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AN EXPONENTIAL CONTINUOUS TIME GARCH PROCESS

STEPHAN HAUG ∗ ∗∗ and

CLAUDIA CZADO,∗∗ Munich University of Technology

Abstract

In this paper we introduce an exponential continuous time GARCH(p, q)
process. It is defined in such a way that it is a continuous time extension
of the discrete time EGARCH(p, q) process. We investigate stationarity and
moment properties of the new model. An instantaneous leverage effect can be
shown for the exponential continuous time GARCH(p, p) model.

Keywords: exponential continuous time GARCH process; EGARCH, Lévy
process; stationarity; stochastic volatility
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1. Introduction

GARCH type processes have become very popular in financial econometrics to model
returns of stocks, exchange rates and other series observed at equidistant time points.
They have been designed (see Engle [8] and Bollerslev [3]) to capture so-called stylized
facts of such data, which are e.g. volatility clustering, dependence without correlation
and tail heaviness. Another characteristic is that stock returns seem to be negatively
correlated with changes in the volatility, i.e. that volatility tends to increase after
negative shocks and to fall after positive ones. This effect is called leverage effect and
can not be modeled by a GARCH type process without further extensions. This finding
led Nelson [15] to introduce the exponential GARCH process, which is able to model
this asymmetry in stock returns. The log-volatility of the EGARCH(p, q) process was
modeled as a self-exciting ARMA(q, p − 1) process.
The availability of high frequency data, which increased enormously in the last years,
is one reason to consider continuous time models with similar behaviour as discrete
time GARCH models. The reason for this is ofcourse that at the highest available
frequency the observations of the price process occur at irregularly spaced time points
and therefore it is kind of natural to assume an underlying continuous time model.
Different approaches have been taken to set up a continuous time model, which has
the same features as discrete time GARCH processes. Recently Klüppelberg et al.[11]
developed a continuous time GARCH(1, 1) model, shortly called COGARCH(1, 1).
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Their approach differs fundamentally from previous attempts, which could be summa-
rized as diffusion approximations (see e.g. Nelson [14]), by the fact that their model is
driven by only one source of randomness (like discrete time GARCH) instead of two
(like in the diffusion approximations). They replaced the noise process of discrete time
GARCH by the jumps of a Lévy process. The COGARCH(1, 1) was then extended
by Brockwell et al.[5] to a continuous time GARCH(p, q) process for general orders
p, q ∈ N, q ≥ p, henceforth called COGARCH(p, q).
In this paper a continuous time analogue of the EGARCH(p, q) model is introduced.
The noise processes will also be modeled by the increments of a Lévy process. As in
the discrete time case we describe the log-volatility process as a linear process, more
precisley a continuous time ARMA(q, p − 1) process.
The paper is now organized as follows. In section 2 we review the definition of the
discrete time EGARCH process. After a short review of elementary properties of
Lévy processes we define the exponential continuous time GARCH(p, q) process at
the beginning of section 3. In addition we state stationarity conditions for the log-
volatility and volatility process of our model and give a strong mixing condition for the
return process. In section 4 we investigate the second order properties of the volatility
process. Section 5 is devoted to the analysis of the second order behaviour of the
return process. We derive expressions for the first and second moment of the return
process. The stylized fact of zero correlation in the return process but correlation of
the squared returns is also shown. In the second part of section 5 we characterize the
leverage effect in our model.

2. The discrete time EGARCH process

Motivated by empirical evidence that stock returns are negatively correlated with
changes in returns volatility Nelson [15] defined the exponential GARCH process
(EGARCH) to model this effect, which is called leverage effect (see also section 5.1).

The process (Xn)n∈Z of the form Xn = σnǫn , n ∈ Z, where (ǫn)n∈Z is an i.i.d.
sequence with E(ǫ1) = 0 and Var(ǫ1) = 1, is called an EGARCH process, if the volatility
process (σ2

n)n∈Z satisfies

log(σ2
n) = µ +

∞∑

k=1

βkf(ǫn−k) ,

where f : R → R is some measurable real valued deterministic function, µ ∈ R

and (βk)k∈N are real coefficients such that E(|f(ǫn)|) < ∞ , Var(f(ǫn)) < ∞ and∑∞
k=1 |βk| < ∞ .

To achieve the asymmetric relation between the stock returns and the volatility,
f(ǫn) must be a function of the magnitude and the sign of ǫn as noted by Nelson [15].
Therefore he proposed the following function:

f(ǫn) := θǫn + γ[|ǫn| − E(|ǫn|)] , (2.1)

with real coefficients θ and γ. We see that f(ǫn) is linear in ǫn and has slope θ + γ
for positive shocks ǫn and slope θ − γ for negative ones. Therefore f(ǫn) allows the
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volatility process (σ2
n)n∈Z to respond asymmetrically to positive and negative jumps

in the stock price.
Nelson [15] also suggested a finite parameter model by modeling the log-volatility as an
ARMA(q, p−1) process instead of an infinite moving average process. This leads to the
EGARCH(p, q) model, which is defined in the following way.

Let p, q ∈ N, µ, α1, . . . , αq, β1, . . . , βp ∈ R, suppose αq 6= 0 , βp 6= 0 and that the
autoregressive polynomial φ(z) := 1 − α1z − · · · − αqz

q and the moving average
polynomial ψ(z) := β1 + β2z + · · · + βpz

p−1 have no common zeros and that φ(z) 6= 0
on {z ∈ C | |z| ≤ 1}. Let (ǫn)n∈Z be an i.i.d. sequence with E(ǫ1) = 0 and Var(ǫ1) = 1,
and let f(·) be such that E(|f(ǫn)|) < ∞ and Var(f(ǫn)) < ∞. Then (Xn)n∈Z, where
Xn = σnǫn and

log(σ2
n) = µ +

p∑

k=1

βkf(ǫn−k) +

q∑

k=1

αk log(σ2
n−k)

is called an EGARCH(p,q) process.

3. Exponential COGARCH

The goal of this section is to construct a continuous time analogue of the dis-
crete time EGARCH(p, q) process. Therefore we will use the idea of Klüppelberg
et al. [11] to replace the noise variables ǫn by the increments of a Lévy process
L = (Lt)t≥0. Any Lévy process L on R has a characteristic function of the form
E(eiuLt) = exp{tψL(u)} , t ≥ 0, with

ψL(u) := iγLu −
τ2
L

2
u2 +

∫

R

(eiux − 1 − iuxχ{|x|≤1})νL(dx) , u ∈ R,

where τ2
L ≥ 0, γL ∈ R, the measure νL satisfies

νL({0}) = 0 and

∫

R

min(x2, 1)νL(dx) < ∞

and χA(·) denotes the indicator function of the set A ⊂ R. The measure νL is called
the Lévy measure of L and the triplet (γL, τ2

L, νL) is called the characteristic triplet of
L. The map ψL is called the Lévy symbol . For more details on Lévy processes we
refer to Sato [17] or Applebaum [1].

We consider zero mean Lévy processes L defined on a probability space (Ω,F , P )
with jumps ∆Lt := Lt − Lt−. Since E(Lt) = t(γL +

∫
|x|>1

xνL(dx)), a zero mean

implies that γL = −
∫
|x|>1

xνL(dx) and hence the corresponding Lévy symbol is of the

form

ψL(u) = −τ2
L

u2

2
+

∫

R

(eiux − 1 − iux)νL(dx) ,

and the Lévy-Itô decomposition (see e.g. Theorem 2.4.16 of Applebaum [1]) of L is

Lt = Bt +

∫

R−{0}

xÑL(t, dx) , t ≥ 0,
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where B is a Brownian motion with variance τ2
L and ÑL(t, dx) = NL(t, dx) − tνL(dx),

t ≥ 0, is the compensated random measure associated to the Poisson random measure

NL(t, A) = #{0 ≤ s < t;∆Ls ∈ A} =
∑

0<s≤t

χA(∆Ls), A ∈ B(R − {0}),

on R+ × R − {0}, which is independent of B.

Now we define the exponential continuous time GARCH(p, q) process by specifying
the log-volatility process as a continuous time ARMA(q, p − 1) process, henceforth
called CARMA(q, p − 1) process (see e.g. Brockwell and Marquardt [6] for details
on CARMA processes), which is the continuous time analogue of an ARMA(q, p − 1)
process. The driving noise process of the CARMA(q, p − 1) process will be defined
similarly to (2.1).

Definition 3.1. Let L = (Lt)t≥0 be a zero mean Lévy process with Lévy measure
νL such that

∫
|x|≥1

x2νL(dx) < ∞. Then we define the exponential COGARCH(p, q)

process G, shortly ECOGARCH(p, q), as the stochastic process satisfying,

dGt := σtdLt, t > 0, G0 = 0,

where the log-volatility process log(σ2) = (log(σ2
t ))t≥0 is a CARMA(q, p − 1) process,

1 ≤ p ≤ q, with mean µ ∈ R and state space representation

log(σ2
t ) := µ + bT Xt−, t > 0 , log(σ2

0) = µ + bT X0 (3.1)

dXt = AXt + 1qdMt , t > 0 (3.2)

where X0 ∈ R
q is independent of the driving Lévy process L and

Mt :=

∫

R−{0}

h(x)ÑL(t, dx) , t > 0, (3.3)

is a zero mean Lévy process (see Remark 3.2) with h(x) := θx + γ|x| and parameters
θ, γ ∈ R. The q × q matrix A and the vectors b ∈ R

q and 1q ∈ R
q are defined by

A =





0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−aq −aq−1 −aq−2 · · · −a1




, b =





b1

b2

...
bq−1

bq




, 1q =





0
0
...
0
1





with coefficients a1, . . . , aq, b1, . . . , bp ∈ R, where aq 6= 0, bp 6= 0, and bp+1 = · · · = bq =
0.

One has to observe that (3.1) implies independence between σ2
t and the jump ∆Lt

at time t, i.e. σ2 is left continuous. Returns over a time interval of length r > 0 are
described by the increments of G

G
(r)
t := Gt − Gt−r =

∫

(t−r,t]

σs dLs , t ≥ r > 0 . (3.4)



An exponential continuous time GARCH process 5

On the other hand an equidistant sequence of such non-overlapping returns of length r

is given by (G
(r)
nr )n∈N. Thus this gives us the possibility to model ultra high frequency

data, which consists of returns over varying time intervals.

In the rest of the paper the following terminology will be used:

G (log-) price process
G(r) (log-) return process
σ2 volatility process
log(σ2) log-volatility process.

Remark 3.2. (i) The process M defined by (3.3) is by construction a process with
independent and stationary increments and by Theorem 4.3.4 in Applebaum [1] well
defined if

∫

E

|h(x)|2νL(dx) < ∞ . (3.5)

Condition (3.5) is satisfied since νL is a Lévy measure and L has finite variance. By
equation (2.9) of Applebaum [1] the characteristic function of M at time t ≥ 0 is given
by

E(eiuMt) = exp

(
t

∫

R

[eiux − 1 − iux]νM (dx)

)

= exp

(
t

{
iuγM +

∫

R

[eiux − 1 − iuxχ|x|≤1]νM (dx)

})

=: exp(tψM (u)) ,

where νM := νL ◦ h−1 is the Lévy measure of M and γM := −
∫
|x|>1

xνM (dx). The

precise form of νM depends on the sign and size of θ and γ and is given in the following:

νM ((−∞,−x]) =






νL([− x
θ+γ ,∞)) + νL((−∞,− x

θ−γ ]) , θ + γ < 0 and θ − γ > 0

νL((−∞,− x
θ−γ ]) , θ − γ > 0 and θ + γ > 0

νL([− x
θ+γ ,∞)) , θ + γ < 0 and θ − γ < 0

0 θ + γ > 0 and θ − γ < 0

and

νM ([x,∞)) =






νL([ x
θ+γ ,∞)) + νL((−∞, x

θ−γ ]) , θ + γ > 0 and θ − γ < 0

νL((−∞, x
θ−γ ]) , θ − γ < 0 and θ + γ < 0

νL([ x
θ+γ ,∞)) , θ + γ > 0 and θ − γ > 0

0 θ + γ < 0 and θ − γ > 0

for x > 0. One recognises that for θ+γ < 0 ∨ θ−γ > 0 M is a spectrally negative Lévy
process, i.e. M has only negative jumps, and for θ+γ > 0 ∨ θ−γ < 0 M is a spectrally
positive Lévy process. Therefore M has the characteristic triplet (γM , 0, νM ).
(ii) The model can of course also be defined for a different choice of h, as long as
condition (3.5) is satisfied.
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(iii) In case the jump part of L is of finite variation M is a Lévy process of finite
variation with Lévy-Itô decomposition

Mt :=
∑

0<s≤t

[θ∆Ls + γ|∆Ls|] − Ct , t > 0,

where C := γ
∫

R
|x|νL(dx).

Proposition 3.3. Let σ2 and G be as in Definition 3.1, with θ and γ not both equal
to zero. If the eigenvalues of A all have negative real parts and X0 has the same
distribution as

∫ ∞

0
eAu1qdMu, then log(σ2) and σ2 are strictly stationary.

Proof: The strict stationarity of log(σ2) follows from Proposition 2 in Brockwell and
Marquardt [6], since it is a CARMA(q, p − 1) process. Since strict stationarity is
invariant under continuous transformations, σ2 also has this property. 2

Remark 3.4. The solution of the continuous time state space model (3.1) and (3.2)
has the representation

log(σ2
t+) = µ + bT eAtX0 +

∫ t

0

bT eA(t−u)1qdMu, t > 0.

If we choose a second Lévy process (L̃t)t≥0 independent of L and with the same
distribution as L, then we can define an extension (L∗

t )t∈R of L to the real line by:

L∗
t := Ltχ[0,∞)(t) − L̃−t−χ(−∞,0)(t), t ∈ R,

where χA(·) denotes the indicator function of the set A. Using L∗ instead of L in (3.3)
we get an extension M∗ of M . In the following we will write for simplicity L and M
instead of L∗ and M∗. In the strictly stationary case the log-volatility process can be
defined on the whole real line

log(σ2
t+) = µ +

∫ t

−∞

g(t − u)dMu, t ∈ R, (3.6)

with kernel function

g(t) = bT eAt1qχ(0,∞)(t) (3.7)

(see section 2 of Brockwell and Marquardt [6] for more details).

From (3.4) it follows directly that the increments G(r)
. =

∫
(·−r,·]

σsdLs of G are

stationary if the volatility σ2 is stationary, since the increments of L are stationary
and independent by definition.

Corollary 3.5. If σ2 is strictly stationary, then G has strictly stationary increments.

Remark 3.6. (i) If q ≥ p + 1 the log-volatility process is (q − p − 1) times differ-
entiable, which follows from the state space representation of log(σ2), and hence the
volatility process has continuous sample path. In particular the volatility will only
contain jumps for p = q.
(ii) The volatility of the ECOGARCH(p, q) process is positive by definition. Therefore
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the parameters do not need to satisfy any constraints to assure positivity of the volatility.
This is not the case for the COGARCH(p, q) model. For higher order COGARCH(p, q)
processes these condition become quite difficult to check (see Theorem 5.1 in Brockwell
et al. [5]).

Example 3.7. As a first illustrative example we consider an ECOGARCH(1, 1) pro-
cess driven by a Lévy process L with Lévy symbol

ψL(u) = −
u2

2
+

∫

R

(eiux − 1)λΦ0,1/λ(dx) ,

where Φ0,1/λ(·) is the distribution function of a normal distribution with mean 0 and
variance 1/λ. This means that L is the sum of a standard Brownian motion W and the

compound Poisson process Jt =
∑Nt

k=1 Zk , J−t =
∑−N−t

k=1 Z−k , t ≥ 0, where (Nt)t∈R

is an independent Poisson process with intensity λ > 0 and jump times (Tk)k∈Z. The
Poisson process N is also independent from the i.i.d. sequence of jump sizes (Zk)k∈Z,
with Z1 ∼ N(0, 1/λ). The Lévy process M is in this case given by the following
expression

Mt =

Nt∑

k=1

[θZk + γ|Zk|] − Ct , t > 0,

with C = γ
∫

R
|x|λΦ0,1/λ(dx) =

√
2λ
π γ. M−t, t ≥ 0 is defined analogously. If we just

consider the case that θ < −γ < 0 then the Lévy measure νM of M is defined by

νM ((−∞,−x]) = λΦ0,1/λ([−
x

θ + γ
,∞)) , x > 0,

on the negative half real line and by

νM ([x,∞)) = λΦ0,1/λ((−∞,
x

θ − γ
]) , x > 0,

on the positive half real line. In the top row of Figure 1 a simulated sample path of
the compound Poisson process J , with N(0, 1/2) distributed jumps, can be seen over
three time scales. The corresponding Lévy process M , with parameters θ = −0.3 and
γ = 0.1, can be seen in the bottom row. Over all three time intervals one can recognise
the desired asymmetry for this set of parameters. If J jumps up, then M jumps down
and vice versa. If J does not move, then one observes the downwards drift of M , which
can bee seen on the right hand side of Figure 1.

The log-volatility process is then of the form

log(σ2
t+) = µ +

∫ t

−∞

b1e
−a1(t−s)dMs

= µ +

Nt∑

k=−∞

k 6=0

b1e
−a1(t−Tk)[θZk + γ|Zk|] − C

b1

a1
, t > 0

and the log-price process is given by

Gt =

∫ t

0

σsdWs +

Nt∑

k=1

σTk
Zk , t > 0, G0 = 0 .
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Figure 1: Simulated sample pathes of J (top row ) and M (bottom row ), with parameters
θ = −0.3 and γ = 0.1, over three different time scales.

with jump times Tk, k ∈ N.

The simulation of a sample path of the log-price process G and the log-volatility
process log(σ2) over a time interval [0, T ] is done in the following steps.

1. Choose observation times 0 = t0 < t1 < · · · < tn ≤ T , possibly random.

2. Simulate the jump times (Tk), k = 1, . . . , nT , with nT := max{k ∈ N : Tk ≤ T},
of the compound Poisson process J .

3. Approximate the state process (3.2) of the log-volatility by a stochastic Euler
scheme.

4. Compute an approximation Ĝ via the recursion

Ĝti
= Ĝti−1

+ σti−1−W̃i +

Nti∑

k=Nti−1
+1

√
exp{µ + bT X̂Tk−}Zk,

where W̃i ∼ N(0, ti − ti−1) and X̂Tk− is the Euler approximation without the
jump ∆MTk

.

In Figure 2 the results of the above simulation procedure are shown. For exponen-
tially distributed interarrival times ∆ti := ti − ti−1 ∼ expo(1) the sample path of the
log-price G, the return process G(∆t.) and the volatility process σ2 are displayed in
the first three rows of Figure 2. The sample path of the driving Lévy process L is
shown in the last row. The jumps of the compound Poisson process J are N(0, 1/2)
distributed. From the plots of the return and volatility process we see the negative
correlation between the two processes. We recognise increases in the volatility after
large negative returns.

Mixing properties (see Doukhan [7] for a comprehensive treatment of mixing prop-
erties) are useful for a number of applications. In particular for asymptotic statistics,
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Figure 2: 3 000 observations with exponentially distributed interarrival times of the log-price
process Gt (top row), the return process G

(r)
t

(second row), the volatility process σ2
t (third

row), with parameters b1 = 1, a1 = 0.1, µ = −4, θ = −0.3 and γ = 0.1 and the driving Lévy
process Lt (last row).

since central limit theorems exist for mixing processes. Thus we will derive mixing
properties of the strictly stationary volatility process and the return process over
equidistant time intervals. First we recall from Masuda [13] the definition of two mixing
concepts, strong mixing, which is also called α-mixing and α̃-mixing for a stationary
process with continuous time parameter.

Definition 3.8. For a stationary process Y = (Ys)s≥0 define the σ-algebras FY
[0,u] :=

σ((Ys)s∈[0,u]) and FY
[u+t,∞) := σ((Ys)s≥u+t) for all u ≥ 0. Then f ∈ bFY

[u,∞) means

that f is a bounded FY
[u,∞)-measurable random variable. Let ‖ · ‖L1(P ) and ‖ · ‖∞ be

the L1-norm under P and the supnorm, respectively. Then Y is called

(i) strongly or α-mixing, if

α(t) = α(FY
[0,u],F

Y
[u+t,∞))

:= sup{|P (A ∩ B) − P (A)P (B)| : A ∈ FY
[0,u], B ∈ FY

[u+t,∞)} → 0,

as t → ∞, for all u ≥ 0.



10 S.HAUG AND C. CZADO

(ii) α̃-mixing, if

α̃(t) = α̃(FY
[0,u],F

Y
[u+t,∞))

:= sup{‖E(f |FY
[0,u]) − E(f)‖L1(P ) : f ∈ bFY

[u+t,∞), ‖f‖∞ ≤ 1} → 0,

as t → ∞, for all u ≥ 0.

Throughout the paper all σ-algebras are assumed to include all P -null sets. From
equation (2) in Masuda [13] we know that for all F1,F2 ⊂ F

α(F1,F2) ≤ α̃(F1,F2) ≤ 6α(F1,F2) . (3.8)

Therefore the α-mixing property is equivalent to the α̃-mixing property. In Theorem

3.10 we will use this fact to show that (G
(r)
nr )n∈N is α-mixing.

The strong mixing property with exponential rate of the log-volatility and volatility
process is subject of the next proposition. Thereby strongly mixing with exponential
rate (exponentially α-mixing) means that α(t) decays to zero exponentially fast for
t → ∞ .

Proposition 3.9. Let log(σ2) be defined by (3.1) and (3.2) with θ and γ not both
equal to zero. Assume that E(L2

1) < ∞, the eigenvalues of A all have negative real
parts and X0 has the same distribution as

∫ ∞

0
eAu1qdMu, hence log(σ2) and σ2 are

strictly stationary. Then there exist constants K > 0 and a > 0 such that

αlog(σ2)(t) ≤ K · e−at and ασ2(t) ≤ K · e−at , as t → ∞, (3.9)

where αlog(σ2)(t) and ασ2(t) are the α-mixing coefficients of the log-volatility and
volatility process, respectively.

Proof: The log-volatility process is a CARMA(q, p− 1) process, which is equal to the
first component of the q-dimensional OU process V := (V 1, . . . , V q)T ∈ R

q (see e.g.
section 4 of Brockwell [4]) where for fixed t

Vt = eBAB−1(t−s)Vs +

∫ t

s

eA(t−u)B1qdMu a.s., (3.10)

with

B =





b1 b2 b3 · · · bq

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1




.

Since L, hence M , has finite second moment V also has finite second moment. There-
fore the condition (4.5) in Masuda [12] is satisfied. By Theorem 4.3 in Masuda [12] V

is then exponentially α-mixing. Since every component of a multidimensional strongly
mixing process is strongly mixing, the log-volatility process is also exponentially α-
mixing. The property of α-mixing is invariant under continuous transformations, which
implies that σ2 also has this property. 2
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Theorem 3.10. Assume that L is a Lévy process with finite variance. Let the
volatility process σ2 be strictly stationary and strongly mixing under P . Then the

discrete time process (G
(r)
nr )n∈N,

G(r)
nr := Gnr − G(n−1)r =

∫

((n−1)r,nr]

σs dLs , n ∈ N ,

is strongly mixing with geometric rate and since strict stationarity of σ2 implies strict

stationarity of (G
(r)
nr )n∈N also ergodic.

Proof: Consider again the q-dimensional OU process V defined in the proof of Propo-
sition 3.9. Equation (3.10) shows that V is a Markov process. The process V is also
strictly stationary and α̃-mixing, since α-mixing and α̃-mixing are equivalent. The
same is true for the q-dimensional process σ

2 := (exp(V 1), . . . , exp(V q)), since both
mixing properties are invariant under continuous transformations. Now define the
discrete time q-dimensional process

G(r)
nr =

∫

((n−1)r,nr]

√
σ

2
sdLs , n ∈ N , (3.11)

which is also strictly stationary under P . Here we should mention that the integration
of vectors in (3.11) is understood componentwise.

Define the σ-algebra FdL
I := σ(Lt − Ls : s, t ∈ I) for I ⊂ R. Further we denote the

σ-algebra generated by the volatility process and the increments of L over the interval

[0, t] by Fσ
2,dL

[0,t] := σ((σ2
s)s∈[0,t]) ∨ FdL

[0,t].

From FG
(r)

{1,2,...,l} ⊂ Fσ
2,dL

[0,lr] and FG
(r)

{k+l,k+l+1,... } ⊂ Fσ
2,dL

[(k+l−1)r,∞) we get that

α̃G(r)(k) = sup
{
‖E(f |FG

(r)

{1,2,...,l}) − E(f)‖L1(P ) :

f ∈ bFG
(r)

{k+l,k+l+1,... }, l ∈ N, ‖f‖∞ ≤ 1
}

≤ sup
{
‖E(f |Fσ

2,dL
[0,lr] ) − E(f)‖L1(P ) : f ∈ bFσ

2,dL
[(k+l−1)r,∞), l ∈ N, ‖f‖∞ ≤ 1

}

= sup
{
‖E(f |Fσ

2,dL
[0,lr] ) − E(f)‖L1(P ) :

f ∈ bFσ
2

(k+l−1)r ∨ bFdL
[(k+l−1)r,∞), l ∈ N, ‖f‖∞ ≤ 1

}

= sup
{
‖E(f |Fσ

2

[0,lr]) − E(f)‖L1(P ) :

f ∈ bFσ
2

(k+l−1)r ∨ bFdL
[(k+l−1)r,∞), l ∈ N, ‖f‖∞ ≤ 1

}

= sup
{
‖E(f |Fσ

2

[0,lr]) − E(f)‖L1(P ) :

f ∈ bFσ
2

(k+l−1)r ∨ bFdM
[(k+l−1)r,∞), l ∈ N, ‖f‖∞ ≤ 1

}

= α̃
σ

2((k − 1)r)

for any k ∈ N. The second equality is due to the fact that the driving process of
σ

2 is defined through the jumps of L. FdL
[0,lr] and bFσ

2

(k+l−1)r ∨ bFdL
[(k+l−1)r,∞) are

conditionally independent given Fσ
2

[0,lr], which is due to the Markov property of σ
2 and
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the independence between FdL
[0,lr] and bFdL

[(k+l−1)r,∞). This shows the third equality.

The fourth one follows from the independence of bFdL
[(k+l−1)r,∞) and bFdM

[(k+l−1)r,∞)

from Fσ
2

[0,lr] and again the Markov property of σ
2, whereas the last one is due to the

fact that M is the driving process of σ
2.

Therefore (G
(r)
nr )n∈N is α̃-mixing and by (3.8) also strongly mixing. The strict

stationarity of (G
(r)
nr )n∈N implies that it is also ergodic. Since both properties have to

hold componentwise, we have shown that (G
(r)
nr )n∈N as the first component of (G

(r)
nr )n∈N

is strongly mixing and ergodic. From (3.8) and (3.9) we further get that

αG(r)(k) ≤ 6ασ2((k − 1)r) ≤ 6Ke−a(k−1)r ,

as k → ∞. Hence (G
(r)
nr )n∈N is strongly mixing with exponential rate and ergodicity

follows from the strict stationarity. 2

4. Second order properties of the volatility process

In this section we derive moments and the autocovariance function of the volatility
process σ2. Since it is a non-linear transformation of a CARMA(q, p − 1) process,
we will first recall the moment structure and conditions for weak stationarity of a
CARMA(q, p − 1) process.

Proposition 4.1. If X0 has the same mean vector and covariance matrix as∫ ∞

0
eAu1qdMu, then log(σ2) is weakly stationary. In the weakly stationary case the

mean and autocovariance function of log(σ2) are given by

E(log(σ2
t )) = µ and Cov(log(σ2

t+h), log(σ2
t )) = E(M2

1 )bT eAhΣb , h, t ≥ 0, (4.1)

where Σ :=
∫ ∞

0
eAs1q1q

T eAT sds.

Proof: The condition for weak stationarity is given in Proposition 1 in Brockwell
and Marquardt [6]. The moment expressions follow from Remark 4 in Brockwell and
Marquardt [6] and the fact that

∫
R

g(u−h)g(u)du = bT eAhΣb, with g defined in (3.7).
2

The moments of the strictly stationary volatility process are exponential moments
of the limit distribution of the log-volatility process. Therefore we characterise the
limit distribution of the log-volatility process in the following Proposition.

Proposition 4.2. Let (γM , 0, νM ) be the characteristic triplet of the Lévy process M ,
where M is defined in (3.3), and Pt(x,B) = P (log(σ2

t ) ∈ B| log(σ2
0) = x), x ∈ R, B ∈

B(R). If the eigenvalues of A only have negative real parts, then there exists a limit
distribution F such that

Pt(x,B) → F (B) , (4.2)

as t → ∞. The distribution F is infinitely divisible with characteristic triplet (γ∞, 0, ν∞),
where

γ∞ =

∫ ∞

0

g(s)γMds +

∫ ∞

0

∫

R

g(s)x[χ{|g(s)x|≤1} − χ{|x|≤1}]νM (dx)ds

ν∞(B) =

∫ ∞

0

∫

R

χB(g(s)x)νM (dx)ds, B ∈ B(R) ,
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with g(s) = bT eAs1qχ(0,∞)(s). Let the limit of the log-volatility process be denoted
by log(σ2

∞). The characteristic function of log(σ2
∞) can then be written as

E(eiu log(σ2
∞

)) = exp

{
iuγ∞ +

∫

R

(eiux − 1 − iuxχ|x|≤1)ν∞(dx)

}

= exp

{∫ ∞

0

ψM (g(s)u)ds

}
= exp {ψ∞(u)} .

Proof: Since M has finite variance, this implies
∫
|x|>1

log(|x|)νM (dx) < ∞. The

existence of a limit distribution F and the infinitely divisibility of F now follows
from Theorem 4.1 in Sato and Yamazato [18]. The second equality in the repre-
sentation of the characteristic function follows from the fact that

∫
R

H(y)ν∞(dy) =∫ ∞

0

∫
R

H(g(s)x)νM (dx)ds for all h integrable with respect to ν∞ (see e.g. Theorem 41
in Rocha-Arteaga and Sato [16]). 2

With the limit distribution F at hand, we can now apply Theorem 25.17 of Sato
[17] to calculate the exponential moments of log(σ2

∞), i.e. the moments of σ2
∞, in the

next Proposition.

Proposition 4.3. Let the distribution function of log(σ2
∞) be F with characteristic

triplet (γ∞, 0, ν∞). Then the k-th moment of σ2
∞ is finite, if

k ∈ K∞ = {s ∈ R :

∫

|x|>1

esxν∞(dx) < ∞} .

In this case

Ψ∞(k) = ψ∞(−ik) =

∫ ∞

0

ΨM (g(s)k)ds , (4.3)

with ΨM (u) := ψM (−iu), u ∈ R, is well defined and

E(σ2k
∞ ) = eµk eΨ∞(k) . (4.4)

Proof: Since F is infinitely divisible we can apply Theorem 25.17 of Sato [17]. This
theorem gives an expression for the exponential moment of a Lévy process. It is
straightforward to apply this result to the case that we just have an infinitely divisible
distribution. Therefore the k-th exponential moment of log(σ2

∞) is given by

E(exp(log(σ2
∞))k) = eµk eΨ∞(k) ,

with Ψ∞(k) = γ∞k +
∫

R
(ekx − 1− kxχ|x|≤1)ν∞(dx). Since log(σ2

∞) has the respresen-

tation log(σ2
∞) =

∫ ∞

0
g(s)dMs (compare to (3.6)), with g(s) = bT eAs1qχ(0,∞)(s) and

E(M1) = 0, we get Ψ∞(k) =
∫ ∞

0
ΨM (g(s)k)ds . 2

Remark 4.4. By (4.2) F is also the distribution of the strictly stationary solution of
(3.1) and (3.2), hence

E(σ2k
t ) = eµk eΨ∞(k) , t ≥ 0, (4.5)

for all k ∈ K∞.
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Proposition 4.5. Let log(σ2
t ) be the strictly stationary solution of (3.1) and (3.2). As-

sume that E(σ4
t ) < ∞ for all t ≥ 0. Let Ψh

∞(1) and Ψh(1) be defined by (4.3) with kernel
function g replaced by gh

∞(s) = bT (Iq + eAh)eAs1q and gh(s) = bT eAs1qχ(0,h)(s), re-
spectively. Then the autocovariance function of σ2 is given by the following expression

Cov(σ2
t+h, σ2

t ) = e2µ(eΨh

∞
(1)eΨh(1) − e2Ψ∞(1)) , h > 0, t ≥ 0 . (4.6)

Proof: Let µ = 0 and (Fσ2

t )t≥0 be the filtration generated by (σ2
t )t≥0, then

E(σ2
t+h|F

σ2

t ) = exp
{∫ t

−∞
bT eAheA(t−s)1qdMs

}
E

(
exp

{∫ t+h

t
g(t + h − s)dMs

} ∣∣∣∣F
σ2

t

)
.

Therefore we get

E(σ2
t+hσ2

t ) = E(E(σ2
t+hσ2

t |F
σ2

t )) = E(σ2
t E(σ2

t+h|F
σ2

t ))

= E

(
σ2

t exp

{∫ t

−∞

bT eAheA(t−s)1qdMs

}
E

(
exp

{∫ t+h

t

g(t + h − s)dMs

}∣∣∣∣F
σ2

t

))

= E

(
exp

{∫ t

−∞

bT (Iq + eAh)eA(t−s)1qdMs

})
E

(
exp

{∫ h

0

g(s)dMs

})

= E

(
exp

{∫ ∞

0

bT (Iq + eAh)eAs1qdMs

})
E

(
exp

{∫ ∞

0

bT eAs1qχ(0,h)(s)dMs

})

= eΨh

∞
(1)eΨh(1) ,

where the last equality follows from (4.4). This together with (4.5) yields (4.6). The
case µ 6= 0 results in multiplying the expressions by e2µ. 2

Remark 4.6.

In Proposition 3.9 we have seen that the volatility process is strongly mixing with
exponential rate. A consequence of this property (see e.g. section 1.2.2 in Doukhan
[7]) is that

|Cov(σ2
t+h, σ2

t )| ≤ K · e−ah , ∀ h > 0 .

In particular this means that the autocovariance function of the volatility process will
decay to zero at an exponential rate.

5. Second order properties of the return process

In this section we derive the moment structure of the return process

G
(r)
t := Gt − Gt−r =

∫

(t−r,t]

σs dLs , t ≥ r > 0 .

We will only consider the case of a strictly stationary volatility process. In the second
part of the section we discuss the leverage effect for our model.

5.1. Moments and autocovariance function of the return process

Proposition 5.1. Let L be a Lévy process with E(L1) = 0 and E(L2
1) < ∞. Assume

that the volatility process σ2 is strictly stationary with finite mean. Then E(G2
t ) < ∞
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for all t ≥ 0, and for every t, h ≥ r > 0 it holds

EG
(r)
t = 0 (5.1)

E(G
(r)
t )2 = eµ+Ψ∞(1)rE(L2

1) (5.2)

Cov(G
(r)
t , G

(r)
t+h) = 0. (5.3)

If further E(L4
1) < ∞ and the volatility process has finite second moment, then

E(G4
t ) < ∞ for all t ≥ 0 and for every t, h ≥ r > 0 we have

Cov((G
(r)
t )2, (G

(r)
t+h)2) = E(L2

1)

∫ h+r

h

Cov(G2
r, σ

2
s)ds . (5.4)

Proof: If L has no Brownian component the proof of (5.1) - (5.3) is analogously to
the proof of Proposition 5.1 in Klüppelberg et al. [11] and can be extended in the
same as in the proof of Proposition 2.1 in Haug et al. [10] in case L has a Brownian
component. Since G is a square integrable martingale we get

E((G
(r)
0 )2(G

(r)
h )2) = E(G2

r(Gh+r − Gh)2) = E(G2
r(G

2
h+r − G2

h)) .

Using this result, G2
t = 2

∫ t

0
Gs−σsdLs +

∫ t

0
σ2

sd[L,L]s, t ≥ 0, and the compensation
formula (see e.g. section 0.5 in Bertoin [2]) we get

E((G
(r)
0 )2(G

(r)
h )2) = E

(
2

∫ h+r

h

G2
rGs−σsdLs +

∫ h+r

h

G2
rσ

2
sd[L,L]s

)

= E

(∫ h+r

h

G2
rσ

2
sd[L,L]s

)

=

∫ h+r

h

E(G2
rσ

2
s)τ2

Lds +

∫ h+r

h

E(G2
rσ

2
s)ds

∫

R

x2νL(dx)

= E(L2
1)

∫ h+r

h

E(G2
rσ

2
s)ds

Hence the covariance is equal to

Cov((G
(r)
0 )2(G

(r)
h )2) = E((G

(r)
0 )2(G

(r)
h )2) − (E(G

(r)
t )2)2

= E(L2
1)

∫ h+r

h

(
Cov(G2

r, σ
2
s) + E(G2

r)E(σ2
s)

)
ds − (E(G

(r)
t )2)2

= E(L2
1)

∫ h+r

h

Cov(G2
r, σ

2
s)ds .

The covariance is finite if E(G4
t ) < ∞, ∀ t ≥ 0, and this follows with E(L4

1) < ∞ and
2 ∈ K∞ analogously as in Proposition 1.1 in Haug et al. [10]. 2

Example 5.2. Let us consider again Example 3.7. From 50 000 equidistant observa-
tions of the simulated log-price we computed the empirical autocorrelation function
of the returns and squared returns. In Figure 3 the first 40 lags of both empirical
autocorrelation functions are shown. One recognises the GARCH like behaviour of
zero correlation of the returns and significant correlation of the squared returns.
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Figure 3: The first 40 lags of the empirical autocorrelation function of the return (left) and
squared return (right) process.

In the next Proposition we want to consider the special case that p = q = 1. Under
a further assumption on the mapping h, which has not to be the standard choice of
Definition 3.1, and the Lévy measure νL we can express the covariance of the squared
returns in terms of the covariance of the actual volatility

σ2(h) :=

∫ h+r

0

σ2
sds −

∫ h

0

σ2
sds , h ≥ r .

Proposition 5.3. Let p = q = 1 and assume that the mapping h satisfies (3.5) and
additionally

∫
R

x {exp(b1e
−a1th(x)) − 1} νL(dx) = 0 for all t ≥ 0. Then under the same

conditions as in Proposition 5.1 we get

Cov((G
(r)
t )2, (G

(r)
t+h)2) = (E(L2

1))
2
Cov(σ2(h), σ2(0)) .

Proof: From the proof of Proposition 5.1 we know that

Cov((G
(r)
t )2, (G

(r)
t+h)2) = E(L2

1)

∫ h+r

h

E(G2
rσ

2
s)ds − (rE(L2

1)E(σ2
1))2

= E(L2
1)E

(∫ h+r

h

{
2

∫ r

0

Gu−σudLu +

∫ r

0

σ2
ud[L,L]u

}
σ2ds

)
− (rE(L2

1)E(σ2
1))2 .

Hence the result follows if we can show that E(
∫ r

0
Gu−σuσ2

sdLu) = 0, for all s > r, since

E(
∫ h+r

h

∫ r

0
σ2

uσ2
sd[L,L]uds) = (E(L2

1))
2
E(σ2(h)σ2(0)). Define Yt :=

∫ t

0
Gu−σudLu,

t ≥ 0, and σ̃2
s,t := exp(b1e

−a1(s−t)Xt) for all t ∈ [0, s), where X is the state process

(3.2). Then E(Yrσ
2
s) = E(Yrσ̃

2
s,r+)E(exp(

∫ s

r
b1e

−a1(s−u)dMu) and we have to show
E(Yrσ̃

2
s,r+) = 0. An application of Itô ’s formula and substituting from (3.2) yields

σ̃2
s,r+ = σ̃2

s,0 +

∫ r

0

∫

R−{0}

σ̃2
s,ub1e

−a1(s−u)h(x)ÑL(du, dx)

+

∫ r

0

∫

R−{0}

σ̃2
s,u

{
exp(b1e

−a1(s−u)h(x)) − 1 − b1e
−a1(s−u)h(x)

}
NL(du, dx) .
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Using this representation, integration by parts and taking expectation gives

E(Yrσ̃
2
s,r+) =
∫ r

0

∫

R−{0}

E(Yu−σ̃2
s,u)

{
exp(b1e

−a1(s−u)h(x)) − 1 − b1e
−a1(s−u)h(x)

}
νL(dx)du

+

∫ r

0

∫

R−{0}

E(σ̃2
s,uGu−σu)x

{
exp(b1e

−a1(s−u)h(x)) − 1
}

νL(dx)

=

∫ r

0

∫

R−{0}

E(Yuσ̃2
s,u+)

{
exp(b1e

−a1(s−u)h(x)) − 1 − b1e
−a1(s−u)h(x)

}
νL(dx)du ,

where we used
∫

R
x {exp(b1e

−a1th(x)) − 1} νL(dx) = 0 and Yu−σ̃2
s,u = Yuσ̃2

s,u+ al-
most surely for fixed u. Solving this linear integral equation with initial condition
E(Y0σ̃

2
s,0+) = 0, it follows that E(Yrσ̃

2
s,r+) = 0 for all r ≥ 0 is the only solution. 2

Remark 5.4. In Theorem 3.10 we have seen that (G
(r)
nr )n∈N is strongly mixing with

exponential rate. A consequence of this property (see e.g. section 1.2.2 in Doukhan
[7]) is that there exists a constant KG > 0 such that

|Cov((G
(r)
(n+h)r)

2, (G(r)
nr )2)| ≤ KG · e−ah , ∀ h > 0 .

In particular this means that the autocovariance function of the squared returns will
decay to zero at an exponential rate.

5.2. Leverage effect

In empirical return data researchers have found evidence (see e.g. section 1 in
Nelson [15]) that current returns are negatively correlated with future volatility. This
means that a negative shock increases the future volatility more than a positive one
or increases it while a positive one even decreases the volatility. This phenomenon is
called leverage effect in the literature.
If we take a look at the shocks of the state process X in the ECOGARCH(p, q) model

∆Mt =

{
(θ + γ)∆Lt, ∆Lt ≥ 0
(θ − γ)∆Lt, ∆Lt < 0

,

we see that:

a positive shock in the return data
increases X

(a) less than a negative one for
−γ < θ < 0,

(b) more than a negative one for
0 < θ < γ,

(c) while a negative one decreases it
for
θ > |γ|,

a positive shock in the return data
decreases X

(d) less than a negative one for
0 < θ < −γ,

(e) more than a negative one for
γ < θ < 0,

(f) while a negative one increases it
for
θ < −|γ|.

The corresponding regions in a subset of the parameter space of θ and γ can also
be seen in Figure 4.
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If we compare this to the COGARCH(p, q) process, we see that in the COGARCH
model the innovations of the volatility process at time t are given by the squared
innovations of the log-price process

(see section 2 of Brockwell et al.
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Figure 4: Subset of the parameter space of θ and γ.

[5]). Hence the volatility process
of the COGARCH model reacts in
the same way to positive and neg-
ative shocks. We will consider now
an instantaneous leverage effect,
which is defined as

Cov(∆Gt, σ
2
t+ | |∆Lt| > ǫ)

being negative. Intuitively it is clear
that this correlation can just be
different from zero, if the sample
path of σ2 can have jumps. But
from Remark 3.6 (i) we know that this is just the case for p = q. The reason is that
for p < q the parameter bq will be zero and therefore the jump ∆Lt at time t just
contributes to the (q − 1)th derivative of the state process X, but is not taken into
account for the log-volatility at that time point. Thus we will expect an instantaneous
leverage effect only for the ECOGARCH(p, p) models. This will be shown in the next
proposition, in particular we will show that the sign of the correlation is equal to the
sign of θbq. This result is similar to the discrete time case (see Proposition 2.9 in
Surgailis and Viano [19]).

Proposition 5.5. Let (G
(r)
t )t≥0 be strictly stationary. Assume that the distribution

of the jumps of L is symmetric, i.e. for all ǫ > 0,

P (∆Lt ∈ dx| |∆Lt| > ǫ) = P (∆Lt ∈ −dx| |∆Lt| > ǫ), t ≥ 0.

Conditionally on the event that |∆Lt| > ǫ, the sign of Cov(∆Gt, σ
2
t+) is equal to the

sign of θbq.

Proof: Since the distribution of the jumps of L is symmetric we get

E(∆Gt | |∆Lt| > ǫ) = E(σt)E(∆Lt | |∆Lt| > ǫ)

= E(σt)

(∫

x>ǫ

xP (∆Lt ∈ dx| |∆Lt| > ǫ) −

∫

x>ǫ

xP (∆Lt ∈ dx| |∆Lt| > ǫ)

)

= 0 .

This then implies

Cov(∆Gt, σ
2
t+ | |∆Lt| > ǫ) = E(∆Gtσ

2
t+ | |∆Lt| > ǫ)

= E

(
∆Gt exp

{∫

(−∞,t]

bT eA(t−s)1q(θ∆Ls + γ|∆Ls| − Cds)

}
| |∆Lt| > ǫ

)

= E
(
σ3

t ∆Lt exp{bT 1q(θ∆Lt + γ|∆Lt|)} | |∆Lt| > ǫ
)
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Since ∆Lt is independent of σ3
t we get

Cov(∆Gt, σ
2
t+| |∆Lt| > ǫ)

= E(σ3
t )E(∆Lt exp {bq(θ∆Lt + γ|∆Lt|)} | |∆Lt| > ǫ)

= E(σ3
t )

∫

x>ǫ

x exp(bqγx)(exp(θbqx) − exp(−θbqx))P (∆Lt ∈ dx| |∆Lt| > ǫ) .

From sgn(exp(θbqx) − exp(−θbqx)) = sgn(θbq) for all x > ǫ the desired result follows.
2

6. Conclusion

In this paper we have proposed a continuous time extension of the discrete time
EGARCH(p, q) process. We gave conditions for stationarity of the volatility and return
process and derived some moment expressions depending on the distribution of the
driving Lévy process. Compared to the continuous time GARCH(p, q) process we do
not need any parameter restriction to ensure positivity of the volatility.Further we
demonstrated that our model is able to describe an instantaneous leverage effect.The
model can also be extended to incorporate a long memory effect in the volatility,
which was done by Haug and Czado [9] by characterising the log-volatility process as
a fractionally integrated CARMA(q, p − 1) process.
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We like to thank Claudia Klüppelberg and Alexander Lindner for helpful comments
and useful discussions concerning the COGARCH model. This work was supported by
the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 386, Statistical Anal-
ysis of Discrete Structures.

References
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[11] Klüppelberg C., Lindner A.M. and Maller R. (2004). A continuous time GARCH process
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