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Abstract

We propose a new class of state space models for longitudinal discrete response data
where the observation equation is specified in an additive form involving both deterministic
and random linear predictors. These models allow us to explicitly address the effects of
trend, seasonal or other time-varying covariates while preserving the power of state space
models in modeling serial dependence in the data. We develop a Markov chain Monte Carlo
algorithm to carry out statistical inference for models with binary and binomial responses,
in which we invoke de Jong and Shephard’s (1995) simulation smoother to establish an
efficient sampling procedure for the state variables. To quantify and control the sensitivity
of posteriors on the priors of variance parameters, we add a signal-to-noise ratio type
parameter in the specification of these priors. Finally, we illustrate the applicability of
the proposed state space mixed models for longitudinal binomial response data in both
simulation studies and data examples.

Keywords and phrases: Longitudinal data, Markov chain Monte Carlo, probit, random ef-
fects, regression, seasonality, signal-to-noise ratio.



1 INTRODUCTION

In this paper we consider a time series of discrete observations, {Y;,¢ = 1,...,T}, where Y; may
be either binary or binomial, associated with p time-varying covariates x1, ..., Zy,. The primary
objective is to model both the mean of the observed process as a function of the covariates, and
the pattern of serial correlation in the data.

Among available models for time series of dichotomous observations, the class of state space
models or parameter-driven models (Cox, 1981) seems to have gained a great deal of popularity.
See for example Fahrmeir (1992), Carlin and Polson (1992), and Song (2000), among others.
A binary state space model consists of two processes: In the first observed process {Y;}, the
conditional distribution of Y; given the g-dimensional state variable @, is Bernoulli, namely
Y;|0; ~ Bernoulli(y;), where the conditional mean or the conditional probability of success
ur = P(Y; = 1/|6;) follows the observation equation,

(1.1) pe = h (G36:)

with a given link function h~!(-) as in generalized linear models (e.g. McCullagh and Nelder,
1989) and a known g-dimensional vector G; comprised of the time-varying covariates. In the
second process, the state variables {6;} are assumed to follow a g-dimensional Markov process,

governed by the state equation,
(12) 0,5 = HtOt_l + €,

where H; is a ¢ X g-dimensional transition matrix and the error vector ¢; has zero mean. For
the special case of one-dimensional state process with ¢ = 1, two common models used in the
literature are the random walk and Box and Jenkins’ AR(1) process. The random walk is a
non-stationary process with the transition matrix being 1, H; = 1, while the AR(1) process is
stationary with the transition matrix being a constant, H; = v € (—1, 1), which is a parameter
representing the autocorrelation coefficient. One essential difference between these two types of
processes is rooted in their variances: the AR(1) has a bounded variance but the random walk
has an unbounded variance that effectively increases in time.

The above class of binary state space models has been widely used for the analysis of longitudinal
discrete data. For example, it has been applied to analyze the Tokyo rainfall data by many
authors (e.g. Kitagawa, 1987; Fahrmeir, 1992; Carlin and Polson, 1992; Song, 2000). The rainfall
data, reported by Kitagawa (1987), consist of the daily number of occurrences of rainfall in Tokyo
area during years 1983 and 1984. The central question of the analysis is to model the probability
1 of rainfall for each calendar day over a year. The proposed state space model in these papers
is given by

(1.3) e =h(6;) and 6, = 6,_; + ¢, with ¢ < N(0,02),

where 6; may be thought of essentially as a certain underlying meteorological variable such as
moisture most directly responsible for rainfall. One obvious limitation of this model formulation
is that it does not allow to examine directly the seasonal rainfall cycle.

In many practical studies, assessing covariate effects is of primary interest. To address such a
need, we may extend the state space model (1.3) by allowing seasonal covariates to reflect the
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nature of meteorological periodicity. That is, the conditional expectation p; of the observed
process takes the form:
My = h’(nt—i_G:ﬁet)a l= 17"'aT7

where 7, is the deterministic predictor that may take the form of the decomposition model
(Brockwell and Davis, 1996), n; = m; + s;. Here m; and s; represent the trend and seasonal
components, respectively, and both may be modeled further as linear functions of covariates.
For convenience, we may combine the trend and seasonal components into one expression, x;c,
where x; = (2u,...,%1)" and parameter vector a consists of p regression coefficients to be
estimated.

The inclusion of the deterministic predictor, 7, = xXja, is appealing as it would enable us
to quantify the relationship between the probability of success and covariates and to allow
hypothesis testing on covariates, both of which are very often of scientific interest. It is noted
that state space models that contain both deterministic and random predictors (n; and G}6;,
respectively) have been proposed in other settings, for instance, in the analysis of longitudinal
count data by Zeger (1988), Chan and Ledolter (1995), Jorgensen et al. (1999), and Fahrmeir
and Lang (2001a; 2001b).

In this paper we develop a Markov chain Monte Carlo (MCMC) estimation procedure for the
proposed state space models with the observation equation given by

(1.4) w=h(xa+0,), t=1,...,T,

where the state variable 6, follows a univariate AR(1) process. Clearly, ; represents a time-
specific effect on the observed process. Because of the similarity of model representation (1.4) to
the generalized linear mixed models (e.g. Diggle et al., 2002, Chapter 9), we refer the proposed
models to as the state space mized models. The MCMC-based inference in the state space
modeling has been widely studied in the literature; see for example, Carlin et al. (1992), Carter
and Kohn (1994), Frithwirth-Schnatter (1994), Gamerman (1998), Pitt and Shephard (1999),
among others. In the part of sampling the latent 6, process, we invoke an efficient sampler, i.e.
the simulation smoother proposed by de Jong and Shephard (1995), to facilitate our MCMC
procedure.

The organization of this paper is as follows. In Section 2 we discuss the formulation of the
state space mixed models for binary time series and the MCMC algorithm for estimation.
Section 3 concerns the models for binomial time series and the MCMC estimation. A simulation
experiment is given in Section 4 to evaluate the proposed MCMC algorithm. Section 5 presents
two data analysis examples to illustrate the proposed models and methods. Finally we make
some concluding remarks in Section 6. All technical details are listed in two appendices.

2 BINARY STATE SPACE MIXED MODELS

We start with state space mixed models for binary response variables, in which a latent variable
representation is utilized to develop MCMC algorithms for parameter estimation.
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2.1 MODEL FORMULATION

Consider a binary longitudinal data (Y, x),t = 1,...,T, where the binary response vector
is denoted by Y4 = (Yi,---,Yr). In this paper, we adopt the so-called threshold approach
(e.g. Albert and Chib, 1993) where Y; is generated through dichotomization of an underlying
continuous process Z;, given by the one-to-one correspondence

(2.1) Yi=1—= 27, <0,t=1,---,T.

With the unobservable or latent threshold variable vector Z%. = (Z1,---, Zr)', a binary state
space mixed model can be rewritten as follows,

(22) Zt = —X;a—0t+Ut,t:1,"‘,T,
0t+1 = ’)/et+€t,t:0,"',T.

We further assume that both error terms are independent and normally distributed,
u, % N(0,1) and ¢ w N(0,0%),

and hence the expressions (2.2) and (2.3) together represent a linear Gaussian state space model.
As in most of hierarchical model specifications, we assume mutual independence between u;’s
and ¢;’s. This implies that given 6, Z; is conditionally independent of the other Z;’s and 6,’s.
In addition, the initial condition is assumed to be 6y = 0 and #; ~ N(O0, %), which is the
unconditional distribution of the AR(1) process and is a standard choice for near unit root
AR(1) processes (e.g. Schotman, 1994, pp. 590-591). In this paper, we focus on the stationary
case, i.e. |y < 1.

It follows from the one-to-one relationship (2.1) that the marginal distribution of Y; given both
state variable 6, and covariate vector x; follows a probit model of the form:

p = P(Y; = 1|0;,%;) = ®(xp0 + 0;)

where ®(-) denotes the cumulative distribution function of N(0,1). In other words, a combina-
tion of (2.2) and (2.1) give rise to (1.4) with the probit link function h(-) = ®(+).

The parameters of primary interest are o and v, based on which we may make inference on the
covariates and the autocorrelation structure. However, to make forecasting or to conduct model
diagnostics, we also need to estimate the state variables 6;’s and the variance o2 in the state
equation (2.3).

We now introduce several notations useful to establish the following derivations. We denote
the history vectors by Y; = (Y3, ---,Y)), Z] = (Z1,---,2;), and 0 = (0y,---,0:+1)" Also,
we denote the conditional distribution of u given w by [u|w], and the marginal distribution of
u by [u], where u and w represent two generic random variables. As usual, N,(u,X) denotes
a p-variate normal distribution with mean vector p and positive definite variance-covariance
matrix 3.



For the MCMC approach, we assume the following prior distributions [a, 02, 7] = [a]x [0?|7]x[7],

where
(2.4) a ~ Ny(ag, %),
(2.5) o’ly ~ IG(a,b(y)) withb(y) = ?[(1 —~*)(a—1)]7",

v ~ Uniform(—1,1).

The hyper-parameters g, X9, a and ¢ are pre-specified. Here the IG(a,b) denotes the inverse
gamma distribution with density given by

1

1(6%) = g (03" exp(= ),

with E(0?) = [b(a — 1)]7" and Var(o?) = [(a — 1)*(a — 2)b*] 7' if a > 2.

The motivation behind our choice of the hyper-parameter b in (2.5), as a function of ¢,y and q,
is given as follows. First, note that this prior implies

1—72

c2

(2.7) E(0®|y) =

Second, to balance the effect between u; and 6, similar to the familiar signal-to-noise ratio, we
compare the standard deviation of u; (equal to 1) to the unconditional standard deviation of

the AR(1) process, which equals to oy = 4/ 122. Hence, the resulting ratio between these two
random sources is given by
1 1— 72
ci=— = ,
o o?
which leads to the restriction 02 = =2>. Finally, by comparing this restriction to (2.7), we see

62
that the prior mean for 02 may be chosen in such a way that the parameter ¢ tunes the trade-off

of relative variabilities between the u; and the 6,.

A major gain from balancing the two sources of variations, as presented in (2.5)-(2.6), is to reduce
the sensitivity of the posterior distributions on the hyper-parameters in the prior distributions,
especially parameter b in the IG prior. When the prior for ¢? is independent of 7, we conducted
some simulation experiments in a similar setup as that considered in Section 4 and found that
the posteriors turned out to be very sensitive to the hyper-parameter b in the IG prior (results
are not shown in the paper). In particular, if the b was not close to the true value the MCMC runs
would often not even converge. Therefore, in this paper we will concentrate on the conditional
prior choice for o2 given in (2.5).

As seen above, in this paper we only consider proper priors. However, if one is willing to use
improper (or flat) priors in the proposed model, refer to Sun et al. (2001) regarding necessary
and sufficient conditions for the propriety of posterior distributions with improper priors in
hierarchical linear mixed models. Following Theorem 2 in Section 2.3 of their paper, when one
considers a situation similar to that of Case 1, two conditions are needed in order to ensure that
the IG prior of the variance component o2 leads to a proper posterior. Note that in our model,



the rank ¢, the number of blocks r and the total dimension of the random effects ¢ are all equal
to 1. In this case, two sufficient conditions are (a) In the IG prior, b > 0 and (b) the sample size
n satisfies n > p, where p is the number of regression parameters in «.

2.2 MONTE CARLO MARKOV CHAIN METHODS

It follows from the model specification presented in the previous section that the marginal
likelihood function for the parameters (o, v, o?) is,

L(a,% UQ‘Y;) = /[Z/twt;a][et‘@—l;% 02][90]d90d91 -+ dfr

where the integral is clearly (7' 4 1)-dimensional, with [y;|6;; o] being a Bernoulli distribution
and [0;]60;_1;~, 0?] a conditional normal. A direct evaluation of this high-dimensional integral is
intractable, which hampers us from directly calculating the maximum likelihood estimates for
these parameters. Instead, we tackle this problem by taking a Bayesian perspective and utilizing
Markov Chain Monte Carlo (MCMC) methods. MCMC methods allow us to draw sufficiently
large number of joint samples from the posterior distribution [, 87, 02,7, Z%|Y%]. Using these
samples, we can easily make inference for these parameters via, for example, their marginal
posteriors. Readers unfamiliar with MCMC methods can consult Gilks et al. (1996), Gamer-
man (1997), Liu (2001) and Robert and Casella (2004) for introductory material, algorithms,
convergence diagnostics and applications.

For the Bayesian approach, we use the prior specifications given in (2.4)-(2.6) and follow Tanner
and Wong’s (1987) Gibbs Sampling approach with data augmentation. In particular we will
update the regression parameters and state variables jointly using the simulation smoother of
de Jong and Shephard (1995), since the model of (2.2)-(2.3) is a member of the general state
space models considered by de Jong (1991). This joint update of o and 6% is considerably faster
than separate updates considered in an earlier work by the authors of this paper. The adapted
simulation smoother for the proposed model and the other ordinary Gibbs updates are shown
in Appendix A in detail.

2.3 MODEL SELECTION

To assess the goodness-of-fit for a proposed model and to compare among several candidate
models, we adopt Spiegelhalter et al.’s (2002) deviance information criterion (DIC) for model
selection within the MCMC framework. Like the likelihood ratio tests and Akaike’s information
criterion (Akaike, 1973), the DIC serves a measure that reasonably balances between model fit
and model complexity. To calculate the DIC, we need the Bayesian deviance given by

T
D(a,0}) = —2log L(a, 07) = 22 [Yilog(pe) + (1 — Yy) log(1 — pt)]
t=1

for a model with mean p; and parameters (o, 0}), and the value of the true number of free
parameters defined as

Pp = Ea,e;’%gz‘y%D(a, 0;) — D(Ea|y7f (a), EO*T\Y% (0;—:)) = E - D(C_Y, éT)



Therefore, the deviance information criterion (DIC) takes the form
DIC = D + pp = D(a, 07) + 2pp,

where as usual, D explains the model fit and pp indicates the model complexity. Spiegelhalter
et al. showed in some asymptotic sense that the DIC is a generalization of Akaike’s information
criterion.

Computing the DIC is straightforward in an MCMC implementation. Monitoring both («a, 67)
and D(a, @) in MCMC updates, at the end one can estimate the D by the sample mean of
the simulated values of D and the D(a, @) by plugging in the sample means of the simulated
posterior values of a and 7. A lower value of DIC indicates a better-fitting model.

3 BINOMIAL STATE SPACE MIXED MODELS

We now consider longitudinal data with binomial response variables. This section will show how
the MCMC algorithm developed for binary responses can be extended to binomial responses.
To begin, we assume that aggregating n; independent Bernoulli trials Y;;,2 =1, - - -, n; gives rise
to the binomial response Y; = >, V;;. The latent variable representation (2.1) now specifies
the correspondence in a component-wise fashion as follows:

(3.1) Ya=1<= Z;<0,t=1,---,T,i=1,---,n.

At a given time T, let N = Zthl n; be the total number of Bernoulli trials, and denote the
history vectors by

Y=, Yo, Yar, o Yarr) and Z7 = (Zi1, -y Zng 1y s Zary s g

y ~nr,

Likewise, assume that the latent vector Z} follows component-wise state space formulation,

(3.2) Ziy = —xpa—0+uy, i=1,---,nut=1---T,
01: = 79t_1+et,t=1,---,T,

where u;; 5 N (0,1) and ¢ N (0,0?). Similarly mutual independence between the two sets of
innovations {u,i =1,--+-,n,t=1,---,T} and {e,t =1,---,T} is imposed.

It is noted that the only difference between the binary and binomial models appears in the
dimension of the observed processes. In effect, the binomial case can be regarded as an aggre-
gation of a number of independent binary copies, each driven by the same state process. The
immediate implication of this fact is that we need only to modify the updating procedures for
the a and #,’s, since only these two are effectively affected by such a dimension expansion.
Refer to Appendix B for the detail regarding updates of state variables #; and the regression
parameter o with the utility of de Jong and Shephard’s (1995) simulation smoother technique.

On the other hand, since the updates of both autocorrelation v and variance 02 do not involve
the latent variables Z;;’s, the sampling procedures developed for the binary case in Appendix
A remain valid in the binomial case.



4 A SIMULATION EXPERIMENT

To investigate the performance of the MCMC algorithm and different prior specifications for
the proposed model we conducted a simulation study with the same covariate setup as for the
infant sleep data investigated later. It is based on the following binary state space mixed model:

(41) Zt = —Ojo—al$1t—a2$2t—0t+ut, tzl,,121,

Ht = /Yet—l'i_etv t:1::1217

where z;; and z; are the covariates defined in Section 5.2. The true parameter values are
chosen to be similar to those obtained in the data analysis. In particular, the true values are

ag = .1, oy = —.45, ap = .25 and v = .96. The independent innovations are u; w N(0,1) and
e N N(0,0?) with the true value o = .45. The starting condition was set as 8, ~ N(0, %)

The specific purposes of this simulation are (i) to evaluate the effectiveness and the variability
of the proposed MCMC algorithm based on two data sets generated from (4.1)-(4.2), and (ii)
to assess how the different hyper-parameter choices in the priors of (02, 7) influence the length
of burn-in and other convergence issues. In particular, we investigated two levels of ¢ = 1 and
¢ = .65. Here ¢ = 1 reflects an equal sharing of the variability between the regression error u,
and the AR(1) innovation ¢, while ¢ = .65 allows the variability from the AR(1) process to
dominate over that of the regression error term. In addition, throughout this simulation we used
the independent normal priors with zero mean and variance= 5002 for the regression parameters
a;,7 = 0,1,2. The MCMC algorithms were run for 20000 iterations with every 20th iteration
recorded. By examining the time plots we decided to choose a burn-in of 10 recorded iterations
in the thinned chain. The MCMC calculations were implemented in the R software package.
Figure 4.1 shows that there is low autocorrelation for the recorded MCMC iterates in all the
cases considered.

[Figure 4.1 about here]

Figure 4.2 shows the marginal posterior density estimates of the parameters oy, a1, a2,y and o
for the two data sets and the two choices of ¢, where the vertical lines correspond to their true
values. From the results we can see that in all cases the true values are well inside 90% credible
intervals. A higher ¢ value will result in a lower posterior mode estimate for o, while the estimate
of v turns to be higher. The variation in the posterior mode estimation of the regression effects
is mainly attributed to the variability of the MCMC algorithm itself. The dichotomization can
result in different versions of binary data if the associated underlying processes may be very
similar. This is why in general estimating parameters in models for binary data is difficult simply
because the data itself does not provide rich information about the underlying processes.

[Figure 4.2 about here]

Figure 4.3 shows a comparison of the performances for the two data sets and the two choices of ¢
in updating the state variables #;,£ = 1,---,121. The true underlying state values are indicated
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by the solid lines, while the dashed and dotted lines represent posterior mean estimates and
the 90% credible intervals, respectively. We see that the true values are within the 90% credible
intervals except for one or two time points, and the posterior mean values for data 2 happen to
be better confined in the credible intervals than data 1.

[Figure 4.3 about here]

Also the DIC values were calculated. For data 1 we had a DIC value of 108.5 (108.3) at ¢ =
1(c = .65), while for data 2 the DIC was 134.4 (133.1) at ¢ = 1(c = .65). This shows that a
prior value of ¢ = .65 gives a slightly better performance.

In summary, based on this simple simulation study, we have already seen that the Bayesian
analysis is sensitive to the choice of the priors for (o,). The magnitude of the sensitivity would
depend on many factors of the proposed model (such as the level of autocorrelation), but the
influence of the hyper-parameters is certainly predominant.

5 DATA ANALYSIS

5.1 ANALYSIS OF THE RAINFALL DATA

We now illustrate the application of the proposed model to analyze the Tokyo rainfall data,
which has been briefly discussed in Section 1. Let Y; be the number of occurrences of rainfall
for a given calendar day ¢ during the years 1983-1984. So, Y; ~ Binomial(2,p;),t # 60 and
Y; ~ Binomial(1,p;),t = 60 (February 29, 1984). Therefore, we set 7" = 366 in our analysis.
Most previous analyses assumed a random walk for the state process and ignored the non-
stationarity of seasonality, although certain periodic patterns were clearly revealed in their
studies.

The proposed binomial state space mixed model directly addresses seasonal and monthly effects
through covariates x; = (cos 1, sin 1, cos 44, sin 44, cos 124, sin 12;)', where

2mmt 2mmt
cosmt:cos< T;n) and sinmt:sin<7TT ),mzl,...,T.

So the latent variables {Z;;} follow

Ziy = —og—a1cosly —agsinl; — agcosd; — assind; — ascos12; — agsin 12
(5.1) —0; +uy, 1=1,2;t=1,...,366,

and the state variables {6, } follow the stationary AR(1) model. In each of all the cases described
below, a total of 20,000 iterations of the MCMC algorithm were run with every 10th iteration
recorded. A burn-in of 100 recorded iterations was used for the posterior density estimation.

To compare several possible combinations of seasonal covariates as well as the effect of the ratio
parameter ¢, we invoked the DIC information criterion introduced in Section 2.3. Totally, we ran



the MCMC in 9 different settings, each with a set of chosen covariates and a value of the c¢. The
results are summarized in Table 5.1. From this table we see that the DIC values of the second
submodel are steadily higher than those of the two other models, so the second combination
x; = (cos 1y, sin 14, cos 44, sin4;)" should not be considered further. Comparing the DIC values
between the first submodel and the full model (5.1), the full model appeared to have a more
stable performance over different levels of the ¢ and reached the minimum at ¢ = 5. We repeated
this DIC calculation a few times to monitor the possible variation due to the MCMC algorithm
itself, the DIC always appeared to favor the full model. Therefore, we selected the full model in
the further analysis of the data.

Table 5.1: Model Fit D, effective number of parameters pp and DIC for the Rain Fall Data.

Covariate Combination Ratioe¢ D D DIC
x; = (cos 4y, sin 44, cos 12, sin 12;)’ 1.0 702.31 79.83 782.14
2.0 745.67 33.76 779.42
5.0 763.21 11.53 774.74
x; = (cos 14, sin 14, cos 44, sin 4;)' 1.0 705.01 82.02 787.03
2.0 737.09 50.98 788.07
5.0 774.18 22.27 796.45
x; = (cos 14, sin 14, cos 44, sin 44, cos 124,sin 12;)" 1.0 696.50 78.57 775.07
2.0 727.19 47.25 774.43
5.0 755.25 18.39 773.63

Figure 5.1 displays the estimated posterior densities for the regression parameters o, ¢ =
0,---,6, the standard error parameter ¢ and the autocorrelation parameter v, at different val-
ues ¢ = 1,2 and 5. It is clear that the densities of the regression coefficients «;,j = 0,1,...,6
appeared to be less to the ¢ than the densities of the ¢ and . For comparison, in Figure 5.1
we also plot the the corresponding naive point estimates, indicated by the vertical lines, of
the model parameters with the serial dependence being neglected. Apparently, the hierarchical
modeling considered in this paper for auto-correlated data did produce differences from the
marginal probit regression modeling of independent observations. Furthermore, the 90% credi-
ble intervals of the regression parameters based on the full model suggest that a yearly covariate
cos(1;), a seasonal covariate cos(4;) and two monthly covariates sin(12;) and cos(12;) turn out
to be important explanatory variables, at all of the c levels considered. Meanwhile, the average
estimate of the autocorrelation coefficient v over the three c levels is around .41, and such a
medium sized 7 is supportive to the AR model, rather than the random walk model with v =1,
for the modeling of the state variables. In conclusion, the proposed model has identified several
important seasonal covariates to explain the variability in the rainfall probability over one year
period. In addition, we found the average estimate of ¢ is around .32 over the three c levels.

[Figure 5.1 about here]
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In this analysis we also computed the pointwise estimation of the rain probability p; at day ¢,

t=1,...,366. Here we only considered the case with ¢ = 5 that corresponds to the smallest
DIC.
The solid line in Figure 5.2 shows the posterior mean estimates p;, t = 1,...,366, which was

computed by only using the deterministic component of the full model, together with its 90%
credible bounds indicated by the dotted lines. The broken line, which is mostly tangled with
the solid line, represents the posterior mean estimates of the probabilities computed by using
both deterministic component and random component 6,.

[Figure 5.2 about here]

To better visualize how and to what extent the the time-specific random effect 6; affects the
deterministic mean pattern, we plot the posterior mean estimates for the state variables 6,,
t=1,...,366 in Figure 5.3, with 90% pointwise credible bounds. Although the random effects
cannot be easily seen in Figure 5.2 after the transformation with the probit link function, they
do not seem to be constant and ignorable. Summarizing what we learned from Figures 5.1-5.3,
we conclude that the proposed model fits the data well, and it provides a better analysis than
the marginal analysis with no random component in that no serial correlation is accounted for.

[Figure 5.3 about here]

5.2 ANALYSIS OF INFANT SLEEP DATA

A dichotomous time series {y;} of infant sleep status, reported by Stoffer et al. (1988), were
recorded in a 120 minute EEG study. Here, 3, = 1 if during minute ¢ the infant was judged to be
in REM sleep and otherwise y; = 0. Associated are two time-varying covariates: the number of
body movements due not to sucking during minute ¢ (x;) and the number of body movements
during minute ¢ (z4). This time series alone has been previously analyzed by Carlin and Polson
(1992) and Song (2000) using a simple probit state space model without covariate effects,

Mt = (13(0,5), and Ot = fygt—l + €, t= 1, PP 120,

where the initial state 6y ~ N(0,1). The state process {6;} may be regarded as an underlying
continuous “sleep state” governed by a first-order stationary Markov process. Their primary
goal is to estimate the probability of being in REM sleep status.

In the present paper, however, our objective of this data analysis is different from theirs. Our
interest is to investigate whether or not the probability of being in REM sleep status is signifi-
cantly related to the two types of body movements x;; and ;. If so, the use of a deterministic
predictor o+ o124 + e together with the random component 6, would better interpret and
predict this probability of REM sleep. Therefore our observation equation takes an extended
form as follows,

py = (g + a1 + oo + 6y),

and the state equation is AR(1), the same as in the previous analyses.
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We then applied the MCMC algorithm with the conditional joint prior for (o,~) at different
values of ¢. A total of 20,000 iterations with every 20th iteration recorded were run. Various
graphical examinations showed that a burn-in of recorded 10 iterations was sufficient for this
case. Figure 5.4 displays the marginal posterior density estimates for the regression parameters
(v, 1, i), the autocorrelation () and the variance parameter (o) together with the autocor-
relations of the MCMC iterates for the different ¢ values. This shows that the mixing of the
MCMC algorithms is fast for the regression parameters and the correlation parameter, but less
so for 0. For o the autocorrelations are lower for a lower ¢ value. For the posterior density esti-
mates we see that the results for the regression and correlation parameter are less sensitive to
the prior choice of ¢ than for o, where the posterior mode estimates of o increase as ¢ decreases.
It is of further evident that a very high autocorrelation is present in the AR(1) process for state
variables and thus in this binary time series.

[Figure 5.4 about here]

Table 5.2: Posterior Mean and Quantiles for the Infant Sleep Data

Posterior c o oy oy o o
Mean 2.00 0.0624 -0.4315 0.2625 0.960 0.393

1.00 0.1140 -0.432 0.2419 0.958 0.473

.65 0.0640 -0.4225 0.2341 0.952 0.571

5% Quantile 2.00 -1.7610 -0.7765 -0.0137 0.915 0.181
1.00 -2.1040 -0.830 -0.0281 0.904 0.252

.65 -2.1023 -0.8122 -0.0594 0.887 0.339

10% Quantile 2.00 -1.2050 -0.7070 0.0462 0.927 0.213
1.00 -1.3708 -0.717 0.0213 0.919 0.282

.65 -1.5310 -0.7333 0.0163 0.909 0.373

50% Quantile 2.00 0.0755 -0.4291 0.2665 0.966 0.355
1.00 0.0879 -0.427 0.2399 0.965 0.434

.65 -0.0419 -0.4146 0.2333 0.961 0.543

90% Quantile 2.00 1.3204 -0.1632 0.4861 0.986 0.590
1.00 1.6967 -0.144 0.4536 0.986 0.727

.65  1.8113 -0.1389 0.4692 0.985 0.804

95% Quantile 2.00 1.8083 -0.0822 0.5303 0.988 0.667
1.00 2.2723 -0.064 0.5352 0.988 0.849

.65 2.6322 -0.0555 0.5523 0.987 0.925

Posterior means and quantiles are given in Table 5.2. It is clear that the influence of the number
of body movements () is marginal, since the corresponding 90% credible interval for a; contains
the zero value. In contrast the influence of the number of body movements not due to sucking
(x1) is detected. The negative value of the posterior mean for a; shows that a higher number
of body movements not due to sucking will reduce the probability of the infant being in REM
sleep. This conclusion is intuitively meaningful.
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The top panel of Figure 5.5 shows the posterior mean estimates for the state variables {6;} with
90% pointwise credible intervals for ¢ = .65 chosen according to the smallest DIC. This shows
that the state process ; behaves as an underlying continuous “sleep state”. We also observe
that the posterior mean estimates of #,’s have a zero mean value and stable variation over time,
demonstrating no obvious lack of fit.

[Figure 5.5 about here]

Posterior mean estimates of the REM sleep state probabilities p; = ®(ap + o124 + ez + ;)
are presented in the bottom panel of Figure 5.5 for ¢ = .65, together with the 90% credible
bounds indicated by the dotted lines.

To further demonstrate the usefulness of the mixed state space models, we now investigate their
predictive ability, in comparison to regular state space models. From the evidence presented
below, it is clear that a pure binary state space model will have poor predictive ability simply
because the state variables have zero expectation. On the other hand, the inclusion of covariates
will in general improve the predictive power. To illustrate this, we consider three observation
equations: (i) with both covariates x;; and x4, (ii) with only x4, and (iii) with no covariates.
We then run the same MCMC algorithm as before for each of the three cases with only the first
80 observations used. The out-of-sample predicted probabilities of REM sleep are computed by

iy = ®(xia+6,), t > 80

where 6, = 70}_1. Here @ and %4 denote the corresponding posterior mean estimates.

Figure 5.6 shows that the fitted probabilities for ¢ < 80 and the predicted probabilities for
t > 80. It is obvious that for all three cases a reasonable fit of the probabilities (¢ < 80) is
indicated. Moreover, as expected, the pure state space model has little predictive ability, while
the model with both covariates shows better predictive power by utilizing the information from
the both covariates over the period ¢ > 80.

Finally, we considered also the problem of model selection when ¢ = .65 is chosen. For the same
three cases as considered in the prediction study, we obtained the DIC values, for respective
models, (i) 100.1, (ii) 100.3, and (iii) 99.57. These values do not differ much, so the models
are quite close with regard to the selection of covariates. A very slight preference goes to the
second model with the single covariate z;;. This clearly indicates that the DIC is not suitable
for the assessment of prediction capability for a model. This is because the first model with
both covariates apparently have a better predictive ability than the other two models.

[Figure 5.6 about here]

6 CONCLUSIONS AND DISCUSSION

In this paper we proposed a class of state space mixed models for longitudinal discrete data,
useful in finding statistical evidence for the relation between the mean of the observed process
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and some covariates of interest. The models with both deterministic and random predictors are
more flexible than models with no deterministic components, since they provide access to the
inferential methods used in regression analysis. We show how the DIC criterion of Spiegelhalter
et. al. (2002) can be applied in these models for the purpose of model selection based on
goodness-of-fit, rather than based on the prediction capability. In addition, the predictive ability
is improved substantially over a pure binary state space model by utilizing the information of
covariates, when they are included in the proposed model explicitly. In both the simulation study
and the two data analyses, the proposed MCMC algorithm based on de Jong and Shephard’s
(1995) simulation smoother technique was shown to work very efficiently with fast convergence.

To handle the sensitivity of posteriors to the priors for variance parameters, we introduce a
signal-to-noise ratio type parameter in the specification of these priors. Such a parameter serves,
to some extent, as a mirror to reflect the “honesty” of related inference and conclusions. As shown
in both simulation studies and data examples, the posteriors can vary largely over different
values of the ratio parameter c¢. Therefore, we strongly avocate, if relevant, the use of this ratio
parameter in the specification of prior distributions and to report this value in the conclusions.

The proposed MCMC algorithm can be modified to deal with the logistic link function, in which
the distribution for updating « will no longer be exact multivariate normal but in principle can
still be done using the Metropolis-Hastings algorithm. The difference in conclusions using the
two link functions is very mild, so we did not pursue any further development with the logistic
link.
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APPENDIX A: CONDITIONAL DISTRIBUTIONS FOR BINARY
DATA

LATENT VARIABLE UPDATE:

Since the latent variables Z;’s are conditionally independent given 6., we can immediately
reduce the update of [Z3| Y%, o, 05, 0%, 7| to the individual updates of [Z;| Y5, a, 05, 02, ] for
t =1,---,T. Each of these univariate conditional distribution is equivalent to [Z;|Y 5., a, 6%,
since given 6. the information contained in 02* and v has no influence on the Z%.. Moreover,
we have [Z;| Y5, «, 03] = [Z|Y, , 0], = 1,...,T due again to the conditional independence.
It is easy to see that these distributions are univariate truncated normal with mean —Xjo — 6,
and variance 1. Truncation interval is (—oo, 0](or [0,00)) when Y; = 1(or Y; = 0). We use the
inversion method for the generation of truncated univariate normal random variables in the
numerical implementation, proposed by Robert (1995).

STATE VARIABLES AND REGRESSION PARAMETER UPDATE:

The fact that Y} is completely determined with given Z3. produces the following reduction,
(| Y%, 2%, 0%, 0%, ] = [a|Z%., 6], which allows us to use the simulation smoother. De Jong and
Shephard (1995) consider the following general state space model

v = XiB+Zioy+Gut=1,---,n
o1 = Wi+ T +Hut=0,---,n

and u, ~ N, (0,0%I,) i.i.d. Comparing this model to (2.2)-(2.3), we identify n = T, y, = Z,,
X;=—x,a0=8,Z=-1, =0, W, =0, T, =7, wy = (uy, &), Gy = (1,0), Hy = (0, %)
and H; = (0,0) fort =1,---,T. Here we used the initial condition 6, = 0 and 6; ~ N(0, %)
In the simulation smoother draws are from n = (1, - -, nn)' for an appropriately chosen Fj.
In our setup we use F; = H;. Further, since we want to update the state variables and the
regression parameters jointly we apply the extensions discussed in Section 5 of de Jong and
Shephard (1995). Using this approach and simplifying the simulation smoother for (2.2)-(2.3)

the Kalman filter recursions for ¢t =1,---,7 are given by
Et = (X;E(), Zt + X;ao) —+ At
P,
Ay = YA — K Ey

P +1
1 ,
= —FEFE
Qi1 Qt+Pt+1 Lo
2
VP 2 2
t+1 Pt+1+0’ 1=0

Calculate S and s from the partition of Q7,1 = ( _5 _i ) and draw 0 ~ N,((S+1,)"!s, (S+

I,)7"). For the smoothing recursions do for t =7,7 — 1,---1
Ty = 0, UT =0
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draw ¢, ~ N(0,0%(1 — o?U;))

)
- a(})

1 [ vUtet ]
Te— = Ty — — 5
t—1 Pt+17t t 1= o2,
1 U,
Utfl = [1 + 7 ¢ ]

Pt+]- (Pt+]_)(]_—0'2Ut)
Finally calculate for t =0,1,---,T
N = a’ry+ ¢
and update the state variables for t = 0,---,T by
Orr1 =70+ m

with §y = 0. This gives a draw from the conditional distribution [6}|c, Z%., 7, 0%]. To get a draw
from the conditional distribution [a|Z%., 6, 7, 0] = Np(ag + Lo (S + 1,) 71 5,) set

o= g+ Xpo

STATE VARIANCE UPDATE:

We will use the conditional IG(a, b(y) prior given in (2.5) for o2. A straightforward calculation
gives that the density of [0r|0?, 7] is

1 1 72
Al 0% |o S — — E (Bp1 — 70,)? — ———
(A.1) m(b7lo”, y) = (2#02) Es { 902 - r+1— 70:) }
Condition (A.1) implies that

m(0%05,7) x w(03|o®,v)m(c?)

1 11 1[& ) b
o[ty e 0]}

which shows that the conditional distribution of [02|a, 7] is inverse gamma IG(a*,b*) with

1 1 [ 2 2y 2 -
@-1-5{2(9&1—’790 +(1_7)a1}] :

t=1

T+1
(A.2) a* = T+ +aand b" =

STATE CORRELATION UPDATE:

A causal state process given by (2.3) requires that v € (—1,1). So we assume a uniform prior
distribution on (—1,1) for +. First writing the exponent of [y|03, 2] and then turning it into a
quadratic form, we find that [y|6%, 0%] is univariate normal truncated to (—1,1) with mean p,
and variance o2 given by, respectively,

T
— OtOt 1 0'2
thl + and 2 _

R Yy DY,
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APPENDIX B: CONDITIONAL DISTRIBUTIONS FOR BINO-
MIAL DATA

Here we only present the related formulas to update the state variables #; and the regression
parameter o, because the updates of the other variables are almost identical to those given in
Appendix A for the binary case.

To begin, we stack the n; 1-dimensional latent processes at time t into the following vector
process:

Z,=—-1,x, — 1,0, +u,
where Z; = (Zy4, ..., Zy, ) and 1,, = (1,...,1)", and u; = (us¢, ..., Un,s)’. Then in the appli-
cation of de Jong and Shephard’s (1995) simulation smoother, as done in Appendix A, relevant
matrices can be readily identified from the above vector process. Some simple algebra leads to
a set of terms needed in the Kalman filter recursions: for t =1,...,7T,

Et = (1ntX;Eo, Zt + 1ntx’ta0) + 1ntAt

A = — 1 E
H T ntPt +1 ny
/ .Pt ’
Qir1 = Qi+ EE; — 77%3: i 1Et1m1;ztEt
2
v P 2 2
P, _ P, =o0".
b+l ntPt -+ 1 to ol g

Similar to Appendix A, we acquire matrix S and vector s by partitioning matrix Qr,; =

( 5: = ), and then draw 6 ~ N,((S + I,) 's, (S +I,) '). The smoothing recursions begin

—s %
with r0 =0, Ur =0, fort =T,T —1,...,1, and then draw ¢, ~ N(0,0%(1 — 02U,)) backwards,

with
)

1 YUse,
= — -1 e — ———
Tt—1 nntPt +1 [’YTt n €t 1 — 02U,
’YQUt

n Py + 1[nt * (P4 1)(1 — UQUt)].

Finally, we calculate for t =0,1,---,T

]

Ui =

m =o't + €,
and update the state variables for t = 0,---,7T by
Or1 = v0; +my,

with 6y = 0. Thus, this gives a draw from the conditional distribution [0%|c, Z%., v, 0%]. Similarly,
we get a draw from the conditional distribution [et|Z, 65,7, 0] = Np(ap + So(S + I,) ' %) by
setting

a = g + Xg0.
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Figure 4.1: Autocorrelations
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Figure 4.2: Posterior density estimates in the simulation study.
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Figure 4.3:

Pointwise posterior mean estimates of the state variables 6, with

pointwise 90 % credible intervals of the simulation study.
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Figure 5.1: Posterior density estimates for the rainfall data with ¢ = (5,2, 1), corresponding to

the solid, the broken and the dotted lines.
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Figure 5.3: Pointwise posterior mean estimates of the state variables #; with pointwise 90 %
credible intervals.
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MCMC iterates for the infant sleep data.
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Figure 5.5: Posterior mean estimates of the state variables (top panel) and posterior mean
estimates of the REM sleep state probabilities (bottom panel).
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Figure 5.6: Pointwise posterior mean estimates (¢ < 80) and predictions (¢ > 80) of REM sleep
state probabilities for the infant sleep data.
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