ECDNETOR

Make Your Publications Visible.

A Service of

 2BW Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics
Working Paper
 Computation of business-cycle models with the Generalized Schur Method

CESifo Working Paper, No. 2873

Provided in Cooperation with:

Ifo Institute - Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Heer, Burkhard; Maußner, Alfred (2009) : Computation of business-cycle models with the Generalized Schur Method, CESifo Working Paper, No. 2873, Center for Economic Studies and ifo Institute (CESifo), Munich

This Version is available at: https://hdl.handle.net/10419/30510

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Computation of Business-Cycle Models with the Generalized Schur Method

Burkhard Heer
Alfred Maußner

CESIFO Working Paper No. 2873
Category 12: Empirical and Theoretical Methods
December 2009

An electronic version of the paper may be downloaded

- from the SSRN website: www.SSRN.com
- from the RePEc website: www.RePEc.org
- from the CESifo website: www.CESifo-group.org/wp

Computation of Business-Cycle Models with the Generalized Schur Method

Abstract

We describe an algorithm that is able to compute the solution of a singular linear difference system under rational expectations. The algorithm uses the Generalized Schur Factorization and is illustrated by a simple example.

JEL Code: C63, C68, E32.
Keywords: stochastic dynamic general equilibrium, linear solution methods, algorithm, Generalized Schur factorization, business cycles.

Burkhard Heer
Free University of Bolzano-Bozen
School of Economics and Management
Via Sernesi 1
39100 Bolzano - Bozen
Italy
Burkhard.Heer@unibz.it

Alfred Maußner
University of Augsburg
Department of Economics
Universitätsstraße 16
86159 Augsburg
Germany
alfred.maussner@wiwi.uni-augsburg.de

1 Introduction

Modern business cycle theory uses stochastic dynamic general equilibrium models in order to explain and forecast the behavior of economic variables such as income, employment, or inflation. In Heer and Maußner (2009), we provide a comprehensive review of both linear and non-linear computational methods in order to solve such models.

In most cases, business cycle models are solved with the help of log-linearization around the deterministic steady state. This method is very convenient for at least three reasons: 1) This method is simple, fast, and easy to implement. 2) As shown by Aruoba et al. (2006) and Heer and Maußner (2008), log-linearization often provides for a very accurate approximation, in particular if one is interested in the statistical properties of the economic variables. And 3), the solution from this linear method can be used as an initial guess for the computation of a non-linear solution.

In general, the complex stochastic dynamic general equilibrium model of the business cycle can be log-linearized around the deterministic steady state resulting in the follow set of equations: ${ }^{1}$

$$
\begin{align*}
C_{u} \mathbf{u}_{t} & =C_{x \lambda}\left[\begin{array}{c}
\mathbf{x}_{t} \\
\boldsymbol{\lambda}_{t}
\end{array}\right]+C_{z} \mathbf{z}_{t}, \tag{1a}\\
D_{x \lambda} \mathbb{E}_{t}\left[\begin{array}{c}
\mathbf{x}_{t+1} \\
\boldsymbol{\lambda}_{t+1}
\end{array}\right]+F_{x \lambda}\left[\begin{array}{c}
\mathbf{x}_{t} \\
\boldsymbol{\lambda}_{t}
\end{array}\right] & =D_{u} \mathbb{E}_{t} \mathbf{u}_{t+1}+F_{u} \mathbf{u}_{t} \tag{1b}\\
& +D_{z} \mathbb{E}_{t} \mathbf{z}_{t+1}+F_{z} \mathbf{z}_{t}, \\
\mathbf{z}_{t+1} & =\Pi \mathbf{z}_{t}+\boldsymbol{\epsilon}_{t+1}, \tag{1c}\\
\boldsymbol{\epsilon} & \sim N(0, \Sigma) . \tag{1d}
\end{align*}
$$

where \mathbf{x}_{t} denotes the state variables in period t, \mathbf{u}_{t} the control variables, $\boldsymbol{\lambda}_{t}$ the costate variables, and \mathbf{z}_{t} the aggregate shocks. The variables in these vectors usually represent percentage deviations of the model's original variables from their respective stationary values. The matrices C and D are derived from the equilibrium conditions of the model.

[^0]They are functions of the deep parameters of the model that, for example, describe the preferences of the households or the production function. The exogenous variables follow an autoregressive process characterized by the matrix Π. Expectations \mathbb{E}_{t} are conditional upon the information in period t.

In general, the static equations (1a) and the exogenous progress (1c) can be substituted in (1b) in order to have dynamic equations in the state and costate variables and the exogenous shocks only:

$$
B \mathbb{E}_{t}\left[\begin{array}{c}
\mathbf{x}_{t+1} \tag{2}\\
\boldsymbol{\lambda}_{t+1}
\end{array}\right]=A\left[\begin{array}{c}
\mathbf{x}_{t} \\
\boldsymbol{\lambda}_{t}
\end{array}\right]+C \mathbf{z}_{t},
$$

We will illustrate the derivation of theses matrices and the above equation in the following by means of a very simple example. In our example, however, the matrix B is not invertible. ${ }^{2}$ This generates a problem for many of the existing algorithms that rely upon the decomposition of $B^{-1} A$ with the help of either the Jordan or the Schur factorization so that the computation breaks down in these cases. As an alternative, we will suggest the use of the Generalized Schur factorization instead.

2 A Simple Example: A Two Period Overlapping Generations (OLG) Model

2.1 The Model

There are two generations $s=1,2$ alive at period t. Each generation consists of a representative member of measure one. The young household works $n=1$ hours and receives wage w_{t}. The old household consumes his savings. He earns interest r on the capital stock $k_{t+1,2}$ at age $s=2$ in period $t+1$. Capital depreciates at the rate δ.

[^1]Thus, at t the young household solves

$$
\max \ln c_{t, 1}+\beta \mathbb{E}_{t} \ln c_{t+1,2}
$$

subject to

$$
\begin{align*}
c_{t, 1} & =w_{t}-k_{t+1,2} \\
c_{t+1,2} & =\left(1-\delta+r_{t+1}\right) k_{t+1,2}, \tag{3}
\end{align*}
$$

where $c_{t, s}$ denotes consumption at age s in period t. Expectations \mathbb{E}_{t} are rational and conditional on information at the beginning of period t.

Aggregate capital equals $K_{t}=k_{t, 2}$ and aggregate labor amounts to $N=n=1$. Output is produced with the help of labor N and capital K

$$
\begin{equation*}
Y_{t}=Z_{t} N^{1-\alpha} K_{t}^{\alpha}, \tag{4}
\end{equation*}
$$

and is subject to a technology shock Z_{t}. We assume Z_{t} to follow a stationary stochastic process. ${ }^{3}$ Specifically, we assume that the percentage deviation of Z_{t} from its unconditional mean of $Z=1, \hat{Z}_{t}:=\left(Z_{t}-Z\right) / Z$, is governed by a first-order autoregressive process

$$
\begin{equation*}
\hat{Z}_{t}=\rho \hat{Z}_{t-1}+\epsilon_{t}, \tag{5}
\end{equation*}
$$

where the innovations ϵ_{t} are normally distributed with zero mean and variance σ^{2}. The factor market equilibrium conditions are:

$$
\begin{align*}
w_{t} & =(1-\alpha) Z_{t} k_{t, 2}^{\alpha}, \tag{6a}\\
r_{t} & =\alpha Z_{t} k_{t, 2}^{\alpha-1} . \tag{6b}
\end{align*}
$$

2.2 Temporary Equilibria

The first-order conditions to problem (3) can be reduced to the following equations:

$$
\begin{align*}
\frac{1}{c_{t, 1}} & =\lambda_{t, 1} \tag{7a}\\
c_{t, 1} & =w_{t}-k_{t+1,2} \tag{7b}\\
\lambda_{t, 1} & =\beta \mathbb{E}_{t} \frac{\left(1-\delta+r_{t+1}\right)}{c_{t+1,2}} \tag{7c}
\end{align*}
$$

[^2]\[

$$
\begin{equation*}
c_{t, 2}=\left(1-\delta+r_{t}\right) k_{t, 2}, \tag{7d}
\end{equation*}
$$

\]

where $\lambda_{t, 1}$ denotes the Lagrangian multiplier of the budget constraint $c_{t}-w_{t}-k_{t+1,2}=0$. Together with the factor market equilibrium conditions (6) they determine a temporary equilibrium. It is easy to see that the sequence of temporary equilibria is governed by

$$
\begin{equation*}
k_{t+1,2}=\frac{\beta(1-\alpha)}{1+\beta} Z_{t} k_{t, 2}^{\alpha} \tag{8}
\end{equation*}
$$

In the following, however, it will be instructive to analyze the model obtained from log-linearizing equations (6) and (7) at the stationary equilibrium.

2.3 Stationary Equilibrium

In the stationary equilibrium, the technology level $Z=1$ is constant. In addition, $c_{t, 1}=c_{1}, c_{t, 2}=c_{2}$, and $k_{t, 2}=k$. Equations (7a), (7c), and (6b), then, yield:

$$
\begin{equation*}
\frac{c_{2}}{c_{1}}=\beta\left(1-\delta+\alpha k^{\alpha-1}\right) \tag{9}
\end{equation*}
$$

Since

$$
\begin{equation*}
c_{1}=w-k=(1-\alpha) k^{\alpha}-k \tag{10}
\end{equation*}
$$

and

$$
c_{2}=\left(1-\delta+\alpha k^{\alpha-1}\right) k
$$

the stationary stock of capital is given by:

$$
k=\left[\frac{1+\beta}{\beta(1-\alpha)}\right]^{\frac{1}{\alpha-1}}
$$

Of course, this is the stationary solution implied by (8). For illustrative purposes, let us pick values for the parameters α, β, δ, and ρ. We set $\alpha=0.36$ equal to the capital income share in total production. As we consider two periods in our lifetime model, we look at a period length approximately equal to 30 years. Therefore, it is a reasonable assumption that capital has depreciated completely after one period, $\delta=100 \%$. From (7 b), $\beta=1 / r$. Assuming that the annual real interest rate is equal to 4%, we should choose $r=(1.04)^{30}-1=2.24$ implying $\beta=0.446$. For the autocorrelation parameter of the productivity shock (5), we employ $\rho=0.95$. This choice of parameters implies $k=0.0792, c_{1}=0.178, c_{2}=0.145, w=0.257$, and $r=1.82$.

2.4 The Log-Linear Model

In the next step, we log-linearize all the equations (6) and (7) describing the temporary equilibrium of the model around the steady state. We will illustrate the procedure only for (7a). ${ }^{4}$ To this end, take the logarithms of both sides of the equation (7a) and compute the total differential at the steady state:

$$
-\frac{d c_{1, t}}{c_{1, t}}=\frac{d \lambda_{t, 1}}{\lambda_{t, 1}} .
$$

Notice that $d c_{t, 1}=c_{t, 1}-c_{1}$. As a result, $-\hat{c}_{t, 1}=\hat{\lambda}_{t, 1}$. Similarly, equations (7) and (6) imply the following linear model:

$$
\begin{align*}
-\hat{c}_{t, 1} & =\hat{\lambda}_{t, 1} \tag{11a}\\
\hat{c}_{t, 2} & =\hat{k}_{t, 2}+\frac{r k}{c_{2}} \hat{r}_{t} \tag{11b}\\
\hat{w}_{t} & =\alpha \hat{k}_{t}+\hat{Z}_{t} \tag{11c}\\
\hat{r}_{t} & =(\alpha-1) \hat{k}_{t}+\hat{Z}_{t}, \tag{11d}\\
\hat{k}_{t+1,2} & =\frac{w}{k} \hat{w}_{t}-\frac{c_{1}}{k} \hat{c}_{t, 1} \tag{11e}\\
\hat{\lambda}_{t, 1} & =-\mathbb{E}_{t} \hat{c}_{t+1,2}+\beta \frac{c_{1}}{c_{2}} r \mathbb{E}_{t} \hat{r}_{t+1} \tag{11f}
\end{align*}
$$

In the notation of (1), the variable \mathbf{x}_{t} is equal to the capital stock, \mathbf{u}_{t} consists of consumption $c_{t, 1}$ and $c_{t, 2}$, the wage rate w_{t}, and the real interest rate $r_{t} . \boldsymbol{\lambda}_{t}$ is equal $\lambda_{t, 1}$, and \mathbf{z}_{t} is simply the technology level Z_{t}.

We eliminate the wage and the interest rate from these system so that the following four equations result:

$$
\begin{align*}
-\hat{c}_{t, 1} & =\hat{\lambda}_{t, 1}, \tag{12a}\\
\hat{c}_{t, 2} & =\underbrace{\left[1+\frac{(\alpha-1) r}{1-\delta+r}\right]}_{=: \Delta_{1}} \hat{k}_{t, 2}+\frac{\Delta_{1}-1}{\alpha-1} \hat{Z}_{t}, \tag{12b}\\
\hat{k}_{t+1,2}-\frac{\alpha w}{k} \hat{k}_{t, 2} & =-\frac{c_{1}}{k} \hat{c}_{t, 1}+\frac{w}{k} \hat{Z}_{t}, \tag{12c}\\
\left(1-\Delta_{1}\right) \hat{k}_{t+1,2}+\hat{\lambda}_{t, 1} & =-\mathbb{E}_{t} \hat{c}_{t+1,2}+\frac{\Delta_{1}-1}{\alpha-1} \mathbb{E}_{t} \hat{Z}_{t+1} . \tag{12d}
\end{align*}
$$

[^3]We can rewrite this system in the following way:

$$
\left[\begin{array}{l}
\hat{c}_{t, 1} \tag{13}\\
\hat{c}_{t, 2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
0 & -1 \\
\Delta_{1} & 0
\end{array}\right]}_{=: C_{x \lambda}}\left[\begin{array}{l}
\hat{k}_{t, 2} \\
\hat{\lambda}_{t, 1}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
0 \\
\frac{\Delta_{1}-1}{\alpha-1}
\end{array}\right]}_{=: C_{z}} \hat{Z}_{t},
$$

and

$$
\begin{align*}
& \underbrace{\left[\begin{array}{cc}
1 & 0 \\
1-\Delta_{1} & 0
\end{array}\right]}_{=: D_{x \lambda}} \mathbb{E}_{t}\left[\begin{array}{l}
\hat{k}_{t+1,2} \\
\hat{\lambda}_{t+1,1}
\end{array}\right]+\underbrace{\left[\begin{array}{cc}
-\frac{\alpha w}{k} & 0 \\
0 & 1
\end{array}\right]}_{=: F_{x \lambda}}\left[\begin{array}{l}
\hat{k}_{t, 2} \\
\hat{\lambda}_{t, 1}
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right]}_{=: D_{u}} \mathbb{E}_{t}\left[\begin{array}{l}
\hat{c}_{t+1,1} \\
\hat{c}_{t+1,2}
\end{array}\right]+\underbrace{\left[\begin{array}{cc}
-\frac{c_{1}}{k} & 0 \\
0 & 0
\end{array}\right]}_{=: F_{u}}\left[\begin{array}{l}
\hat{c}_{t, 1} \\
\hat{c}_{t, 2}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
0 \\
\frac{\Delta_{1}-1}{\alpha-1}
\end{array}\right]}_{=: D_{z}} \mathbb{E}_{t} \hat{Z}_{t+1}+\underbrace{\left[\begin{array}{c}
\frac{w}{k} \\
0
\end{array}\right]}_{=: F_{z}} \hat{Z}_{t} . \tag{14}
\end{align*}
$$

Substituting (13) in (14) results in the following dynamic equation:

$$
\underbrace{\left[\begin{array}{ll}
1 & 0 \tag{15}\\
1 & 0
\end{array}\right]}_{=: B} \mathbb{E}_{t}\left[\begin{array}{l}
\hat{k}_{t+1,2} \\
\hat{\lambda}_{t+1,1}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\frac{\alpha w}{k} & \frac{c_{1}}{k} \\
0 & -1
\end{array}\right]}_{=: A}\left[\begin{array}{c}
\hat{k}_{t, 2} \\
\hat{\lambda}_{t, 1}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
\frac{w}{k} \\
0
\end{array}\right]}_{=: C} \hat{Z}_{t} .
$$

(15) corresponds to equation (2). In particular, the matrix B is singular and we cannot solve for the policy functions in the usual way.

The two lines of the linear system are two different equations in $k_{t+1,2}$. For both equations to hold simultaneously the two right hand sides of (15) must be equal, implying (making use of (10))

$$
\hat{\lambda}_{t, 1}=-\alpha \hat{k}_{t, 2}-\hat{Z}_{t}=-0.36 \hat{k}_{t, 2}-\hat{Z}_{t} .
$$

From this solution for $\hat{\lambda}_{t, 1}$, we can compute the solution for $\hat{k}_{t+1,2}$ as follows:

$$
\hat{k}_{t+1,2}=-\hat{\lambda}_{t, 1}=0.36 \hat{k}_{t, 2}+\hat{Z}_{t} .
$$

Similarly, we can also compute the policy functions for consumption, wages, and the interest rate as functions of $\hat{k}_{t, 2}$ and \hat{Z}_{t} with the help of (11) and (12).

As a typical exercise in the business-cycle literature, one may assess the validity of the model as follows: 1) One estimates a time series for the (possibly autoregressive) process of the technology level $Z_{t}, 2$) one computes the time paths for the model variables such as consumption and investment with the help of the policy functions
and the exogenous technology shocks, and 3) compares the computed time series with the corresponding empirical ones. As another typical exercise in the business-cycle literature, one may compute the second moments such as the standard deviation of the variables and their correlation with output that are implied by the theoretical model and compare them with those found in historical data. For a more detailed description see Heer and Maußner (2009), Section 1.5.

Of course, we do not use models with a period length of 20 or 30 years in a businesscycle analysis, but rather quarters or years. As one of the very few exceptions known to us, Brooks (2002) considers a model with four overlapping generations in order to study the effect of a demographic shock on stock and bond returns. A more complex business-cycle model with 60 overlapping generations is described in Section 10.2.1 in Heer and Maußner (2009).

In the next section, we will solve such singular systems as follows: 1) We calculate the Generalized Schur factorization of the matrices A and B and use them to write (15) as a nonsingular system. 2) We solve the transformed system in the two linear combinations of ($\hat{k}_{t, 2}, \hat{\lambda}_{t, 1}$), and 3), reverse this transformation to get the decision rules for $\hat{k}_{t+1,2}$ and $\hat{\lambda}_{t, 1} .{ }^{5}$

3 The Generalized Schur Factorization

In this section, we describe the general method to solve the system (2) if the matrix B is singular. The Generalized Schur factorization of (A, B) representing the dynamic equations system (2) is given by

$$
\begin{align*}
& U^{T} B V=S \\
& U^{T} A V=T \tag{16}
\end{align*}
$$

[^4]where U and V are unitary matrices and S and T are upper triangular matrixes. ${ }^{6}$ The eigenvalues of the matrix pencil are given by $\mu_{i}=t_{i i} / s_{i i}$ for $s_{i i} \neq 0$. Furthermore, the matrices S and T can be arranged so that the eigenvalues appear in ascending order with respect to their absolute value. We define new variables:
\[

\left[$$
\begin{array}{ll}
V_{x x} & V_{x \lambda} \tag{17}\\
V_{\lambda x} & V_{\lambda \lambda}
\end{array}
$$\right]\left[$$
\begin{array}{l}
\tilde{\mathbf{x}}_{t} \\
\tilde{\boldsymbol{\lambda}}_{t}
\end{array}
$$\right]=\left[$$
\begin{array}{l}
\hat{\mathbf{x}}_{t} \\
\hat{\boldsymbol{\lambda}}_{t}
\end{array}
$$\right],
\]

so that we can write (2) as

$$
\left[\begin{array}{cc}
S_{x x} & S_{x \lambda} \tag{18}\\
0 & S_{\lambda \lambda}
\end{array}\right] \mathbb{E}_{t}\left[\begin{array}{c}
\tilde{\mathbf{x}}_{t+1} \\
\tilde{\boldsymbol{\lambda}}_{t+1}
\end{array}\right]=\left[\begin{array}{cc}
T_{x x} & T_{x \lambda} \\
0 & T_{\lambda \lambda}
\end{array}\right]\left[\begin{array}{c}
\tilde{\mathbf{x}}_{t} \\
\tilde{\boldsymbol{\lambda}}_{t}
\end{array}\right]+\underbrace{U^{-1} C}_{=: D} \hat{\mathbf{z}}_{t} .
$$

In the following we denote by $n(x)$ the number of elements of the vector $x \in \mathbb{R}^{n}$ and assume that $n(x)$ eigenvalues have modulus less than one so that $S_{x x}$ is a $n(x) \times n(x)$ upper triangular matrix, $S_{\lambda \lambda}$ is a $n(\lambda) \times n(\lambda)$ upper triangular matrix, and $S_{x \lambda}$ is a $n(x) \times n(\lambda)$ matrix. The matrices $T_{x x}, T_{\lambda \lambda}$, and $T_{x \lambda}$ have corresponding dimensions. In addition, we partition D into a $n(x) \times n(z)$ matrix D_{x} and the $n(\lambda) \times n(z)$ matrix D_{λ} :

$$
D=\left[\begin{array}{l}
D_{x} \\
D_{\lambda}
\end{array}\right]
$$

Given these assumptions and definitions the system

$$
\begin{equation*}
S_{\lambda \lambda} \mathbb{E}_{t} \tilde{\boldsymbol{\lambda}}_{t+1}=T_{\lambda \lambda} \tilde{\boldsymbol{\lambda}}_{t}+D_{\lambda} \hat{\mathbf{z}}_{t} \tag{19}
\end{equation*}
$$

is unstable and has a forward solution:

$$
\begin{equation*}
\tilde{\boldsymbol{\lambda}}_{t}=\Phi \hat{\mathbf{z}}_{t} \tag{20}
\end{equation*}
$$

We construct the matrix Φ in a similar way as Heer and Maußner (2009), p.109-111. Consider the last line of (19):

$$
\begin{equation*}
s_{n(\lambda), n(\lambda)} \mathbb{E}_{t} \tilde{\lambda}_{n(\lambda), t+1}=t_{n(\lambda), n(\lambda)} \tilde{\lambda}_{n(\lambda), t}+\mathbf{d}_{n(\lambda)}^{\prime} \hat{\mathbf{z}}_{t}, \tag{21}
\end{equation*}
$$

[^5]and the last line of (20):
\[

$$
\begin{equation*}
\tilde{\lambda}_{n(\lambda), t}=\phi_{n(\lambda)}^{\prime} \mathbf{z}_{t} \tag{22}
\end{equation*}
$$

\]

where $\mathbf{d}_{n(\lambda)}^{\prime}$ and $\phi_{n(\lambda)}^{\prime}$ are the last row of D_{λ} and Φ, respectively. Since (1c) and (22) imply

$$
\mathbb{E}_{t} \tilde{\lambda}_{n(\lambda), t+1}=\phi_{n(\lambda)}^{\prime} \Pi z_{t}
$$

equation (21) can be rewritten as:

$$
\left[s_{n(\lambda), n(\lambda)} \boldsymbol{\phi}_{n(\lambda)}^{\prime} \Pi-t_{n(\lambda), n(\lambda)} \boldsymbol{\phi}_{n(\lambda)}^{\prime}-\mathbf{d}_{n(\lambda)}^{\prime}\right] \mathbf{z}_{t}=0 .
$$

Therefore, the last row of Φ is given by

$$
\boldsymbol{\phi}_{n(\lambda)}^{\prime}=\mathbf{d}_{n(\lambda)}^{\prime}\left(s_{n(\lambda), n(\lambda)} \Pi-t_{n(\lambda), n(\lambda)} I_{n(z)}\right)^{-1}
$$

Now, consider the next to last row of (19)

$$
\begin{align*}
& s_{n(\lambda)-1, n(\lambda)-1} \mathbb{E}_{t} \tilde{\lambda}_{n(\lambda)-1, t+1}+s_{n(\lambda)-1, n(\lambda)} \mathbb{E}_{t} \tilde{\lambda}_{n(\lambda), t+1} \\
& =t_{n(\lambda)-1, n(\lambda)-1} \tilde{\lambda}_{n(\lambda)-1, t}+t_{n(\lambda)-1, n(\lambda)} \tilde{\lambda}_{n(\lambda), t}+\mathbf{d}_{n(\lambda)-1}^{\prime} \hat{\mathbf{z}}_{t} . \tag{23}
\end{align*}
$$

Since

$$
\tilde{\lambda}_{n(\lambda), t}=\phi_{n(\lambda)}^{\prime} \hat{\mathbf{z}}_{t},
$$

equation (1c) implies

$$
\mathbb{E}_{t} \tilde{\lambda}_{n(\lambda), t+1}=\phi_{n(\lambda)}^{\prime} \Pi \hat{\mathbf{z}}_{t}
$$

and equation (23) can be reduced to

$$
\begin{aligned}
s_{n(\lambda)-1, n(\lambda)-1} \mathbb{E}_{t} \tilde{\lambda}_{n(\lambda)-1, t+1}= & t_{n(\lambda)-1, n(\lambda)-1} \tilde{\lambda}_{n(\lambda)-1, t} \\
& +\left(t_{n(\lambda)-1, n(\lambda)} \boldsymbol{\phi}_{n(\lambda)}^{\prime}-s_{n(\lambda)-1, n(\lambda)} \boldsymbol{\phi}_{n(\lambda)}^{\prime} \Pi+\mathbf{d}_{n(\lambda)-1}^{\prime}\right) \hat{\mathbf{z}}_{t}
\end{aligned}
$$

with solution

$$
\begin{aligned}
\boldsymbol{\phi}_{n(\lambda)-1}^{\prime}= & {\left[t_{n(\lambda)-1, n(\lambda)} \boldsymbol{\phi}_{n(\lambda)}^{\prime}-s_{n(\lambda)-1, n(\lambda)} \boldsymbol{\phi}_{n(\lambda)}^{\prime} \Pi+\mathbf{d}_{n(\lambda)-1}^{\prime}\right] } \\
& \times\left(s_{n(\lambda)-1, n(\lambda)-1} \Pi-t_{n(\lambda)-1, n(\lambda)-1} I_{n(z)}\right)^{-1} .
\end{aligned}
$$

Proceeding in this way from the last line $i=n(\lambda)$ to the first line $i=1$ of (19) we can compute the entire matrix Φ, where the i-th row of this matrix is:

$$
\boldsymbol{\phi}_{i}^{\prime}=\left[\mathbf{d}_{i}^{\prime}+\sum_{j=i+1}^{n(\lambda)}\left(t_{i, j} \boldsymbol{\phi}_{j}^{\prime}-s_{i, j} \boldsymbol{\phi}_{j}^{\prime} \Pi\right)\right]\left(s_{i, i} \Pi-t_{i, i} I_{n(z)}\right)^{-1} .
$$

To derive the solution for $\hat{\boldsymbol{\lambda}}_{t}$, consider the second line of equation (17):

$$
V_{\lambda x} \tilde{\mathbf{x}}_{t}+V_{\lambda \lambda} \tilde{\boldsymbol{\lambda}}_{t}=\hat{\boldsymbol{\lambda}}_{t} .
$$

Since the first line can be solved for $\tilde{\mathbf{x}}_{t}$,

$$
\begin{equation*}
\tilde{\mathbf{x}}_{t}=V_{x x}^{-1} \hat{\mathbf{x}}_{t}-V_{x x}^{-1} V_{x \lambda} \tilde{\boldsymbol{\lambda}}_{t}, \tag{25}
\end{equation*}
$$

we find:

$$
\hat{\boldsymbol{\lambda}}_{t}=V_{\lambda x} V_{x x}^{-1} \hat{\mathbf{x}}_{t}+\left[V_{\lambda \lambda}-V_{\lambda x} V_{x x}^{-1} V_{x \lambda}\right] \tilde{\boldsymbol{\lambda}}_{t} .
$$

Inserting (20) yields:

$$
\begin{equation*}
\hat{\boldsymbol{\lambda}}_{t}=\underbrace{V_{\lambda x} V_{x x}^{-1}}_{=: L_{x}^{\lambda}} \hat{\mathbf{x}}_{t}+\underbrace{\left[V_{\lambda \lambda}-V_{\lambda x} V_{x x}^{-1} V_{x \lambda}\right] \Phi}_{=: L_{z}^{\lambda}} \hat{\mathbf{z}}_{t} . \tag{26}
\end{equation*}
$$

To determine the policy function for the vector $\hat{\mathbf{x}}_{t+1}$, consider the first line of (18):

$$
\begin{aligned}
S_{x x} \tilde{\mathbf{x}}_{t+1} & =-\mathbb{E}_{t} S_{x \lambda} \tilde{\boldsymbol{\lambda}}_{t+1}+T_{x x} \tilde{\mathbf{x}}_{t}+T_{x \lambda} \tilde{\boldsymbol{\lambda}}_{t}+D_{x} \hat{\mathbf{z}}_{t}, \\
& =-S_{x \lambda} \Phi \Pi \hat{\mathbf{z}}_{t}+T_{x x} \tilde{\mathbf{x}}_{t}+T_{x \lambda} \tilde{\boldsymbol{\lambda}}_{t}+D_{x} \hat{\mathbf{z}}_{t}, \\
& =T_{x x} \tilde{\mathbf{x}}_{t}+\left(T_{x \lambda} \Phi-S_{x \lambda} \Phi \Pi+D_{x}\right) \hat{\mathbf{z}}_{t} .
\end{aligned}
$$

Since $S_{x x}$ is invertible (since $n(x)$ of the eigenvalues of the pencil are within the unit circle), we can solve this equation for $\tilde{\mathbf{x}}_{t+1}$:

$$
\tilde{\mathbf{x}}_{t+1}=S_{x x}^{-1} T_{x x} \tilde{\mathbf{x}}_{t}+S_{x x}^{-1}\left(T_{x \lambda} \Phi-S_{x \lambda} \Phi \Pi+D_{x}\right) \hat{\mathbf{z}}_{t} .
$$

Since

$$
\hat{\mathbf{x}}_{t+1}=V_{x x} \tilde{\mathbf{x}}_{t+1}+V_{x \lambda} \mathbb{E}_{t} \tilde{\boldsymbol{\lambda}}_{t+1}=V_{x x} \tilde{\mathbf{x}}_{t+1}+V_{x \lambda} \Phi \Pi \hat{\mathbf{z}}_{t}
$$

we get

$$
\hat{\mathbf{x}}_{t+1}=V_{x x} S_{x x}^{-1} T_{x x} \tilde{\mathbf{x}}_{t}+\left\{V_{x x} S_{x x}^{-1}\left(T_{x \lambda} \Phi-S_{x \lambda} \Phi \Pi+D_{x}\right)+V_{x \lambda} \Phi \Pi\right\} \hat{\mathbf{z}}_{t}
$$

Substituting for (25) provides the policy function for the vector $\hat{\mathbf{x}}_{t+1}$:

$$
\begin{align*}
\hat{\mathbf{x}}_{t+1}= & \underbrace{V_{x x} S_{x x}^{-1} T_{x x} V_{x x}^{-1}}_{=: L_{x}^{x}} \hat{\mathbf{x}}_{t} \\
& +\underbrace{\left\{V_{x x} S_{x x}^{-1}\left(T_{x \lambda} \Phi-S_{x \lambda} \Phi \Pi+D_{x}\right)+V_{x \lambda} \Phi \Pi-V_{x x} S_{x x}^{-1} T_{x x} V_{x x}^{-1} V_{x \lambda} \Phi\right\}}_{=: L_{z}^{x}} \hat{\mathbf{z}}_{t} \tag{27}
\end{align*}
$$

Given the policy functions for $\hat{\boldsymbol{\lambda}}_{t}$, equation (1a) can be solved for the vector $\hat{\mathbf{u}}_{t}: 7$

$$
\hat{\mathbf{u}}_{t}=\underbrace{C_{u}^{-1} C_{x \lambda}\left[\begin{array}{c}
I_{n(x)} \tag{28}\\
L_{x}^{\lambda}
\end{array}\right]}_{L_{x}^{u}} \hat{\mathbf{x}}_{t}+\underbrace{\left(C_{u}^{-1} C_{x \lambda}\left[\begin{array}{c}
0_{n(x) \times n(z)} \\
L_{z}^{\lambda}
\end{array}\right]+C_{u}^{-1} C_{z}\right)}_{L_{z}^{u}} \hat{\mathbf{z}}_{t} .
$$

4 Implementation

We have implemented the algorithm of the previous section in the Gauss program SolveLA3, which can be downloaded from our web site. ${ }^{8}$ The program takes the matrices C, D, F, and the matrix Π from (1) as input and returns the matrices of the policy functions L_{j}^{i} from the solution

$$
\begin{aligned}
\mathbf{x}_{t+1} & =L_{x}^{x} \mathbf{x}_{t}+L_{z}^{x} \mathbf{z}_{t}, \\
\mathbf{u}_{t} & =L_{x}^{u} \mathbf{x}_{t}+L_{z}^{u} \mathbf{z}_{t}, \\
\boldsymbol{\lambda}_{t} & =L_{x}^{\lambda} \mathbf{x}_{t}+L_{z}^{\lambda} \mathbf{z}_{t} .
\end{aligned}
$$

Applying this program to our example correctly delivers $L_{x}^{x}=0.36$ and $L_{z}^{x}=1$ as well as the coefficients of the policy functions for $\hat{\lambda}_{t, 1}, \hat{c}_{t, 1}$, and $\hat{c}_{t, 2}$.

5 Conclusion

In this article, we presented an algorithm for the computation of business cycle models that are described by singular linear (stochastic) difference systems. The method uses the Generalized Schur factorization and is easy to implement. It is also applicable to large-scale dynamic systems. For example in Heer and Maußner (2006), we used the algorithm to compute a monetary business-cycle model with more than 100 state variables.

References

Aruoba, S.B., J. Fernández-Villaverde, and J.F. Rubrio-Ramírez, 2006, Comparing Solution Methods for Dynamic Equilibrium Economies, Journal of Economic Dynamics and Control, vol. 30, 2477-2508.

[^6]Brooks, R., 2002, Asset-Market Effects of the Baby Boom and Social-Security Reform, American Economic Review, vol. 92, 402-06.

Hansen, G.D., 1985, Indivisible Labor and the Business Cycle, Journal of Monetary Economics, vol. 16, 309-327.

Heer, B., and A. Maußner, 2006, Business Cycle Dynamics of a New Keynesian Overlapping Generations Model with Progressive Income Taxation, CESifo working paper, no. 1692.

Heer, B., and A. Maußner, 2008, Computation of Business Cycle Models: A Comparision of Numerical Methods. Macroeconomic Dynamics, vol. 12, 641-663.

Heer, B., and A. Maußner, 2009, Dynamic General Equilibrium Modelling: Computational Methods and Applications, 2nd edition, Springer: Berlin.

King, R.G., C.I. Plosser, and S.T. Rebelo, 2002, Production, Growth and Business Cycles: Technical Appendix, Computational Economics, vol. 20, 87-116.

King, R.G., and M.W. Watson, 2002, System Reduction and Solution Algorithms for Singular Linear Difference Systems under Rational Expectations, Computational Economics, vol. 20, 57-86.

McCandless, G., 2008, The ABCs of RBCs, Harvard University Press: Harvard.
Sims, C.A., 1989, Solving Non-Linear Stochastic Optimization Problems Backwards, FRB Minneapolis, Institute for Empirical Macroeconomics, Discussion Paper 15.

CESifo Working Paper Series

for full list see www.cesifo-group.org/wp
(address: Poschingerstr. 5, 81679 Munich, Germany, office@cesifo.de)

2813 Max-Stephan Schulze and Nikolaus Wolf, Economic Nationalism and Economic Integration: The Austro-Hungarian Empire in the Late Nineteenth Century, October 2009

2814 Emilia Simeonova, Out of Sight, Out of Mind? The Impact of Natural Disasters on Pregnancy Outcomes, October 2009

2815 Dan Kovenock and Brian Roberson, Non-Partisan 'Get-Out-the-Vote' Efforts and Policy Outcomes, October 2009

2816 Sascha O. Becker, Erik Hornung and Ludger Woessmann, Catch Me If You Can: Education and Catch-up in the Industrial Revolution, October 2009

2817 Horst Raff and Nicolas Schmitt, Imports, Pass-Through, and the Structure of Retail Markets, October 2009

2818 Paul De Grauwe and Daniel Gros, A New Two-Pillar Strategy for the ECB, October 2009

2819 Guglielmo Maria Caporale, Thouraya Hadj Amor and Christophe Rault, International Financial Integration and Real Exchange Rate Long-Run Dynamics in Emerging Countries: Some Panel Evidence, October 2009

2820 Saša Žiković and Randall K. Filer, Hybrid Historical Simulation VaR and ES: Performance in Developed and Emerging Markets, October 2009

2821 Panu Poutvaara and Andreas Wagener, The Political Economy of Conscription, October 2009

2822 Steinar Holden and Åsa Rosén, Discrimination and Employment Protection, October 2009

2823 David G. Mayes, Banking Crisis Resolution Policy - Lessons from Recent Experience Which elements are needed for robust and efficient crisis resolution?, October 2009

2824 Christoph A. Schaltegger, Frank Somogyi and Jan-Egbert Sturm, Tax Competition and Income Sorting: Evidence from the Zurich Metropolitan Area, October 2009

2825 Natasa Bilkic, Thomas Gries and Margarethe Pilichowski, Stay in School or Start Working? - The Human Capital Investment Decision under Uncertainty and Irreversibility, October 2009

2826 Hartmut Egger and Udo Kreickemeier, Worker-Specific Effects of Globalisation, October 2009

2827 Alexander Fink and Thomas Stratmann, Institutionalized Bailouts and Fiscal Policy: The Consequences of Soft Budget Constraints, October 2009

2828 Wolfgang Ochel and Anja Rohwer, Reduction of Employment Protection in Europe: A Comparative Fuzzy-Set Analysis, October 2009

2829 Rainald Borck and Martin Wimbersky, Political Economics of Higher Education Finance, October 2009

2830 Torfinn Harding and Frederick van der Ploeg, Is Norway’s Bird-in-Hand Stabilization Fund Prudent Enough? Fiscal Reactions to Hydrocarbon Windfalls and Graying Populations, October 2009

2831 Klaus Wälde, Production Technologies in Stochastic Continuous Time Models, October 2009

2832 Biswa Bhattacharyay, Dennis Dlugosch, Benedikt Kolb, Kajal Lahiri, Irshat Mukhametov and Gernot Nerb, Early Warning System for Economic and Financial Risks in Kazakhstan, October 2009

2833 Jean-Claude Trichet, The ECB's Enhanced Credit Support, October 2009
2834 Hans Gersbach, Campaigns, Political Mobility, and Communication, October 2009
2835 Ansgar Belke, Gunther Schnabl and Holger Zemanek, Real Convergence, Capital Flows, and Competitiveness in Central and Eastern Europe, October 2009

2836 Bruno S. Frey, Simon Luechinger and Alois Stutzer, The Life Satisfaction Approach to Environmental Valuation, October 2009

2837 Christoph Böhringer and Knut Einar Rosendahl, Green Serves the Dirtiest: On the Interaction between Black and Green Quotas, October 2009

2838 Katarina Keller, Panu Poutvaara and Andreas Wagener, Does Military Draft Discourage Enrollment in Higher Education? Evidence from OECD Countries, October 2009

2839 Giovanni Cespa and Xavier Vives, Dynamic Trading and Asset Prices: Keynes vs. Hayek, October 2009

2840 Jan Boone and Jan C. van Ours, Why is there a Spike in the Job Finding Rate at Benefit Exhaustion?, October 2009

2841 Andreas Knabe, Steffen Rätzel and Stephan L. Thomsen, Right-Wing Extremism and the Well-Being of Immigrants, October 2009

2842 Andrea Weber and Christine Zulehner, Competition and Gender Prejudice: Are Discriminatory Employers Doomed to Fail?, November 2009

2843 Hadi Salehi Esfahani, Kamiar Mohaddes and M. Hashem Pesaran, Oil Exports and the Iranian Economy, November 2009

2844 Ruediger Bachmann and Christian Bayer, Firm-Specific Productivity Risk over the Business Cycle: Facts and Aggregate Implications, November 2009

2845 Guglielmo Maria Caporale, Burcu Erdogan and Vladimir Kuzin, Testing for Convergence in Stock Markets: A Non-Linear Factor Approach, November 2009

2846 Michèle Belot and Jan Fidrmuc, Anthropometry of Love - Height and Gender Asymmetries in Interethnic Marriages, November 2009

2847 Volker Nitsch and Nikolaus Wolf, Tear Down this Wall: On the Persistence of Borders in Trade, November 2009

2848 Jan K. Brueckner and Stef Proost, Carve-Outs Under Airline Antitrust Immunity, November 2009

2849 Margarita Katsimi and Vassilis Sarantides, The Impact of Fiscal Policy on Profits, November 2009

2850 Scott Alan Carson, The Relationship between Stature and Insolation: Evidence from Soldiers and Prisoners, November 2009

2851 Horst Raff and Joachim Wagner, Intra-Industry Adjustment to Import Competition: Theory and Application to the German Clothing Industry, November 2009

2852 Erkki Koskela, Impacts of Labor Taxation with Perfectly and Imperfectly Competitive Labor Markets under Flexible Outsourcing, November 2009

2853 Cletus C. Coughlin and Dennis Novy, Is the International Border Effect Larger than the Domestic Border Effect? Evidence from U.S. Trade, November 2009

2854 Johannes Becker and Clemens Fuest, Source versus Residence Based Taxation with International Mergers and Acquisitions, November 2009

2855 Andreas Hoffmann and Gunther Schnabl, A Vicious Cycle of Manias, Crashes and Asymmetric Policy Responses - An Overinvestment View, November 2009

2856 Xavier Vives, Strategic Supply Function Competition with Private Information, November 2009

2857 M. Hashem Pesaran and Paolo Zaffaroni, Optimality and Diversifiability of Mean Variance and Arbitrage Pricing Portfolios, November 2009

2858 Davide Sala, Philipp J.H. Schröder and Erdal Yalcin, Market Access through Bound Tariffs, November 2009

2859 Ben J. Heijdra and Pim Heijnen, Environmental Policy and the Macroeconomy under Shallow-Lake Dynamics, November 2009

2860 Enrico Spolaore, National Borders, Conflict and Peace, November 2009

2861 Nina Czernich, Oliver Falck, Tobias Kretschmer and Ludger Woessmann, Broadband Infrastructure and Economic Growth, December 2009

2862 Evžen Kočenda and Martin Vojtek, Default Predictors and Credit Scoring Models for Retail Banking, December 2009

2863 Christian Gollier and Martin L. Weitzman, How Should the Distant Future be Discounted when Discount Rates are Uncertain?, December 2009

2864 Tiberiu Dragu and Mattias Polborn, Terrorism Prevention and Electoral Accountability, December 2009

2865 Torfinn Harding and Beata Smarzynska Javorcik, A Touch of Sophistication: FDI and Unit Values of Exports, December 2009

2866 Matthias Dischinger and Nadine Riedel, There's no Place like Home: The Profitability Gap between Headquarters and their Foreign Subsidiaries, December 2009

2867 Andreas Haufler and Frank Stähler, Tax Competition in a Simple Model with Heterogeneous Firms: How Larger Markets Reduce Profit Taxes, December 2009

2868 Steinar Holden, Do Choices Affect Preferences? Some Doubts and New Evidence, December 2009

2869 Alberto Asquer, On the many Ways Europeanization Matters: The Implementation of the Water Reform in Italy (1994-2006), December 2009

2870 Choudhry Tanveer Shehzad and Jakob De Haan, Financial Reform and Banking Crises, December 2009

2871 Annette Alstadsæter and Hans Henrik Sievertsen, The Consumption Value of Higher Education, December 2009

2872 Chris van Klaveren, Bernard van Praag and Henriette Maassen van den Brink, Collective Labor Supply of Native Dutch and Immigrant Households in the Netherlands, December 2009

2873 Burkhard Heer and Alfred Maußner, Computation of Business-Cycle Models with the Generalized Schur Method, December 2009

[^0]: ${ }^{1}$ The reader who is familiar with the method of log-linearization will notice the resemblance of the equations (1) and (2) with the equations (A40) and (A41) in King, Plosser and Rebelo (KPR) (2002). The algorithm of KPR, however, is not able to solve the kind of models that we consider in the following.

[^1]: ${ }^{2}$ McCandless (2008), Section 6.8.4, illustrates the Generalized Schur factorization with the indivisible labor model of Hansen (1985). Since he does not distinguish between costate and control variables his setup of the model implies a non invertible B matrix. Sims (1989) is an early application of the Generalized Schur factorization.

[^2]: ${ }^{3}$ If Z_{t} follows a non-stationary process, e.g. a random walk, we need to transform the variables in the model so that the model is stationary in the transformed variables.

[^3]: ${ }^{4}$ A detailed introduction to log-linearization can be found in Heer and Maußner (2009), Section 2.4.

[^4]: ${ }^{5}$ Another algorithm that is able to deal with a singular matrix B is described by King and Watson (2002). They apply singular value decompositions and QR factorizations to reduce the singular system to a non-singular one and then use the Schur (not the Generalized Schur!) factorization to solve the latter. Our algorithm uses the freely available Fortran routine ZGGES from the LAPACK package to get the Generalized Schur factorization. Thereby we defer the real cumbersome part of the system reduction to that program instead of having it to program ourselves as it is done by King and Watson (2002).

[^5]: ${ }^{6}$ See, e.g., Golub and van Loan (1996), Theorem 7.7.1, p. 377 who also describe the algorithm to compute the factorization of A and B. The set of all matrices of the form $A-\mu B, \mu \in \mathbb{C}$ is called a pencil. The eigenvalues of the pencil are the solutions of $|A-\mu B|=0$. Unitary matrices U are complex-valued matrices whose conjugate transpose equals the inverse of U.

[^6]: ${ }^{7}$ See equation (2.63) in Heer and Maußner (2009), p. 113.
 ${ }^{8}$ The link is http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/pap/gsf_prog.zip.

