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Learning to Play Sokoban from Videos 

Nicolai Fricker 

Constantin Schubart 

Nicolai Krüger 

ABSTRACT: 

In order to learn a task through behavior cloning, a dataset consisting of state-action pairs is needed. 

However, this kind of data is often not available in sufficient quantity or quality. Consequently, several 

publications have addressed the issue of extracting actions from a sequence of states to convert them into 

corresponding state-action pairs (Torabi et al., 2018; Edwards et al., 2019; Baker et al., 2022; Bruce et al., 

2024). Using this dataset, an agent can then be trained via behavior cloning. For instance, this approach 

was applied to games such as Cartpole and Mountain Car (Edwards et al., 2019). Additionally, actions were 

extracted from videos of Minecraft (Baker et al., 2022) and jump 'n' run games (Edwards et al., 2019; Bruce 

et al., 2024) to train deep neural network models to play these games. 

In this work, videos from YouTube as well as synthetic videos of the game Sokoban were analyzed. 

Sokoban is a single-player, turn-based game where the player has to push boxes onto target squares 

(Murase et al., 1996). The actions that a user performs in the videos were extracted using a modified 

training procedure described by Edwards et al. (2019). The resulting state-action pairs were used to train 

deep neural network models to play Sokoban. These models were further improved with reinforcement 

learning in combination with a Monte Carlo tree search as a planning step. The resulting agent 

demonstrated moderate playing strength. 

In addition to learning how to solve a Sokoban puzzle, the rules of Sokoban were learned from videos. This 

enabled the creation of a Sokoban simulator, which was used to carry out model-based reinforcement 

learning. 

This work serves as a proof of concept, demonstrating that it is possible to extract actions from videos of 

a strategy game, perform behavior cloning, infer the rules of the game, and perform model-based 

reinforcement learning – all without direct interaction with the game environment. 

Code and models are available at https://github.com/loanMaster/sokoban_learning. 

KEYWORDS: 

Imitation learning, behavior cloning, deep neural network models, reinforcement learning 
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Introduction 

SOKOBAN 

Sokoban (Japanese for "storage manager") is a single-player game where the player needs to push 

boxes on a grid board onto target squares. It was designed by Hiroyuki Imabayashi and published by 

the company Thinking Rabbit in 1982 (Murase et al., 1996). The player has to plan ahead to avoid 

situations from which they cannot recover, such as pushing a box into a corner. Actions in Sokoban 

cannot be reversed; boxes can only be pushed, never pulled. The game is won once all boxes have been 

placed on the targets.  

Sokoban is an NP-hard problem (Fryers and Green, 1995), and computers have struggled to reach 

superhuman performance (Junghanns et al., 1998). Furthermore, it has been shown to be PSPACE-

complete (Culberson, 1997). Search trees are often used to solve the game (Junghanns et al., 1998; 

Shoham and Schaeffer, 2020). A standard breadth-first search tree does not perform well in Sokoban 

due to the high number of moves required to solve a level and the branching factor of four. Therefore, 

an A* search with a heuristic to estimate the distance to the goal state can be applied. Using a clever 

search tree design and hand-crafted features, it was possible to solve all 90 levels of the XSokoban test 

suite in 2020 for the first time (Shoham and Schaeffer, 2020). 

For several years, there has been a shift towards agents using deep neural networks in Sokoban (Weber 

et al., 2017; Feng et al., 2020; Yang et al., 2022; Shoham and Elidan, 2021). These models implement a 

policy to decide the next move that should be taken and evaluate the current position. Weber et al. 

(2017) combined Monte Carlo tree search (MCTS) with reinforcement learning (RL) to train their model, 

similar to what has been successfully applied to two-player games such as Go and Chess (Silver et al., 

2016; Silver et al., 2017). 

One challenge in Sokoban is the issue of sparse rewards - rewards are only given when the agent 

successfully solves a level. To address this, Feng et al. (2020) and Yang et al. (2022) used increasingly 

difficult levels in a curriculum training approach. Feng et al. removed most boxes from a level before 

training was initialized. Once the model performed well with just a few boxes, the number of boxes in 

the level was gradually increased. Shoham and Elidan (2021) suggested using two independent models. 

One model begins from the final state of a level and attempts to pull all boxes from their target squares. 

During this process, a state trace is generated. The second model tries to move the boxes close to the 

trace. With this method, they were able to solve 88 of the 90 levels of XSokoban. In all of these 

publications, hand-crafted features were used to some extent to guide the models. 
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BEHAVIOR CLONING FROM OBSERVATION 

In machine learning, one distinguishes between supervised and unsupervised learning (Goodfellow et 

al., 2016, p. 98). Unsupervised learning is done on unlabeled data and is typically used to perform 

clustering or to find outliers in the data. In supervised learning, a labeled dataset is needed to train the 

model. Labeled data contains a label, such as a category, in addition to the raw data. Supervised 

learning is often used to categorize data, for instance in object recognition or image segmentation. 

Labeled data is also needed for performing behavior cloning as a pretraining step before RL (Edwards 

et al., 2019). However, labeled data is not available in high quantities in many areas. Creating labeled 

data from scratch can be costly (Bruce et al., 2024, p. 3). Therefore, several research groups have 

investigated the possibility of training an agent using unlabeled data (Torabi et al., 2018; Edwards et al., 

2019; Zhang et al., 2022; Baker et al., 2022; Bruce et al., 2024). The underlying problem can be 

formulated as a Markov decision process (MDP). 

An MDP consists of a set of states S, actions A, transition probabilities, and a reward function R: S × A → 

ℝ mapping a state-action pair to a reward. When dealing with unlabeled data, only sequences of states 

s1, ..., sn and possibly rewards are given, without any associated actions. In contrast, labeled data - in 

the context of behavior cloning - consists of sequences of state-action pairs (s1, a1), ..., (sn, an). 

Edwards et al. (2019) constructed a machine learning process to extract latent actions from states given 

as vectors. In their approach, a model G is designed that takes a state sk and a latent action zk as 

arguments and returns the predicted change from sk to sk+1 as output: G: S × Z → Δ(S). The model receives 

all possible latent actions Z as input. For each action, the loss is calculated as: 

L(sn, zi, ω) = MSE(Gω(sn, zi), sn+1 – sn) 

Where MSE is the mean squared error and ω refers to the parameters of the model G. The actual 

training/gradient descent is performed using only the action yielding the smallest loss. The model 

learns to predict the change from one state to the next given an action. The actions resulting in minimal 

loss can be used to construct a labeled dataset (s1, z1), …, (sn, zn). However, for extracted latent actions, 

there is no immediate correspondence to the actions in the game. For instance, in Sokoban, latent 

action 0 could sometimes mean move up and in other game situations push a box to the left. To resolve 

this ambiguity, Edwards et al. (2019, p. 4) interact with the actual game environment and perform a 

remapping from latent actions to actual game actions. 

Bruce et al. (2024) and Baker et al. (2022) use a similar approach with unlabeled videos instead of 

vectors as input to their models. To prevent the ambiguity of actions observed by Edwards et al. (2019, 
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p. 5), Baker et al. (2022, p. 4) perform pretraining with labeled data, whereas Bruce et al. (2024, p. 9) use 

labeled data after training with unlabeled videos. 

The agents that were trained in this manner were used for Pong, CartPole (Edwards et al., 2019), jump 

'n' run games (Bruce et al., 2024), and Minecraft (Baker et al., 2022). Although Minecraft is a complex 

game and can be considered a strategy game, none of these publications has dealt with a classical 

round-based strategy game that requires planning, such as Sokoban. 

This work will evaluate whether the approach presented by Edwards et al. (2019) is applicable to the 

strategy game Sokoban. Furthermore, it will be evaluated whether a model trained on unlabeled videos 

of Sokoban can be further improved using RL in both model-based and model-free approaches. 
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Methodology 

ARTIFACTS 

The main questions of this study were broken down into several tasks: 

• Extract actions from unlabeled Sokoban videos. 

• Train a policy model and value model using the extracted actions and video frames. 

• Improve the policy and value model with RL in a model-free environment. 

• Learn the rules of Sokoban from extracted actions and video frames and generate a Sokoban 

simulator. 

• Conduct model-based RL using the Sokoban simulator. 

To accomplish these tasks, several artifacts needed to be generated, as listed in table 1. 

Name Description Purpose 

Frame prediction model Given video frames and an input 

action this model predicted the delta 

to the next video frame. 

-Transform a dataset of video frames 

into a dataset of frame-action pairs. 

-The model could be used to create a 

Sokoban simulation. 

Policy model Given input frames from a video, this 

model decided which action to take 

Solving Sokoban levels. 

Value model This model assigned a value to each 

Sokoban position based on video 

frames. 

Solving Sokoban levels. The value 

model was needed for RL with MCTS. 

Action validation model Determined if a Sokoban move was 

valid given video frames as input data. 

Create a Sokoban simulation that can 

validate moves. 

Game state model Determined if a Sokoban level was 

finished/solved given an input fame. 

Create a Sokoban simulation that can 

determine if the game is finished. 

Table 1: An overview over the artifacts produced. 

TOOLS USED 

To generate synthetic Sokoban videos and facilitate RL, a Sokoban gym environment available on 

GitHub (https://github.com/mpSchrader/gym-sokoban) was utilized. The icons in this environment 
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were adjusted to match those found in several Sokoban videos on YouTube. This adjustment was 

helpful for better comparing results obtained from YouTube data and synthetic data. 

In addition to the gym environment, a Sokoban solver (https://github.com/KnightofLuna/sokoban-

solver) was utilized, capable of employing various search methods to solve given levels. For generating 

synthetic Sokoban videos, an A* search algorithm was used to find solutions to levels generated within 

the gym environment. 

Python, in combination with PyTorch, was used for implementing and training neural networks.  

STATISTICS 

The results of RL were evaluated using the Two-Proportion Z-Test (Montgomery and Runger, 2010, p. 

301).  

TRAINING OF NEURAL NETWORKS 

Training of networks was conducted using gradient descent, with a batch size of 16 and an Adam 

optimizer initialized with a learning rate of 1e-5. An exponential learning rate decay of 0.9998 was 

applied, unless otherwise specified, with a minimum learning rate set to 1e-6. In all experiments, 

training data and validation/test data were drawn from identical distributions. 

CREATION OF SYNTHETIC VIDEOS 

For behavior cloning, videos from more than 3,300 levels were created using the Sokoban gym 

environment and Sokoban solver mentioned previously, resulting in over 100,000 video frames in total. 

For RL, an additional 5,000 training levels and 300 validation levels were generated. 

EXTRACTION OF YOUTUBE VIDEOS 

Sokoban videos found on YouTube encompassed a variety of Sokoban game versions, differing in 

quality and board size, unlike the synthetic data used in this work (Fig. Fehler! Verweisquelle konnte 

nicht gefunden werden.). Each video was manually selected and downloaded, then adjusted by 

cropping or padding to achieve a consistent 1:1 ratio of height to width. Frames were extracted using 

the command-line tool ffmpeg. To eliminate redundant frames - those with identical board positions - 

a feature vector was derived from each frame using a pretrained ResNet50 model. Frames with feature 

vectors below a specified threshold were removed. The threshold value was determined manually after 

conducting several test runs. 
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Figure 2: Different Sokoban game versions found on YouTube. (Source: https://youtube.com) 

EXTRACTION OF ACTIONS FROM VIDEOS 

Edwards et al. (2019, p. 2) introduced an approach to extract actions from a sequence of states, which 

was slightly modified for this study. The problem was formulated as an MDP. To determine actions 

a1...an that caused the transition from a state si to si+1 a frame prediction model G was developed. The 

model architecture follows the U-Net architecture (Ronneberger et al., 2015). It consists of five 

convolution blocks. The first four convolution blocks are followed by a pooling layer. Subsequently, 

there are four upsampling blocks with skip connections from the convolution blocks. The output is an 

image that predicts the delta from the current frame to the next frame. 

The frame prediction model receives as input the first frame of a Sokoban video s1, the current frame si 

and an action ai (represented as a one-hot tensor scaled to match the image size, with values ranging 

from 0 to 4). The model outputs the expected change between the current frame and the next frame: 

G: (s1, si, ai) → Δ(si+1, si) 

The assumption behind choosing five actions is that there are four directional actions and one "wait" 

action. The "wait" action was introduced to handle video data extracted from YouTube and could be 

omitted when working with synthetic data. Leveraging the game's symmetry, a slightly modified 
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version of the algorithm published by Edwards et al. (2019, p. 2) was implemented (batch size was 

omitted for clarity): 

for n in number_of_training_steps: 

 s1, si, si+1 ← fetch training data 

 set loss := 0 

 for alpha in [0°, 90°, 180°, 270°]: 

s1', si', si+1' := s1, si, si+1 rotated by alpha 

  find action ak such that k = arg minj MSE(G(s1', si', aj), si+1' – si')  

  remove ak from the possible actions if ak is not "wait"; otherwise remove all actions but  

  ak 

  loss += MSE(G(s1', si', ak), si+1' – si') 

 perform gradient descent  

To directly extract meaningful actions corresponding to each direction (up, down, left, right) and to 

avoid the remapping from latent action to game action used by Edwards et al. (2019), the game's 

symmetry was leveraged: after selecting an action ai resulting in minimal loss, the input image was 

rotated by 90°, 180°, and 270°. For each rotation angle, a different action was chosen for gradient 

descent. Additionally, action 4 was designated as the "wait action", assumed to keep the game state 

unchanged regardless of rotation. 

Once the frame prediction model had been trained, it could be used to extract actions from unlabeled 

videos like so: 

1. Take a random frame si, the start frame s1 of the level as well as the follow up frame si+1 from the 

data set. 

2. Generate a prediction for the next frame for each action a1, …, ak using the frame prediction 

model: 

𝜎𝑘 ≔ 𝐺(𝑠1, 𝑠𝑖 , 𝑎𝑘) + 𝑠𝑖   

3. Select/extract action ak where 

𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 
𝑘

𝑀𝑆𝐸(𝜎𝑘, 𝑠𝑖+1) 

Using the method outlined in this paragraph, a sequence of video frames from a Sokoban level was 

transformed into a sequence of frame-action pairs that could be used for behavior cloning. 
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BEHAVIOR CLONING 

Behavior cloning was implemented using categorical cross-entropy loss: 

L(s1, si, ω) := -∑k ak log(πω(s1, si))  

Where ak = 1 if the action ak was the action performed in the training data, otherwise ak = 0. Here, ω 

refers to the parameters of the policy model π. 

A convolutional network was chosen as the policy model, consisting of five convolution blocks with 

pooling layers, followed by ten residual blocks with two convolutions per residual block. Following the 

residual blocks there was a pooling layer and fully-connected network (FCN) layer resulting in an output 

vector with a length corresponding to the number of possible actions. This design resembles the 

architecture presented in the Go publication by Silver et al. (2016, p. 27).  

In addition to the policy model, a value model was trained with the intention of using it later in RL. The 

value model estimates the expected discounted reward given a state. The discounted reward can be 

calculated easily from a sequence of video frames s1...sn from a level: 

value(si) = reward * γn –i 

Here, the reward was set to 1 once a level was finished, and a discount factor γ of 0.95 was used. The 

value model had the same architecture as the policy model, except it had a single output variable with 

a sigmoid activation function. The loss function for training the value model was defined as MSE 

between the predicted and actual value. 

REINFORCEMENT LEARNING 

RL was performed using planning steps implemented with MCTS. This approach has been successfully 

applied to learn games such as Go and Chess (Silver et al., 2016; Silver et al., 2017) and has also been 

utilized in several publications dealing with Sokoban (Feng et al., 2020; Efroni et al., 2019). Unlike depth-

first or breadth-first search, MCTS applies a heuristic that balances exploration and exploitation. 

Typically, during the simulation phase of the MCTS search, a rollout is performed. However, in this work, 

rollouts were skipped, and instead, the value of a node was estimated using a value model. This was 

necessary due to the low performance of rollouts and hardware constraints. 

An MCTS with a depth of 75 was used, meaning that at most 75 new nodes were expanded during each 

planning step.  
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A modified version of an implementation available on GitHub was used to train the policy and value 

models (https://github.com/foersterrobert/AlphaZeroFromScratch). A modification was added to 

prevent the agent from revisiting a state: if a state had already been visited during MCTS, any new node 

leading to the same state would be ignored and not added to the search tree. This was achieved by 

storing a hash code for each visited state in memory.  
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Results 

EXTRACTION OF ACTIONS FROM VIDEOS 

Approximately 100,000 images from 3,000 synthetically generated Sokoban videos were used to train a 

frame prediction model to obtain actions corresponding to each transition from one frame to another. 

The actions 0 to 3 returned by the training procedure aligned with the game actions up, down, left, and 

right. No additional mapping from latent action to real action was required, in contrast to the findings 

by Edwards et al. (2019). This lack of necessity for mapping can be attributed to two main factors: 

• Initially, during the training procedure, an additional loss term was introduced to encourage 

the model to select each action with equal probability. This loss term was progressively reduced 

with each training step. 

• The symmetry of the game was used to ensure each action had a distinct meaning, as explained 

in the methodology section. 

When the training was performed exactly as described in Edwards et al. (2019, p. 2), it was indeed 

observed that, at times, an action (e.g., action 2) could mean either moving in one direction or pushing 

a box in another direction. 

Regarding the frames extracted from YouTube videos, several issues with data quality were identified: 

1. Not all redundant frames could be automatically removed, resulting in some frames where 

there was no change in the board position between subsequent frames. This issue was 

mitigated by adding a wait action in addition to the four movement actions, each 

corresponding to a direction. 

2. In some instances, the player moved quickly, making some game steps not visible in the video. 

For example, diagonal movements, which are not possible in Sokoban, were observed. 

3. Some videos showed players using the undo function, which appeared as if the player started 

pulling a box, an illegal move in Sokoban. 

Videos where issues (2) or (3) occurred frequently were omitted. If such issues occurred infrequently 

(less than once in 100 moves), the data was used as-is. In total, more than 100,000 moves/frames 

remained after removing redundant frames. 
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Figure 2: Prediction of frames. From left to right: screenshot of a Sokoban level; predicted frame change after 

taking the action "move down"; predicted next frame as a result of adding the current screenshot with the 

predicted frame change. 

When manually verifying the correctness of the action extraction in several hundred frames, an 

accuracy of 100% was observed both for synthetic and YouTube data. Therefore, the labeled datasets 

of frame-action pairs obtained from videos were accurate and suitable for behavior cloning. Fig. 2 

shows the prediction of the frame change upon taking an action. 

BEHAVIOR CLONING 

Behavior cloning was performed according to the procedure explained in the methodology section, 

with datasets obtained from synthetic data or YouTube data. More than 100,000 images were used for 

training for each of the two datasets. During training with synthetic data, no overfitting was observed. 

In the final model, the accuracy in predicting actions was approximately 85% for images from both the 

training set and the validation set. The training loss decreased considerably slower when using 

YouTube compared to synthetic data, and the accuracy was much lower. After ~150,000 training steps, 

the accuracy of a policy model trained on YouTube data was about 50%, compared to ~85% after just 

50,000 training steps using synthetic data. 

The ability of these policy models to solve new, unknown levels was evaluated. 200 new levels of the 

same 10x10 board size were generated. When the policy models were used to solve these levels, a low 

rate of solved levels was observed. Investigation of the issue revealed that actions chosen by the 

policies often led to repeated states or cycles. To address this issue, whenever the environment ended 

up in the same state twice, a different action was chosen. With this adjustment, 40 out of 200 levels were 

solved by a policy model trained on synthetic data, corresponding to a success rate of 20%. In contrast, 

an untrained model or a model trained on YouTube data was unable to solve any of the levels (Fig. 3). 
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In addition to the policy model, a value model was trained. This model was tasked with estimating the 

expected discounted reward given a state. The value error was around 0.001 for a value model trained 

on either synthetic or YouTube data. 

MODEL-FREE REINFORCEMENT LEARNING 

The policy and value models obtained after training on state-actions pairs extracted from synthetic or 

YouTube videos were used as a starting point for RL. RL utilized MCTS as a planning step. After each 

MCTS, an action was executed in the Sokoban gym environment. The planning step was applied both 

during training and evaluation.  

Using the models obtained after behavior cloning with synthetic data but before RL, 156 out of 300 

validation levels could be solved, corresponding to a success rate of ~52% (Fig. 4). This success rate is 

higher than the 20% obtained using the policy model alone, due to the incorporation of MCTS at each 

step. Silver et al. (2016) utilized a similar setup to train agents for playing the board game Go. They 

observed that training the policy model could lead to a decrease in performance, whereas training the 

value model consistently had a positive effect (Silver et al., 2016, p. 8). In this thesis, this effect was 

confirmed. None of the conditions tested showed that training the policy model described by Silver et 

al. (2016) improved performance. Silver et al. (2016) speculate that training the policy model might 

narrow down the search tree, thereby reducing overall performance. Therefore, instead of using the 

Figure 3: Performance of policy models after behavior cloning with synthetic or YouTube data.  
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relative node visit count as the target for the policy model, the policy model was trained differently: it 

was trained using the state-action pairs of the solution trajectory only when a level was solved. Using 

these adjusted policy model targets, training of both the policy and value models proceeded effectively. 

The value model was trained as proposed by Silver et al. (2016), using the values obtained from state 

traces during RL. 

 

After training the agent on approximately 1,500 levels with a learning rate of 1e-6, it was able to solve 

204 out of 300 validation levels, corresponding to an increase in solved levels from 52% to 68% (Fig. 4). 

However, training appeared to plateau after approximately 1,500 games. 

The agent that had been pretrained using data from YouTube performed considerably worse. Before RL 

it could solve just 13% of levels. After RL with 1,400 games with a learning rate of 1e-6 and subsequently 

with 2,200 games with a learning rate of 1e-7 this number increased to 36%. 

SIMULATING SOKOBAN 

The initial steps in training a model presented in this thesis were all based on unlabeled video data. 

However, when starting model-free RL, this approach was abandoned, because the Sokoban 

environment was introduced as external component, making unlabeled videos no longer the only 

source of information (Fig. 5). Therefore, there was a motivation to test if not only playing Sokoban 

Figure 4: Performance of differently trained agents. From left to right: (1) Results before and after RL of randomly 

initialized models. (2) Performance of an agent pretrained with synthetic data (3) Performance of an agent 

pretrained with YouTube data. Asterisks indicate a significant difference of an agent before and after RL, as 

determined by the Two-Proportion z-Test.  
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could be learned from videos but also if the rules of the game could be inferred, thereby enabling 

model-based RL without relying on additional data sources or components. This idea was further 

motivated by the findings of Bruce et al. (2024), who simulated a jump 'n' run game. 

 

To construct a simulator, three models were needed: 

• a frame prediction model 

• an action validation model 

• a game state model 

When extracting the actions from videos a frame prediction model was trained as a by-product. 

However, a degradation in image quality was observed after performing several moves, each time 

feeding the next predicted frame back into the model. To prevent this degradation, the learning 

procedure was slightly adjusted. Instead of minimizing the loss between the predicted next frame and 

the actual next frame for each move, frames were skipped. For instance, if actions a1, …, a4 led from 

frame s1 to frame s5, the frame prediction model G was called sequentially with actions a1, …, a4, each 

time reusing its intermediate result. Then the resulting image was compared to the actual frame s5. A 

pseudocode of the procedure is shown here: 

 

Figure 5: Data sources during model-free and model-based RL. 
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repeat for n training steps: 

 select a random number t between 1 and 5 

 fetch t frame-actions pairs (si, ai)...(si+t, ai+t) from the training set 

 current_frame := si 

 for k in 0..(t-1): 

  current_frame := G(current_frame, ai+k) + current_frame 

 loss = MSE(current_frame, si + t) 

 perform gradient descent 

Using this adjusted learning process, image degradation was no longer observed, even after dozens of 

time steps. The model could accurately predict the next frame, but it could not determine if a move was 

legal or whether the game was won. 

Given a dataset of a sequence of frames and actions, it is not immediately apparent which moves are 

valid and which are not. From the data, we know which moves were played. However, when examining 

the moves/actions that were not taken, it becomes necessary to distinguish between moves that were 

not played because they are bad or unusual, and those that are illegal or impossible. 

An action validation model, consisting of five convolution blocks with pooling layers, followed by an 

FCN layer and a sigmoid function, was trained to address this issue. It received two frames as input: the 

current frame and a possible next frame. The model was supposed to determine whether the next frame 

originated from a legal move or not. It was trained on frames generated by the frame prediction model, 

which were produced by either performing a move found in a Sokoban video or a random move that 

was not part of the training set (Table 3). An issue was that the desired output of the frame prediction 

model did not always correspond to the label in the dataset. The dataset labeled moves as "true" if they 

were observed in a Sokoban video and otherwise "false". However, the action validation model should 

return "true" if a move was valid, even if it was not found in a Sokoban video. 

Initially, standard binary cross-entropy loss was used to train the model. However, the model 

performed poorly. Therefore, the loss function was adjusted such that false negative results incurred a 

loss that was 100 times larger than false positive results: 

𝑙𝑜𝑠𝑠 = 100 ∗ 𝑦 ∗ 𝑙𝑜𝑔(𝑦) + (1– 𝑦) ∗ 𝑙𝑜𝑔(1 − 𝑦)  

Where y are the true labels and 𝑦 is the model output. 
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Current frame Frame candidate Label in training set Desired model output / 

move valid? 

  

 

 

 

True 

 

 

 

 

True 

  

 

 

 

False 

 

 

 

False 

  

 

 

 

False 

 

 

 

 

True 

Table 3: Training data used to train the action validation model. Top row: a frame candidate extracted from a 

Sokoban video. Both desired model output and training label are "true". Middle row: An illegal move. Both desired 

model output and training label are false. Bottom row: the frame candidate was generated by the frame 

prediction model as a consequence of performing a random action. The desired output for this frame is "true" 

because the move is valid. The training label is "false", however, because this move is not observed in the Sokoban 

video. 

This adjusted loss encouraged the model to classify moves as "false" only when the model was certain 

and the risk of misclassification was low. Training the model for 3,000 steps was sufficient to obtain 

good results. When validating the model using the Sokoban gym environment, only 15 out of 22,500 

random valid moves were classified as invalid. This corresponded to a false negative rate of 0.06%. The 

false positive rate was 0.04%. Therefore, the model could determine with high accuracy whether a move 

was legal or not. 
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Combining the frame prediction model, the action validation model and a game state model a Sokoban 

simulator was created. 

MODEL-BASED REINFORCEMENT LEARNING 

RL with MTCS was performed as before. As a starting point, the policy and value models obtained after 

behavior cloning with synthetic data were used. Training using the Sokoban simulator was about 10 

times slower than using a Sokoban gym environment. For each MCTS step, three DNNs had to be called: 

• the frame prediction model 

• the action validation model 

• the game state model 

Another difference was that it was no longer possible to easily detect states already visited. For 

instance, if the agent was in state s, moved left, and subsequently moved right, the resulting 

frame/state s' was not completely identical to s. There were small differences in the pixels between 

these states. When working with a model-free environment, a hash value for each visited state was 

stored in memory to remember which states had already been visited. Using the Sokoban simulator, 

this approach no longer worked. 

 

Nevertheless, after playing 600 games with a learning rate of 3e-7, the playing strength of the agent had 

increased. The playing strength was evaluated in a model-free setting, allowing direct comparison to 

the results from model-based RL. The agent could solve approximately 63% of levels after RL compared 

 
Figure 6: Model-basel RL. The diagram shows the percentage of levels solved before and after RL of an agent 

pretrained with synthetic data via behavior cloning. The asterisk indicates a significant difference. 
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to 52% of levels before RL (Fig. 6). This difference was significant with a z-score of -2.73 corresponding 

to a p-value of 0.3%. 
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Discussion 
In this work, agents learned to play Sokoban with the help of unlabeled videos. Similar work has been 

done with games such as Cartpole (Edwards et al., 2019), jump 'n' run games (Bruce et al., 2024), and 

Minecraft (Baker et al., 2022). In this thesis, the approach outlined by Edwards et al. (2019, p. 2) was 

applied to a turn-based strategy game. 

It was possible to extract the actions taken by a player from both synthetic videos and videos 

downloaded from YouTube. This was done without any interaction with the Sokoban environment or 

the use of any labeled data. A mapping from latent actions to real actions, as done by Edwards et al. 

(2019, p. 2), was not required. The reason that neither remapping nor any environment interaction was 

needed is that some implicit knowledge was used for training. The knowledge was that there are five 

actions in total: four actions for each direction and one "wait" action. This knowledge went into the 

design of the action extraction process and made further mapping/environment interactions obsolete. 

The policy and value models could be trained using the state-action pairs obtained after action 

extraction. The policy model could solve around one-fifth of the puzzles. This performance could be 

boosted to 68% with RL. Notably, RL without prior behavior cloning performed very poorly, highlighting 

the importance of behavior cloning. However, the Sokoban solver used for preparing synthetic data 

performed much better than agents trained in this thesis. This solver uses an A* search with heuristic. 

The models trained in this thesis are unable to compete with other Sokoban agents either (Shoham and 

Schaeffer, 2020; Efroni et al., 2019), some of which use deep neural networks as well (Feng et al., 2020; 

Shoham and Elidan, 2021). 

How can the mediocre performance be explained? Naturally, none of the other agents use relatively 

large images as input for training. These images must first be processed or analyzed by a model. 

However, that is not the only or the most important difference. Successful Sokoban agents use 

additional hand-crafted features, rewards, or a training process specifically designed for Sokoban. For 

instance, Shoham and Elidan (2021) propose adding additional information such as the distance of the 

boxes to their respective target squares. Feng et al. (2020) propose curriculum learning to solve 

particularly difficult levels by breaking them down into simpler tasks. 

The approach presented here to learn Sokoban from unlabeled videos aimed to be more generic. 

Having a more generic approach and forgoing hand-crafted features or specific training methods 

contributed to low performance. 
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In addition to learning to solve Sokoban puzzles, it was possible to infer the rules of the game from 

unlabeled videos. The "frame prediction model" could generate an image of the next frame, and the 

"action validation model" could determine if a move was valid with an accuracy of >99.9%. Using these 

models, a Sokoban simulation could be created. Bruce et al. (2024) provided a game simulation for 

jump 'n' run games based on unlabeled videos. Their publication focused on the graphical aspects of 

the game rather than the rules. Therefore, it might be valuable to investigate whether the rules of more 

complicated games or phenomena can be inferred from unlabeled videos as well. 

In this work, it could be shown that using only videos as data source it is possible to perform behavior 

cloning, learn the rules of a strategy game and finally carry out model-based RL. Using simulated 

environments based on unlabeled data could be intriguing: employing simulations for RL appears 

particularly beneficial and may outperform using the actual environment in certain cases.  

Tapping into unused data on social media platforms might help in learning other, more meaningful 

tasks in the future, such as: 

• driving  

• tasks in robotics  

• learning games where no API is available  

• learning to simulate games or environments without implementing them 

In addition to exploring other tasks/games, efforts could focus on improving the process of utilizing 

unlabeled data. The current methods for extracting actions from videos are evidently imperfect, as 

most publications require some labeled data or interaction with the environment to perform this task. 

In summary, there are numerous tasks and open questions to address when attempting to leverage 

unlabeled videos for machine learning. 
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