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The concept of copulas for multivariate probability distributions has an ana-
logue for multivariate Lévy measures, called Lévy copulas. The latter concept
was introduced in a paper by Tankov [13] for Lévy measures on R, and ex-
tended to Lévy measures on R™ by Kallsen and Tankov [10], see also the
book by Cont and Tankov [8]. Similar to probabilistic copulas, a Lévy cop-
ula describes the dependence structure of a multivariate Lévy measure. The
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Lévy measure is then completely characterised by knowledge of the Lévy
copula and the margins. Here and henceforth, by the margins of an m-
dimensional Lévy measure v (or distribution u) we will always mean the m
one-dimensional margins, which are obtained as projections of v (or x) onto
the coordinate axes.

An advantage of modelling dependence via Lévy copulas is that the re-
sulting probability law is automatically infinitely divisible. From the applied
point of view, the usefulness of Lévy copulas hinges to a considerable extent
on how feasible it is to obtain insight into relevant properties of the cor-
responding probability distributions. Much theoretical information in this
regard can be gleaned from the book by Sato [16], while numerically there
are now powerful methods that in many cases allow rather easy simulation
of a probability law from its Lévy measure. In this latter respect, see Cont
and Tankov [8] and references given there.

The present paper discusses some aspects of the Lévy copula concept.
For simplicity, we consider only Lévy measures and Lévy copulas living on
R, where Ry := [0, 00). In the next section, we recall Tankov’s definition of
Lévy copulas and fix some notation used throughout the paper. Furthermore,
we show that any (positive) Lévy copula defines itself a Lévy measure with
1-stable margins, when transformed under the mapping @,, : [0,00]" —
[0,00]™, (1,...,2m) = (z;%,...,2"). The latter transformation plays a
natural role in the concept of Lévy copulas, and has also many relations to a
mapping Y, of Lévy measures recently introduced and studied by Barndorft-
Nielsen and Thorbjgrnsen [5, 6] and, in a multivariate version, by Barndorff-
Nielsen, Maejima and Sato [2]. This will be discussed in Section 5.

Section 3 is concerned with a limit result for sequences of Lévy measures
and Lévy copulas: we show that a sequence of Lévy measures converges
vaguely to another Lévy measure if and only if the marginal Lévy measures
converge vaguely, and the Lévy copulas converge pointwise on a suitable
subset of [0, co|™.

Section 4 discusses the special class of homogeneous Lévy copulas in more
detail. They arise naturally as Lévy copulas which are constant in time for
Lévy processes: if (L"));5¢ is a Lévy process with Lévy measure v(¥) at time
t and if the Lévy copula C of vV is homogeneous, then CV is also a
Lévy copula for v for any ¢ > 0. Furthermore, homogeneous Lévy copulas
constitute the class of possible limits of Lévy copulas of Lévy processes as
time approaches 0 or co. We additionally characterise homogeneous Lévy
copulas as those for which the Lévy measure they define (via @) is 1-stable.

In Section 5 we introduce the mapping T of Barndorff-Nielsen and Thor-
bjornsen [5, 6] and Barndorff-Nielsen, Maejima and Sato [2], which will play
a crucial role in Section 6 for the construction of Lévy measures with special



properties. The mapping T maps the class of infinitely divisible distributions
bijectively onto the Bondesson class. We discuss how Lévy copulas transform
if the mapping T is applied, with particular emphasis on homogeneous Lévy
copulas.

Section 6 is concerned with the construction of Lévy measures and dis-
tributions with special structures and prescribed margins. Suppose that
W1, ..., by are one-dimensional infinitely divisible distributions, all of which
are in the Bondesson class or Thorin class or are self-decomposable, respec-
tively. Then using any Lévy copula gives an infinitely divisible distribution p
with margins pq, ..., . However, u itself does not necessarily belong to the
Bondesson class or to the Thorin class or to the class of self-decomposable
laws, i.e. not every Lévy copula gives rise to such distributions. Here, we
shall show how all distributions in the Bondesson class, Thorin class or the
class of self-decomposable laws, with prescribed margins, can be obtained.
For the Bondesson class, this is achieved in Section 6.1 with the help of the
mapping T. Several examples are given, including stable, gamma and inverse
Gaussian margins. In Section 6.2 a similar procedure is developed for self-
decomposable distributions. Here, the role of the mapping T is replaced by
a mapping ®. The latter was shown by Sato and Yamazato [17] to map the
class of all infinitely divisible distributions integrating max(1,log|z|) bijec-
tively onto the class of self-decomposable distributions. Finally, combining
the mappings ® and T, in Section 6.3 it is shown how to construct multivari-
ate distributions in the Thorin class with prescribed margins in the Thorin
class.

2 Lévy copulas and the derived Lévy mea-
sure

Recall that a Lévy measure is a measure v on R” which has no atom at zero
and satisfies [o,.(|z[* A 1)v(dz) < oo, where |z[* = 2} 4+ ... + 22, denotes
the Euclidean norm of x = (xq,...,2,). We call a Lévy measure positive
if its support is contained in R = [0, 00)™. For simplicity we shall restrict
attention to the class L of positive Lévy measures.
Define the bijection
Q:=Qp:[0,00]™ = [0,00]™, (x1,...,2m) ¢ (x;' ..., 2,0,

m

where 1/0 has to be interpreted as oo, and 1/0c0 as 0. Then for v € L7,
define the measure y as the image measure of v under the mapping @), i.e.

X(B) = (Qv)(B) = v(Q *(B))
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for any Borel set B in [0,00]™. Note that x then does not have positive
measure on hyperplanes of the form {(xy,...,z,) € [0,00]™ : 2 = 0} for
fixed &, but can have positive measure on lines like (0, 0o] x {0} x ... x {o0}.
However, since v is a Lévy measure, y is finite on any closed rectangle in
[0, 00]™ not containing (oo, ...,00). Then define the volume function F' =
F, : [0, 00]™ — [0,00] of v as

xm
00, (X1, s Tm) ., 00).

F(l‘l,...,l‘m) = {X([O’xl]x"'x[oaxm])a (1'1,---, )i({z,,oo}

Note that F(oo,...,00) = x([0,00]™) if and only if v is infinite. It is con-
venient when working with Lévy copulas to define F(oo,...,00) := 0o even
for finite Lévy measures as above. This does not alter anything, since v is
completely described by knowledge of F' on [0, 00]™ \ {o0,...,00}.

For v € L7, denote the (one-dimensional) margins of v by vy,..., vp.
These margins are one-dimensional Lévy measures. In fact, vy,...,v,, are
the Lévy measures of the one-dimensional margins of the probability mea-
sure corresponding to v. To each of them we can associate the measure
Xt = Qv and thus define the volume function Fj of v,. Then Fy(zy) =
F(o0,...,00,2k,00,...,00) for any x; € [0,00] and we refer to Fy (k =
1,...,m) as the marginal volume functions of v.

In analogy to probabilistic copulas, Tankov [13] defines a (positive) Lévy
copula to be a function C' : [0, 00]™ — [0, 00] such that C(z4,...,x,) = 0 if
at least one of the x; is zero (groundedness) and

C(00,...,00,Tf,00,...,00) =z Var€[0,00, k=1,...,m, (2.1)

and such that C' is an m-increasing function, i.e. C(xy,...,zy,) # oo if
T1,..., Ty are not all oo, and for any set B of the form B = (ay,b;] X ... X
(@, b)) With 0 < ag < by < oo it holds that > sgn(c¢) C'(¢) > 0, where the
sum is taken over all vertices ¢ = (¢1,...,¢,) of B, and sgn (c) is defined as

(© 1, if ¢, = ay for an even number of vertices,
sgn (¢) = . .
—1, if ¢4 = a; for an odd number of vertices.

The most important feature of Lévy copulas is that they allow to separate
the margins and the dependence structure of Lévy measures. This is made
manifest in the following version of Sklar’s theorem, proved by Tankov [13].

Theorem 2.1 Let v € LT with volume function F' and marginal volume
functions Fy, ..., Fy,. Then there exists a (positive) Lévy copula C' such that

F(zy,...,xm) = C(Fi(z1),...,Fn(zy) V z1,...,2, € [0,00].  (2.2)

4



The Lévy copula C' is uniquely determined on Ran Fy X ... X Ran F,,. Con-
versely, if C is a positive Lévy copula and Fiy, ..., F,, are volume functions
of one-dimensional positive Lévy measures vy, ...,Vn, then (2.2) defines a
Lévy measure v € LT with volume function F' and marginal Lévy measures
Viy...,Vg.

We shall refer to any Lévy copula C satisfying (2.2) as a Lévy copula
associated with v € L.

We proceed to show that Lévy copulas can be regarded as transformations
of special Lévy measures: let C': [0, 00]™ — [0, 00] be a Lévy copula. That C'
is m-increasing means that C' defines a measure x¢ on (0, oo]™\{ (o0, ...,00)}
such that xc((a1,b1] X ... X (am,bm]) = > sgn(c) C(c) for 0 < ay, < by, < o0,
k=1,...,m, where the sum is taken over all vertices ¢ as above. We extend
this measure to [0, c0|™ by setting

xe({(o0o,...,00)}) = xc([0,00]F! x {0} x [0,00]™F) =0, 1<k <m.
(2.3)
Then using the fact that C' is grounded, we obtain

Xe([0,51] % .. % [0, bn]) = Yo ((0,51] X ... % (0,b1]) = C(by, ..., bw), (2.4)

for 0 < by,...,b, < co. Condition (2.1) means that ¢ has uniform margins,
i.e.
XC’([Oa Oo]k_l X [07 xk)] X [07 Oo]m_k) = Tk k= L...,m. (25)

Furthermore, it is easy to see that for any positive measure y on [0, cc|™
satisfying (2.3) and having uniform margins, (2.4) defines a unique Lévy
copula C' such that xc = x. Applying the map Q' = Q,, to xc gives
another measure vo. We summarize this in the following

Definition 2.2 For any (positive) Lévy copula C, the measure x¢ is defined
to be the unique measure on [0, 00]™ satisfying (2.3) — (2.5). The measure
Ve 18 defined as

ve = Q' xc- (2.6)

The following Theorem then shows that v is a Lévy measure with 1-
stable margins (i.e. there are constants §; > 0, k = 1,...,m, such that the
marginal volume functions of v are equal to [0, 00] — [0, 00|, T — Opxy).

Theorem 2.3 If C' is an m-dimensional Lévy copula, then the measure v¢
15 a Lévy measure with 1-stable margins. More precisely, the marginal vol-
ume functions of ve are equal to [0,00] — [0,00], zx — xx, and C is the
volume function of vo. The Lévy measure v is not of finite variation, i.e.
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f|m|<1 |z|ve(dzx) = oo. Conversely, if v € L7 is any Lévy measure with
marginal volume functions [0,00] — [0,00], zx > xk, then there erists a
unique Lévy copula C' such that ve = v.

Proof. Let C be a Lévy copula. Since xc is finite outside neighbourhoods
of (00, ...,00), V¢ is finite outside neighbourhoods of the origin. Denote by
(xc)k the k-th marginal measure of xc. Then

/[ Zl‘zdl/c(l‘l,...,l‘m)
0,1]m
1
= Z/ _2 yla"'aym)
1,00]™ k
1
Z _ZdXC(ylaaym)
[0,00]%=1 x[1,00] x[0,00]m—* Yk
- z/ 70k
= Z/ —dyk<oo

Hence, v¢ is a Lévy measure. Furthermore,

“ 1
/ ZxdeC(xla"'axm)Z/ _dXC’(yla"'aym):
[Ovl}m k=1 [lvoo}m yl

IN

1 1
/ —dxC(yl,---,ym)—/ —dxcW1s - s Ym)-
[1,00]x[0,00]m—1 Y1 (1, oo} ([0,00]m=1\[1,00]m~1) Yi

But the first integral is equal to f1 dy1 0o, while the second integral is
finite since y¢([1, oo] x ([0, oo]m_l\[l oo]m 1)) < co. Thus, v¢ is not of finite
variation. The remaining assertions are clear from the preceding discussion.
|

3 Lévy copulas and convergence of Lévy mea-
sures

In this section we obtain a limit result for Lévy measures, characterising
convergence of a sequence of Lévy measures by convergence of the margins
and of the Lévy copulas. Let p be an infinitely divisible distribution on R™
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with characteristic triplet (A, v, 7). Recall that v is completely characterised
by (A,v,v), and that the characteristic function i of p satisfies

m

p(z) = exp{—%(z,Az>+i(% z>+/ ("™ —1—i(z,2)114)<1) dv(z)}, 2 € R™.

Here, A is a symmetric nonnegative-definite m X m-matrix, v is the Lévy
measure of p, and v € R™ is a constant. (-,-) denotes the Euclidean inner
product on R™.

Denote by C the class of bounded continuous functions from R™ to R
vanishing in a neighbourhood of the origin. Let (1(™),cn be a sequence of
infinitely divisible distributions on R™ with characteristic triplets (A("), A0S
7). For any £ > 0 define symmetric nonnegative-definite matrices A

by
(z, AME2) = (2, A 2) +/ (z,x)2dv™(z), zeR™.

|z|<e

The following Theorem can be found in Sato [16], Theorem 8.7:

Theorem 3.1 With the notations above, u™ converges weakly to the in-
finitely divisible distribution p as n — oo if and only if

lim f(x)dv™(z) = fx)dv(z) VYV feCy (3.1)
lim lim sup [(z, A™<2) — (2, Az)] = 0 VzeR™, (3.2)
=20 nooco
lim g™ = 3, (3.3)
n—o00

where

54 ::7—/ x|z|* dv(z)
|z[<1
and ™ is defined similarly.

We see that the appropriate convergence concept for Lévy measures is de-

scribed by relation (3.1). We shall write (™ # v for this type of convergence
of Lévy measures. In order to prove our main result of this section, we need
to show the following lemma:

Lemma 3.2 Let (v),en C L7, v € L™, with volume functions F™ and

4
F, respectively. For any i € {1,...,m}, set

A; = {x; € [0,00) : F; continuous in z;} U {0},



v
€
to

as n — oo if and only if F™(z) converges pointwise to F(x) at any
Ay X ... X Ap. Moreover, this is equivalent to vague convergence of v
v on the set E :=[0,00]™\ {0,...,0}.

where the F; denote the marginal volume functions of v. Then v™ #
x
n)

Proof. Fori=1,...,m, set B; := Q,.A;, and B; := B, \ {0,00}. Then

1 1
Fl—,...,— | =v(y,o00 X...X , 00]).
(i) = olliod] o o)
Let x = Qv and E := [0, 00]™ \ {(0,...,0)}.

Tt is clear that ™ % v as n — oo implies vague convergence of v to
v. So suppose that v converges vaguely on E tov. Let k € {1,...,m}
and let y = (y1,...,Ym) such that y; € B; for 0 < i < k, and y; = 0
for i > k. We have to show that v ([y;,00] X ... X [ym,0]) converges to
v([y1,00] X ... X [ym,00]) as n — 00. Let g := Ly, oo]x...x[ym,o0]- FOI any
integer ¢t > (min{y,...,yx}) ' and 1 < i <k set

Vimi— s, Y=yt
7" 1 t} " 13 t

Furthermore, define

Ky = [y,00] X ... X [ym, 0],

U = (y1,00] x ... x (yp, 00] x [0, oo]™7*,
Ky = [y}, 00] x...x [yy,00] x [0, 00]™
Uy = (y1,00] X ... x (yg,00] x [0, 00]™F.

Then K; and K», are compact in E and have (in the topology of E) open
neighbourhoods U, ; and Uy, respectively. Urysohn’s Lemma (e.g. Simmons
[18], page 135) now implies the existence of continuous functions h; and f;
on Fsuch that 0 < f, <g<h, <land hy =1on K;, fy =1 on Ky, and
the supports of h; and f; are contained in U;; and U, respectively. Since
v™ converges vaguely to v as n — oo, we conclude

/ft dv < lim inf/ gdy(”) < lim sup/ gdl/(”) < / h; dv.
E n—=oo Jp n—oo JE E

k
Dy = [0,00]" x [y}, 4] x [0,00]™)

=1

Setting



we have {h; # f;} C D;. Since y; € B, fori = 1,...,k,v(Dy) = 0ast — oo.
But this implies

liminf/ g dv™ :limsup/ gdv™ = / gdv.

This shows that F(™(z) converges pointwise to F(z) at any 2 € A; x...xXAp,.

Now suppose that F™ converges pointwise to F on A; x. ..xA,,. To show
vague convergence of »(™ to v on E, let f be a continuous function on £ with
compact support in E. Choose y; € B; (i =1,...,m) such that the support
of f is contained in the compact space E' := E \ ([0,y1) X ... X [0,yn)).
Denote by R the class of all rectangles of the form R = Ry x ... x R,,, where
R; = [a;, b;) or R; = [a;,00] with a; € B; \ {00}, b; € B;, a; < b; and not all
a; = 0. Note that if R; = [a;, 0c] for some 7, then the Lévy measure of R is
the same as if R; is replaced by [a;, 00). Then for each R, we have

U(R) = x ((% ail] o x (bi iD =Y sen (¢)F(e),

11
b1’ a1
assumption, this then implies that v (R) converges to v(R) as n — oo for
any R € R. It then follows that v(™(S) converges to v(S) for any S which
is a finite union of elements of R. In particular, lim,_,., v (E') = v(E").
Since B; is dense in [0, 00] and 0,00 € B;, every (in the topology of E’) open
set G in E’ is a countable union of elements of R. Then if G C E’ is open in
E'" and if S C G is a finite union of elements of R, it follows that

] x ... x (+,-]. By

bm? am

where the sum is taken over all vertices ¢ of (

v(S) = lim v™(S) < liminf v (@),

n— 00 n— 00

and hence v(G) < liminf, ,, v™(G). If K C E' is compact, then

limsupr™(K) = lim v™(E') = liminfv™ (E"\ K)

n—oo n—o00 n—0o0
< v(E")—v(E'"\K) =v(K).
But this means that 1/|(g,) converges vaguely to vjg in £’ (e.g. Resnick [12],

Proposition 3.12). In particular, [, fdv™ — [_ fdv, since the support of
f is contained in E’. Since f was arbitrary, this implies vague convergence
of v to v on E.

Now let f be a continuous function on [0, 00)™, bounded by a constant M
and vanishing in a neighbourhood of the origin. Let € > 0 and choose y; € B,
such that v([0,00)™ \ ([0,y1) X ... % [0,ym))) < 537- Let g. be a continuous

9



function with compact support in E such that f = g. on [0, y1] X ... X [0, yn]
and g. is bounded by M. Since y; € B;, for sufﬁciently large n follows, by
assumption, that v ([0,00)™ \ ([0,41) X ... X [0,¥m))) < 5. This implies

gE dv™ — / fdv™ gE dv — / fdv| <

Since hmTHOO f 1 e dp(" f 9 dv by vague convergence, as already shown,

it follows that lim,,_, fE fdv™ = [ fdv, ie v™ A vasn oo m

We can now show that a sequence of Lévy measures converges to a Lévy
measure if and only if the margins converge and the Lévy copulas converge
pointwise on a suitable subset. This is an analogue of a result of Lindner and
Szimayer [11] for probabilistic copulas.

< e,

Theorem 3.3 Let (v™),en C L7, v € LT, with margins l/i(n) and v; (1 =

1,...,m), and associated Lévy copulas C™ and C, respectively. Then v™ #
v oasn — oo if and only ifui(n) # v; asn — oo fori=1,...,m, and C™

converges pointwise to C' on Ran Fy X ... X Ran F,, as n — oo, where the F;

denote the marginal volume functions of v. In that case, the convergence of

C™ to C is uniform on any set of the form (Ran Fy x ... x Ran F,,,) N (K, x
. X K,,), where K; is a compact subset of [0,00), or K; = {o0}.

Proof. Since the proof is similar to the proof of Theorem 2.1 in Lind-
ner and Szimayer [11], we only give a sketch of it. The main difference to
the proof in [11] is that the Lipschitz continuity property has to be modi-
fied in the following sense: if D is any Lévy copula, if 1 < k£ < m and if
Uy vy Uk, UL, ..., U € [0,00), then

k
|D(uq, ..., u,00,...,00) — D(vq,...,0g,00,...,00)] §Z|u,~—v,~|. (3.4)

This follows readily from the fact that any Lévy copula defines a measure
with uniform margins. Let M, := {Fj(x,;) : ©,; € A; \ {00} }, where F; and
A; are as in Lemma 3.2.

Suppose that (™ # »asn — oco. Then l/i(n) # v; by Lemma 3.2.
Furthermore, for any (u;...,uz) € My x ... x My, such that u; = F;(z,,),

Ty; € A;, we obtain using (3.4), similarly to the proof in [11],

|C’(n)(u1,...,uk,oo,...,oo)—C’(ul,...,uk,oo,...,oo)|

k
> |Fi(@u) — F ()
1=1

—|—|F(n)($u71,...,.ﬁvu’k,OO,...,OO) —F(:I,'%h...,$u7k,00,...,00)|-

10



Lemma 3.2 then implies convergence of C™ to C at (uy, ..., us, 00, ..., 00).
Convergence on Ran F; x ... X Ran F},, and the assertion on the uniform
convergence follows as in [11].

; # v; as n — oo, and that C®
converges pointwise on M; X ... x My x {oo} x ... x {o0}. Then for x =
(1,...,2k,00,...,00) with z; € A; \ {o0}, it follows as in [11] that

For the converse, suppose that v™

ICO(Fy(21), ..., Fr(zi),00,...,00) — C(Fi(x1), ..., Fi(zy),00,...,00)|

Lemma 3.2 then gives the claim. m

Since any Lévy copula C defines itself a measure v via Definition 2.2,
it is natural to ask whether the pointwise convergence condition of C™ can
be replaced by vague convergence of vomy. Since the limit copula C' is not
necessarily unique if Ran F; # [0, 00| for some i, vague convergence is not
to be expected in general. However, if Ran F; = [0,00] for all i = 1,...,m,
then the statement on the pointwise convergence of C™ in Theorem 3.3 can
be replaced by vague convergence of vqm). This follows from the following
corollary to Lemma 3.2.

Corollary 3.4 Let (C™),en and C be Lévy copulas. Then C™ converges

pointwise on [0,00]™ to C if and only if vom) # Ve asn — oo.

Recalling that weak convergence of infinitely divisible distributions can
be described by convergence of the characteristic triplets as in Theorem 3.1,
we obtain the following corollary to Theorem 3.3:

Corollary 3.5 Let (u™),en and p be infinitely divisible distributions with
characteristic triplets (A™, ™ ~M) and (A, v,7), such that v and v™ are
in LT, Let p™ = ( §"), . .,;ﬁ,’f’) and 1 = (g1, ..., pm). Suppose that A™
converges pointwise to A as n — oo. Then p™ converges weakly to u as
n — oo if and only if all the margins ME”) converge weakly to p; as n — oo,
1 = 1,...,m, and the Lévy copula of v, converges pointwise to the Lévy
copula of v on RanFy X ... X RanF,, as n — oo, where the F; denote the
marginal volume functions of v.

It should be noted that the assumption lim,_,., A™ = A is somehow
restrictive. It implies that in the limit the Lévy measures do not contribute
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to an extra Gaussian part. This then makes an easy description by the Lévy
copula convergence feasible.

Proof. The “only-if”-direction is clear from Theorems 3.1 and 3.3, so we
only have to show the converse. This is done by checking the conditions in
Theorem 3.1. Here, (3.1) holds by Theorem 3.3. The characteristic triplet
of u; is (A, v4,7:), where A;; denotes the i'th diagonal element of A, 7; =
Vi + fRT i (1jz;)<1 — Ljgj<1) dv(x), and 7; denotes the i’th coordinate of v, see
Sato [16], Proposition 11.10. Let 3; := 7; — Jiaj<1 @il@il? dvi(z;). To show
(3.2) and (3.3), note that convergence of A™ to A implies convergence of
AZ(-?) to A;. Since /LZ(-n) converges weakly to j;, Theorem 3.1 implies that

lim lim sup / I/i (i)
e—0 n—o00 |5El|<6

and that Ei(") converges to El as n — 00. Again, by convergence of A, to A
and (3.5) it then follows, for any z € R™, that

=0, (3.5)

lim sup lim sup |(z, AM*2) — (2, Az)|

e—0 n—00

< |z|2limsuplimsup‘/ 2|2 dv™ ()
lz|<e

e—0 n—00
S| s -
—1 1/ |zil<e

i

< |z|*lim sup lim sup
e—0 n—00

This shows (3.2). For (3.3), note that
Bi— B = / a;} dvy(w;) —/ il dv(x) —/ Ti(Lja; <1 — Ljaj<1) dv (),
|zi|<1 lz|<1 T

where (; denotes the i’th coordinate of § (as appearing in Theorem 3.1).
# v, (3.5) and (3 6) one can show that 5 — g™ converges to

From v 7 ;

Bi — ﬁ, as n — 00. Since 5 converges to 51, this proves that 5 converges
to 3; as n — oo, verifying (3.3). This finishes the proof. m

4 Homogeneous Lévy copulas

In this section we discuss the special class of homogeneous Lévy copulas.
A Lévy copula C' is called homogeneous (of order 1), if

C(ury .. yty) =tC(ur/t,...;un/t) Y ui,...,uy, € [0,00] ¥Vit>0.

12



These Lévy copulas appear naturally, because they correspond to Lévy pro-
cesses with time constant Lévy copulas. We study this in subsection 4.1.
In 4.2 we investigate further properties of homogeneous Lévy copulas, which
are not in the dynamical context of Lévy processes.
Examples of homogeneous Lévy copulas are the Lévy copula of complete
dependence
C(uyy - ty) = minfuy, ..., up},

the copula of independence

m
C(“l) tt um) - E U/i 1’(1.1:...:1141‘,1:uiJrl:...:’u.m:OO7
=1

and the family of Clayton Lévy copulas, defined for 6 > 0 by

. ~1/0
C(ury ey Upy) = (Z“z‘_9> ,
i=1

Uty Uy € [0,00], see Cont and Tankov [8], Chapter 5. An example of a
non-homogeneous Lévy copula is given in Example 4.2.

Euler showed that a continuously differentiably function f : (0,00)¥ — R
is homogeneous (of order 1) if and only if Euler’s formula

k

Zuiaf(““'“’“’“) = flur, ... up) (4.1)

- ou,;
=1

holds on (0,00)*. We will not use this characterisation in the sequel. How-
ever, note that for Lévy copulas (4.1) not only has to be checked for C' on
(0,00)™, but also on hyperplanes where one or more of the u; are co. For
example, on {u,;, 1 = u, = oo}, (4.1) has to be checked for the function

(0,00)™ % = R, (ur,...,Upo) > C(uy,...,Up_s,00,00)
(provided it is continuously differentiable).

4.1 Time-wise properties of Lévy copulas of Lévy pro-
cesses

Let (L®");>p be a Lévy process in R™. Then at any time ¢, L® has an
infinitely divisible distribution. If (¥ denotes the Lévy measure of L) then

13



v® = M) Now suppose that v} € L™ with associated Lévy copula C).
Then it follows readily that

COuy, ... ) =t CY(ugft, . um/t), Yuy,... up, € [0,00], (4.2)

gives a Lévy copula associated with (). In particular, if C(!) is homogeneous,
then the Lévy process is described by the same Lévy copula C(V at any time ¢.
On the other hand, if C' is a Lévy copula and (L(t))tz[) is a Lévy process such
that C' is associated with v for every ¢, and if there is some € > 0 such that
Ran Fi(l) D [0,¢]foralli =1,...,m (where Fi(l) denote the marginal volume
functions of #(), then C must be homogeneous. This follows from the fact
that the Lévy copula of v is unique on #(Ran Fl(l) X ...x Ran F,g,ll)) for any
t > 0 by Theorem 2.1, hence on [0, 00]™. Thus, the Lévy copulas at times ¢
and 1 satisfy (4.2), showing that C' is homogeneous.

We now turn to convergence of Lévy copulas of Lévy processes as time
goes to infinity and to zero. Again, the homogeneous Lévy copulas appear
naturally as possible limit copulas.

Theorem 4.1 Let (L®),5¢ be a Lévy process with positive Lévy measure and
with Lévy copula OV at time t given by (4.2). Then:

(a) C® converges pointwise to a finite function D on [0, 00]™\ {(c0, ..., 00)}
as t — oo if and only if all for all directions (ui,...,un) € R} the direc-
tional derivative of CV exists at the origin. In that case, the function D is
a homogeneous Lévy copula. The convergence is uniform on [0, 00]™ if and
only if CM is homogeneous.

(b) If C® converges pointwise to a finite function D on [0, 0o]™\{(co0, ..., 00)}
ast — 0, then the function D is a homogeneous Lévy copula. CY converges
uniformly on [0,00]™ to D ast — 0 if and only if ||CV) — D||s < 0o, where
|+ |0 denotes the supremum norm on [0,00]™ \ {oo,...,00}.

Proof. From (4.2) follows readily that if CY) converges pointwise to a finite
function D on [0,00]™ \ {o0,...,00} as t — oo or t — 0, then D must be
a homogeneous Lévy copula. Further, noting that for u = (uy,...,u,,) and
t > 0 we have
CW(u/t) — CM(0)

1/t ’

it follows that lim,_,,, C® (u) exists if and only if if the directional derivative
of C( in direction u exists at the origin. If C(!) is homogeneous, then uniform
convergence of C®) as t — oo is clear. For the converse, suppose uniform
convergence, but that C(!) is not homogeneous. Then there is u € [0, 00]™
and ¢, > 0 such that |[CM(teu) — t,C™(u)| =: ¢ > 0. From the uniform

tCW(u/t) =
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convergence follows the existence of #; > 0 such that [t C(v/t) — D(v)| < ¢
for any v € [0,00]™ \ {00, ..., 00} and any ¢ > t;. Using the homogeneity of
D we conclude for ¢t > ¢;

tteC M (u) — ttyD(u)| = [totCV(tu/t) — tyD(tu)| < toe,
tCW (tou) — tteD(u)| = [tCW (ttou/t) — D(ttou)| < e.

This implies
te = t|toCM (u) — CW (tgu)| < (1 +to)e Vit >ty,

which clearly is a contradiction. This proves (a).

For the proof of (b), note that, by homogeneity of D, C*) converges uni-
formly to D as t — 0 if and only if ¢|{C") (v/t) — D(v/t)| converges uniformly
in v to 0. But this is equivalent to [|[C)) — D||, < c0. =

We give a few examples which are concerned with the convergence of Lévy
copulas of Lévy processes.

Example 4.2 Consider a Lévy process such that the Lévy copula at time 1
is given by

m

-1
CD(uy, ..., up) = log (Z%) +1
— e Uq

=1

This Lévy copula was introduced in Tankov [13], see Cont and Tankov [8],
page 150. Let Duo(uy,...,um) = (37, (1/u;))~" and Do(uy, ..., up) =
min{uy, ..., uy}. Then easy calculations show that C®) converges pointwise
to Dy as t — oo. The convergence is not uniform, since C) is not homo-
geneous. On the other hand, it is easy to show that ||C) — Dyl|o, < 00, s0
that C¥) converges uniformly to Dy as t — 0.

Example 4.3 Let the probabilistic copulas H; and H, on [0,1]* be given
by Hi(u,v) := uwv and Hs(u,v) := min{u,v}. For any integer n € Z and
u,v € [2",2"1] let

n o u—2" v—2"
CW(u,v) :==2" +2 HZ-< n T gm >,

where i = 1 if n is odd and ¢ = 2 if n is even. If u € [2",2""!] for some n
and v > 2" set OM(u,v) :== OW(u,2"*"), and if u > v set O (u,v) =
CM (v, u). Tt can be easily checked that C") defines a Lévy copula. Let u,, :=
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2" + 271 Then C(u,,u,) = u, if n is even, and CW (u,, u,) = 2" + 272
if n is odd. In particular,

CW(up,u,)  ]5/6, nodd,

Uy, B 1, n even.

This shows that for a Lévy process with Lévy copula C® at time ¢ > 0,
C®(1,1) does neither converge as t — 0 nor as t — oo.

There remains the question whether there are Lévy processes such that
the Lévy copula C) converges pointwise but not uniformly as t — 0. By
now we have not been able to decide this question.

4.2 Further properties of homogeneous Lévy copulas

In this subsection we investigate further properties of homogeneous Lévy
copulas. The following proposition shows that they are rarely associated
with finite Lévy measures:

Proposition 4.4 Let v be a finite Lévy measure, concentrated on (0,00)™,
and suppose that the Lévy copula C associated with v is homogeneous. Then
C must be the Lévy copula of complete dependence, i.e.

Cut, ..., Uy) =min{uy,..., Uy} Vu,..., u, € [0,o0].

Proof. Denote by M the total mass of v and its (marginal) volume func-
tions by F; and F. Then lim,, , F;(z;) = M for i € {1,...,m}, and
lim, ,o, F(z,...,2) = M. Therefore C(Fy(z),..., F,(x)) converges to M
as x — 00, by (2.2). From the continuity property (3.4) then follows
C(M,...,M) = M. Since C' was assumed to be homogeneous, we conclude
C(u,...,u) = u for any u > 0. Now let uy,...,u, € [0,00] and suppose
w.l.o.g. that their minimum is at u;. Then

wp = Clug,...,u1) < Clug,ug, ... uy) < Clug,00,...,00) = u,

showing the claim. m

The following theorem provides a stepping stone to Corollary 4.6 be-
low, which characterises homogeneous Lévy copulas C' in terms of the Lévy
measure v¢ they define. We say that a Lévy measure is stable or self-
decomposable, if it is the Lévy measure of a stable or self-decomposable
infinitely divisible distribution, respectively. For the definitions and proper-
ties of such distributions, we refer to Sato [16], Chapters 13-15.
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Theorem 4.5 Let o € (0,2) and v be a Lévy measure with non-degenerate
a-stable margins and associated Lévy copula C. Then

(a) v is stable if and only if vc is 1-stable.

(b) v is selfdecomposable if and only if v is selfdecomposable.

Proof. We first prove part (b). Let Fj(z;) = kiz® (k; > 0,i=1,...,m)
be the marginal volume functions of v. By Sato [16], Theorem 15.8, v is
selfdecomposable if and only if (¢! B) > v(B) for all Borel sets B in [0, o)™
and all £ > 1, or what is the same if

X(t7'B) < x(B) (4.3)

for all Borel sets B in (0,00]™ and all ¢ > 1; here x = Qv. It is enough to
check (4.3) for all Borel sets of the form B := (ay, b1] X ... X (am, by]. With
the aid of the volume function of v we can write

X(B) = ) sgn(c)Fle)

where the sum is taken over all vertices ¢ = (cy,...,¢y) of B. Thus, v is
selfdecomposable if and only if

Z sgn (¢) C(t™%ycf, ... 17 % pmcs) < Z sgn (¢) C(kict, ..., kmch)

for all ¢ > 1 and all sets (ay,by] X ... X (am, by). Substituting u; = k;a,
v; = k;b$', this is the same as

> " sgn(d) C(t*d) <) sgn (d) C(d),

where the sum ranges over all vertices d of (u1,v1],. .., (Um,vmn]. The latter
is the condition for the Lévy measure with volume function C, i.e. v¢, to be
selfdecomposable.

The proof of (a) is similar, using Sato [16], Theorem 14.3. m

Tankov [13] showed that if « € (0,2) and if a positive Lévy measure v
has non-degenerate a-stable margins, then v is a-stable if and only if the
associated Lévy copula is homogeneous. Now we immediately obtain:

Corollary 4.6 A Lévy copula C is homogeneous if and only if vc is a 1-
stable Lévy measure.
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5 The mapping T and Lévy copulas

In this section we shall recall the definition of the mapping Y(™ and inves-
tigate its action on copulas. This mapping will play a crucial role in the
next section, when we construct arbitrary Lévy measures in the Bondesson
or Thorin class with prescribed margins. For self-decomposable distributions
a similar construction, using another mapping ®, will be given.

The mapping Y™ was introduced by Barndorff-Nielsen and Thorbjgrnsen
5, 6] for the one-dimensional case m = 1 and extended by Barndorff-Nielsen,
Maejima and Sato [2] to the multivariate setting. It maps infinitely divisi-
ble distributions to infinitely divisible distributions. More precisely, if u is
an infinitely divisible distribution on R™ with characteristic triplet (A, v, ),
then fi := Y(p) := Y™ (p) is the infinitely divisible distribution with char-
acteristic triplet (Z, v,7), where

A = 2A,
v(B) = / Su(s~'B)ds V B Borel set in R™,

= e [T [ (v ) v e

It can be shown that this is well defined, in particular v is a Lévy measure.
Furthermore, extending results for dimension 1 due to Barndorff-Nielsen and
Thorbjornsen [5], Barndorff-Nielsen, Maejima and Sato [2] prove that Y (u) is
the law of the stochastic integral fol(— log t) dX\, where (X,(f))tzo is a Lévy
process with distribution y at time 1. They show moreover that T is a bijec-
tion from the class of infinitely divisible distributions on R™ to the Bondesson
class B(R™). We shall give the definition of B(R™) in Section 6.1. For the
moment, we mention only that B(R™) contains all the stable distributions
and is a proper subclass of the class of infinitely divisible distributions on
R™. Furthermore, any element in B(R') has a Lévy density.

The transformation of v to 7 when applying YT(™ is the most interesting
part. We can restrict T to a mapping of Lévy measures, sending v to v;
this mapping will be denoted by Tgm). If the dimension m is clear from the
context, we will occasionally skip m from the notation. So we have for any
Borel set B C R™,

Yo(v)(B) := Y (1) (B) := 7(B) = /0 Ooe*sy(sle) ds.  (5.1)

In particular, T(()m) is a bijection from L7 to the class of Lévy measures in
LT which correspond to infinitely divisible distributions in the Bondesson
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class. Furthermore, T(()l) can be viewed as a regularizer, since Tgl)(y) will
have a Lévy density.

One important feature of Ty, which will be used in Section 6.1, is that
it commutes with projection onto the axes. More precisely, if v € L7 and
IT; : RT — R, denotes the projection onto the i'th axis (i = 1,...,m), then

7= IL(YY () = YV (). (5.2)

This can be seen easily from the definition of Y. Next, we show how the
copulas transform when Yy is applied to positive Lévy measures.

Lemma 5.1 Let v € L7 with marginal volume functions Fi,..., F, and
Lévy copula C. Let M; := lim,, , Fi(x;), the total mass of the marginal Lévy
measure v;. Let v = Y§"(v) with marginal volume functions ﬁ’i, 1=1,...,m
and Lévy copula C. Then, for any xi,..., T, € [0,00],

C(R (1), -, Fnl)) = /OOO e C (Fy(s21), .., Fm(sz)) ds.  (5.3)

The Lévy copula C is uniquely determined on ([0, My]U{oo})x. . .x ([0, My,]U
{o0}). If the marginal Lévy measures v; are non-degenerate k;-stable with
ki € (0,2), then M; = oo, and for any uy, . .., u,, € [0,00],

~ . Uy U
Cuty .y Uy) = e C |, .., " ————— | ds. (54
i) = [T 0 (gt ) s 6
Proof. Denote by F the volume function of 7. Let Tl Ty € [0, 00].
Taking B := [1/x1,00) X...X[1/Zy,00) in (5.1) gives for the volume functions

F and F,
F(zy,...,2m) :/ e " F(sxy,...,5Ty,)ds, (5.5)
0

which is equivalent to (5.3) by Theorem 2.1. Furthermore, taking B; :=
[0,00)" 1% (0, 00) x[0,00)™ ¢, (5.1) and (5.2) imply 7;((0,00)) = 14((0,0)) =
M;. Since ; has a Lévy density, Ran F; D [0, M;)U{oo}, and the uniqueness-
assertion follows from Theorem 2.1 and the continuity property (3.4).

If the margins v; are non-degenerate r;-stable, then Fj(x;) = b; a2 for
some b; > 0, and an easy calculation shows ﬁ,(mz) =bl(ki+1)x
this in (5.3) gives (5.4). =

In the following Theorem we consider the effect of the mapping Y to
measures with homogeneous Lévy copulas:

Ki

;' Inserting
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Theorem 5.2 Let v € LT have stable non-degenerate margins with indices
Ky bm € (0,2). Then the Lévy copula associated with v is homogeneous
if and only if the Lévy copula associated with Yo(v) is homogeneous.

Proof. Let v;, i = 1,...,m, be the non-degenerate r; stable margins of v.
From (5.4) we see immediately that if C' is homogeneous then so is C. For
the converse, suppose that C is homogeneous. It then follows from (5.4) that
for any ¢ > 0,

o~ B S iy, M,
IOt g, . T, :/ e’"tC’< s >dr.
( ! ) o T(k +1) T(kp + 1)

For fixed u = (uy,...,un) € [0,00]™\ {00, ..., 00}, define

Uy . U, )
_— )
(k1 +1) C(km +1)
gu:(0,00) = R, t+— t1C (t”“ul, e ,t’”mum) )

Ju:(0,00) = R rr—>C’<r’“

Then g, is the Laplace transform of f,, g, = Lap(f,). Further, for fixed
s >0, %gsu = Lap(%fsu). Now if C' is homogeneous, then g, = %gsu. From
the uniqueness theorem for Laplace transforms then follows that 1 fy,(r) =
fu(r) almost everywhere in r, and even everywhere in r since both functions
are continuous by (3.4). In particular, £ fs,(1) = f.(1), showing that C' is
homogeneous. m

One might wonder if both v and Tgm)(z/) having homogeneous Lévy cop-
ulas implies stability of the margins. This, however, is not the case:

Example 5.3 Let v € L7 with marginal volume functions Fi(z) < Fy(z) <

. < Fulx) Yz €0, oo] and associated Lévy copula C(uy,..., ) =
min{u,, ..., un}. Then (5.3) shows that C' = C is associated with T ( ).
In particular C and C are both homogeneous, although the margins of v are
not necessarily stable.

The following example shows that without assumptions on the margins,
homogeneity of C' does not imply homogeneity of C'.

Example 5.4 Let v € £3 with marginal volume functions

F( ) 21‘17 x1§27
x pu—
e 343/2, B >2,
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Fy(x9) = x5 and the homogeneous Lévy copula C(uy,us) = min{uy, us}.
Then, evaluating the integrals in (5.5), it follows that the (marginal) volume
functions of v satisfy Fi(z;) = 2z, — %xl exp(—2/xy1), Fy(xy) = x9, and

Flr, Fi(2)) = Fu(e) — (Fu(r) — 5 ) exp (-W) Va0

From this it can be easily seen that F(z, Fy(z))/F;(z) is not constant in
x > 0, from which it follows that the copula associated with 7 cannot be
homogeneous.

Barndorff-Nielsen, Maejima and Sato [2] have shown that Y™ maps the
class of stable random variables bijectively onto itself. For the subclass of
stable random variables with Lévy measure in L7, another proof of this now
follows easily by combining Theorem 5.2 and Tankov’s characterisation of
homogeneous Lévy copulas.

Finally, in this section we define a new mapping Yy, acting directly on
Lévy copulas. Recall from Definition 2.2 that any Lévy copula C' defines
a Lévy measure v¢ with marginal volume functions F; : x; — ;. Then
Fi(x;) = x4, so by (2.2) the volume function of Y(v¢) is identical to its Lévy
copula. Thus, we can define Y (C) to be the unique Lévy copula C' such
that ver = Yo(ve). By (5.4), this is equivalent to the following

Definition 5.5 For any Lévy copula C, the transformed Lévy copula Ty (C')
is defined by

TSOP(C)(ul,...,um):/ e P C(suyy...,8Uy)ds Y up, ..., Uy, € [0,00].
0

Note that Y5 (C) can be defined for any Lévy copula C, while C' as appear-
ing in Lemma 5.1 depends on the margins of a Lévy measure, as shown in
Example 5.4. Furthermore, if C' is homogeneous, then Y (C) = C.

6 Constructing special Lévy measures with
prescribed margins

Let v4,...,v, be prescribed one-dimensional positive Lévy measures which
are in the Bondesson class. Then an easy description of the Lévy copulas

which give rise to multivariate Lévy measures v in the Bondesson class with
these margins does not seem to be available. However, in Section 6.1 we
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shall show how Lévy measures v in the m-dimensional Bondesson class with
margins vy, ..., V, can be constructed, using the mapping Y. Then, in Sec-
tions 6.2 and 6.3 we shall obtain similar results for self-decomposable Lévy
measures and for Lévy measures in the Thorin class. Again, easy descriptions
of the relevant Lévy copulas do not seem to be at hand.

6.1 Lévy measures in the Bondesson class

Bondesson [7] considered the smallest class of probability distributions on
[0, 00) which is closed under weak convergence and convolution and contains
all mixtures of exponential distributions. This class was extended to distri-
butions on the real line, and we shall refer to that as the Bondesson class
B(R). Barndorff-Nielsen, Maejima and Sato [2] generalised this further to
distributions on R™: by definition, the multivariate Bondesson class B(R™)
consists of all infinitely divisible distributions 1 whose Lévy measure v can
be expressed as

v(B) = /S)\(dg) /000 15(r€)le(r)dr V B Borel set in R™ \ {0}.  (6.1)

Here, A is a positive measure on S = {£ € R™ : || = 1} and (l¢)¢es is a family
of functions on (0, co) such that l¢(r) is completely monotone in r for A-a.e. &,
and l¢(r) is measurable in & for each r > 0. A characterisation of B(R™)
as the smallest class closed under weak convergence and convolution and
containing all “elementary mixtures” of signed exponential random variables
in R™ was also obtained in [2]; we shall not make use of this characterisation
in the sequel.

We shall be interested in the subclass B(R7'), consisting of all elements
of B(R™) whose Lévy measure is concentrated on R7. For notational con-
venience, since for any infinitely divisible distribution p the property of be-
longing to B(R7) is completely determined by its Lévy measure v, we shall
also say that v belongs to B(RT).

In one dimension, B(R, ) consists of all infinitely divisible distributions
whose Lévy measure is concentrated on (0, 00) and has a completely mono-
tone Lévy density there. Recall that a function on (0, 00) is completely mono-
tone if it is C* and if (—1)"(d"/dz™)f(x) > 0 on (0,00) for all n € Ny. By
Bernstein’s theorem a function f on (0,00) is completely monotone if and
only if it is the Laplace transform

f(fv)z/(o ), w0
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of some positive measure ¢ for which the integral is finite. Such an f is a
Lévy density if and only if

y
/ <y‘3/ r2e”" dr —i—y_le_y) di(y) < oo,
(0,00) 0
see [2].

Barndorff-Nielsen, Maejima and Sato [2] showed that the mapping Y™
maps the class of infinitely divisible distributions one-to-one onto B(R™).
From this follows easily that the class of infinitely divisible distributions
whose Lévy measure is concentrated on R is mapped bijectively onto B(RT).
This will be the key property for us when constructing multivariate distribu-
tions in the Bondesson class.

The following example shows that not every Lévy measure whose one-
dimensional margins are in B(R;) belongs to B(RT).

Example 6.1 Let v; and v5 be one-dimensional Lévy measures with volume
functions F(x;) = 2@ and Fy(zs) = 25, where 0 < o, 8 < 2 and o # S.
Define the bivariate Lévy measure v using the Lévy copula C(x1,z5) =
min(zy, x2). Then the volume function of v is given by F'(z1, x2) = min(x§, ).
But this implies that the Lévy measure v is concentrated on the curve
Ty = x?/ﬁ. In particular, its radial component cannot have a Lebesgue
density, so v & B(R%r). However, the marginals v, and vy of v are a- and
[-stable, respectively, and hence in B(R, ).

So we have seen that not every Lévy copula can be used on margins in the
Bondesson class to obtain a Lévy measure in B(R}"). The following Theorem
gives a complete description of all possibilities to construct such measures:

Theorem 6.2 Let vy,...,v,, € B(R,) be prescribed marginal Lévy mea-
sures. Set
vi= (Y7, i=1,...,m. (6.2)

Let C' be any m-dimensional Lévy copula and define the Lévy measure v with
margins vy, ..., vm by (2.2). Then

defines a Lévy measure in the Bondesson class B(RT}") with margins v, . .., Up,.
Furthermore, all Lévy measures in B(RT) with these margins are obtained
in this way.
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Proof. It is clear that v is a Lévy measure with margins v, ..., v, and from
(5.2) then follows that 7 has margins 7, ..., 7,. Since the range of Y™ is
the Bondesson class, 7 € B(R7") follows. The fact that all such measures are

obtained this way follows since Tgm) is a bijection and from Theorem 2.1. m
In the following we give some examples applying Theorem 6.2.

Example 6.3 Let 0 < a < 8 < 2. Let v; and v, have a- and S-stable
margins, respectively. In Example 6.1 we have seen that we cannot use any
Lévy copula together with vy, 15 to insure that the resulting bivariate Lévy
measure is in the Bondesson class. Now let v; := (T(()l))_l(ﬁi), i = 1,2,
and define v with margins v; and v, using the Lévy copula C(uj,us) =
min(uy, ug). It then follows from (5.4) that

2 — > —5 « Uy B U2
C’(ul,uQ)—/O e”® min (s F(a+1),s F(5+1)) ds

is the Lévy copula of v = ng)(l/). Setting z = z(u1, ug) 1= (

it follows that

1
ﬂmmnyj
u2 I'(a+1) ’

C(Ul, UQ)

o ‘ —s _fB U2 > —5 o Uy
= /Oe S 71“(6—1—1)618—’_/2 e s 7F(a+1)d8
= up P(B+1,2(u1,u)) +ur (1 — Pla+1,2(ur,u2))),  (6.3)

where .

P(a,z) := ﬁ/{) e s ds, a>0, >0,
denotes the incomplete I'-function (see e.g. Abramowitz and Stegun [1], for-
mula 6.5.1). So, using the (homogeneous) copula (6.3) on the margins 7, and
Uy, we obtain 7 € B(R%) with - and [(-stable margins. Tables of P(a,z)
can be found in [1], and many software packages have routines implemented

to compute it.

Example 6.4 Let ¢;,; > 0 (i = 1,...,m) be parameters. Let vy,..., Uy,
be Lévy measures of I, ,, distributions. Then 7; has Lévy density filz) =
¢; £ e g 00y (). We aim to construct a Lévy measure 7 in the Bondesson
class with margins vy, ..., . Setting

C;

hi(s) = g 1(ai,oo)(8),

we recognize f; as the Laplace transform of s ~— sh;(s). From Barndorff-
Nielsen and Thorbjornsen [5] then follows that h; is the Lebesgue density of
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the measure x; := @, *(v;), where v; = (Tél))_l(ﬁi). In order to construct a

Lévy measure v with margins v; using Lévy copulas, we need the marginal
volume functions

v 0 < 79
E-(x):/h()ds— rso
0 ¢logl, ©>a

Then if C' is any Lévy copula, (2.2) defines a Lévy measure v, and v =
Y (v) is then a Lévy measure in the Bondesson class with gamma margins
Viy.ooyUpn.

Example 6.5 In Example 6.4, specialise to m = 2 and ¢; = ¢, =: ¢. Let
the copula C' be given by

2 s -1
6 12
C’(ul, ’LLQ) = IOg ( E m) + 1

=1

as in Example 4.2. Inserting the marginal volume functions into C' we obtain
a Lévy measure v with volume function F' such that F(xy,29) =0if z; < oy
for some 7, and else

F(x1,32) = log(a{25 — ajas) — log(azz] + afz) — 2a{03).

From (5.5) then follows that

F(l’l, 1'2) =

/ ~* {log(s*xfz§ — afas) — log(s®(asa + afzs) — 2a5a3)} ds.

To simplify further, we suppose that ¢ = 1 and a; = ay = 1, so that v; is
the Lévy measure of an exponential distribution with parameter 1. Then,
substituting and using partial integration, it can be shown that

1 1 1 1
F — 1//Ti1z2 E —1//T1T2 E .
(21, x2) e 1 <_x1 + —x1x2> +e o —

_6—2/(2131-1—1'2) E1 T2 _ 1
$1($1+$2) X1+ T2

for z; < . For x1 > x5 we have f(xl,@) = ﬁ(xg,xl), and for z; = x4 it
holds that F(z1,2,) = €'/ F\(2/x,). Here

E(x) ::/ ste®ds, x>0
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denotes the exponential integral (see e.g. Abramowitz and Stegun [1], for-
mula 5.1.1).

Example 6.6 Now we aim to construct bivariate distributions in the Bon-
desson class with tempered stable margins. For this, it is necessary to get the
inverse under T(()l) of these distributions. Let v, ..., v, be Lévy measures of
tempered stable distributions 7'S(k;, d;,v:), where x; € (0,1) and &;,y; > 0,
i =1,...,m. Denote by f; the Lévy density of v;, which is given by

Ki

TR exp{— 57" 2} 100y (a),

filz) = 6,27

see Barndorff-Nielsen and Shephard [3]. Let v; := (Tgl))*l(ﬁi) and set y; :=
Q; (). Define h,(s) by

i (S B 73/51/2) 1 y (S)
(1 —r) D(l+r) 020\

s h;(s) := §;2%

Then f; is the Laplace transform of s — s h;(s), see e.g. [1], formula 29.3.63.
Again, from [5] follows that h; is the Lebesgue density of the measure ;.
Simple calculations using the properties of the I'-function show that

hl(S) = (Sl A

. 1/k; Ki
sin(r) (s =™ /2% (5
T s 7™ /2,000

In order to construct a Lévy measure v with margins v; using Lévy copulas,
we need the marginal volume functions Fj(x fo s)ds. To calculate
these in an explicit form, we specialise to k; = 1 /2, the case where 7; is the
Lévy measure of an inverse Gaussian law. Then Fz(x) =0 for x < ?/2, and
for z > 7?/2 we obtain

2 1/2 z—v2/2 1/2
Fi(2) 5\// /2 s — 5\// st/

S+%/2

The last integral can be calculated explicitly, see e.g. Dwight [9], formula
185.11., and we obtain

. 0, x < v2/2,
H(z) = b2 {2(x _2/2)12 /3y, arctanw} x> 22,

Then if C'is any Lévy copula, (2.2) defines a Lévy measure v, and v = Y (v)
is then a Lévy measure in B(R7} ) with inverse Gaussian margins.
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6.2 Self-decomposable Lévy measures

The Lévy measure constructed in Example 6.1 not only is not in the Bondes-
son class, but also is not self-decomposable, although it has self-decomposable
margins. In the following we shall show how to construct all self-decomposable
distributions with given margins. Much the same way as we constructed Lévy
measures in the Bondesson class using the mapping T, we can construct self-
decomposable Lévy measures using the mapping &, defined below. Recall
that an infinitely divisible distribution p is self-decomposable if and only if
its Lévy measure v has representation (6.1), where l¢ does not need to be
completely monotone, but 7 — rlg(r) has to be decreasing on (0,00), see
Sato [16], Theorem 15.10. By abuse of language, we shall also say that the
Lévy measure v is self-decomposable.

Denote by L(RT) the class of self-decomposable distributions with Lévy
measure in L7, and by I Dy, (R7") the class of infinitely divisible distributions
p with Lévy measure in L7 and which satisfy

/ log x| dp(z) < 0.
|z|>1

If 11 is infinitely divisible with Lévy measure v € L7, then p € ID)op(R7) if
and only if

/ log |z| dv(z) < oo,
|z|>1

see Sato [16], Theorem 25.3; we shall also write v € L(RT").

Let i € ID)og(RT) and (X;(f))tzo be a Lévy process with distribution
@ at time 1. Then &™) (1) := ®(p) L [ e Xm(f) exists. Sato and Ya-
mazato [17], Section 4, have shown that ® defines a bijection from I D). (R7)
onto L(R7). (Similar results hold without the restriction that the Lévy mea-
sure be concentrated on RT.) The action of ® on u can also be defined in
terms of the characteristic triplets, cf. Sato [16], Theorem 17.5. In particular,
if v is the Lévy measure of p and o denotes the Lévy measure of i := ®(u),
then

3™ () (B) = Bo(v)(B) == #(B) = /0 " U(e'B)ds Y B Borel set in R,

Again, ® defines a bijection between the class of Lévy measures in /Dy (RT)
and the Lévy measures in L(RT). From the definition of the bijection ®(™
we see in particular that if 7 is the Lévy measure of a self-decomposable
distribution ji, then /i can be represented as fooo et dX,(f), where (Xl(f))tz[) is
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the back%round driving Lévy process with distribution p and Lévy measure
v = (®{™)1(7) at time 1. o
Let v be a Lévy measure in 1Dy, (R7), and let F', F;, C' and F', F; and

C be the (marginal) volume functions and copulas of v and 7, respectively.
Then for any z = (z4,...,2,) € [0,00]™,

Flz) = /UOOF(e_sx)ds,
C(F(x1),..., Fplzm)) = /OOO C(Fi(e *x1), ..., Fn(e *xy)) ds. (6.4)

Before we can use the mapping ®, to construct self-decomposable Lévy
measures, we need the following lemma:

Lemma 6.7 Let v € L with margins vy, ...,Vp. Then v € IDo(RT) if
and only if v; € IDyg(Ry) for alli=1,...,m.

Proof. If v € I Do (R}), then forany i € {1,...,m}, writingz = (21, ...,2,),

/ log 77 dv;(z;) < / log |z|? dv(x) < / log || dv(z) < oo.
|zi|>1 |zi|>1

|z|>1

On the other hand, if v; € ID\os(Ry) for i =1,...,m, then

/ / log |z|? dv(x)
|z1|>1 |Zm|>1

< / / logm+Zlog|xi|2 dv(x) < o0.
|z1[>1 |Tm |>1

=1

[

Hence, we can combine any marginal Lévy measures vy, . .., vy, in I Djog(Ry)
with any Lévy copula, and obtain a Lévy measure v in I Djoq(R7). From the
definition of &, follows readily that it commutes with the projection II; on
the i-th axis, more precisely:

o m 1
b= (D) (v)) = &Y (M),
In analogy to Theorem 6.2, with the same line of proof, we now obtain:

Theorem 6.8 Leti,. .., Uy be prescribed marginal Lévy measures in L(RT).

Set
v; 1= (q)gl))illji, 1= 1,...,m.
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Let C' be any m-dimensional Lévy copula and define the Lévy measure v with
margins vy, . .., Uy using (2.2). Then

=0 (1)

defines a selfdecomposable Lévy measure on R with margins v, ..., Up,. Fur-
thermore, all Lévy measures in L(RT') with these margins are obtained in this
way.

It is quite easy to obtain (@gl))_lﬁi, i.e. the Lévy measure of the back-

ground driving Lévy process, from the Lévy density of 7;: if this Lévy density
is denoted by f;, then the marginal volume function F; of (@81))*112 satisfies

Fi(z;) = ;7 fi(z;h),

see Barndorff-Nielsen and Shephard [4], Equation (4.17). For example, if 7;
is a tempered stable distribution T'S(k;, d;, v;), i.e. if

F Ki ki —1—k; L i

fiz;) = 6;2 F(li_zm) i expi=g 175} 1o,00) (),
then .

) i i 1/k; —
Fi(z) = 51'2'““17_1/%)17? eXP{V/K vt /2}.

Then using any Lévy copula C' in (6.4) leads to a multivariate selfdecompos-
able Lévy measure  with tempered stable margins 7y, ..., I,. In particular,
when k; = 1/2 the f; correspond to the Lévy densities of inverse Gaussian
distributions.

6.3 Lévy measures in the Thorin class

In Barndorff-Nielsen, Maejima and Sato [2], the m-dimensional Thorin class
T(R™) is defined to be the class of all infinitely divisible distributions p whose
Lévy measure v has representation (6.1), where r — rl¢(r) has to be com-
pletely monotone on (0,00). This is a generalisation of the one-dimensional
Thorin class T(R) introduced by Thorin [14]. It can be shown that T'(R™)
is a proper subclass of B(R™) N L(R™). A probabilistic interpretation as
for the Bondesson class is given in [2]. There, it is also shown that T'(R™)
is the image of L(R™) under Y™ (for m = 1 this was proved in [5]), and
also the image of B(R™) N IDye(R™) under ®™). Furthermore, ®™ and
T commute, i.e. @MY (4) = YO (1) for p € IDiog(R™). De-
note by T(R7) the class of all infinitely divisible distributions in the Thorin
class whose Lévy measure is in L. Then the results of Sections 6.1 and 6.2
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can be used to construct all distributions in T'(R7) with any prescribed
marginal Lévy measures 7; in T(R,): take the inverses v; of the marginal

Lévy measures v; under Tgl), construct a Lévy measure v € L(R}) with

margins v; as in Section 6.2, and set v := (I)(()m)(l/). Alternatively, one can set

7 o= (O (#) € B(R,) N IDyg(Ry), construct 7 € B(R™) N 1Dy, (RT)
as in Section 6.1, and set v := ®(7).
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