~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make Your PUbllCCltlonS VZSlble. h for Economics ' '

Muller, Gernot J.; Czado, Claudia; Antes, Stefan; Rottenwallner, Martin

Working Paper
Regression models for ordinal valued time series:

applications in high frequency finance and medicine

Discussion Paper, No. 335

Provided in Cooperation with:

Collaborative Research Center (SFB) 386: Statistical Analysis of discrete structures - Applications in
Biometrics and Econometrics, University of Munich (LMU)

Suggested Citation: Miiller, Gernot ).; Czado, Claudia; Antes, Stefan; Rottenwallner, Martin
(2003) : Regression models for ordinal valued time series: applications in high frequency
finance and medicine, Discussion Paper, No. 335, Ludwig-Maximilians-Universitat Miinchen,
Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen, Miinchen,
https://doi.org/10.5282/ubm/epub.1713

This Version is available at:
https://hdl.handle.net/10419/31041

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.5282/ubm/epub.1713%0A
https://hdl.handle.net/10419/31041
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Regression Models for Ordinal Valued Time Series:
Applications in High Frequency Finance and Medicine

Gernot Miiller, Claudia Czado, Stefan Antes, Martin Rottenwallner

Zentrum Mathematik
Technische Universitat Miinchen
Boltzmannstrafle 3
85747 Garching bei Miinchen
Germany

May 2003

Abstract

In this paper we investigate intraday data of the IBM stock and a time series
representing the sleep states of a newborn child. In both cases we are interested in
the influence of several covariates observed together with the response series. For
this purpose we use on the one hand the regression model proposed in Miiller and
Czado (2002), on the other hand the ordered probit model. The parameters are
estimated with the GM-MGMC algorithm described in Miiller and Czado (2002).
Predictions are computed to test the results.

Keywords: Discrete-valued time series; High-frequency finance; Markov Chain Monte Carlo;

Ordered Probit; Regression.



1 Introduction

In this paper we investigate two discrete valued time series and search for significant
covariates in both cases. The first time series represents the absolute price differences of
the IBM stock at the New York Stock Exchange (NYSE) on November 29, 2000. The
data is taken from the TAQ2 data base of the NYSE. In recent years many propositions
were made to model such high frequency financial data. For a global overview about high
frequency finance see Bauwens and Giot (2001) or Dacorogna, Gengay, Miiller, Olsen,
and Pictet (2001). In our time series only price differences that are integer multiples of
one sixteenth of a dollar are observed together with several covariates. This time series
is investigated in Section 2.

The second time series, which is investigated in Section 3, represents the sleep states of a
newborn child measured on an integer scale from one to four. Here we have information
about the heart rate and the temperature of the child.

Therefore in both cases we have an observation of a discrete response time series {Y;,t =
1,...,T}, where Y; takes on only K different values and a (p + 1)-dimensional vector
X; = (1, Xy, ..., Xyp)' of real-valued covariates for each t € {1,...,7}. We assume that
there exists an underlying unobserved real-valued time series {Y;*,¢t = 1,...,7} which
produces Y; by thresholding. More precisely:

Y, = bk = Y€1, 4), ke{l,...,K} (1.1)
Y = X8+ oY, +e}, te{l,...,T} (1.2)

where 3 is the vector of the regression coefficients and ¢ the autoregressive parameter.
The cutpoints «; have to fulfill the order condition —co = ay < oy < ... < ag_1 < ag =
co. All latent variables are marked with an asterisk. Further we assume &} ~ N (0, 6%)
i.i.d.. Since the vector of covariates contains an intercept we have to fix a; for reasons
of identifiability. In particular we set ; = 0. For the same reasons we have to fix the
variance §2. Therefore we set §% = 1.

For more details concerning this model and a MCMC estimation algorithm for the latent
variables and parameters see Miiller and Czado (2002).

2 IBM data

In this section we want to apply the model defined above to intraday data from the
IBM stock on 29th of November 2000. The response variable we are interested in is the
absolute value of the transaction price change between two subsequent transactions of
the IBM stock. This variable is abbreviated by PC (absolute Price Change). As the IBM
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stock is frequently traded we have considerable data available for estimation (usually
more than 2000 observations per day), even if we only use the observations from 9:55am
until 3:25pm. This way we omit observations from the opening and the closing period
which might exhibit a different behaviour. The price changes take on only values which
are integer multiples of one sixteenth of a dollar. The categories associated with the
absolute price changes are given in Table 1, together with the observed frequencies.

‘ absolute value of price change ‘ PC H frequency ‘

0$ ] 1 863
1/16$ | 2 919
2/165 | 3 252

> 3/16$ | 4 59

Table 1: Absolute price changes: associated categories and observed frequencies.

For our analysis we have the following covariate information available:

e TD, the logarithm of the time elapsed between two subsequent transactions in
seconds,

e SIZE, the transaction volume in numbers of shares,
e BOS, the last available bid-offer-spread,

e DIR, the sign of the price change (DIR=0 if PC=0).

We will further examine the influence of lagged covariates on PC. For this purpose we
introduce the notation SIZE_;,SIZE_,,. .. for the transaction volume one, two, ... trans-
actions before. An analogous notation will be used for the other covariates.

Since the response PC, which corresponds to Y; in the model definition, is discrete and
takes on only four values, ordinary scatter plots will not show us if there is a linear de-
pendency between the latent response variable Y;* and the covariates (assuming nearly
equidistant cutpints). Therefore we categorize the covariates as shown in Table 2. Now
for each covariate we can compute the average of the absolute price changes (PC) per cat-
egory and then search for linear, quadratic, logarithmic, or other nonlinear relationships
between the covariate and PC. We emphasize that for the statistical analysis presented
in Section 2.2 we use scored values 0.2,0.6,...,2.6 of TD instead of categories 1,...,7.



logarithm of elapsed time ‘ TD H frequency

<04 1 89
> 0.4 and < 0.8 2 161
> 0.8 and < 1.2 3 224
>1.2and < 1.6 4 194
> 1.6 and < 2.0 5 440
>20and <24 6 391

> 24 7 594

transaction volume ‘ SIZE H frequency ‘

< 500 1 669
> 500 and < 1000 2 351
> 1000 3 1073

‘ last bid-offer-spread ‘ BOS H frequency ‘

0.0625 | 0.0625 261
0.1250 | 0.1250 679
0.1875 | 0.1875 962
0.2500 | 0.2500 045
0.3125 | 0.3125 46

price change ‘ DIR H frequency ‘

<0 -1 603
0 0 863
>0 1 627

Table 2: Associated categories and observed frequencies. Note that the covariate BOS
still contains the original values.

2.1 Exploratory analysis of the IBM data

We present now an exploratory analysis investigating the impact of the different covari-
ates on the absolute price changes PC using the procedure outlined above.

2.1.1 Impact of the logarithmic time differences (TD) on the absolute price
changes

From the first row in Figure 1 we see that the average response PC clearly increases
from 1.39 for transactions with TD=1 to 1.80 for transactions with TD=7. We also see
that at least for TD between 1 and 5 the dependency seems to be approximately linear.
However, between TD=5 to TD=T7 we even see that the response decreases slightly from



1.86 to 1.8. Nevertheless we will continue to use TD as covariate.

There is no hint for a significant influence of TD _; on PC: The average response fluc-
tuates without any trend between 1.68 and 1.86 (cf. first row in Figure 1). A similar
result is obtained from the examination of TD_, and TD_3 (cf. Figure 1).

2.1.2 Impact of the last bid-offer-spread (BOS) on the absolute price change

There seems to be a significant dependency between BOS and PC (cf. second row in
Figure 1). From the plot we see that the dependency is almost linear, even if the slope
seems to increase slightly with increasing BOS. The average response increases from 1.48
for BOS=0.0625 to 2.39 for BOS=0.3125. We have a similar result for BOS_;. Here
the differnce between maximal and minimal average response is 2.23 — 1.52 = 0.71 (cf.
Figure 1).

Even BOS_; still seems to have a strong positive relationship with PC (cf. Figure 1).
The average PC increases depending on the value of BOS 5 from 1.6 to 2.28. But
the dependency is not linear, which is evident if we consider the average response for
BOS_5=0.3125 that is higher than we would expect in the case of linearity. For small
values of BOS_3 the average of PC is 1.63, for big ones it is 2.06.

For all covariates BOS, BOS_y, ... the curve in Figure 1 is convex. Thus, we now
consider squared covariates BOS?, BOS? |, .... Then we have in all four cases a curve
indicating a linear dependency (cf. Figure 2). So from now on, we will focus on this
transformation of BOS as a covariate.

2.1.3 Impact of the transaction volume (SIZE) on the absolute price change

The corresponding row in Figure 1 indicates a positive dependency of PC and SIZE. The
curve is approximately linear. With increasing SIZE the average of the corresponding
price changes also increases from 1.647 to 1.846. However, compared to the results we
presented for the covariates TD and BOS, this increase is not as high. For SIZE
and SIZE_3; we see again a positive linear dependency. But the differences between the
averages of the response are relatively small (for SIZE_;: 1.72 — 1.79, SIZE_3: 1.69 —
1.81). For SIZE_, there is no linear dependency observable.

2.1.4 Impact of sign of the price change (DIR) on the absolute price change

We do not take DIR itself into consideration as a covariate, because the price direction
contains deterministic information about the absolute price change, since DIR=0 —



PC=1, which also would cause an inconsistency with the model assumption of a normally
distributed underlying variable Y,*. From the last row in Figure 1 we see that the average
values of PC are nearly equal, regardless whether DIR = -1 or DIR = 1 and therefore
no influence of DIR on the absolute price difference can be expected.

From the plots corresponding to DIR_; and DIR_, one can see that there is no linear
relationship between PC and these lagged covariates. However, one could consider for
example the absolute value of DIR_; as a covariate to model the fact that PC # 1 in
t — 1 makes it more likely that the price also changes in ¢. But this effect is already
incorporated in the model through the AR(1)-component, and so we do not examine
models with this covariate.

2.1.5 Impact of interactions of the covariates on the absolute price change

The plots illustrating interaction effects can be found in Figures 3 and 4. For the
examination of the interactions we proceeded in the following way: First we multiplied
the categorized covariates, which we described in Table 2, with each other. Then we
have again grouped the created covariates into categories such that we can now conduct
the analysis just as we have done it in the sections above. The interactions of TD with
BOS, TD with SIZE and BOS with SIZE all show an approximately linear relationship
in the plot. As TD*BOS increases the average value of PC increases from 1.44 to 2.44,
while it changes from 1.55 to 1.97 as TD«SIZE increases. Finally the average value of
PC grows from 1.56 to 2.4 as BOS«SIZE increases.

The relationships between PC and interactions with DIR are again quite symmetric and
are no used in the following for the same reasons as outlined in Section 2.1.4.

Figure 4 shows the observed relationships for the twoway interacting terms involving the
transformed variable BOS2. Here the curves seem to be even closer to a straight line
than for BOS, showing again the usefulness of this transformation.

2.2 Estimations with the GM-MGMC Gibbs-Sampler

For the estimation of the parameters we use the Grouped Move Multigrid Monte Carlo
(GM-MGMCQ) algorithm proposed by Miiller and Czado (2002) for models of the form
(1.1) and (1.2). Here and in the following sections the regression part X;3 always
contains the intercept. The corresponding regression coefficient is denoted by y. Finally,
¢ denotes the autoregressive parameter. We applied the GM-MGMC Gibbs-sampler for
10000 iterations and considered a burn-in of 2000 iterations as sufficient after examining
the time sequence plots.



2.2.1 Model with covariates TD, SIZE, BOS, and BOS?

As a first model, we investigate the model with TD, SIZE and BOS as covariates.
Posterior mean estimates, 95%- and 90%- credibility intervals for the parameters are
given in Table 3. For comparison we also give the values where BOS? is used in addition

| [ ax] o3[  Bo[A(TD) [ %2(SIZE) [ B3(BOS) [ ¢ ]
mean || 1.3592 | 2.3368 | -0.9615 | 0.2061 0.0803 4.2005 | 0.0629
2.5% || 1.2857 | 2.2100 | -1.1550 | 0.1348 0.0241 3.4238 | 0.0099
5.0% || 1.2971 | 2.2285 | -1.1255 | 0.1470 0.0332 3.5459 | 0.0186
95.0% || 1.4241 | 2.4501 | -0.7940 | 0.2642 0.1286 4.8654 | 0.1070
97.5% || 1.4377 | 2.4723 | -0.7627 | 0.2762 0.1366 4.9802 | 0.1147

Table 3: Posterior mean estimates and estimated posterior quantiles for the model with
TD, SIZE and BOS.

| [ | o3[ 5o [B(TD) | B(SIZE) | 55(BOS) [ A(BOS*) [ ¢ |
mean || 1.3631 | 2.3351 | -0.6728 | 0.2068 0.0778 0.3526 11.1189 | 0.0612
2.5% || 1.2871 | 2.2059 | -1.0182 | 0.1369 0.0208 | -3.5720 0.0446 | 0.0088
5.0% || 1.2986 | 2.2253 | -0.9644 | 0.1481 0.0296 | -2.9715 1.5378 | 0.0176
95.0% || 1.4271 | 2.4471 | -0.3825 | 0.2657 0.1255 3.6562 20.4890 | 0.1059
97.5% || 1.4394 | 2.4666 | -0.3273 | 0.2768 0.1338 4.2742 22.3493 | 0.1153

Table 4: Posterior mean estimates and estimated posterior quantiles for the model with
TD, SIZE, BOS, and BOS?.

(cf. Table 4). We see that in both cases the covariates and the autoregressive parameter
are significantly different from zero. In the second model BOS remains still in the model
since its square is significant. In the following we refer to the second model as the basic
model.

To demonstrate that the GM-MGMC algorithm has converged we present in Figure 5
the sampled MCMC iterations together with the sample autocorrelations in Figure 6.
They show a satisfactory behavior of the algorithm. We checked that all other models
presented below behave similarly satisfactory and omit therefore the corresponding time
sequence and autocorrelation plots.

We will now investigate whether interactions and lagged covariates will improve the fit.



2.2.2 Models with interactions

We consider three models that allow for interactions. In each of these models we use
the covariates TD, SIZE, BOS, and BOS2. In the first model we add the interaction of
BOS resp. BOS? and SIZE, in the second model the interaction of BOS resp. BOS?

| H a | o | Bo | Bi(TD) | Bo(SIZE) | B5(BOS) |
mean 1.3650 2.3596 | -0.3386 | 0.0184 -0.2277 0.4281
2.5% 1.2911 2.2324 | -0.7175 | -0.0955 -0.3847 | -3.5600
5.0% 1.3018 2.2516 | -0.6581 | -0.0773 -0.3612 -2.9027
95.0% 1.4287 2.4691 | -0.0171 | 0.1123 -0.0963 3.7343
97.5% 1.4391 2.4893 | 0.0396 | 0.1326 -0.0712 4.3302
B4(BOS?) | B5(TD*SIZE) 3
mean 10.8791 0.1658 | 0.0643
2.5% -0.4034 0.0874 | 0.0100
5.0% 1.4382 0.0996 | 0.0196
95.0% 20.2412 0.2322 | 0.1092
97.5% 22.1794 0.2456 | 0.1172

Table 5: Posterior mean estimates and estimated posterior quantiles for the model with
interaction of TD and SIZE.

and TD, and in the third model the interaction of TD and SIZE. The quantile estimates
show that in the first two models the interactions are not significant on the 90% level
(not shown here). The parameter and quantile estimates for the third model are given
in Table 5. Here the interaction of TD and SIZE is significant. The fact, that the
credibility intervals for the coefficients corresponding to TD and BOS contain zero, does
not play any role, since TD is part of the interaction and BOS? is significant on the 90%
level, too.

Therefore we conclude that if we want to use a model with interactions we use the third
one, i.e. the model with covariates TD, SIZE, BOS, BOS?, and with the interaction of
TD and SIZE.

2.2.3 Models with lagged covariates

The explorative analysis in Section 2.1 indicates that the lagged variable TD has no sig-
nificant influence on PC. This explorative result is confirmed by examining the quantile
estimates for the model with the covariates TD, SIZE, BOS, BOS?, and TD_;: The 90%
credibility interval for TD_;, [—0.1007,0.0178], contains zero. So we concentrate on the



| | Qv as | Bo | B1(TD) | Bo(SIZE) | B5(BOS) |

mean 1.3675 2.3373 | -0.7191 | 0.2096 0.0743 0.3390

2.5% 1.2923 2.2098 | -1.0733 | 0.1377 0.0162 -3.5473

5.0% 1.3034 2.2293 | -1.0189 | 0.1485 0.0260 -3.0336

95.0% 1.4340 2.4481 | -0.4185 | 0.2695 0.1215 3.6859

97.5% 1.4468 2.4703 | -0.3645 | 0.2816 0.1311 4.3033
B.(BOS?) | B(SIZE_) 5

mean 10.9702 0.0456 | 0.0599

2.5% -0.3092 -0.0109 | 0.0071

5.0% 1.4785 0.0007 | 0.0157

95.0% 20.4869 0.0920 | 0.1043

97.5% 22.1121 0.1009 | 0.1132

Table 6: Posterior mean estimates and estimated posterior quantiles for the basic model
together with SIZE ;.

| | ap o | Bo [ B1(TD) | B>(SIZE) [ 43(BOS) |
mean 1.3624 2.3528 | -0.7865 | 0.2037 0.0810 | -0.1659
2.5% 1.2844 2.2187 | -1.1452 | 0.1334 0.0240 -4.1364
5.0% 1.2955 2.2398 | -1.0861 | 0.1444 0.0324 -3.4634
95.0% 1.4312 2.4677 | -0.4858 | 0.2645 0.1296 3.1457
97.5% 1.4438 2.4912 | -0.4248 | 0.2764 0.1387 3.7471
84(BOS?) | ;(BOS ) ¢
mean 10.3964 1.3617 | 0.0439
2.5% -0.8205 0.4053 | -0.0118
5.0% 0.9833 0.5358 | -0.0027
95.0% 19.7331 2.1930 | 0.0898
97.5% 21.6042 2.3427 | 0.0986

Table 7: Posterior mean estimates and estimated posterior quantiles for the basic model
together with BOS_;.

examination of the lagged covariates SIZE, BOS, and BOS?. First we add SIZE_; to
the basic model with covariates TD, SIZE, BOS, BOS2. The quantile estimates however
show that this lagged covariate is not significant (90% credibility interval for SIZE_;:
[—0.0590,0.0373]). The same holds for SIZE 5 (90% credibility interval for SIZE_:
[—0.0358,0.0598]). However, SIZE with lag 3 is significant on the 90% level, but not
on the 95% level. The parameter estimates are given in Table 6 together with quantile
estimates. We then added BOS_; to the basic model. This lagged covariate is also
significant, as Table 7 shows. However, this is the first of the considered models where
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| | Qv a3 Bo | BL(TD) | B5(SIZE) | B5(BOS) |

mean 1.3727 2.3482 -0.3903 | 0.0221 | -0.2284 0.4785
2.5% 1.3000 2.2192 -0.7738 | -0.0922 | -0.3837 | -3.3538
5.0% 1.3119 2.2404 -0.7122 | -0.0745 | -0.3590 | -2.7660
95.0% 1.4371 2.4585 -0.0702 | 0.1186 | -0.0966 3.7637
97.5% 1.4505 2.4815 -0.0128 | 0.1380 | -0.0702 4.4162
B1(BOS?) | B5(SIZE_3) | B5(TD=SIZE) ¢
mean 10.5530 0.0442 0.1645 | 0.0624
2.5% -0.6003 -0.0118 0.0846 | 0.0110
5.0% 1.2464 -0.0035 0.0972 | 0.0194
95.0% 19.8143 0.0921 0.2316 | 0.1067
97.5% 21.4507 0.1013 0.2432 | 0.1143

Table 8: Posterior mean estimates and estimated posterior quantiles for the basic model
together with interaction TD*SIZE and lagged covariate SIZE 3.

the credibility intervals for the autoregressive parameter contain zero and therefore the
autoregressive component must be viewed as non-significant.

Further computations showed that neither BOS?, nor BOS_,, BOS?,, BOS_;, BOS?,
have significant impact on the absolute price changes.

2.2.4 Models with interactions and lagged covariates

We consider the basic model together with the most significant interaction, which was
that one of TD and SIZE, and together with the most significant lagged covariates,
SIZE 3 and BOS_;. The results are presented in Tables 8 and 9. We see that the lagged
covariate SIZE 3 becomes non-significant when the interaction is included. However,
when BOS_; is added to the model, all covariates and the interaction of TD and SIZE
remain in the model. Even the autoregressive component remains significant on the 90%
level.

2.2.5 Interpretation and summary

Summarizing the results from the previous sections we prefer the model with the co-
variates TD, SIZE, BOS, BOS?, BOS_; and the interaction of TD and SIZE among all
other considered models. It is the model that takes into account the greatest number of
covariates under the restriction that the credibility intervals for all the regression coef-
ficients (except those that are only used for the hierarchical structure) do not contain
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| | Qv a3 Bo | BL(TD) | B5(SIZE) | B5(BOS) |

mean 1.3717 2.3606 -0.4517 | 0.0121 -0.2285 -0.0807
2.5% 1.2957 2.2341 -0.8458 | -0.1009 -0.3821 -4.0492
5.0% 1.3085 2.2530 -0.7846 | -0.0830 -0.3576 -3.4288
95.0% 1.4372 2.4768 -0.1268 | 0.1088 -0.0963 3.2174
97.5% 1.4502 2.4988 -0.0666 | 0.1286 -0.0739 3.8201
B,(BOS?) [ Ao(BOS_1) | Fo(TD+SIZE) 5
mean 10.0123 1.4221 0.1679 | 0.0454
2.5% -1.0789 0.4502 0.0885 | -0.0074
5.0% 0.7265 0.6084 0.1005 | 0.0001
95.0% 19.4674 2.2384 0.2334 | 0.0911
97.5% 21.3088 2.4115 0.2471 | 0.0994

Table 9: Posterior mean estimates and estimated posterior quantiles for the basic model
together with interaction TD*SIZE and lagged covariate BOS_;.

zZ€ero.
We now consider the posterior mean estimates of the model with the covariates TD,
SIZE, BOS, BOS?, BOS_; and the interaction of TD and SIZE in detail, and refer in
the following to Table 9.

The impact of the covariates TD and SIZE on the fitted mean of the latent vari-
ables Y;* is given in Table 10 and in Figure 7. For example, a (logarithm of) TD
of about 0.2 and a SIZE of 1 (500 or less stocks) leads to a estimated decrease of
0.0121-0.2 —0.2285-1+40.1679-0.2 - 1 = —0.1925 of the mean of Y,*, which is the top
left value in the table. From the table we conclude that for fixed SIZE a longer TD

SIZE TD (scored)

02] 06] 10] 14| 18] 22| 26
1 -0.1925 | -0.1205 | -0.0485 | 0.0235 | 0.0955 | 0.1675 | 0.2395
2 -0.3874 | -0.2483 | -0.1091 | 0.0301 | 0.1692 | 0.3084 | 0.4475
3 -0.5823 | -0.3760 | -0.1697 | 0.0366 | 0.2429 | 0.4493 | 0.6556

Table 10: Impact of TD and SIZE on the fitted mean of the latent variables Y.

increases the probability for a higher price jump. Furthermore we can see that the more
stocks are traded the more dramatical the impact of TD is: For SIZE 1 the difference
between the maximum and the minimum is 0.2395 + 0.1925 = 0.432, whereas for SIZE
3 this difference is 0.6556 4 0.5823 = 1.2379, nearly three times as high.

The impact of SIZE, given a fixed TD, depends on the value of TD. For example, when
TD = 0.2, we can see: The more stocks are traded, the lower is the probability for a

11



high price jump. When TD = 2.6, we can see: The more stocks are traded, the bigger
is the probability for a high price jump.

The impacts of the last bid-offer-spread BOS and the lagged covariate BOS_; on the
fitted mean of the latent variables Y,* are given in Table 11. The bigger the last bid-

bid-offer-spread (BOS) 0.0625 | 0.1250 | 0.1875 | 0.2500 | 0.3125
impact on fitted mean of ¥;* || 0.0341 | 0.1463 | 0.3369 | 0.6056 | 0.9525

lagged spread (BOS_;) 0.0625 | 0.1250 | 0.1875 | 0.2500 | 0.3125
impact on fitted mean of Y;* || 0.0889 | 0.1778 | 0.2666 | 0.3555 | 0.4444

Table 11: Impact of BOS and BOS_; on the fitted mean of the latent variables Y;*.

offer-spread the higher the probability for a high price jump. The same holds for the
lagged spread BOS_;.

Comparing the magnitude of the effects on the fitted means of Y;* for the different co-
variates and the interaction, we see that BOS has the highest maximal effect, while the
maximal effect of BOS_; is only half that of BOS. The effect of the interaction between
TD and SIZE is considerable compared to BOS and BOS_;.

2.3 Predictions

In the following only the model with covariates TD, SIZE, BOS, BOS2, BOS_; and the
interaction of TD and SIZE is considered. We now try to predict the absolute price
changes at time 1501 to 2000 using posterior mean estimates of all parameters based
only on the first 1500 observations of the data set. These posterior mean estimates are
quite similar to that in Table 9 and are therefore not shown explicitly.

We now show how to calculate predictions where we use ideas contained in Miiller and
Czado (2002).

Let tpee = 1500. Starting from the posterior mean estimates @&, 3, ¢ and the posterior
mean estimate V:mm for Y;* , we compute recursively the estimates Y/tfnm 4y for ¥

tmaz+n’

n =1,...,500, as follows:

Or % o / 2., avE

2 L , . — e
S/;maf”+n T Xtmarc+n B + ¢}/;maz+n717 n Z 2
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true category || predicted category
1] 2] 3] 4
1 102 | 96 0 0
2 95 | 142 0 0
3 7 49 0 0
4 0 9 0 0
| SSE | 304 |

Table 12: Frequencies of predicted categories classified by true categories for the model
with covariates TD, SIZE, BOS, BOS?, BOS_; and TDxSIZE.

Then we calculate recursively the following probability estimates for £ = 1,...,4 (set
@y = —oo and @y = 00):
Pyt =k @B.0.Y, ) = @ -X; B-0Y,, )~
_(D(ak 1= ;maz"‘lB - 57:maz)
P(Kmaw‘i‘n = k | a’ E’ 57 th):naz-i-n—l) = ®(ak - tmax-i-n/B ¢ tmax—i-n 1)

_(p(akil - Xtmaw+n’8 - ¢ tmarc‘}’n*l)’ n Z 2
This leads to the predictions
iftmaz"‘n = a‘rgma‘kaI,...AP(Yimaz-Fn = k | . ‘)7 n = 17 Tty 500

Table 12 shows how often each category was predicted, classified by the true categories.
Obviously only categories 1 and 2 are predicted. This may be due to the fact that the
categories 1 and 2 occur much more than categories 3 and 4 (cf. Table 1). Nevertheless
we can see: The higher the true category is, the more likely it is, that category 2 is
predicted, and when the true category is 4, we never predict category 1. The sum of
squared errors, SSE= Zn 1(171500% — Yi5004n)?, is 304 which might be satisfying since
500 values were predicted.

3 Sleep Data

The data set considered here contains 1024 sleep state measurements of a newborn child
together with its heart rate and temperature sampled every 30 seconds. This data set
was also discussed in Kedem and Fokianos (2002). The sleep states are classified as
shown in Table 13. The temperature was measured with an accuracy of 0.05 degrees
Centigrade. Figure 8 shows the progression of sleep state, heart rate, and temperature,
while Figure 9 provides histograms for these. The frequencies of the different sleep
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‘ sleep state ‘ depth of sleep ‘ category

quiet sleep low 1
indeterminate sleep medium 2
active sleep high 3
awake - 4

Table 13: Classification of sleep states.

Sleep State | Frequency Temperature | Frequency

1 404 36.85 5

2 94 36.90 80

3 237 36.95 123

4 289 37.00 44

37.05 177

Heart Rate | Frequency 37.10 80

100-110 13 37.15 137

111-120 160 37.20 96

121-130 368 37.25 45

131-140 181 37.30 123

141-150 120 37.35 86

151-160 104 37.40 20

161-160 64 37.45 8
171-180 11
181-190 3

Table 14: Frequencies of sleep states, heart rates and temperatures.

states, heart rates, and temperatures measured are listed in Table 14. Table 15 shows
the empirical quantiles.

3.1 Explorative Data Analysis

In our model we assume a linear influence of the covariates on the latent variables Y}*.
Because of that, we first want to examine, whether the covariates heart rate and tem-
perature have a linear influence on sleep state (assuming nearly equidistant cutpoints)
and, if not, which transformations could be appropriate. Therefore we categorize the
covariates and compute the average sleep state for each category. Of course, the more
frequencies we use, the less smooth the relationsships between average response and
covariate will be and the more likely categories with only few observations will occur.
Figure 10 shows the relationships for 9 and 4 categories of heart rate, respectively, and
for 13 and 5 categories of temperature, respectively.  Tables 16 and 17 show which
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‘ Variable ‘ Min. ‘ 1st Qu. ‘ Median ‘ Mean ‘ 3rd Qu. ‘ Max. ‘
Sleep State 1 1 3 2.401 4 4
Heart Rate 100 123 130 134.1 145 187

Temperature | 36.85 | 37.05 37.15 | 37.128 | 37.25 | 37.45

Table 15: Table of empirical quantiles, Min., Max. and Mean.

heart rate 100-110 | 111-120 | 121-130 | 131-140 | 141-150 | 151-160
9 categories 1 2 3 4 5) 6
4 categories 1 2 3

heart rate 161-170 | 171-180 | 181-190
9 categories 7 8 9
4 categories 4

Table 16: Categories of heart rate when 9 resp. 4 categories are used.

interval corresponds to each category in each case.

Whereas the influence of temperature on sleep state seems to be quadratic (cf. Figure
10), the relationship between sleep state and heart rate is not evident when 9 categories
are used. When only 4 categories for heart rate are used the relationship between heart
rate level and average sleep state is more linear. We therefore decided to model the
influence of heart rate linearly.

The sleep depth ranges from 4 (awake) over 1 (light sleep) to the deepest sleep state 3
(active sleep). Therefore it would be reasonable to rename the categories (4 — 1, 1 —
2,2 — 3,3 — 4) so that 1 means awake and 4 the deepest sleep state. Then a higher
category always would indicate a deeper sleep. However, this does not lead to a more
evident relationship between sleep state and heart rate (cf. Figure 11). Therefore in
Sections 3.2 and 3.3 we will use the original coding of the sleep state given in Table 13,
but we will return to the renamed categories in Section 3.4.

temperature | 36.85 | 36.90 | 36.95 | 37.00 | 37.05 | 37.10 | 37.15
13 categories 1 2 3 4 5 6 7
D categories 1 2 3

temperature || 37.20 | 37.25 | 37.30 | 37.35 | 37.40 | 37.45
13 categories 8 9 10 11 12 13
O categories 4 )

Table 17: Categories of temperature when 13 resp. 5 categories are used.
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measured heart rate || 100-120 | 121-140 | 141-160 | 161-180
covariate "heart rate’ 20 40 60 80

Table 18: Definition of covariate heart rate.

measured temperature || 36.85 | 36.90 | 36.95 | 37.00 | 37.05 | 37.10 | 37.15
covariate 'temp.’ 0.025 | 0.075 | 0.125 | 0.175 | 0.225 | 0.275 | 0.325

measured temperature || 37.20 | 37.25 | 37.30 | 37.35 | 37.40 | 37.45
covariate 'temp.’ 0.375 | 0.425 | 0.475 | 0.525 | 0.575 | 0.625

Table 19: Definition of covariate temperature.

3.2 Model with covariates heart rate, temperature and (temp.)?
and AR(1)-component

Because of the results of the explorative data analysis we take heart rate, temperature,
and (temperature)? as covariates. We use scaled and scored values for heart rate which
arise after substracting 90 from the scored value. The covariate temperature will be
considered to be metric. Here we take the true temperature minus 36.825 as covariate.
These transformations are done to avoid large estimates for the intercept. Please note
that an heart rate of more than 180 was measured only three times. These three values
are set to 180 to omit a category with only 3 observations. The definitions for the
covariates used in the statistical analysis compared to the original measurements are
given in Tables 18 and 19.

3.2.1 Estimation of parameters

We use again a Bayesian approach and employ the GM-MGMC Gibbs sampler by Miiller
and Czado (2002) to get posterior mean estimates and credibility intervals for the cut-
points a; and as, the intercept [y, the regression parameters i, f and (3, and the
autoregressive parameter ¢. We use 25000 iterations and a burn-in of 10000 iterations.
The time series plots of the Gibbs sampler are displayed in Figure 12. Since we are
interested primarily in point estimates such as the mean or specific quantiles higher au-
tocorrelations (cf. Figure 13) are acceptable.

Table 20 contains posterior mean and quantile (2.5%, 5%, 95% and 97.5%) estimates
for the cutpoints a; and ay, for the intercept [y, for the regression parameters 3; (heart
rate), 3o (temperature), 33 (temperature?), and for the autoregressive parameter ¢. The

posterior mean estimate of the autoregressive component ¢ is 0.9907. That means that
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| | ay a | B | A1 (H. Rate) | 5 (Temp.) | B3 (Temp.?) | ¢ |

mean || 0.9834 | 3.3243 | 0.0892 0.0040 -0.9684 0.3052 | 0.9907
2.5% || 0.5598 | 2.5117 | -0.2424 -0.0038 -2.8197 -2.7077 | 0.9788
5.0% || 0.6164 | 2.6428 | -0.1856 -0.0025 -2.5546 -2.2749 | 0.9810
95.0% || 1.4208 | 4.0745 | 0.3611 0.0104 0.6112 2.8756 | 0.9985
97.5% || 1.5361 | 4.2720 | 0.4125 0.0117 0.8853 3.3082 | 0.9992

Table 20: Posterior mean and quantile (2.5%, 5%, 95% and 97.5%) estimates for the
parameters o, az, fo, S1, Sz, B3 and ¢.

the development of the sleep state is explained nearly only by the autoregression in this
model, such that the sleep state behaves similar to a random walk. Therefore it is no
surprise that for the regression parameters [y, 31, (2, and f3 the 90% and the 95%
credibility intervals include zero and therefore all used covariates have to be considered
not to be significant.

This result is due to the relatively long lasting periods of constant sleep states (cf. Fig-
ure 8). Because of these periods of constant sleep states the probability that the next
sleep state will be the same as the actual one is very high which, of course, explains the
estimated high value of the autogressive parameter.

Therefore, in the next section, we will drop the autoregressive component and use the re-
sulting well-known ordered probit model to search for significant covariates. Before that

we now investigate shortly how predictions behave in the model with AR(1)-component.

3.2.2 Predictions

We predict the last 274 data points of the data set using posterior mean estimates of
all parameters based only on the first 750 observations of the data set. Note that we
have 1024 = 750 + 274 observations in total. The predictions are made in the same
manner as in Section 2.3, for more details see Miiller and Czado (2002). Table 21 shows
the frequencies of predicted and true values. Mostly the sleep state 4 (awake) was
predicted, and never the sleep states 1 and 2 were predicted. The true and predicted
values are displayed in Figure 14 from which the behaviour of the predictions is evident:
Given the 750" observation, which has sleep state 4, we predict this state for a long
time since the autoregressive component is nearly 1. Finally, to compare this model to
those discussed later we compute the sum of squared errors, which is 1098 in this case,
showing that this model is not satisfactory.
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true category || predicted category
1] 2] 3] 4

1 0] 0] 29] 85
2 0] 0] 0] 35
3 0] 0] 0] 65
4 0] of 12] 48

| SSE | 1098 |

Table 21: Frequencies of predicted categories classified by true categories, and the sum
of squared errors (SSE).

3.3 Application of the ordered probit model

The previous model includes an autoregressive component. The nature of the data leads
to an autoregressive parameter near to 1 whereas covariates do not show any significant
influence. Hence we drop now the autoregressive component, which leads to the well-
known ordered probit model. The ordered probit model was originally developed by
Aitchison and Silvey (1957) and Ashford (1959). We use the same covariates as before,
namely heart rate, temperature and (temperature)?.

3.3.1 Estimation of parameters

For the estimation of the interesting parameters we employ a modified version of the GM-
MGMC Gibbs sampler used above. This modification is straight-forward and consists
only in dropping the estimation of the autoregressive parameter in each iteration and
to use GM steps with the total scale group instead of the partial scale group. Further
details concerning GM steps for the ordered probit model can be found in Liu and
Sabatti (2000). We use again 25000 iterations with a burn-in of 10000 iterations. The
output of the Gibbs sampler is displayed in Figure 15. Because of the easier structure
of the ordered probit model the autocorrelations of the produced chains (cf. Figure 16)
behave much better than in the case with AR(1) component.

The examination of the significance of the cutpoints «; and as, of the intercept [y,
of the regression parameters (3; (Heart Rate), 3, (Temperature) and (3 ((Temp.)?) is
again done by considering credibility intervals. From Table 22 one can see that for all
parameters the 90% and the 95% credibility intervals do not contain zero. Therefore they
can all be considered to be significant, and we expect to get better results in prediction.
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| | o a | Bo | A1 (Heart Rate) | B, (Temp.) | B (Temp.?) |

mean | 0.2470 | 0.8915 | 0.5167 0.0078 -6.6223 12.6949
2.5% || 0.2026 | 0.8113 | 0.1572 0.0030 -9.2101 8.6232
5.0% || 0.2092 | 0.8234 | 0.2143 0.0038 -8.7822 9.2837
95.0% | 0.2874 | 0.9616 | 0.8133 0.0117 -4.4708 16.1288
97.5% | 0.2960 | 0.9762 | 0.8739 0.0125 -4.0478 16.8379

Table 22: Posterior mean and 2.5%, 5%, 95% and 97.5% quantile estimates of the
parameters aq, ag, fo, £1, J2 and [3.

3.3.2 Predictions

To predict the last 274 data points of the data set we use again posterior mean estimates
of all parameters based only on the first 750 observations of the data set. Table 23
shows the relation of predicted versus true values of sleep state. As for the model with
autoregressive component only two categories are predicted (4 and 1). As expected the
model without autoregressive component leads to more changes in the sleepstate as the
model with autoregressive component. Comparing the predictions with and without
autoregressive component (Tables 21, 23 and Figures 14, 17) one can see that the latter
model leads to much better predictions, also indicated by the sum of squared errors,
which is 622 in this case in contrast to 1098 in the model with AR(1) component.

true category || predicted category
1] 2] 3] 4

1 95 0] 0] 19
2 4] 0] o[ 21
3 36| 0] 0] 29
4 20/ 0] 0] 40

| SSE | 622 |

Table 23: Ordered probit model: Frequencies of predicted categories classified by true
categories, and the sum of squared errors (SSE) using coding of Table 13.

3.4 Ordered probit model with renamed categories

We now rename the categories in the natural way (4 — 1,1 — 2,2 — 3,3 — 4), so
that a higher category always indicates a deeper sleep, in particular that 1 respresents
being awake and 4 the deepest sleep (active sleep). Again we apply the ordered probit
model and use the same covariates as before.
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3.4.1 Estimation of parameters

We use the modified Gibbs sampler with again 25000 iterations and a burn-in of 10000.
From Table 24 we see that only for the heart rate with corresponding parameter ; the
90% credibility interval does contain zero. The covariates temperature and (temp.)? are
both significant.

| | a | s | Bo | Bi (Heart Rate) | 85 (Temp.) | 85 (Temp.”) |
mean | 1.0552 | 1.3311 | 0.5717 -0.0012 2.2221 -5.4201
2.5% || 0.9732 | 1.2380 | 0.2240 -0.0059 -0.2924 -9.3975
5.0% || 0.9858 | 1.2522 | 0.2830 -0.0053 0.1137 -8.7342

95.0% || 1.1286 | 1.4125 | 0.8621 0.0028 4.3094 -2.0624

97.5% || 1.1433 | 1.4291 | 0.9193 0.0035 4.6952 -1.3948

Table 24: Renamed sleep categories: Posterior mean and 2.5%, 5%, 95% and 97.5%
quantile estimates of the parameters aq, s, By, f1, B2 and Ss.

3.4.2 Predictions

To predict the last 274 data points of the data set we use again posterior mean estimates
of all parameters based on the first 750 observations of the data set. Table 25 shows
the relation of predicted versus true values of sleep state. Again only two categories

true category || predicted category
1] 2] 3] 4

1 30 | 30 0 0

2 11 ] 103 0 0

3 18| 17| 0 0

4 18 47| O 0
| SSE | 480 |

Table 25: Renamed sleep categories: Frequencies of predicted categories classified by
true categories, and the sum of squared errors (SSE).

are predicted (1 and 2), which are the same as in Section 3.3 in consideration of the
renaming procedure.

The sum of squared errors is 480 in this case, which can be considered as an indicator
that this model fits the data better in comparison to the other two models.
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‘ Significance of H Model with AR‘ Ordered Probit ‘ Ord. Probit & Renaming

Intercept - + +
Heart Rate - + -
Temperature - + +
(Temperature)? - + +
AR component +
| Predictions: SSE || 1098 | 622 | 480 |

Table 26: Comparison of the model with AR(1) component, the ordered probit model,
and the ordered probit model applied on the process with renamed categories. SSE is
the sum of squared errors. + significant, - nonsignificant on 90% level.

‘ true temperature ‘ covariate 'temp.’ influence ‘
36.90 0.075 2.2221-0.075 — 5.4201 - 0.075% = 0.1362
37.00 0.175 2.2221-0.175 — 5.4201 - 0.175%> = 0.2229
37.10 0.275 2.2221-0.275 — 5.4201 - 0.275%> = 0.2012
37.20 0.375 2.2221-0.375 — 5.4201 - 0.375% = 0.0711
37.30 0.475 2.2221-0.475 — 5.4201 - 0.475% = -0.1674
37.40 0.575 2.2221-0.575 — 5.4201 - 0.575% = -0.5143

Table 27: Renamed sleep categories: Influence of the temperature on the sleep state.

3.5 Interpretation and summary

In Sections 3.2, 3.3, and 3.4 we applied three different models to the sleep data. Table
26 shows, which covariates turned out to be significant and which sum of squared errors
we got in predicting the last 274 observations of the data set. The first model was
dominated by the autoregressive component. Because of this the prediction was very
poor and had a sum of squared errors of 1098. Dropping the autoregressive component
led to the ordered probit model, which fits the data much better, indicated by the sum
of squared errors of 622. The best fit, however, we achieved by renaming the sleep state
categories in a natural way, so that state 1 represents being awake and states 2 to 4
the 3 sleep states where a higher category indicates a deeper sleep. Here the sum of
squared errors was only 480. Furthermore in this model the parameters are much better
interpretable than in the other two models because of the natural order of the sleep
states. Therefore now we consider the posterior mean estimates of this model in detail,
and refer in the following to Table 24.

In this model the covariate heart rate is not significant from the viewpoint of the 90%
credibility interval which contains zero. Nevertheless the negative sign of the posterior
mean estimate —0.0012 for /3; indicates that a lower heart rate tends to lead to a higher
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sleep state, i.e. to a deeper sleep.

For interpreting the influence of the temperature on the sleep state we have to take
both the linear and the quadratic component into account. In Table 27 we investigate
the effect of temperature assuming a quadratic relationship on the fitted mean of the
latent variable Y,*. From this table we can conclude that for a deep sleep a temperature
of about 37.00 degress Centigrade is best (influence = 0.2229), and a lower or higher
temperature tends to counteract a deep sleep. This holds especially for temperatures
higher than 37.30 degress Centigrade (influence < -0.1674). Note the nonsymmetric
behavior.
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Figure 1: Observed relationships between average PC values per category and different
levels of the covariates TD, SIZE, BOS, and DIR.
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Figure 2: Observed relationships between average PC values per category and different
levels of the covariate BOS?.
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Figure 3: Observed relationships between average PC values and all twoway interaction
terms formed by the covariates TD, BOS, SIZE, and DIR.
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Figure 4: Relationship between Price Change and interactions with BOSZ.
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Figure 5: Output produced by the GM-MGMC Gibbs Sampler with covariates TD,
SIZE, BOS, and BOS2.
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Figure 10: Observed relationships between average Sleep State values per category and
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