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Abstract

In almost all life or social science researches, subjects are classified into

categories by raters, interviewers or observers. Many approaches have

been proposed by various authors for analyzing the data or the results

obtained from these raters. Symmetry and conditional symmetry models

are models designed for square tables like the one arising from the raters

results. Conditional symmetry model which possessed an extra parameter

for the off-diagonal cells is a special case to symmetry. In this research

work, we examined the effect of the extra parameter introduced by condi-

tional symmetry model over that of symmetry on structure of agreement

as well as their fittings. Generalized linear model (GLM) approach was

used to model the loglinear model forms of these models with empirical

examples. We observed that conditional symmetry based on it extra pa-

rameter gave a tremendous improvement to the significant level of the test

statistics over that of its symmetry model counterpart, hence conditional

symmetry model is better for raters agreement modelling which require

symmetric table.

keywords: Agreement, symmetry, conditional symmetry, raters, loglinear.

1 Introduction

Symmetry and conditional symmetry models were originally proposed for any
square table. For agreement measurement square contingency table can be used
to display joint ratings of two raters. Testing symmetry model is an important
preliminary analysis for other analysis which require symmetric table. Condi-
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tional symmetry model is a special case to symmetry that introduced a special
parameter to preserve the off-diagonal cells. The main objective of this pa-
per is to observe the effect of this extra parameter in conditional symmetry on
the structure of agreement as well as the goodness of fit statistics over that of
symmetry model.

In nearly all the researches that involves ratings, measurements or diagnosis of
subjects by various raters, observers or Pathologists, the researchers are already
awared that the most important measurement of error or bias is the raters
involved in such studies (Fletcher and Oldham, 1962). At the initial stage of
the experiment reliability test or studies has to be conducted among the raters,
interviewers or observers involved to assess the level of raters variability in the
measurement procedure to be used in data acquisition. The data arising from
such studies can be of any form like, quantitative or qualitative, depending
on the measuring scales involved in such studies. In a situation where the
data arising from such studies are quantitative, tests for interobserver bias and
measures of interobserver agreement are usually obtained from standard analysis
of variance (ANOVA) mixed models or random effects model. Hypothesis testing
of observers effects are used to investigate differences in the mean response
among observers and estimates of intraclass correlation coefficients are used to
measure interobserver reliability (Chinchinlli et al. 1996). Improvement have
been made on standard ANOVA model as proposed by Crowder and Hand
(1990) and Toutenburg (2002). However, when the arising data is qualitative
in nature, that is categorical data in which the response variable is classified
into either nominal or ordinal categories. For nominal data, as reviewed by
landis and koch (1975a, 1975b), Banerjee et al. (1999) and Shoukri (2004),
a large numbers of estimation and testing procedures like the Cohen Kappa
(Cohen, 1960), the weighted Kappa (Cohen, 1968), the intraclass Kappa (Block
and kraemer, 1989), Tetrachoric correlation coefficient, Weighted least squares
(WLS) method for correlated kappa (Barnhart and Williamson 2002) and many
other improved methods on kappa statistic.

Later, some authors such as Darroch and McCloud (1986); Tanner and Young
(1985a) pointed out the shortcomings of kappa liked statistics, these include,
loss of information from summarizing the table by a single number; sensitivity
of value to the form of the marginal distributions; and subsequence dangers in
comparing values of kappa between two tables. To this effect, some methods
that involve modelling loglinear and latent class models for raters agreement
measures are proposed by various authors such as Tanner and Young (1985a),
Agresti (1992); Graham (1995); and others. On the side of ordinal data, most
of the medical diagnoses data often involve responses taken on an ordinal scale
and many of which are very subjective. As it is pointed out by some authors
with ordinal data, an intermediate category will often be subjective to more
misclassification than an extreme category because there are two directions in
which to err away from the extremes. Therefore a modified kappa statistic which
accounts for severity of discordance or size of discrepancy is better suited for
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ordinal data like the weighted kappa (Cohen, 1968) that offers such modifica-
tion. Also for modelling ordinal data with loglinear and latent class models,
see Tanner and Young (1985b), Agresti (1988); Agresti and Lang (1993); Barn-
hart and Williamson 2002 and others for more details. A square table can be
used to display joint ratings of two raters or observers. Two matters are usu-
ally considered for this type of table. Firstly, one can analyze differences in the
marginal distributions. For ordered response categories, there is usually interest
in whether classifications by one rater tend to be higher than those by the other
rater. Secondly, one can analyze the extent of subject-wise agreement between
raters, which involves investigating the frequency of main-diagonal occurrence
within the joint distribution of the ratings. As we have said our major aim is to
examine the effect of the extra parameter incorporated in conditional symmetry
on the assessment of the structure of raters agreement on their ratings compare
with the ordinary symmetry model. We shall have the algorithms for mod-
elling these models written in accordance with generalized linear model (GLM)
techniques for modelling loglinear model. These algorithms can be executed
with any of Splus or SPSS program. In sections 2 and 3 we present modelling
raters agreement and description for GLM respectively and we have empirical
examples in section 4. And lastly in section 5 we have summary of results and
conclusion.

2 Modelling raters agreement measure

Tanner and Young (1985a) proposed a modelling structure of agreement, by
considering loglinear models to express agreement in terms of components, such
as chance agreement and beyond chance agreement. Using the loglinear model
approach one can display patterns of agreement among several observers, or
compare patterns of agreement when subjects are stratified by values of a co-
variate. Assuming there are n subjects who are related by the same k raters
(k > 2) into m nominal categories, Tanner and Young (1985a) express chance
agreement, or statistical independence of the ratings, using the following loglin-
ear model representation:

log(vij...l) = u + uR1
i + uR2

j + . . . + uRk

l , i, j, . . . , l = 1, . . . , m (2.1)

where vij . . . l is the expected cell counts in the ij . . . lth cell of the joint k-
dimensional cross classification of the ratings, u is the overall effect, uRi is he ef-
fect due to categorization by the kth rater in the cth category (k = 1, . . . ,K; c =
1, . . . ,m), and

∑m
i=1 uR1

i = . . . =
∑m

l=1 uRk

l = 0. They also presented a useful
generalization of the independence model that incorporated agreement beyond
chance in the following fashion:

log(vij...l) = u + uR1
i + uR2

j + . . . + uRk

l + δij...l,

i, j, . . . , l = 1, . . . , m. (2.2)
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The additional term δij...l represents agreement beyond chance for the ij . . . lth

cell.

Agresti (1988) also proposed a model in form of loglinear model for agreement
plus linear-by-linear association, which is the combination of Tanner and Young
(1985a)’ s model and the uniform association model of Goodman (1979) for
bivariate cross-classifications of ordinal variables. The model is

log(vij) = u + uR1
i + uR2

j + βλiλj + δij ,

i, j, . . . , l = 1, . . . ,m (2.3)

where λ1 < . . . < λm are fixed scores assigned to the response categories, and
the u’s and v’s are as defined in equation (2.1).

Following the same structure of loglinear model as presented above by Tanner
and Young (1985a); Agresti (1988) in their respective works, we shall also use
the loglinear models forms of symmetry and conditional symmetry models to
model the structure of agreement by presenting the structures and properties
of the models. These two models are originally designed for any square tables.
Also due to the fact that testing symmetry model is an important preliminary
analysis for other analysis which require symmetric table, we shall observe how
conditional symmetry model stands as a better alternative to ordinary symmetry
model.

For a given m×m contingency table, let πij be the probability of cell i, j. There
exist symmetry if

πij = πji (2.4)

whenever i �= j. Let vij be the expected value of the cell i, j as defined before,
such that

vij = nπi,j (2.5)

In a 2× 2 table, the hypothesis of marginal homogeneity (ni+ = n+i) is equiv-
alent to the hypothesis of symmetry (nij = nji). However for more general
square (m×m) tables, symmetry is a much stronger hypothesis for agreement
than marginal homogeneity.

Symmetry model as loglinear model (Agresti, 1990) is

log(vij) = u + uR1
i + uR2

j + uR1R2
ij , i, j,= 1, . . . ,m (2.6)

where

uR1R2
ij = uR1R2

ji ,

m∑
j=1

uR1
j = 0,

and
m∑

j=0

uR1R2
ij = 0 for i = 1, 2, . . . ,m.

There are no superscripts on the main or marginal effect terms because they
are the same for rows and columns, that is, uR1

i = uR2
j when i = j. In other
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words, the row and column margins are equal, that is, vi+ = v+i The likelihood
equations are

v̂ij + v̂ji = nij + nji for all i and j.

The kernel of the log-likelihood is∑
ij

log(vij) = n++u +
∑

i

(ni+ + n+i)ui +
∑
ij

{nij + nji

2
}uij . (2.7)

Maximizing this equation yields the following expected cell values

v̂ij =
{ nij+nji

2 If i �= j,

nii if i = j,
(2.8)

The goodness of fit statistics for symmetry model are: Pearson’s chi-square
statistic is

χ2 =
∑
i>j

(nij − nji)2

nij + nji
, (2.9)

Likelihood ratio statistic is

G2 =
∑
i�=j

nij log
(

2nij

nij + nji

)
. (2.10)

The degrees of freedom (df) for the residuals of these statistics can be obtained
as (number of cells) minus (number of non-redundant parameters) or (number
of off-diagonal cells) minus (number of unique parameters), mathematically

df = m(m − 1) − m(m − 1)
2

=
m(m − 1)

2
.

The two statistics have asymptotic χ2 distribution with the above de-
grees of freedom under the null hypothesis of independency in the sym-
metry model.

Also consider conditional symmetry model which was proposed by McCullagh
(1978) and has an additional parameter over symmetry, is given as

πij =

⎧⎨⎩
θφji if i < j,

φii if i = j,

(2 − θ)φij if i > j,

(2.11)

with φij = φji and
∑m

i=1

∑m
j=1 φij = 1 for i = j = 1, 2, . . . ,m.

Conditional symmetry model is a palindronic invariant and not a permutation
invariant. However, the reverse permutation applied to conditional symmetry
model (2.11) yields

πij =

⎧⎨⎩
(2 − θ)φm−i+1,m−j+1 if i < j,

φm−i+1,m−i+1 if i = j,

θφm−i+1,m−j+1 if i > j,

(2.12)
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with φm−i+1,m−j+1 = φm−j+1,m−i+1

∑m
i=1

∑m
j=1 φm−i+1,m−j+1 = 1 for i = j =

1, 2, . . . ,m.

The loglinear version of conditional symmetry model (Agresti 1990) is defined
as

log(vij) = u + uR1
i + uR2

j + uR1R2
ij + τI(i < j), (2.13)

where uR1R2
ij = uR1R2

ji ,
∑m

j=1 u
Rj

j = 0,
∑m

j=1 uR1R2
ij = 0 for i = 1, 2, . . . ,m and

I(i < j) is the indicator function defined as

I(i < j) =
{

1 if i < j,

0 if i ≥ j.
(2.14)

Based on this additional parameter, the model is mainly for ordered classifica-
tion when symmetry may not hold, often either

πij > πji∀i < j,

or
πij < πji∀i < j.

The model (2.11) implies that for all i < j, if R1 denote the row number and
R2 the column number of an observation made according to distribution {πij},
then the conditional interpretation of model (2.13) is

P (R1 = i, R2 = j/R1 < R2) = P (R1 = j, R2 = i/R1 > R2) = φij .

This means the cells probabilities above the main diagonal are mirror image
of the cells probabilities below it. Based on this property, the model is called
Conditional symmetry model.

The likelihood equations for the model are

v̂ij + v̂ji = nij + nji for all i and j.

and ∑
i<j

v̂ij =
∑
i<j

nij

or ∑
i>j

v̂ij =
∑
i>j

nij .

The solution of this equations that satisfies the model is

τ̂ = log

{∑
i<j nij∑
i>j nij

}

v̂ij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

exp(τ̂)(nij+nji)
exp(τ̂)+1 If i < j,

(nij+nji)
exp(τ̂)+1 if i > j

nii if i = j, for i = j = 1, 2, . . . ,m.

(2.15)
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The residual degrees of freedom (df) is

df =
(m + 1)(m − 2)

2
,

which is one less than that of the symmetry because of the additional parameter
τI(i < j).

Symmetry model is a special case to Conditional symmetry if τ = 0.

3 Fittings of the models

Generalized linear model (GLM) procedure would be used to fit these models.
GLM has three important components, the random, the systematic and the link
components, for detail see McCullagh and Nelder (1989). Poisson sampling is
mostly assumed when fitting GLM to categorical data with m > 2 . The log
likelihood function is

l(θ, φ) =
n∑

i=1

(
yiθi − b(θi))

φ
+ c(yi, φ)

)
(3.1)

where θ subsumes all of the θi. It could also be written as a function of β

and φ because (given the xi), β determines all the θi. The main way of maxi-
mizing β is by maximizing (3.1). The fact that G(µi) = xiβ suggests a crude
approximation estimate: regress G(yi) on xi, perhaps modifying yi in order to
avoid violating range restrictions (such as taking log(0)), and accounting for the
differing variances of the observations.

Fisher scoring iteration is the widely use technique for maximizing the GLM
likelihood over β. The basic step is

β(k+1) = βk −
(

E

(
∂2l

∂β∂β′

))−1
∂l

∂β
(3.2)

which can also be written as,

β(k+1) = βk +
(
−E

(
l′′(β(k))

))−1

l′(β(k)) (3.3)

where l is the loglikelihood function for the entire sample y1, . . . , yN and the
expectations are taken with β = β(k). This is the same as Newton step, except
that Hessian of l is replaced by it’s expectation. Fisher scoring simplifies to

β(k+1) = (X ′WX)−1X ′WZ (3.4)

where W is a diagonal matrix with

Wii = (G′(µi)2b′′(θi))−1 (3.5)
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and
Zi = (Yi − µi)G′(µi) + xiβ (3.6)

Both equations (3.5) and (3.6) use β = β(k) and derived values of θ
(k)
i and µ

(k)
i .

The iteration (3.4) is known as ”iteration reweighted least squares”, or IRLS.
The weights Wii have the usual interpretation as reciprocal variances: b′′(θi) is
proportional to the variance of Yi and the G′(µ) factor in Zi is squared in Wii.
Fisher scoring may also be written as

β(k+1) = β(k) + (X ′WX)−1X ′WZ∗ (3.7)

where
Z∗

i = (Yi − µi)G′(µi).

We need to describe the structure of variables involve in the modification of
symmetry model to obtain their estimates as stated in the model. To this
effect, we need to create variable that takes on a unique value for each diagonal
cells and a unique value of each pair of cells. So for example if I = 5, the
symmetry variables, which are also parameters in the model, we shall have the
following,

u =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 if i = j = 1
u2 if i = j = 2
u3 if i = j = 3
u4 if i = j = 4
u5 if i = j = 5
u13 if (i, j) = (1, 2) (2, 1)
u14 if (i, j) = (1, 3) (3, 1)
...

...
u45 if (i, j) = (4, 5) (5, 4)

(3.8)

where u1 is the intercept. All these variables are treated as nominal variables.

In the case of conditional symmetry model in equation (2.13) which add param-
eter τI(i < j) to the symmetry model to derive its own model, the τI(i < j)
which is defined by the indicator variable in equation (2.14) above can be ex-
pressed as a matrix of dummies as follows

τI(i < j) = τ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 1 1 . . . 1
0 0 1 . . . 1
0 0 0 . . . 1
...

...
...

. . .
...

0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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For example also, if I = 5 we have,

τI(i < j) = τ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
The Fisher scoring iteration procedure stated above was used to fit each of
these models under generalized linear model (GLM) procedure. In other to
justify further the effect of the extra parameter τ in (2.13) above, we considered
some reasonable and appropriated data sets on this subject.

4 EMPIRICAL EXAMPLES

4.1 Example 1

Consider an opinion poll data, as presented by Agresti (1996), in which 475
people were taken their opinion on early teens (age 14-16) having sex rela-
tions and on a man and a woman having sex relations before marriage. The
response categories are 1 = always wrong, 2 = almost always wrong, 3 =
wrong only sometime, 4 = not wrong at all.

Table 4.1: Opinions about teenage sex and premarital sex.

Category Premarital sex
Teen sex 1 2 3 4 Total

1 141 34 72 109 356
2 4 5 23 38 70
3 1 0 9 23 33
4 0 0 1 15 16

Total 146 39 105 185 475

Null Deviance = 765.6051 on 15 df

Residual Deviance(G2) = 378.3651 on 6 df

Pearson X2 = 282.9057 on 6 df

Number of iterations = 5.
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Table 4.2: Parameter estimates under symmetry model on sex opinion poll

Coefficients Value Std. Error t-value
intercept 2.98751172 0.07385859 40.449077

u2 -1.00216046 0.09138922 -10.965850
u3 -0.11642906 0.04949709 -2.352241
u4 0.04200758 0.03000732 1.399911
u12 -0.45254801 0.09022581 -5.015727
u13 -0.16288049 0.03863115 -4.216300
u14 -0.04461578 0.02658803 -1.678040
u23 -0.12686364 0.04289622 -2.957455
u24 -0.06670704 0.02446886 -2.726202
u34 -0.03105128 0.02694036 -1.152593

Matrix of fitted values under symmetry model

⎛⎜⎜⎝
141.0 19.0 36.5 54.5
19.0 5.0 11.5 19.0
36.5 11.5 9.0 12.0
54.5 19.0 12.0 15.0

⎞⎟⎟⎠

Table 4.3: Parameter estimates under conditional symmetry model on sex opin-
ion poll

Coefficients Value Std. Error t-value
intercept 3.391479105 0.07401941 45.8187817

u2 -0.665520967 0.09147869 -7.2751474
u3 -0.004215895 0.04951628 -0.0851416
u4 0.098114163 0.03001611 3.2687163
u12 -0.553539856 0.09023404 -6.1344905
u13 -0.117995220 0.03863623 -3.0540047
u14 -0.012554880 0.02659188 -0.4721321
u23 -0.186977832 0.04290237 -4.3582168
u24 -0.038653753 0.02447126 -1.5795571
u34 -0.075936545 0.02694581 -2.8181208
τ -3.908683758 0.41215595 -9.4835067
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Null Deviance = 765.6051 on 15 df

Residual Deviance(G2) = 14.56913 on 5 df

Pearson X2 = 18.58348 on 5 df

Number of iterations = 5.

Matrix of fitted values under conditional symmetry model

⎛⎜⎜⎝
141.0 37.2525 71.5639 6.8557
0.7475 5.0 22.5475 37.2525
1.4361 0.4525 9.0 23.5279
2.1443 0.7475 0.4721 15.0

⎞⎟⎟⎠

4.2 Example 2.

Consider the data arising from the study reported in Holmquist et al. (1967)
that investigated the variability in the classification of carcinoma in situ of the
uterine cervix in which seven pathologists were requested to separately evalu-
ate and classify 118 slides into one of the the following five categorical scales
based on the most involved lesion: 1=negative; 2=Atypical squamous hyperpla-
sia; 3=carcinoma in situ; 4=squamous carcinoma with early stromal invasion;
5=invasive carcinoma. These pathologists are labelled with letters A, B, C, D,
E, F and G. We have the cross-classification for pathologists A and C as follows.

Table 4.4: Cross-classification of pathologists A and G on carcinoma in situ of
the uterine cervix of 118 slides

Category Pathologist G
Pathologist A 1 2 3 4 5 Total

1 24 2 0 0 0 26
2 7 13 6 0 0 26
3 1 4 32 1 0 38
4 0 1 20 1 0 22
5 0 0 3 1 2 6

Total 32 20 61 3 2 118
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Table 4.5: Parameter estimates under symmetry model of pathologists A and
G on carcinoma in situ of the uterine cervix

Coefficients Value Std. Error t-value
intercept -0.84509893 4.0159979 -0.21043311

u2 -0.83698822 0.1954340 -4.28271570
u3 -1.01140426 0.3396394 -2.97787652
u4 -2.52985570 8.6890690 -0.29115383
u5 -1.51791342 7.1650111 -0.21185081
u12 0.88050952 1.6393824 0.53709832
u13 0.49243374 1.1714119 0.42037626
u14 0.08150217 0.8867777 0.09190823
u15 -0.83623324 3.9215344 -0.21324134
u23 0.55656315 0.6692979 0.83156273
u24 0.35406434 0.5477780 0.64636466
u25 0.13289443 0.4587153 0.28971003
u34 0.08125951 0.3936103 0.20644661
u35 0.02014050 0.3385415 0.05949196
u45 0.10987472 0.2906851 0.37798541

Null Deviance = 266.6158 on 24 df

Residual Deviance(G2) = 32.73577 on 10 df

Pearson X2 = 26.36917 on 10 df

Number of iterations = 7.

Matrix of fitted values under symmetry model

⎛⎜⎜⎜⎜⎜⎝
24.0 4.5 0.5 0.000152 0.000152
4.5 13.0 5.0 0.5 0.000152
0.5 5.0 32.0 10.5 1.5

0.000152 0.5 10.5 1.0 0.5
0.000152 0.000152 1.5 0.5 2.0

⎞⎟⎟⎟⎟⎟⎠
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Table 4.6: Parameter estimates under conditional symmetry model of patholo-
gists A and G on carcinoma in situ of the uterine cervix

Coefficients Value Std. Error t-value
intercept -1.64520863 6.2144122 -0.26474083

u2 -1.30612304 0.2460425 -5.30852506
u3 -1.16778254 0.3432746 -3.40189051
u4 -2.82629059 13.4439360 -0.21022791
u5 -1.69577435 11.0860291 -0.15296499
u12 1.06381101 2.5359397 0.41949382
u13 0.48932485 1.8114921 0.27012254
u14 0.07917050 1.3639482 0.05804509
u15 -0.93504486 6.0676230 -0.15410398
u23 0.65863911 1.0354410 0.63609527
u24 0.35228379 0.8471149 0.41586304
u25 0.13141065 0.7073756 0.18577211
u34 0.15217859 0.6023274 0.25265096
u35 0.01390902 0.5168706 0.02691006
u45 0.16702541 0.4463700 0.37418602
τ 1.41369334 0.3716652 3.80367418

Null Deviance = 266.6158 on 24 df

Residual Deviance(G2) = 14.44221 on 9 df

Pearson X2 = 14.81361 on 9 df

Number of iterations = 8.

Matrix of fitted values under conditional symmetry model

⎛⎜⎜⎜⎜⎜⎝
24.0 1.7609 0.1957 0.0000249 0.0000249

7.2391 13.0 1.9565 0.1957 0.0000249
0.8043 8.0435 32.0 4.1087 0.5870

0.0001023 0.8043 16.8913 1.0 0.1957
0.0001023 0.0001023 2.4130 0.8043 2.0

⎞⎟⎟⎟⎟⎟⎠
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5 Result and Conclusion

5.1 Result

We present the table of the of the summary results in the previous section
by including columns for differences between the respective goodness of fits
statistics of symmetry and conditional symmetry models with their degrees of
freedom.

Table 5.1: Summary results of the examples in section 4 with columns for
differences between SM and CS.

symmetry conditional symmetry difference (SM-CS)
table n G2

SM χ2
SM df G2

CS χ2
CS df G2

d χ2
d dfd

1 475 378.3651 282.9057 6 14.5691 18.5835 5 363.796 264.3222 1
2 118 32.7358 26.3692 10 14.4422 14.8136 9 18.2936 11.8256 1

From the results in Table 5.1 and figures A.1 to A.4, one can observed that there
was a great improvement on both statistics, Likelihood ratio (G2) and Pearson’s
chi-square (χ2), as well as the fits of the data, when the extra parameter τ was
included in the model for modelling the ratings of raters in the previous section §
4 for conditional symmetry model, irrespective of the sample sizes or the number
of categories involved. The columns of difference also in Table 5.1, showed the
major contribution of the parameter τ being included in conditional symmetry
model over that of ordinary symmetry model. We also tested these with two
other different data on cervical ectopy ratings of two different methods, Visual
assessment and Computerized planimetry, rated by two different raters as given
by Barnhart and Williamson (2002) and we have the same conclusion.

5.2 Conclusion

In order to preserve the totals in each triangular array but not the marginal
distributions in the resulted two-way cross-classified table of the ratings of the
raters, we need to fit conditional symmetry model to the data. From the result
above we observed that inclusion of the extra parameter τ by the conditional
symmetry had a great improvement on the goodness of fits statistics for the
cross-classified tables. Conditional symmetry is not only testing the pattern
of association, but also whether the distribution between categories is the same
whichever rater is better. Therefore, introducing the extra parameter to preserve
off-diagonal cells thus leads to significant improvement in fit of the model over
the symmetry model for raters agreement modelling which require symmetric
table.
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A Appendix

plot of fitted symmetry with residuals(sex opinions poll)
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Figure A.1: Fitted symmetry with
Residual for sex opinions poll

plot of fitted conditional symmetry with residuals(sex opinions poll)
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Figure A.2: Fitted conditional symme-
try with Residual for sex opinions poll

plot of fitted symmetry with residuals (path A and G)
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Figure A.3: Fitted symmetry with
Residual for path A and G

plot of fitted conditional symmetry with residuals (path A and G)
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Figure A.4: fitted Conditional Symme-
try with residuals for path A and G
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