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Abstract

We suggest moment estimators for the parameters of a continuous time

GARCH(1,1) process based on equally spaced observations. Using the fact that

the increments of the COGARCH(1,1) process are ergodic, the resulting estimators

are consistent. We investigate the quality of our estimators in a simulation study

based on the compound Poisson driven COGARCH model. The estimated volatility

with corresponding residual analysis is also presented.
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1 Introduction

The GARCH(1,1) process is a model widely used by practitioners in the financial industry.

It is defined as

Yn = σn ǫn with σ2
n = β + λY 2

n−1 + δσ2
n−1 , n ∈ N, (1.1)

where β > 0, λ, δ ≥ 0. This model captures some of the most prominent features in

financial data, in particular in the volatility process. Empirical studies show that volatility

changes randomly in time, has heavy or semi-heavy tails and clusters on high levels.

These stylized features are modelled by the GARCH family as has been shown for the

GARCH(1,1) process in detail by Mikosch and Starica [8].

The modern treatment of stochastic volatility models is mostly in continuous time.

Approaches to create a continuous time GARCH model go back to Nelson [10] and we refer

to Drost and Werker [3] for an overview. Such processes are diffusion limits to discrete

time GARCH models, where, unfortunately, many of the above features of the GARCH

process are wiped out in the limit; see Fasen, Klüppelberg and Lindner [4]. Since empirical

work indicates upwards jumps in the volatility, a model driven by a Lévy process seems a

natural approach. In Klüppelberg, Lindner and Maller [6, 7] such a model was suggested

by iterating the volatility equation in (1.1) and replacing the noise variables ǫn by the

jumps ∆Lt = Lt − Lt− of a Lévy process L = (Lt)t≥0. A reparameterization, setting

η = − log δ and ϕ = λ/δ, yields the following continuous time GARCH(1,1) model, where

the parameter space is given by β, η > 0 and ϕ ≥ 0.

The COGARCH(1,1) process G = (Gt)t≥0 is defined as the solution to the SDEs

dGt = σt dLt, t ≥ 0 , (1.2)

dσ2
t+ = (β − ησ2

t ) dt + ϕσ2
t d[L,L]

(d)
t , t ≥ 0 , (1.3)

where [L,L]
(d)
t =

∑
0<s≤t(∆Ls)

2 is the discrete part of the quadratic variation process

[L,L] of the Lévy process L, G0 := 0 and σ2
0 is taken to be independent of L. Throughout

we assume that L is càdlàg, and we denote by νL the Lévy measure of L, which is assumed

to be non-zero, and by τ 2
L ≥ 0 the variance of the Brownian motion component of L (see

Sato [12] for the basic definitions and notations concerning Lévy processes). Whereas the

process G is taken as being càdlàg, for the volatility process we assume càglàd sample

paths.

The quantity σ2
t is called the instantaneous volatility or spot volatility, which is assumed

to be stationary and latent. In contrast to classical stochastic volatility models, it is not

independent of the process, which drives the price process. On the contrary, L drives both,

the volatility and the price process. Note that G jumps at the same times as L does and

has jump size ∆Gt = σt∆Lt, and that ∆Lt is independent of σt = σt−.
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If our data consist of returns over intervals of time of length r > 0, denote

G
(r)
t := Gt − Gt−r =

∫

(t−r,t]

σs dLs , t ≥ r ,

and (G
(r)
nr )n∈N describes an equidistant sequence of such non-overlapping returns of length

r. Calculating the corresponding quantity for the volatility yields

σ2(r)
rn := σ2

rn − σ2
r(n−1) =

∫

(r(n−1),rn]

(
(β − ησ2

s) ds + ϕσ2
s d[L,L](d)

s

)

= βr − η

∫

(r(n−1),rn]

σ2
s ds + ϕ

∫

(r(n−1),rn]

σ2
s d[L,L](d)

s . (1.4)

It is also worth noting that the stochastic process

Rt =
∑

0<s≤t

σ2
s(∆Ls)

2 =

∫

(0,t]

σ2
s d[L,L]

(d)
t , t ≥ 0 ,

is the discrete part of the quadratic variation [G,G]t =
∫ t

0
σ2

s d[L,L]s of G, so that∫
(r(n−1),rn]

σ2
s d[L,L]

(d)
s in (1.4) corresponds to the jump part of the quadratic variation

of G accumulated during (r(n − 1), rn].

The goal of this paper is to estimate the model parameters β, η, ϕ. Moreover, we shall

present a simple estimate of the volatility. We would like to mention that Müller [9]

developed an MCMC estimation procedure for the COGARCH(1,1) model, which works

also for irregularly spaced observations.

An important role is played by the auxiliary process

Xt = ηt −
∑

0<s≤t

log(1 + ϕ (∆Ls)
2) , t ≥ 0 . (1.5)

The stationary volatility process has, for instance, the representation

σ2
t =

(
β

∫ t

0

eXsds + σ2
0

)
e−Xt− , t ≥ 0 , (1.6)

with β > 0 and σ2
0

d
= β

∫ ∞

0
e−Xtdt, independent of L. The auxiliary process (Xt)t≥0

itself is a spectrally negative Lévy process of bounded variation with drift η, no Gaussian

component (i.e. τ 2
X = 0), and Lévy measure νX given by

νX [0,∞) = 0, νX (−∞,−x] = ν
(
{y ∈ R : |y| ≥

√
(ex − 1)/ϕ}

)
, x > 0.

We shall also need the Laplace transform Ee−sXt = etΨ(s), where the Laplace exponent is

Ψ(s) = −ηs +

∫

R

((1 + ϕx2)s − 1) νL(dx) , s ≥ 0 . (1.7)
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For fixed s ≥ 0 the Laplace transform Ee−sXt is finite for one and hence all t > 0, if

and only if the integral appearing in (1.7) is finite. This is equivalent to E|L1|2s < ∞.

Stationarity of the volatility process is in particular implied by the existence of some s > 0

such that Ψ(s) ≤ 0.

One of the advantages of the COGARCH is that its second order structure is well-

known. In the following result we give the moments of G
(r)
n , which are independent of n by

stationarity: expressions (1.8) and (1.10) have been already proved in Proposition 5.1 of

Klüppelberg et al. [6], there however under some additional assumptions such as bounded

variation of L for (1.10). In Appendix A we shall give a different proof under less restrictive

assumptions and also calculate the fourth moment of G.

Proposition 1.1. Suppose that the Lévy process (Lt)t≥0 has finite variance and zero

mean, and that Ψ(1) < 0. Let (σ2
t )t≥0 be the stationary volatility process, so that (Gt)t≥0

has stationary increments. Then E(G2
t ) < ∞ for all t ≥ 0, and for every t, h ≥ r > 0 it

holds

E(G
(r)
t ) = 0 , E(G

(r)
t )2 =

βr

|Ψ(1)|E(L2
1) , Cov (G

(r)
t , G

(r)
t+h) = 0. (1.8)

If further ϕ > 0, E(L4
1) < ∞ and Ψ(2) < 0, then E(G4

t ) < ∞ for all t ≥ 0 and, if

additionally the Lévy measure νL of L is such that
∫

R
x3νL(dx) = 0, then it holds for

every t, h ≥ r > 0

E(G
(r)
t )4 = 6E(L2

1)
β2

Ψ(1)2
(2ηϕ−1 + 2τ 2

L − E(L2
1))

(
2

|Ψ(2)| −
1

|Ψ(1)|

)(
r − 1 − e−r|Ψ(1)|

|Ψ(1)|

)

+
2β2

ϕ2

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
r + 3

β2

Ψ(1)2
(E(L2

1))
2r2 (1.9)

and

Cov ((G
(r)
t )2, (G

(r)
t+h)

2) =
β2

|Ψ(1)|3 (2ηϕ−1 + 2τ 2
L − E(L2

1))E(L2
1)

(
2

|Ψ(2)| −
1

|Ψ(1)|

)

×
(
1 − e−r|Ψ(1)|

) (
er|Ψ(1)| − 1

)
e−h|Ψ(1)|. (1.10)

Lemma 1.2. Under the conditions of Proposition 1.1 the process ((G
(r)
nr )2)n∈N has for

each fixed r > 0 the autocorrelation structure of an ARMA(1,1) process.

Proof. Denote by γ(h) = Cov ((G
(r)
nr )2, (G

(r)
(n+h)r)

2), h ∈ N0, the autocovariance function

and by ρ(h) = Corr ((G
(r)
nr )2, (G

(r)
(n+h)r)

2), h ∈ N0, the autocorrelation function of the

discrete time process ((G
(r)
nr )2)n∈N. Then

ρ(h)

ρ(1)
=

γ(h)

γ(1)
= e−(h−1)r|Ψ(1)| , h ≥ 1 .
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Moreover, for h = 1 we get

ρ(1) =
γ(1)

Var (G2
r)

.

Recalling the autocorrelation function of an ARMA(1,1) process (see e.g. Brockwell and

Davis [2], Exercise 3.16), we identify e−r|Ψ(1)| as the autoregressive root φ. The moving

average root θ can be determined by matching ρ(1) = (1+φθ)(φ+ θ)/(1+ θ2 +2φθ). 2

Remark 1.3. From Corollary 4.4 of Klüppelberg et al. [6] we know the moments E(σ2k)

of the stationary volatility process (k ∈ N), which exist if and only if E(L2k
1 ) < ∞ and

Ψ(k) < 0. In particular, if E(L4
1) < ∞ and Ψ(2) < 0, then for t, h ≥ 0

E(σ2
t ) =

β

|Ψ(1)| and E(σ4
t ) =

2β2

|Ψ(1)Ψ(2)| , (1.11)

Cov (σ2
t , σ

2
t+h) = β2

(
2

|Ψ(1)Ψ(2)| −
1

Ψ(1)2

)
e−h|Ψ(1)| = Var (σ2

t ) e−h|Ψ(1)| . (1.12)

Econometric literature suggests that volatility is quite persistent, which would imply that

e−|Ψ(1)| is close to 1; i.e. Ψ(1) < 0 near 0. This should be kept in mind, when estimating

the model parameters.

2 Method of moment estimation

2.1 Identifiability of the model parameters

We aim at estimation of the model parameters (β, η, ϕ) from a sample of equally spaced

returns, matching empirical autocorrelation function and moments to their theoretical

counterparts given in Proposition 1.1. In our next result we show that the parameters are

identifiable by this estimation procedure for driving Lévy processes L as in Proposition

1.1 for which the variance of L and the variance τ 2
L of the Brownian motion component

in L are known. For the sake of simplicity we set r = 1 and Var (L1) = 1.

Theorem 2.1. Suppose (Lt)t≥0 is a Lévy process such that EL1 = 0, Var L1 = 1, the

variance τ 2
L of the Brownian motion component of L is known with 0 ≤ τ 2

L < Var L1 = 1),

E(L4
1) < ∞ and

∫
R

x3 νL(dx) = 0. Assume also that Ψ(2) < 0, and denote by (G
(1)
n )n∈N

the stationary increment process of the COGARCH process with parameters β, η, ϕ > 0.

Let m1,m2, k, kρ, p > 0 be constants such that

E(G(1)
n )2 = m1,

E(G(1)
n )4 = m2,

γ(h) = Cov ((G(1)
n )2, (G

(1)
n+h)

2) = k e−hp , h ∈ N ,

ρ(h) = Corr ((G(1)
n )2, (G

(1)
n+h)

2) = kρe
−hp , h ∈ N ,
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with kρ = k/(m2 − m2
1). Define

M1 := m2 − 3m2
1 − 6

1 − p − e−p

(1 − ep)(1 − e−p)
k ,

M2 :=
2kp

M1(ep − 1)(1 − e−p)
.

Then M1,M2 > 0, and the parameters β, η, ϕ are uniquely determined by m1,m2, k and p

and are given by the formulas

β = p m1 , (2.1)

ϕ = p
√

1 + M2 − p, (2.2)

η = p
√

1 + M2 (1 − τ 2
L) + p τ 2

L = p + ϕ(1 − τ 2
L) . (2.3)

Proof. Since r = E(L2
1) = 1, we obtain from Proposition 1.1

m1 =
β

|Ψ(1)| , (2.4)

m2 = 6
β2

|Ψ(1)|3
(
2ηϕ−1 + 2τ 2

L − 1
) (

2

|Ψ(2)| −
1

|Ψ(1)|

) (
|Ψ(1)| − 1 + e−|Ψ(1)|

)

+
2β2

ϕ2

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
+ 3

β2

Ψ(1)2
, (2.5)

p = |Ψ(1)|, (2.6)

k =
β2

|Ψ(1)|3
(
2ηϕ−1 + 2τ 2

L − 1
) (

2

|Ψ(2)| −
1

|Ψ(1)|

) (
1 − e−|Ψ(1)|

) (
e|Ψ(1)| − 1

)
.(2.7)

Then (2.4) and (2.6) immediately give (2.1). Inserting (2.7) in (2.5) and using (2.4) and

(2.6), we obtain

m2 = 6
p − 1 + e−p

(1 − e−p)(ep − 1)
k +

2m2
1p

2

ϕ2

(
2

|Ψ(2)| −
1

p

)
+ 3m2

1.

By definition of M1 and (A.5), we see that

M1 =
2m2

1p
2

ϕ2

(
2

|Ψ(2)| −
1

p

)
=

2m2
1p

2

ϕ2

ϕ2

|Ψ(2)|p

∫

R4

x4 νL(dx) > 0,

so that
2

|Ψ(2)| −
1

p
=

M1ϕ
2

2m2
1p

2
.

Inserting this in (2.7) gives

k =
2ηϕ−1 + τ 2

L − 1

p3

M1ϕ
2

2
(1 − e−p)(ep − 1),
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so that

0 < pM2 =
2kp2

M1(ep − 1)(1 − e−p)
=

2ηϕ−1 + 2τ 2
L − 1

p
ϕ2 =

(
2 +

ϕ

p

)
ϕ,

where we used

p = |Ψ(1)| = η − ϕ(E(L2
1) − τ 2

L) (2.8)

from (1.7). Solving this quadratic equation in ϕ gives (2.2), which together with (2.8)

implies (2.3). 2

We conclude from (2.1)-(2.3) that our model parameter vector (β, η, ϕ) is a continu-

ous function of the first two moments m1,m2 and the parameters of the autocorrelation

function p and kρ. Hence, by continuity, consistency of the moments implies immediately

consistency of the corresponding plug-in estimates for (β, η, ϕ).

2.2 The estimation algorithm

The parameters are estimated under the following assumptions:

(H1) We have equally spaced observations Gn, n = 0, . . . , N , giving return data

G
(1)
n = Gn − Gn−1, n = 1, . . . , N .

(H2) EL1 = 0 and Var (L1) = 1, i.e. σ2 can be interpreted as the volatility.

(H3) The variance τ 2
L of the Brownian motion component of L is known and in [0, 1).

(H4)
∫

R
x3 νL(dx) = 0, E(L4

1) < ∞ and Ψ(2) < 0.

We estimate m1,m2 by their empirical counterparts and the parameters p, kρ of the

autocorrelation function using a least squares estimate; see Seber and Wild [13] for theo-

retical background.

Algorithm 2.2. (1) Calculate moment estimators

m̂1 :=
1

N

N∑

n=1

(G(1)
n )2 and m̂2 :=

1

N

N∑

n=1

(G(1)
n )4 .

(2) For fixed hmax ≥ 2 and a compact set K ⊂ R
2
+ minimize

hmax∑

h=1

(ρ̂(h) − kρe
−ph)2

with respect to kρ and p, where ρ̂(h) is the empirical autocorrelation function at lag

h as defined in (2.12). This yields estimators k̂ρ and p̂.
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(3) Calculate k̂ = k̂ρ(m̂2 − m̂2
1) and insert m̂1, m̂2, k̂ and p̂ into (2.1)-(2.3).

This yields estimators for β, η, ϕ:

β̂ = p̂ m̂1 , (2.9)

ϕ̂ = p̂

√
1 + M̂2 + p̂ , (2.10)

η̂ = p̂

√
1 + M̂2 (1 − τ 2

L) + p̂ τ 2
L = p̂ + ϕ̂ (1 − τ 2

L). (2.11)

In part (2) of the above algorithm we fitted the autocorrelation function. Alternatively,

we could also have based our least squares estimation on the autocovariance function. It

turned out, however, that the estimators chosen as above are considerably more accurate.

The reason for this is that kρ is independent of β (it cancels out). This improves the

estimation as the estimator for β has the largest error among all our estimators.

Underlying the least squares estimation above is a non-linear regression model. If

the errors were i.i.d., then under certain regularity conditions these estimators would be

consistent and asymptotically normal. In our case, the errors are not to be expected to

be i.i.d., quite contrary, the dependence structure inherent in the correlation estimates

ρ̂(h) will be quite complicated. For the discrete time GARCH(1,1) model this has been

investigated in Mikosch and Starica [8].

In Theorem 2.1 it was shown that M1 and M2 are strictly positive. This does not

imply a-priori that the empirical estimates M̂1 and M̂2 are strictly positive and that√
1 + M̂2 is well-defined. As we shall show in the next section, the COGARCH(1,1) model

is ergodic and mixing, which suffices to prove strong consistency of the above estimators.

In particular, M̂2 will be strictly positive for large samples sizes and the afore mentioned

problem does not occur.

2.3 Consistency of moment estimators

The proof of the mixing property of the COGARCH increments and hence of the following

theorem can be found in Appendix B. Since we are only interested in applying it to show

consistency of the moment estimator, we do not state and prove it under the most general

assumptions possible.

Theorem 2.3. Suppose that (Lt)t≥0 is such that E(L4
1) < ∞ and the parameters of the

COGARCH process are such that Ψ(2) < 0. Let (σ2
t )t≥0 be the strictly stationary volatility

process given as solution to (1.3). Then the process (G
(r)
rn )n∈N is strictly stationary and

ergodic for every r > 0.

Theorem IV.2.2 of Hannan [5] ensures that empirical moments and the empirical

covariance function converge almost surely under strict stationarity and ergodicity to

their theoretical counterparts.
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We apply this to the process (G
(1)
n )2

n∈N
. For given data (G

(1)
1 )2, (G

(1)
2 )2, . . . , (G

(1)
N )2 the

empirical moments and autocovariance and autocorrelation functions are given by

m̂1 =
1

N

N∑

n=1

(G(1)
n )2

m̂2 =
1

N

N∑

n=1

(G(1)
n )4

γ̂(h) =
1

N

N−h∑

n=1

((G
(1)
n+h)

2 − m̂1)((G
(1)
n )2 − m̂1) , h ≥ 1

γ̂(0) = m̂2 − m̂2
1

ρ̂(h) = γ̂(h)/γ̂(0) , h ≥ 0 . (2.12)

All these empirical moments converge almost surely to their theoretical counterparts; i.e.

as N → ∞,

m̂1
a.s.→ E(G

(1)
t )2 , m̂2

a.s.→ E(G
(1)
t )4 , (γ̂(1), . . . , γ̂(hmax))

a.s.→ (γ(1), . . . , γ(hmax)),

and (ρ̂(1), . . . , ρ̂(hmax))
a.s.→ (ρ(1), . . . , ρ(h)) . (2.13)

In the next Theorem it is shown that also k̂ρ
a.s.→ kρ and p̂

a.s.→ p, so that consistency of the

moment estimator follows.

Theorem 2.4. Let (Gt)t≥0 be the COGARCH(1,1) process with strictly stationary volatil-

ity process (σ2
t )t≥0 given by (1.2) and (1.3). Assume that (Lt)t≥0 satisfies the assump-

tions of Theorem 2.1. Let K be a compact subset of R+ × R+ containing the true value

θ
0 := (k0

ρ, p
0). Then the moment estimators β̂, η̂, ϕ̂ as defined in Algorithm 2.2 by (2.9),

(2.10), and (2.11) are strongly consistent.

Proof. Define for appropriate hmax << N and θ = (kρ, p) ∈ K

mN(θ) :=




ρ̂(1) − ρθ(1)
...

ρ̂(hmax) − ρθ(hmax)


 ,

where ρθ(h) = kρe
−ph. Since ((G

(1)
n )2)n∈N is strictly stationary and ergodic by Theorem 2.3,

we know from (2.13) that for all θ ∈ K,

mN(θ)
a.s.−→ m(θ), N → ∞,

where

m(θ) :=




ρθ
0(1) − ρθ(1)

...

ρθ
0(hmax) − ρθ(hmax)


 .
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Observing that

q(θ) := m(θ)T m(θ)

has a unique minimum at θ = θ
0 which is equal to 0, we conclude

qN(θ0)
a.s.→ 0, N → ∞, (2.14)

where qN(θ) := mN(θ)T mN(θ). For finite N we have 0 ≤ qN(θ̂N) ≤ qN(θ0), with θ̂N :=

arg minθ∈K qN(θ). From (2.14) then follows that

qN(θ̂N) := mN(θ̂N)T mN(θ̂N)
a.s.→ 0, N → ∞. (2.15)

Next, observe that

|qN(θ̂N) − q(θ̂N)| =

∣∣∣∣∣
hmax∑

h=1

(
ρ̂2(h) − ρ2

θ
0(h) + 2ρ

θ̂N
(h){ρθ

0(h) − ρ̂(h)}
)∣∣∣∣∣

≤
hmax∑

h=1

(
|ρ̂(h)| + |ρθ

0(h)| + 2|ρ
θ̂N

(h)|
)
|ρθ

0(h) − ρ̂(h)|

≤ 4
hmax∑

h=1

|ρθ
0(h) − ρ̂(h)| a.s.→ 0 , N → ∞,

by (2.13), where we used that |ρ̂(h)| ≤ 1, see Brockwell and Davis [2], Problem 7.11.

Together with (2.15) this implies

q(θ̂N)
a.s.→ 0 = q(θ0),

and since q has its only minimum at θ
0 with value q(θ0) = 0, it follows that θ̂N

a.s.→ θ
0.

The estimators β̂, η̂ and ϕ̂ are uniquely determined by (2.9) – (2.11). Moreover, (β, η, ϕ)

is a continuous function of the first two moments m1,m2 and the parameters of the

autocorrelation function p and kρ. This shows together with the above conclusions strong

consistency:

β̂
a.s.→ β, η̂

a.s.→ η and ϕ̂
a.s.→ ϕ . 2

2.4 Compound Poisson COGARCH(1,1) process

This section is devoted to the compound Poisson COGARCH(1,1) process, which corre-

sponds to a compound Poisson driving process L given by

Lt =
Nt∑

k=1

Yk , t ≥ 0 ,

where N = (Nt)t≥0 is a Poisson process with intensity c > 0, and (Yk)k∈N are i.i.d. random

variables, independent of N . We introduce a generic random variable Y with the same

10



distribution function as the Yk, denoted by FY . For this model (H3) is clearly satisfied,

with τ 2
L = 0. The Lévy measure of L has the representation ν(dx) = cFY (dx). This allows

us to calculate the Laplace exponent from (1.7) getting

Ψ(s) = −η s + c

∫

R

(
(1 + ϕy2)s − 1

)
FY (dy) .

From this we obtain

Ψ(1) = −η + ϕcE(Y 2) and Ψ(2) = −2η + 2ϕcE(Y 2) + ϕ2cE(Y 4) .

Since Theorem 2.1 requires E(L1) = 0 and Var (L1) = E(L2
1) = 1, we must have E(Y 2) =

1/c yielding p = |Ψ(1)| = η − ϕ. The conditions E(L4
1) < ∞ and

∫
R

x3 νL(dx) = 0

translate into E(Y 4) < ∞ and E(Y 3) = 0, respectively. Moreover, we obtain Ψ(2) =

2(ϕ − η) + ϕ2
E(Y 4)/(E(Y 2)) = −2p + ϕ2

E(Y 4)/(E(Y 2)). Then the condition Ψ(2) < 0

translates into ϕ2 < 2p/(cE(Y 4)).

These conditions are satisfied for a driving compound Poisson process with jump

intensity c = 1 and standard normally distributed jumps. The model parameters are

chosen as β = 1, η = 0.05 and ϕ = 0.04. As starting value for σ2
0 we choose the theoretical

mean of the stationary model corresponding to the above parameters given by E(σ2
∞) = 10.

In Figure 1 we plotted simulated sample paths for the time interval [0, 3 000] of the

driving Lévy process L, the volatility process σ, the COGARCH(1,1) process G, and

the differenced COGARCH G(1), respectively. All four sample paths have been simulated

with the same random seed. As can be seen (Gt) looks similar to (Lt), they only differ

by the jump sizes. Also the volatility clustering, which is observed in real data, can be

rediscovered in this simulation.

In the next section we shall investigate the quality of the estimators given by Algo-

rithm 2.2 in a simulation study. An important problem in financial data is the occurrence

of volatility jumps. Recall that in our model the volatility jumps exactly when the price

itself jumps. As jumps in a compound Poisson model with moderate frequency are rare,

we should be able to estimate the jump rate c from the discretized data G
(1)
n . This is

shown in our next result. The analysis is based on z(N), the number of intervals, where

G does not change; i.e. z(N) =
∑N

t=1 1
{G

(1)
t =0}

. This implies immediately that one needs

a fine enough observation grid.

Proposition 2.5. Let (Lt)t≥0 be a compound Poisson process with continuous jump dis-

tribution FY and intensity c > 0. Then

ĉ = − log

(
z(N)

N

)
a.s.→ c , N → ∞ ,

and
√

N(ĉ − c)
d→ N(0, ec(1 − e−c)) , N → ∞ , (2.16)

11
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Figure 1: Simulated compound Poisson process (Lt)0≤t≤3 000 with Poisson rate c = 1 and N(0, 1)-

distributed jumps (first), the volatility process (σt) (second), the corresponding COGARCH process (Gt)

with parameters β = 1, η = 0.05 and ϕ = 0.04 (third) and the differenced COGARCH process (G
(1)
t

) of

order 1 (last).

where N(µ, σ2) denotes the standard normal distribution with mean µ and variance σ2.

Proof. Denote by Sn the number of jumps in the interval (n − 1, n]. Then the Sn, n =

1, . . . , N , are i.i.d. Poisson distributed with parameter c. Therefore, the indicator variables

1{Sn=0}, n = 1, . . . , N , are also i.i.d. Since FY is continuous, we have

1{Sn=0} = 1
{G

(1)
n =0}

a.s. , n = 1, . . . , N .

By the strong law of large numbers, we get

1

N

N∑

n=1

1
{G

(1)
n =0}

a.s.−→ E(1{S1=0}) = P (S1 = 0) = e−c, T → ∞ ,

and therefore

− log

(
z(N)

N

)
a.s.−→ c, N → ∞.
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Moreover, as 1
{G

(1)
n =0}

, n = 1, . . . , N , are i.i.d., the central limit theorem applies giving

z(N) − Ne−c

√
Ne−c(1 − e−c)

d→ N(0, 1) , N → ∞ .

Invoking the delta-method to − log( z(N)
N

) (e.g. Brockwell and Davis [2], Proposition 6.4.1),

using
√

e−c(1 − e−c)/N → 0 as N → ∞ and the fact that − log(·) is differentiable (at

e−c), we obtain (2.16). 2

Remark 2.6. The central limit theorem of Proposition 2.5 allows us to construct confi-

dence intervals for the jump rate c. Using (2.16) and

N

z(N)

(
1 − z(N)

N

)
P→ ec(1 − e−c), N → ∞,

we apply Slutzky’s theorem to get

− log( z(N)
N

) − c√
1

z(N)
(1 − z(N)

N
)

d→ N(0, 1). (2.17)

Solving (2.17) with respect to c, we get a 100(1 − α)% confidence interval

[
− log

(
z(N)

N

)
− q1−α

2

√
1

z(N)
− 1

N
,− log

(
z(N)

N

)
+ q1−α

2

√
1

z(N)
− 1

N

]
,

where q1−α
2

is the (1 − α
2
)-quantil of the standard normal distribution.

3 Simulation study

In this section we investigate the behaviour of the moment estimators of Algorithm 2.2.

As the driving Lévy process L we choose a compound Poisson process as in Section 2.4

with standard normally distributed jump sizes Yk. Then all conditions of Theorem 2.1 on

L are satisfied. To satisfy (H2) we have to choose the jump rate c = 1. Next we have to

choose parameters β, η and ϕ. As indicated in Remark 1.4 the autocovariance function of

(G(1))2 should not decrease too fast. From Proposition 1.1 we know that this is implied

by Ψ(1) < 0 close to zero. Moreover, Theorem 2.1 requires Ψ(2) < 0. Setting β = 0.1,

η = 0.05 and ϕ = 0.04 gives Ψ(1) = −0.01 and Ψ(2) = −0.0152 which are satisfactory

values. To apply Algorithm 2.2 we also have to choose hmax. Numerical experience (see

Zapp [14] for details) has shown that hmax equal to 150 is a good choice for a time series

length of 3 000 observations.
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3.1 Estimation results

We simulate 1 000 samples of 3 000 equidistant observations of G(1). Table 3.1 summarizes

the outcome of our simulation study concerning the parameters β, η and ϕ.

The empirical mean of all the estimated parameter values β̂, η̂ and ϕ̂ is shown in

the first line, with the empirical standard deviations in brackets. We also estimated bias,

mean square error (MSE), mean absolute error (MAE), again with the corresponding

standard deviation in brackets. The estimators η̂ and ϕ̂ show a better quality than β̂.

This is not surprising as it is a well-known phenomenon that the drift of a model (1.3)

is hard to estimate. One needs a very large sample for a precise estimator. The estima-

tion results concerning the jump rate c and v2
Y1

, the variance of the jumps Yk, are shown

in Table 3.2 showing satisfactory performance. Again we calculated the empirical mean,

MSE and MAE with corresponding empirical standard deviations. As one can see from

(2.3) and (2.6) Ψ(1) is equal to Ψ(1) = −η + ϕ. Thus these two parameters give im-

portant characteristics of the model concerning stationarity and the rate p of decrease

of the autocovariance and autocorrelation function. From (2.10) it is also clear, that the

estimated parameters will always correspond to a stationary model, since p̂ > 0 and thus

ψ̂(1) = −η̂ + ϕ̂ < 0.

β̂ η̂ ϕ̂

Mean 0.0984 (0.0014) 0.0447 (0.0004) 0.0344 (0.0003)

Bias -0.0016 (0.0014) -0.0053 (0.0004) -0.0056 (0.0003)

MSE 0.0019 (1.3e-5) 0.0002 (1.0e-5) 0.0001 (0.9e-5)

MAE 0.0340 (0.0008) 0.0111 (0.0002) 0.0081 (0.0002)

Table 3.1: Estimated mean, bias, MSE and MAE for β̂, η̂ and ϕ̂ and corresponding estimated standard

deviations in brackets. The true values are β = 0.1, η = 0.05 and ϕ = 0.04.

ĉ v̂2
Y1

Mean 1.0007 (0.0007) 0.9999 (0.0007)

Bias 0.0007 (0.0007) -0.8e-04 (0.0007)

MSE 0.0006 (0.2e-4) 0.0006 (0.2e-4)

MAE 0.0192 (0.0004) 0.0192 (0.0004)

Table 3.2: Estimated mean, bias, MSE and MAE for ĉ and v̂2
Y1

and corresponding estimated standard

deviations in brackets. The true values are c = 1 and v2
Y1

:= Var (Y1) = 1.
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3.2 Estimation of the volatility σ2
t

Recall from (1.4) for r = 1,

σ2
n = σ2

n−1 + β − η

∫

(n−1,n]

σ2
sds + ϕ

∑

n−1<s≤n

σ2
s(∆Ls)

2 , n ∈ N . (3.1)

Since σs is latent and ∆Ls is usually not observable, we have to approximate the integral

and the sum on the right hand side. For the integral we use a simple Euler approximation
∫

(n−1,n]

σ2
sds ≈ σ2

n−1 , n ∈ N .

As we observe G only at integer times we approximate

∑

n−1<s≤n

σ2
s(∆Ls)

2 ≈ (Gn − Gn−1)
2 = (G(1)

n )2 , n ∈ N .

An estimate of the volatility process (σ2
t )t≥0 can therefore be calculated recursively by

σ̂2
n = β̂ + (1 − η̂)σ̂2

n−1 + ϕ̂ (G(1)
n )2 , n ∈ N . (3.2)

Note that together with G
(1)
n = σ̂n−1ǫn, ǫn i.i.d ∼ (0, 1), n ∈ N, this defines a discrete

time GARCH(1,1) model and we have to require that 0 < η < 1. The estimator (3.2) is

plotted in Figure 2 together with the theoretical (σ2
t )t≥0 for one simulation.
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Figure 2: Sample paths of σ2
t

(solid line) and σ̂2
t

(+) of one simulation.

In this section we investigate the goodness of fit of our estimation method by a residual

analysis. The estimated residuals are given by G
(1)
n /σ̂n−1 for n = 1, . . . , N . Since we
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assumed a symmetric jump distribution with zero mean, trivally the residuals should

be symmetric around zero and their mean should be close to zero. Furthermore, if the

volatility has been estimated correctly, we expect the standard deviation to be close to 1.

Consequently, we estimated mean, bias, MSE, MAE and the corresponding standard de-

viations for the mean, the standard deviation and the skewness of the residuals G
(1)
n /σ̂n−1

based on 1 000 simulations. The results are reported in Table 3.3 and indicate a reasonable

fit.

mean(G
(1)
n /σ̂n−1) std(G

(1)
n /σ̂n−1) skewness(G

(1)
n /σ̂n−1)

Mean 0.0006 (0.0006) 1.0118 (0.0003) 0.0028 (0.0047)

Bias 0.0006 (0.0006) 0.0118 (0.0003) 0.0028 (0.0047)

MSE 0.0003 (0.1e-4) 0.0002 (0.7e-5) 0.0224 (0.0011)

MAE 0.0147 (0.0003) 0.0127 (0.0002) 0.1176 (0.0029)

Table 3.3: Estimated mean, bias, MSE and MAE for the mean, standard deviation and skewness of the

residuals with corresponding estimated standard deviations in brackets.

For one simulation we calculated a smoothed histogram for the residuals. The corre-

sponding plot together with the fitted standard normal distribution can be seen on the

left in Figure 3. For the same simulation the estimated autocorrelation function of the

squared residuals (G
(1)
n )2/σ̂2

n−1 can be seen on the right in Figure 3.
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Figure 3: Left: Smoothed histogram of the residuals G
(1)
n /σ̂n−1 for one simulation (solid line), together

with the density of the standard normal distribution (dotted line). Right: Sample autocorrelation function

of the squared residuals (G
(1)
n )2/σ̂2

n−1 for the same simulation.
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Appendix

A Calculating the moments

Proof of Proposition 1.1. Since L has finite variance and zero mean, it is a square

integrable martingale. Further, Ψ(1) < 0 implies E(σ2
t ) = β

|Ψ(1)|
< ∞ by (1.11), and it

follows easily from the properties of the stochastic integral that

E(G2
t ) = E[G,G]t = E

∫ t

0

σ2
s d[L,L]s = E[L,L]1

∫ t

0

E(σ2
s) ds ,

giving that E(G2
t ) is finite and has the form specified in (1.8). The remaining equations

in (1.8) are shown as in Proposition 5.1 of [6].

Suppose that ϕ > 0, E(L4
1) < ∞ and Ψ(2) < 0. Then E(G4

t ) is finite by the Burkholder-

Davis-Gundy inequality, cf. Protter [11], p. 222, since

E
(
[G,G]2t

)
= E

(∫ t

0

σ2
s d[L,L]s

)2

is finite as a consequence of E(σ4
t ) < ∞ and E(L4

1) < ∞.

Now suppose additionally that
∫

R
x3 νL(dx) = 0. To calculate the value of E(G4

t ),

observe that by integration by parts,

G2
t = 2

∫ t

0

Gs− dGs + [G,G]t = 2

∫ t

0

Gs−σs dLs +

∫ t

0

σ2
s d[L,L]s, (A.1)

G4
t = 2

∫ t

0

G2
s− dG2

s + [G2, G2]t

= 4

∫ t

0

G3
s−σs dLs + 2

∫ t

0

G2
s−σ2

s d[L,L]s

+4

∫ t

0

G2
s−σ2

s d[L,L]s +

∫ t

0

σ4
s d

[
[L,L], [L,L]

]
s

+4

∫ t

0

Gs−σ3
s d

[
[L,L], L]s. (A.2)
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Taking expectations in (A.2), the first and the last summand vanish due to the assump-

tions EL1 = 0 and
∫

R
x3 νL(dx) = 0, respectively, so that

E(G4
t ) = 6E(L2

1)

∫ t

0

E(G2
s−σ2

s) ds +

∫

R

x4 νL(dx)

∫ t

0

E(σ4
s) ds. (A.3)

The expression E(G2
s−σ2

s) was already calculated in the proof of Proposition 5.1 in [6],

however, under additional assumptions which required in particular bounded variation of

L. The following calculations do not require these restrictions.

Let Yt :=
∫ t

0
Gs−σs dLs, t ≥ 0. Then E(Yt) = 0 for all t ≥ 0, and integration by parts

and substituting from (1.3) give

Ytσ
2
t+ =

∫ t

0

Ys− dσ2
s+ +

∫ t

0

σ2
s dYs + [σ2

+, Y ]t

=

∫ t

0

Ys−(β − ησ2
s) ds +

∫ t

0

Ys−ϕσ2
s d[L,L]

(d)
t

+

∫ t

0

σ3
sGs− dLs +

[∫ ·

0

(β − ησ2
s) ds +

∫ ·

0

ϕσ2
s d[L,L](d)

s ,

∫ ·

0

Gs−σs dLs

]

t

.

Taking expectations gives

E(Ytσ
2
t+) =

(
ϕ(E(L2

1) − τ 2
L) − η

) ∫ t

0

E(Ys−σ2
s) ds + E

∫ t

0

ϕσ3
sGs− d

∑

0<u≤s

(∆Lu)
3

=
(
ϕ(E(L2

1) − τ 2
L) − η

) ∫ t

0

E(Ysσ
2
s+) ds,

where we used that
∫

R
x3 νL(dx) = 0 and that Ys−σ2

s = Ysσ
2
s+ almost surely for fixed s.

Solving this integral equation and using that Y0 = 0 implies E(Y0σ
2
0+) = 0, it follows that

E(Ytσ
2
t+) = 0 for all t ≥ 0. Substituting

∫ t

0

σ2
s d[L,L]s =

∫ t

0

σ2
sτ

2
L ds + ϕ−1

(
σ2

t+ − σ2
0 −

∫ t

0

(β − ησ2
s) ds

)

from (1.3), equations (A.1) and (1.12) now give

E(G2
t σ

2
t+) = E

(
σ2

t+

∫ t

0

σ2
s d[L,L]s

)

= (τ 2
L + ϕ−1η)

∫ t

0

E(σ2
t σ

2
s) ds + ϕ−1

E(σ4
t ) − ϕ−1

E(σ2
t σ

2
0) − ϕ−1βE(σ2

t )t

= (τ 2
L + ϕ−1η)Var (σ2

0)
1 − e−t|Ψ(1)|

|Ψ(1)| + ϕ−1
Var (σ2

0)(1 − e−t|Ψ(1)|)

+
(
(τ 2

L + ηϕ−1)(E(σ2
0))

2 − βϕ−1
E(σ2

0)
)
t. (A.4)

Using (1.11), (1.12) and Ψ(1) = −η + ϕ (E(L2
1) − τ 2

L) then leads to

E(G2
t σ

2
t+) =

β2

ψ(1)2

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
(2ηϕ−1 +2τ 2

L−E(L2
1))(1−e−t|Ψ(1)|)+

β2

Ψ(1)2
E(L2

1)t.
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This then implies (1.9), where we used (A.3), (1.12) and the fact that

∫

R

x4 νL(dx) =
Ψ(2) − 2Ψ(1)

ϕ2
(A.5)

by (1.7).

For the autocorrelation of the squared increments, observe that by equation (5.4) of

[6] we have

Cov ((G
(r)
t )2, (G

(r)
t+h)

2) =

(
er|Ψ(1)| − 1

|Ψ(1)|

)
E(L2

1)Cov (G2
r, σ

2
r) e−h|Ψ(1)| (A.6)

(in [6] this was stated under the additional assumption that L is a quadratic pure jump

process (i.e. τ 2
L = 0), but it can be seen that the proof given there holds true also for

L having a Brownian motion component). This then implies (1.10) by (A.4), (1.8) and

(1.11). 2

B Ergodicity of (G
(r)
rn )n∈N

Proof of Theorem 2.3. For the ease of notation suppose that r = 1 and denote

Zn := G(1)
n =

∫

(n−1,n]

σs dLs, n ∈ N.

We shall first show that the process (Zn)n∈N is mixing, i.e. for any Borel sets U, V of R
N

it holds

lim
n→∞

P ((Zk)k∈N ∈ U, (Zk+n)k∈N ∈ V ) = P ((Zk)k∈N ∈ U) P ((Zk)k∈N ∈ V ). (B.1)

Since the Borel sets in R
N and the distribution of (Zk)k∈N are generated by cylinder sets,

it suffices to prove (B.1) only for special cylinder sets. Thus, for p, q ∈ N define

U = [u1, u
′
1] × . . . × [up, u

′
p],

V = [v1, v
′
1] × . . . × [vq, v

′
q],

with ui ≤ u′
i, vj ≤ v′

j. Then we have to show that

lim
n→∞

P ((Z1, . . . Zp, Z1+n, . . . , Zq+n) ∈ U × V )

= P ((Z1, . . . , Zp) ∈ U) P ((Z1, . . . , Zq) ∈ V ) . (B.2)

Now define for s ≥ p

As := e−(Xs−−Xp−) and Bs := βe−(Xs−−Xp−)

∫ s

p

e(Xr−Xp−) dr ,
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where (Xs)s≥0 is the auxiliary process of (1.5). Then by the strong Markov property of

Lévy processes and representation (1.6) we obtain

σ2
s = Asσ

2
p + Bs, s ≥ p,

and (As, Bs) is independent of (Lt)0≤t≤p. With

Cs := σ2
p

As

σs +
√

Bs

we have the representation

σs =
√

Bs + (σs −
√

Bs) =
√

Bs +
As σ2

p

σs +
√

Bs

=
√

Bs + Cs.

Define

Yn :=

∫

(n−1,n]

√
Bs dLs and Rn :=

∫

(n−1,n]

Cs dLs , n − 1 ≥ p .

We first show that Rn
P→ 0 as n → ∞. Since

Rn = σ2
p

∫

(n−1,n]

As

σs +
√

Bs

dLs, n − 1 ≥ p,

it follows from the facts that σ2
s is bounded from below by β/η (see KLM [7], Prop 3.4)

and that E(e−sXt) = etΨ(s) that

E

∣∣∣∣
∫

(n−1,n]

As

σs +
√

Bs

dLs

∣∣∣∣

≤ |E(L1)|
∫

(n−1,n]

E

(
As

σs +
√

Bs

)
ds +

(
E([L,L]1)

∫

(n−1,n]

E

(
As

σs +
√

Bs

)2

ds

)1/2

≤ |E(L1)|
√

η/β

∫ n

n−1

e(s−p)Ψ(1) ds +

(
E([L,L]1)η/β

∫ n

n−1

e(s−p)Ψ(2) ds

)1/2

which converges to 0 as n → ∞ since Ψ(2) < 0, so that Rn
P→ 0 as n → ∞. Let ε > 0.

Then, since Zn = Yn + Rn, we can estimate

P
(
(Z1, . . . , Zp) ∈ U, Y1+n ∈ [v1 + ε, v′

1 − ε], . . . , Yq+n ∈ [vq + ε, v′
q − ε]

)

−P (∃ j ∈ {1, . . . , q} : |Rj+n| ≥ ε)

≤ P ((Z1, . . . , Zp) ∈ U, (Z1+n, . . . , Zq+n) ∈ V )

≤ P
(
(Z1, . . . , Zp) ∈ U, Y1+n ∈ [v1 − ε, v′

1 + ε], . . . , Yq+n ∈ [vq − ε, v′
q + ε]

)

+P (∃ j ∈ {1, . . . , q} : |Rj+n| ≥ ε) .
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Recalling that Rn
P→ 0 as n → ∞ and that Yn is independent of (Ls)0≤s≤p for n ≥ p + 1

we obtain

P ((Z1, . . . , Zp) ∈ U) lim inf
n→∞

P
(
Y1+n ∈ [v1 + ε, v′

1 − ε], . . . , Yq+n ∈ [vq + ε, v′
q − ε]

)

≤ lim inf
n→∞

P ((Z1, . . . , Zp) ∈ U, (Z1+n, . . . , Zq+n) ∈ V )

≤ lim sup
n→∞

P ((Z1, . . . , Zp) ∈ U, (Z1+n, . . . , Zq+n) ∈ V )

≤ P ((Z1, . . . , Zp) ∈ U)

× lim sup
n→∞

P
(
Y1+n ∈ [v1 − ε, v′

1 + ε], . . . , Yq+n ∈ [vq − ε, v′
q + ε]

)
.

Similarly, we obtain

lim sup
n→∞

P
(
Y1+n ∈ [v1 − ε, v′

1 + ε], . . . , Yq+n ∈ [vq − ε, v′
q + ε]

)

≤ lim sup
n→∞

P
(
Z1+n ∈ [v1 − 2ε, v′

1 + 2ε], . . . , Zq+n ∈ [vq − 2ε, v′
q + 2ε]

)

= P
(
Z1 ∈ [v1 − 2ε, v′

1 + 2ε], . . . , Zq ∈ [vq − 2ε, v′
q + 2ε]

)

and a similar estimate for lim inf. Now (B.2) follows from

lim
ε→0

P
(
Z1 ∈ [v1 − 2ε, v′

1 + 2ε], . . . , Zq ∈ [vq − 2ε, v′
q + 2ε]

)

= P
(
Z1 ∈ [v1, v

′
1], . . . , Zq ∈ [vq, v

′
q]
)
.

Thus we have proved that the process (Zn)n∈N is mixing. By Theorem 3.2.6 of Ash and

Gardner [1] this implies that (Zn)n∈N is ergodic, giving the result. 2
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[6] Klüppelberg, C., Lindner, A. and Maller, R. (2004) A continuous time GARCH
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