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1 Introduction

Modern business cycle theory uses stochastic dynamic general equilibrium models in

order to explain and forecast the behavior of economic variables such as income, em-

ployment, or inflation. In Heer and Maußner (2009), we provide a comprehensive review

of both linear and non-linear computational methods in order to solve such models.

In most cases, business cycle models are solved with the help of log-linearization around

the deterministic steady state. This method is very convenient for at least three reasons:

1) This method is simple, fast, and easy to implement. 2) As shown by Aruoba et

al. (2006) and Heer and Maußner (2008), log-linearization often provides for a very

accurate approximation, in particular if one is interested in the statistical properties of

the economic variables. And 3), the solution from this linear method can be used as

an initial guess for the computation of a non-linear solution.

In general, the complex stochastic dynamic general equilibrium model of the business

cycle can be log-linearized around the deterministic steady state resulting in the follow

set of equations:1

Cuut = Cxλ

[
xt

λt

]
+ Czzt, (1a)

DxλEt

[
xt+1

λt+1

]
+ Fxλ

[
xt

λt

]
= DuEtut+1 + Fuut (1b)

+ DzEtzt+1 + Fzzt,

zt+1 = Πzt + εt+1, (1c)

ε ∼ N(0, Σ). (1d)

where xt denotes the state variables in period t, ut the control variables, λt the costate

variables, and zt the aggregate shocks. The variables in these vectors usually represent

percentage deviations of the model’s original variables from their respective stationary

values. The matrices C and D are derived from the equilibrium conditions of the model.

1The reader who is familiar with the method of log-linearization will notice the resemblance of the

equations (1) and (2) with the equations (A40) and (A41) in King, Plosser and Rebelo (KPR) (2002).

The algorithm of KPR, however, is not able to solve the kind of models that we consider in the

following.
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They are functions of the deep parameters of the model that, for example, describe

the preferences of the households or the production function. The exogenous variables

follow an autoregressive process characterized by the matrix Π. Expectations Et are

conditional upon the information in period t.

In general, the static equations (1a) and the exogenous progress (1c) can be substituted

in (1b) in order to have dynamic equations in the state and costate variables and the

exogenous shocks only:

BEt

[
xt+1

λt+1

]
= A

[
xt

λt

]
+ Czt, (2)

We will illustrate the derivation of theses matrices and the above equation in the

following by means of a very simple example. In our example, however, the matrix B

is not invertible.2 This generates a problem for many of the existing algorithms that

rely upon the decomposition of B−1A with the help of either the Jordan or the Schur

factorization so that the computation breaks down in these cases. As an alternative,

we will suggest the use of the Generalized Schur factorization instead.

2 A Simple Example: A Two Period Overlapping Generations

(OLG) Model

2.1 The Model

There are two generations s = 1, 2 alive at period t. Each generation consists of a

representative member of measure one. The young household works n = 1 hours and

receives wage wt. The old household consumes his savings. He earns interest r on the

capital stock kt+1,2 at age s = 2 in period t + 1. Capital depreciates at the rate δ.

2McCandless (2008), Section 6.8.4, illustrates the Generalized Schur factorization with the indivisi-

ble labor model of Hansen (1985). Since he does not distinguish between costate and control variables

his setup of the model implies a non invertible B matrix. Sims (1989) is an early application of the

Generalized Schur factorization.
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Thus, at t the young household solves

max ln ct,1 + βEt ln ct+1,2,

subject to

ct,1 = wt − kt+1,2,

ct+1,2 = (1− δ + rt+1)kt+1,2, (3)

where ct,s denotes consumption at age s in period t. Expectations Et are rational and

conditional on information at the beginning of period t.

Aggregate capital equals Kt = kt,2 and aggregate labor amounts to N = n = 1. Output

is produced with the help of labor N and capital K

Yt = ZtN
1−αKα

t , (4)

and is subject to a technology shock Zt. We assume Zt to follow a stationary stochastic

process.3 Specifically, we assume that the percentage deviation of Zt from its uncon-

ditional mean of Z = 1, Ẑt := (Zt − Z)/Z, is governed by a first-order autoregressive

process

Ẑt = ρẐt−1 + εt, (5)

where the innovations εt are normally distributed with zero mean and variance σ2. The

factor market equilibrium conditions are:

wt = (1− α)Ztk
α
t,2, (6a)

rt = αZtk
α−1
t,2 . (6b)

2.2 Temporary Equilibria

The first-order conditions to problem (3) can be reduced to the following equations:

1

ct,1

= λt,1, (7a)

ct,1 = wt − kt+1,2, (7b)

λt,1 = βEt
(1− δ + rt+1)

ct+1,2

, (7c)

3If Zt follows a non-stationary process, e.g. a random walk, we need to transform the variables in

the model so that the model is stationary in the transformed variables.
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ct,2 = (1− δ + rt)kt,2, (7d)

where λt,1 denotes the Lagrangian multiplier of the budget constraint ct−wt−kt+1,2 = 0.

Together with the factor market equilibrium conditions (6) they determine a temporary

equilibrium. It is easy to see that the sequence of temporary equilibria is governed by

kt+1,2 =
β(1− α)

1 + β
Ztk

α
t,2. (8)

In the following, however, it will be instructive to analyze the model obtained from

log-linearizing equations (6) and (7) at the stationary equilibrium.

2.3 Stationary Equilibrium

In the stationary equilibrium, the technology level Z = 1 is constant. In addition,

ct,1 = c1, ct,2 = c2, and kt,2 = k. Equations (7a), (7c), and (6b), then, yield:

c2

c1

= β(1− δ + αkα−1). (9)

Since

c1 = w − k = (1− α)kα − k (10)

and

c2 = (1− δ + αkα−1)k

the stationary stock of capital is given by:

k =

[
1 + β

β(1− α)

] 1
α−1

.

Of course, this is the stationary solution implied by (8). For illustrative purposes, let

us pick values for the parameters α, β, δ, and ρ. We set α = 0.36 equal to the capital

income share in total production. As we consider two periods in our lifetime model, we

look at a period length approximately equal to 30 years. Therefore, it is a reasonable

assumption that capital has depreciated completely after one period, δ = 100%. From

(7b), β = 1/r. Assuming that the annual real interest rate is equal to 4%, we should

choose r = (1.04)30 − 1 = 2.24 implying β = 0.446. For the autocorrelation parameter

of the productivity shock (5), we employ ρ = 0.95. This choice of parameters implies

k = 0.0792, c1 = 0.178, c2 = 0.145, w = 0.257, and r = 1.82.
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2.4 The Log-Linear Model

In the next step, we log-linearize all the equations (6) and (7) describing the temporary

equilibrium of the model around the steady state. We will illustrate the procedure

only for (7a).4 To this end, take the logarithms of both sides of the equation (7a) and

compute the total differential at the steady state:

−dc1,t

c1,t

=
dλt,1

λt,1

.

Notice that dct,1 = ct,1 − c1. As a result, −ĉt,1 = λ̂t,1. Similarly, equations (7) and (6)

imply the following linear model:

−ĉt,1 = λ̂t,1, (11a)

ĉt,2 = k̂t,2 +
rk

c2

r̂t, (11b)

ŵt = αk̂t + Ẑt, (11c)

r̂t = (α− 1)k̂t + Ẑt, (11d)

k̂t+1,2 =
w

k
ŵt − c1

k
ĉt,1, (11e)

λ̂t,1 = −Etĉt+1,2 + β
c1

c2

rEtr̂t+1. (11f)

In the notation of (1), the variable xt is equal to the capital stock, ut consists of

consumption ct,1 and ct,2, the wage rate wt, and the real interest rate rt. λt is equal

λt,1, and zt is simply the technology level Zt.

We eliminate the wage and the interest rate from these system so that the following

four equations result:

−ĉt,1 = λ̂t,1, (12a)

ĉt,2 =

[
1 +

(α− 1)r

1− δ + r

]

︸ ︷︷ ︸
=:∆1

k̂t,2 +
∆1 − 1

α− 1
Ẑt, (12b)

k̂t+1,2 − αw

k
k̂t,2 = −c1

k
ĉt,1 +

w

k
Ẑt, (12c)

(1−∆1)k̂t+1,2 + λ̂t,1 = −Etĉt+1,2 +
∆1 − 1

α− 1
EtẐt+1. (12d)

4A detailed introduction to log-linearization can be found in Heer and Maußner (2009), Section

2.4.
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We can rewrite this system in the following way:

[
ĉt,1

ĉt,2

]
=

[
0 −1

∆1 0

]

︸ ︷︷ ︸
=:Cxλ

[
k̂t,2

λ̂t,1

]
+

[
0

∆1−1
α−1

]

︸ ︷︷ ︸
=:Cz

Ẑt, (13)

and
[

1 0

1−∆1 0

]

︸ ︷︷ ︸
=:Dxλ

Et

[
k̂t+1,2

λ̂t+1,1

]
+

[
−αw

k
0

0 1

]

︸ ︷︷ ︸
=:Fxλ

[
k̂t,2

λ̂t,1

]

=

[
0 0

0 −1

]

︸ ︷︷ ︸
=:Du

Et

[
ĉt+1,1

ĉt+1,2

]
+

[
− c1

k
0

0 0

]

︸ ︷︷ ︸
=:Fu

[
ĉt,1

ĉt,2

]
+

[
0

∆1−1
α−1

]

︸ ︷︷ ︸
=:Dz

EtẐt+1 +

[
w
k

0

]

︸︷︷︸
=:Fz

Ẑt. (14)

Substituting (13) in (14) results in the following dynamic equation:

[
1 0

1 0

]

︸ ︷︷ ︸
=:B

Et

[
k̂t+1,2

λ̂t+1,1

]
=

[
αw
k

c1
k

0 −1

]

︸ ︷︷ ︸
=:A

[
k̂t,2

λ̂t,1

]
+

[
w
k

0

]

︸︷︷︸
=:C

Ẑt. (15)

(15) corresponds to equation (2). In particular, the matrix B is singular and we cannot

solve for the policy functions in the usual way.

The two lines of the linear system are two different equations in kt+1,2. For both equa-

tions to hold simultaneously the two right hand sides of (15) must be equal, implying

(making use of (10))

λ̂t,1 = −αk̂t,2 − Ẑt = −0.36k̂t,2 − Ẑt.

From this solution for λ̂t,1, we can compute the solution for k̂t+1,2 as follows:

k̂t+1,2 = −λ̂t,1 = 0.36k̂t,2 + Ẑt.

Similarly, we can also compute the policy functions for consumption, wages, and the

interest rate as functions of k̂t,2 and Ẑt with the help of (11) and (12).

As a typical exercise in the business-cycle literature, one may assess the validity of

the model as follows: 1) One estimates a time series for the (possibly autoregressive)

process of the technology level Zt, 2) one computes the time paths for the model

variables such as consumption and investment with the help of the policy functions
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and the exogenous technology shocks, and 3) compares the computed time series with

the corresponding empirical ones. As another typical exercise in the business-cycle

literature, one may compute the second moments such as the standard deviation of the

variables and their correlation with output that are implied by the theoretical model

and compare them with those found in historical data. For a more detailed description

see Heer and Maußner (2009), Section 1.5.

Of course, we do not use models with a period length of 20 or 30 years in a business-

cycle analysis, but rather quarters or years. As one of the very few exceptions known

to us, Brooks (2002) considers a model with four overlapping generations in order to

study the effect of a demographic shock on stock and bond returns. A more complex

business-cycle model with 60 overlapping generations is described in Section 10.2.1 in

Heer and Maußner (2009).

In the next section, we will solve such singular systems as follows: 1) We calculate

the Generalized Schur factorization of the matrices A and B and use them to write

(15) as a nonsingular system. 2) We solve the transformed system in the two linear

combinations of (k̂t,2, λ̂t,1), and 3), reverse this transformation to get the decision rules

for k̂t+1,2 and λ̂t,1.
5

3 The Generalized Schur Factorization

In this section, we describe the general method to solve the system (2) if the matrix

B is singular. The Generalized Schur factorization of (A,B) representing the dynamic

equations system (2) is given by

UT BV = S,

UT AV = T, (16)

5Another algorithm that is able to deal with a singular matrix B is described by King and Watson

(2002). They apply singular value decompositions and QR factorizations to reduce the singular system

to a non-singular one and then use the Schur (not the Generalized Schur!) factorization to solve the

latter. Our algorithm uses the freely available Fortran routine ZGGES from the LAPACK package to

get the Generalized Schur factorization. Thereby we defer the real cumbersome part of the system

reduction to that program instead of having it to program ourselves as it is done by King and Watson

(2002).
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where U and V are unitary matrices and S and T are upper triangular matrixes.6 The

eigenvalues of the matrix pencil are given by µi = tii/sii for sii 6= 0. Furthermore, the

matrices S and T can be arranged so that the eigenvalues appear in ascending order

with respect to their absolute value. We define new variables:

[
Vxx Vxλ

Vλx Vλλ

] [
x̃t

λ̃t

]
=

[
x̂t

λ̂t

]
, (17)

so that we can write (2) as

[
Sxx Sxλ

0 Sλλ

]
Et

[
x̃t+1

λ̃t+1

]
=

[
Txx Txλ

0 Tλλ

][
x̃t

λ̃t

]
+ U−1C︸ ︷︷ ︸

=:D

ẑt. (18)

In the following we denote by n(x) the number of elements of the vector x ∈ Rn and

assume that n(x) eigenvalues have modulus less than one so that Sxx is a n(x)× n(x)

upper triangular matrix, Sλλ is a n(λ) × n(λ) upper triangular matrix, and Sxλ is a

n(x) × n(λ) matrix. The matrices Txx, Tλλ, and Txλ have corresponding dimensions.

In addition, we partition D into a n(x)× n(z) matrix Dx and the n(λ)× n(z) matrix

Dλ:

D =

[
Dx

Dλ

]
.

Given these assumptions and definitions the system

SλλEtλ̃t+1 = Tλλλ̃t + Dλẑt (19)

is unstable and has a forward solution:

λ̃t = Φẑt. (20)

We construct the matrix Φ in a similar way as Heer and Maußner (2009), p.109-111.

Consider the last line of (19):

sn(λ),n(λ)Etλ̃n(λ),t+1 = tn(λ),n(λ)λ̃n(λ),t + d′n(λ)ẑt, (21)

6See, e.g., Golub and van Loan (1996), Theorem 7.7.1, p. 377 who also describe the algorithm to

compute the factorization of A and B. The set of all matrices of the form A − µB, µ ∈ C is called

a pencil. The eigenvalues of the pencil are the solutions of |A − µB| = 0. Unitary matrices U are

complex-valued matrices whose conjugate transpose equals the inverse of U .

8



and the last line of (20):

λ̃n(λ),t = φ′
n(λ)zt, (22)

where d′n(λ) and φ′n(λ) are the last row of Dλ and Φ, respectively. Since (1c) and (22)

imply

Etλ̃n(λ),t+1 = φ′
n(λ)Πzt,

equation (21) can be rewritten as:

[
sn(λ),n(λ)φ

′
n(λ)Π− tn(λ),n(λ)φ

′
n(λ) − d′n(λ)

]
zt = 0.

Therefore, the last row of Φ is given by

φ′
n(λ) = d′n(λ)

(
sn(λ),n(λ)Π− tn(λ),n(λ)In(z)

)−1
.

Now, consider the next to last row of (19)

sn(λ)−1,n(λ)−1Etλ̃n(λ)−1,t+1 + sn(λ)−1,n(λ)Etλ̃n(λ),t+1

= tn(λ)−1,n(λ)−1λ̃n(λ)−1,t + tn(λ)−1,n(λ)λ̃n(λ),t + d′n(λ)−1ẑt. (23)

Since

λ̃n(λ),t = φ′
n(λ)ẑt,

equation (1c) implies

Etλ̃n(λ),t+1 = φ′
n(λ)Πẑt,

and equation (23) can be reduced to

sn(λ)−1,n(λ)−1Etλ̃n(λ)−1,t+1 = tn(λ)−1,n(λ)−1λ̃n(λ)−1,t

+
(
tn(λ)−1,n(λ)φ

′
n(λ) − sn(λ)−1,n(λ)φ

′
n(λ)Π + d′n(λ)−1

)
ẑt,

with solution

φ′
n(λ)−1 =

[
tn(λ)−1,n(λ)φ

′
n(λ) − sn(λ)−1,n(λ)φ

′
n(λ)Π + d′n(λ)−1

]

× (
sn(λ)−1,n(λ)−1Π− tn(λ)−1,n(λ)−1In(z)

)−1
.

Proceeding in this way from the last line i = n(λ) to the first line i = 1 of (19) we can

compute the entire matrix Φ, where the i-th row of this matrix is:

φ′
i =


d′i +

n(λ)∑
j=i+1

(
ti,jφ

′
j − si,jφ

′
jΠ

)

 (

si,iΠ− ti,iIn(z)

)−1
.
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To derive the solution for λ̂t, consider the second line of equation (17):

Vλxx̃t + Vλλλ̃t = λ̂t.

Since the first line can be solved for x̃t,

x̃t = V −1
xx x̂t − V −1

xx Vxλλ̃t, (25)

we find:

λ̂t = VλxV
−1
xx x̂t +

[
Vλλ − VλxV

−1
xx Vxλ

]
λ̃t.

Inserting (20) yields:

λ̂t = VλxV
−1
xx︸ ︷︷ ︸

=:Lλ
x

x̂t +
[
Vλλ − VλxV

−1
xx Vxλ

]
Φ︸ ︷︷ ︸

=:Lλ
z

ẑt. (26)

To determine the policy function for the vector x̂t+1, consider the first line of (18):

Sxxx̃t+1 = −EtSxλλ̃t+1 + Txxx̃t + Txλλ̃t + Dxẑt,

= −SxλΦΠẑt + Txxx̃t + Txλλ̃t + Dxẑt,

= Txxx̃t + (TxλΦ− SxλΦΠ + Dx) ẑt.

Since Sxx is invertible (since n(x) of the eigenvalues of the pencil are within the unit

circle), we can solve this equation for x̃t+1:

x̃t+1 = S−1
xx Txxx̃t + S−1

xx (TxλΦ− SxλΦΠ + Dx) ẑt.

Since

x̂t+1 = Vxxx̃t+1 + VxλEtλ̃t+1 = Vxxx̃t+1 + VxλΦΠẑt,

we get

x̂t+1 = VxxS
−1
xx Txxx̃t +

{
VxxS

−1
xx (TxλΦ− SxλΦΠ + Dx) + VxλΦΠ

}
ẑt,

Substituting for (25) provides the policy function for the vector x̂t+1:

x̂t+1 = VxxS
−1
xx TxxV

−1
xx︸ ︷︷ ︸

=:Lx
x

x̂t

+
{
VxxS

−1
xx (TxλΦ− SxλΦΠ + Dx) + VxλΦΠ− VxxS

−1
xx TxxV

−1
xx VxλΦ

}
︸ ︷︷ ︸

=:Lx
z

ẑt (27)
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Given the policy functions for λ̂t, equation (1a) can be solved for the vector ût:
7

ût = C−1
u Cxλ

[
In(x)

Lλ
x

]

︸ ︷︷ ︸
Lu

x

x̂t +

(
C−1

u Cxλ

[
0n(x)×n(z)

Lλ
z

]
+ C−1

u Cz

)

︸ ︷︷ ︸
Lu

z

ẑt. (28)

4 Implementation

We have implemented the algorithm of the previous section in the Gauss program

SolveLA3, which can be downloaded from our web site.8 The program takes the ma-

trices C, D, F , and the matrix Π from (1) as input and returns the matrices of the

policy functions Li
j from the solution

xt+1 = Lx
xxt + Lx

zzt,

ut = Lu
xxt + Lu

zzt,

λt = Lλ
xxt + Lλ

zzt.

Applying this program to our example correctly delivers Lx
x = 0.36 and Lx

z = 1 as well

as the coefficients of the policy functions for λ̂t,1, ĉt,1, and ĉt,2.

5 Conclusion

In this article, we presented an algorithm for the computation of business cycle models

that are described by singular linear (stochastic) difference systems. The method uses

the Generalized Schur factorization and is easy to implement. It is also applicable

to large-scale dynamic systems. For example in Heer and Maußner (2006), we used

the algorithm to compute a monetary business-cycle model with more than 100 state

variables.
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