, AI and GI patent applications by 5-year sub-periods

period # green # AI # GI

1980-1984 25,239 579 14
1985-1989 26,752 1,328 58
1990-1994 37,446 3,224 147
1995-1999 52,473 5,235 206
2000-2004 90,194 9,377 315
2005-2009 138,188 13,339 535
2010-2014 198,064 21,651 1,178
2015-2019 226,232 87,299 4,713
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Appendix B IPWRA: Treatment models and diagnostics

Table B1 presents the estimates of the treatment models, which are utilised as IPWRA weights

for GI patents across AI functional applications, AI technologies, and Green subclassifications.

The findings indicate a more significant representation of certain AI technologies, such as control

methods and logic programming, in GI innovations. Conversely, machine learning and computer

vision are comparatively underrepresented in the GI context. Moreover, within the green sub-

classes, the substantial and positive coefficient for transportation suggests it is a domain where

GI has a pronounced influence.

We also report standard diagnostics supporting the reliability of the IPWRA estimates. Figures

B1, B2 and B3 show the kernel density estimates of the p-scores of inclusion in either the treated

or control group, respectively for GI patents vs AI functional applications, GI vs AI technologies

and GI vs Green technologies. They reveal that the overlap assumption is not violated. We also

observe no concentration around 0 or 1, thus essentially ruling out bias and excessive variance

that may drive the estimates due to extreme p-scores.

Figure B1: Propensity scores plot - GI technologies vs AI functional applications
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Table B1: GI technologies and AI and green subclasses - treatment model

GI vs. AI GI vs. AI Gi vs. Green

Functional
applications

Control methods 0.0487***
(0.00209)

Computer vision -0.0310***
(0.00130)

Knowledge representation -0.000377
(0.00183)

Robotics 0.0221***
(0.00383)

Speech processing -0.0335***
(0.00129)

Planning scheduling 0.00713
(0.00649)

Techniques

Fuzzy logic 0.0388***
(0.00620)

Logic programming 0.0441***
(0.00350)

Machine learning -0.0218***
(0.00115)

Green subclasses

Environmental management -0.0121***
(0.000251)

CCMT energy -0.0116***
(0.000234)

CCMT transportation 0.00811***
(0.000363)

CCMT buildings -0.00526***
(0.000373)

Constant 0.0584*** 0.0539*** 0.0148***
(0.000895) (0.00109) (0.000223)

Observations 141,632 141,632 792,330
R-squared 0.005 0.019 0.006

Linear probability model. Robust standard errors in parentheses. Time period: 1980-2019.
Legend: *** p<0.01, ** p<0.05, * p<0.1
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Figure B2: Propensity scores plot - GI vs AI techniques

Figure B3: Propensity scores plot - GI vs green subclasses
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Appendix C Robustness checks

Table C1: Breakthrough, patent scope and normalised forward citations of green, AI and GI patents

breakthrough patent scope fwd cits 5yrs
fwd cits 5yrs
normalised

Green = 1 0.00531*** 0.378*** 2.962*** 0.284***
(0.000) (0.002) (0.076) (0.006)

AI =1 0.00619*** 0.783*** 6.614*** 0.512***
(0.000) (0.005) (0.276) (0.022)

Green = 1 × AI =1 0.0637*** 0.946*** 37.66*** 2.720***
(0.004) (0.043) (2.295) (0.161)

bwd cits 7.07e-05*** 8.85e-05*** 0.101*** 0.00469***
(0.000) (0.000) (0.001) (0.000)

family size 0.00208*** 0.0446*** 1.143*** 0.0984***
(0.000) (0.000) (0.008) (0.001)

NPL cits 0.000256*** 0.000819*** 0.139*** 0.0150***
(0.000) (0.000) (0.005) (0.000)

nr inventors 0.00145*** 0.0159*** 0.939*** 0.0862***
(0.000) (0.000) (0.015) (0.001)

nr claims 0.000349*** 0.00217*** 0.178*** 0.0187***
(0.000) (0.000) (0.002) (0.000)

Observations 6,959,125 6,959,125 6,959,125 6,959,125
R-squared 0.028 0.125 0.119 0.075
Year FE YES YES YES YES
Tech. Field YES YES YES YES
Year FE × Tech. Field NO NO YES NO

OLS estimates. Robust standard errors in parentheses. Time period: 1980-2019.
Legend: *** p<0.01, ** p<0.05, * p<0.1.
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Table C2: The quality and value of green, AI and GI patents - split sample last decade

fwd cits 5yrs originality generality KPSS value

Green = 1 3.737*** 0.0274*** 0.0382*** -1.871***
(0.135) (0.000) (0.001) (0.096)

AI =1 6.989*** 0.0468*** 0.169*** 2.498***
(0.339) (0.001) (0.001) (0.250)

Green = 1 × AI =1 40.48*** 0.0266*** 0.00952*** 0.611
(2.759) (0.002) (0.004) (0.875)

bwd cits 0.0977*** 4.33e-05*** 9.70e-07 0.00483***
(0.001) (0.000) (0.000) (0.000)

family size 2.071*** 0.00183*** 0.00310*** 0.155***
(0.021) (0.000) (0.000) (0.015)

NPL cits 0.110*** 0.000229*** 0.000268*** 0.0186***
(0.005) (0.000) (0.000) (0.001)

nr inventors 0.890*** 0.00160*** 0.00182*** 0.479***
(0.025) (0.000) (0.000) (0.020)

nr claims 0.314*** 0.00125*** 0.00202*** 0.255***
(0.007) (0.000) (0.000) (0.005)

Observations 2,803,102 2,791,931 2,227,999 836,299
R-squared 0.123 0.103 0.089 0.087
Year FE YES YES YES YES
Tech. Field YES YES YES YES

OLS estimates. Robust standard errors in parentheses. Time period: 2010-2019.
Legend: *** p<0.01, ** p<0.05, * p<0.1.
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Table C3: Impact of green, AI and GI patents - Poisson model

DV: forward citations 5 yrs

1 2 3 4 5 6 7 8

Green=1 0.447∗∗∗ 0.449∗∗∗ 0.404∗∗∗ 0.394∗∗∗ 0.308∗∗∗ 0.305∗∗∗ 0.298∗∗∗ 0.295∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.007) (0.007)
AI=1 0.518∗∗∗ 0.393∗∗∗ 0.404∗∗∗ 0.409∗∗∗ 0.366∗∗∗ 0.359∗∗∗ 0.349∗∗∗

(0.012) (0.012) (0.012) (0.012) (0.013) (0.013) (0.016)
Green=1 × AI=1 1.16∗∗∗ 1.15∗∗∗ 1.03∗∗∗ 1.05∗∗∗ 1.06∗∗∗ 0.867∗∗∗

(0.035) (0.035) (0.031) (0.034) (0.034) (0.039)
bwd cits 0.0006∗∗∗ 0.0006∗∗∗ 0.0005∗∗∗ 0.0005∗∗∗ 0.0005∗∗∗

(0.000004) (0.000004) (0.000004) (0.000004) (0.000004)
family size 0.086∗∗∗ 0.085∗∗∗ 0.081∗∗∗ 0.075∗∗∗

(0.0003) (0.0003) (0.0003) (0.0004)
NPL cits 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.00004) (0.00004) (0.00004)
nr inventors 0.039∗∗∗ 0.035∗∗∗

(0.003) (0.004)
nr claims 0.008∗∗∗

(0.0004)

Observations 8,995,626 8,995,626 8,995,626 8,995,626 8,995,626 8,995,626 8,995,510 6,959,125
Pseudo R2 0.116 0.118 0.119 0.143 0.204 0.212 0.217 0.240
Year FE YES YES YES YES YES YES YES YES
Tech.field YES YES YES YES YES YES YES YES

Poisson estimates. Time period: 1980-2019.
Robust standard errors in parentheses.
Legend: *** p<0.01, ** p<0.05, * p<0.1.
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