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Abstract

We prove that the quasi-score estimator in a mean-variance model is optimal
in the class of (unbiased) linear score estimators, in the sense that the differ-
ence of the asymptotic covariance matrices of the linear score and quasi-score
estimator is positive semi-definite. We also give conditions under which this
difference is zero or under which it is positive definite. This result can be
applied to measurement error models where it implies that the quasi-score
estimator is asymptotically more efficient than the corrected score estimator.

1 Introduction

Assume that the relation between a dependent (continuous or discrete) vari-
able y and a (possibly vector-valued) continuous variable x is given by a pair
of conditional mean and variance functions

E(y|x) =: m(x, β) (1)

V(y|x) =: v(x, β), (2)

which are known to the statistician except for an unknown k-dimensional
parameter vector β to be estimated from an i.i.d. sample (xi, yi), i = 1, . . . , n.
The functions m and v are assumed to be sufficiently smooth with respect
to x and β, and v > 0. We also assume that the distribution of x does not
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depend on β (i.e., β is a regression parameter vector and does not contain
parameters describing the distribution of x). Such a model is called a mean-
variance model, cf. Carroll et al. (1995).

To estimate this model we consider the class of all unbiased estimating func-
tions that are linear in y:

SL := SL(x, y, β) := g(x, β)y − h(x, β), (3)

where g and h are column vectors of the same dimension, k, as β. As functions
of x and β, they are assumed to be sufficiently smooth. We call SL a linear
score function. By definition, SL is unbiased, which means that

ESL(x, y, β) = 0 (4)

for all β, where the expectation is taken under the same β as the β in the
argument of SL.

The estimator of β based on SL is called linear score (LS) estimator β̂L and
is given as the solution to the equation

n∑
1

SL(xi, yi, β̂L) = 0.

Under general conditions, similar to those studied in Kukush and Schneeweiss
(2005), β̂L is consistent and asymptotically normal.

Within this class of estimators, the quasi-score (QS) estimator β̂Q stands
out, cf. Wedderburn (1974) for the related concept of quasi-likelihood. It is
based on the quasi-score function

SQ := SQ(x, y, β) := [y −m(x, β)]v(x, β)−1∂m(x, β)

∂β
, (5)

which is obviously a member of the class of linear score functions.

We want to prove that β̂Q is optimal within the class of linear score estimators
in the sense that its asymptotic covariance matrix (ACM) is less or equal (in
the Loewner sense) to the ACM of any other estimator of this class. We also
give conditions under which the ACMs are equal and under which the ≥ sign
can be replaced with the > sign.

This kind of problem shows up in the context of measurement error models.
In Kukush et al. (2005), a measurement error model based on an error-free
regression model from an exponential family was considered. The likelihood
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score function of the error-free model can be transformed into a so-called
corrected score function, which has exactly the form (3). In addition, the
quasi-score function (5) can be constructed from a derived mean-variance
model if the distributions of the latent regressor and the measurement error
are given.

It can be shown that the corrected score estimator is (asymptotically) less
efficient than the quasi-score estimator. This was proved in Kukush et al.
(2005) with the help of an intermediate estimator and by going back to
the underlying likelihood score function of the error-free model. However,
it turns out that one need not resort to the original error-free model and,
indeed, the proof can be greatly simplified if one just stays with the derived
mean-variance model in the manifest variables x and y. The optimality
statement we are going to prove is also more general as it does not only
apply to measurement error models but to any mean-variance model.

If the class of linear score functions is restricted to the class of conditionally
unbiased linear score functions, i.e., to score functions S∗L with the property
E(S∗L|x) = 0, then the optimality of QS within this class is almost an imme-
diate consequence of Theorem 2.3 in Heyde (1997), which deals with score

functions of the form [y−m(x, β)]g(∂m(x,β)
∂β

). Here, however, we want to prove
the optimality of QS within the wider class of linear score functions that are
unconditionally unbiased, and for that we need some additional arguments.
We can prove this more general result by applying Heyde’s (1997) very gen-
eral optimality criterion, Theorem 2.1. But we go beyond this optimality
criterion when we give conditions for strict optimality of QS.

In Section 2 we give our main result: a proof of the optimality of QS and a
condition when LS and QS have the same efficiency. Section 3 gives condi-
tions under which QS is strictly better than LS. Some concluding remarks
are found in Section 4.

2 Optimality of QS

In the sequel, we often omit the arguments in the various functions, g, h, m, SL

etc. E.g., we abbreviate (3) by writing SL = gy − h. We also denote the
derivative of a function with respect to β by the subscript β. Thus

mβ :=
∂m(x, β)

∂β
,
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where mβ is a column vector of the same dimension, k, as β. By convention,
the derivative of a column vector-valued function l(β) with respect to β is
always meant to be the matrix lβ := ∂l

∂β> with (i, j)-element ∂li
∂βj

.

The ACM of any linear score estimator β̂L is given, under general conditions,
by the sandwich formula

ΣL = A−1
L BLA−>

L , (6)

where

AL := −ESLβ

BL := ESLS>L .

We implicitly assume that AL is non-singular.

The ACM of the quasi-score estimator β̂Q is given by a similar sandwich
formula, which, however, simplifies to

ΣQ = (Ev−1mβm>
β )−1. (7)

The following theorem states the optimality of QS within the class of linear
score estimators.

Theorem 1

a) In a mean-variance model

ΣQ ≤ ΣL (8)

for any linear score estimator β̂L.

b) Moreover, ΣQ = ΣL for a specific β if, and only if,

h(x, β) = m(x, β)g(x, β) (9)

g(x, β) = K(β)v(x, β)−1mβ(x, β) (10)

for some non-stochastic non-singular matrix K(β).

c) Finally, ΣQ = ΣL for all β if, and only if, β̂Q = β̂L for all samples.
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Proof: First note that (3) and (4) imply

E(gm− h) = 0

and furthermore, since the expectation is taken with respect to x and the
distribution of x does not depend on β,

E(gβm + gm>
β − hβ) = 0.

It follows that

AL = −E(gβy − hβ)

= −E(gβm− hβ)

= Egm>
β . (11)

In addition, by (3),

BL = E[g(y −m)− (h−mg)][g(y −m)− (h−mg)]>

= E[vgg> + (h−mg)(h−mg)>] (12)

From (6), (11) and (12),

(Egm>
β )−1Evgg>(Egm>

β )−> ≤ ΣL (13)

In order to prove (8), we need only to show that

(Ev−1mβm>
β )−1 ≤ (Egm>

β )−1Evgg>(Egm>
β )−> (14)

or equivalently

Ev−1mβm>
β ≥ (Egm>

β )>(Evgg>)−1Egm>
β . (15)

Here we assume that Evgg> > 0. Denote

v
1
2 (Evgg>)−

1
2 g =: p, v−

1
2 mβ =: q. (16)

Then (15) is equivalent to

Eqq> ≥ Eqp>Epq>, (17)

where Epp> = I. Now, since
(

p
q

)(
p
q

)>
=

(
pp> pq>

qp> qq>

)
≥ 0,

therefore also (
I Epq>

Eqp> Eqq>

)
≥ 0. (18)

The desired result will then follow from the following purely algebraic Lemma,
which is proved in the appendix.
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Lemma: Let Q be a symmetric (m ×m)-matrix and let P be m × k and
I the k × k identity matrix. Then

(
I P>

P Q

)
≥ 0 ⇔ Q ≥ PP> (19)

and
(

I P>

P Q

)
> 0 ⇒ Q > PP>. (20)

Inequality (17) now follows from (18) and (19) with Q = Eqq> and P = Eqp>,
(m = k). This proves (14) and part a) of Theorem 1.

In order to prove part b), we note that ΣQ = ΣL for any specific β iff there
is equality both in (13) and (15). We have equality in (13) iff

E(h−mg)(h−mg)> = 0,

which is equivalent to h = mg, a.s. But as m, g, and h are continuous
functions in x and x is a continuous variable, this is equivalent to

h = mg (21)

as function of x (given β).

On the other hand, equality in (15) means equality in (17) and this means

E
(

p
q

)(
p
q

)>
=

(
I Epq>

Eqp> Eqp>Epq>

)
=

(
I

Eqp>

)(
I

Eqp>

)>
.

Thus the (2k × 2k)-matrix E(p>, q>)>(p>, q>) has rank k. But then

K1p + K2q = 0, a.s.

with some non-stochastic (k×k)-matrices K1 and K2 such that rank (K1, K2) =
k. The matrices K1 and K2 are functions of β. Since Eqq> = Ev−1mβmT

β > 0

and Epp> = I > 0, K1 and K2 are both non-singular. Hence p = −K−1
1 K2q,

a.s. From the definition of p and q in (16) it follows that g = Kv−1mβ, a.s.,
with some non-stochastic non-singular matrix K = K(β). By the argument
that led to (21), then also

g = Kv−1mβ (22)

as functions of x (given β). Conversely, (22) implies equality in (15), as one
can see directly by substituting g from (22) in (15) his proves part b) of
Theorem 1.
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Part c) now follows immediately: If (21) and (22) hold true for all β, then

SL = (y −m)g = KSQ. (23)

Thus if ΣQ = ΣL for all β, SL and SQ generate the same estimator, i.e.,

β̂L = β̂Q. The converse is obvious. ¨

Remark 1: The linear score function in (23)

SS := (y −m)g

gives rise to the special linear score estimator β̂S, which we may call a simple
(linear) score (SS) estimator. With regard to asymptotic efficiency it stands

between β̂L and β̂Q in so far as

ΣQ ≤ ΣS ≤ ΣL,

where ΣS is the ACM of β̂S. Inequality ΣS ≤ ΣL is just a restatement of
(13), as ΣS is equal to the l.h.s. of (13), and ΣQ ≤ ΣS is a restatement of
(14).

Remark 2: The SS estimator corresponds to the SS estimator introduced
in Kukush et al. (2005), except that there it was related to the CS estimator
of a measurement error model, whereas here it belongs to a general mean-
variance model.

Remark 3: The simple score function SS has the property that not only
ESS = 0 but even E(SS|x) = 0. It is of a form which was also considered in
Heyde’s (1997) Theorem 2.3, except that there the function g was a function
of β only via mβ, whereas here it is a general function of x and β. Apart
from this slight difference, one can immediately deduce ΣQ ≤ ΣS from Heyde
(1997, Theorem 2.3). We preferred to give an independent proof via the
lemma because that enabled us to study also the case when ΣQ = ΣS = ΣL

(part b) of Theorem 1).

An example for part b) of Theorem 1 is the following. Consider the special
linear score estimator based on the score function

SL = (y −m)mβ.

Thus SL differs from SQ just by the omission of the factor v−1 and would
be equal to SQ if v were constant (i.e., homoscedastic). Clearly ΣQ ≤ ΣL
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for this estimator. According to Theorem 1 b) (10) ΣQ = ΣL if, and only if,
g := mβ = Kv−1mβ (The other condition (9) is satisfied anyway). Since the
component functions mβi(x), i = 1, ..., k, of mβ(x) are linearly independent,
there exist values x1, ..., xk such that the matrix M with elements Mij =
mβi(xj) is non-singular. We then have vM = KM and consequently vI = K.
As K is a constant matrix for given β, v is also constant given β and does
not depend on x. Thus ΣQ = ΣL if, and only if, v = v(β) = const. If this is

true for every β, then β̂Q = β̂L.

Another example in the context of measurement error models is found in
Kukush et al. (2005), Section 7.1.

We can give another, very short, proof of Theorem 1a) by employing a cri-

terion of Heyde (1997, Theorem 2.1). According to this criterion β̂Q is more

efficient than β̂L if

(ESLβ)−1ESLS>Q

does not depend on β.

Indeed, by (11),

ESLβ = −AL = −Egm>
β

and

ESLS>Q = E[g(y −m)− (h− gm)]v−1(y −m)m>
β

= Egm>
β .

Thus

(ESLβ)−1ESLS>Q = −I

is obviously independent of β, and it follows that ΣQ ≤ ΣL for any linear
score estimator. ¨

This argument, however, does not allow us to give conditions under which
ΣQ = ΣL (Theorem 1b)) or ΣQ < ΣL (Theorem 2).

3 Strict optimality of QS

We want to give sufficient conditions such that ΣQ < ΣL, (i.e., ΣL − ΣQ is
positive definite).
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Theorem 2 Suppose that for any specific β one of the following two condi-
tions holds, where g = (g1, . . . , gk)

>, h = (h1, . . . , hk)
> and β = (β1, . . . , βk)

>,
g and h being the vectors of a linear score function (3).

a) The functions hi−mgi, i = 1, . . . , k, are linearly independent as functions
of x.

b) span{g1, . . . , gk} ∩ span{v−1mβ1 , . . . , v
−1mβk

} = {0}.

Then

ΣQ < ΣL.

Proof: Under condition a),

E(h−mg)(h−mg)> > 0.

This implies, see (12), that EvggT < BL and hence that we have strict
inequality in (13). Together with (14) this implies ΣQ < ΣL.

Under condition b), the components pi and qi, i = 1, . . . , k, of the vectors p
and q defined in (16) satisfy

span{p1, . . . , pk} ∩ span{q1, . . . , qk} = {0}.

As {p1, . . . , pk} and {q1, . . . , qk} are both linearly independent sets of func-
tions of x, see the proof of Theorem 1, it follows that the 2k functions
p1, . . . , pk, q1, . . . , qk are linearly independent. Therefore, we can replace the
≥ sign in (18) by the > sign. From (20) of the lemma it now follows that

Eqq> > Eqp>Epq>,

i.e., we have strict inequality in (15) and consequently also in (14). Together
with (13) this implies ΣQ < ΣL. ¨

Remark 4: We may supplement this result by stating that condition a)
implies ΣS < ΣL and condition b) implies ΣQ < ΣS, and hence both imply
ΣQ < ΣL.

Applications of Theorem 2 in the context of measurement error models are
found in Kukush et al. (2005), Section 7.2.
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4 Conclusion

When one wants to estimate a parametric regression of y on x given by a con-
ditional mean function E(y|x) = m(x, β) and supplemented by a conditional
variance function V(y|x) = v(x, β), then the quasi-score (QS) estimator is
often the estimator of ones choice. It is known, see Heyde (1997, Theorem
2.3) that this estimator is asymptotically most efficient within the class of all
estimators that are based on a linear-in-y conditionally unbiased estimating
function

S∗L(x, y, β) = g(x, β)y − h(x, y),

where conditional unbiasedness means that E(S∗L|x) = 0. We can prove that
this optimality result holds within the wider class of so-called linear score es-
timators, which are based on unconditionally unbiased linear-in-y estimating
functions, i.e., on linear functions SL(x, y, β) of the same form as S∗L but with
ESL = 0 and not necessarily E(SL|x) = 0. The special class of conditionally
unbiased estimating functions is characterized by the property that pm = q,
which gives the function S∗L the special form

S∗L = (y −m)g.

We called such a function a simple (linear) score function. By proving that
a linear score estimator is less efficient than a simple score estimator, we
can extend Heyde’s optimality result (for the quasi-score estimator) to the
more general class of linear score estimators (Theorem 1a)). In addition we
show that QS has the same efficiency as LS if and only if the two estimators
coincide. We also give sufficient conditions under which QS is strictly more
efficient than LS (Theorem 2).

Mean-variance models sometimes have an additional (dispersion) parameter
ϕ in the variance function, which then is to be denoted by v(x, β, ϕ). To
estimate ϕ, one can use various unbiased estimating functions Sϕ(x, y, β, ϕ),
e.g., Sϕ = (y −m)2 − v. Formula (7) for ΣQ remains, however, unchanged
and all the results of this paper hold true even in this more general case.

Linear score estimators appear naturally in the context of measurement er-
ror models. The so-called corrected score (CS) estimator is a linear score
estimator. Thus we have as a Corollary to Theorem 1 that CS is less efficient
that QS.
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Appendix

Proof of the Lemma:

Let
(

I P>

P Q

)
≥ 0. (A1)

This implies that for any k-vector x1 and m-vector x2

x>1 x1 +x>1 P>x2 +x>2 Px1 +x>2 Qx2 ≥ 0. (A2)

Set x1 = −P>x2, then the l.h.s. of (A2) becomes

x>2 PP>x2 − 2x>2 PP>x2 + x>2 Qx2 = x>2 (Q− PP>)x2 ≥ 0

for all x2. Hence

Q− PP> ≥ 0.

Conversely, Q ≥ PP T implies

x>1 x1 + x>1 P>x2 + x>2 Px1 + x>2 Qx2

≥ x>1 x1 + x>1 P>x2 + x>2 px1 + x>2 PP>x2

= (x>1 + x>2 P )(x>1 + x>2 P )> ≥ 0,

which implies (A1).
Now suppose the ≥ sign in (A1) is replaced with the > sign. Then by the
same argument for any x2 6= 0,

x>2 (Q− PP>)x2 > 0

and hence

Q− PP> > 0.
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