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A Continuous Time GARCH Proess Driven by a L�evyProess: Stationarity and Seond Order Behaviour�Claudia Kl�uppelberg Alexander Lindner y Ross Maller z
AbstratWe use a disrete time analysis, giving neessary and suÆient onditions forthe almost sure onvergene of ARCH(1) and GARCH(1,1) disrete time models,to suggest an extension of the (G)ARCH onept to ontinuous time proesses. Our\COGARCH" (ontinuous time GARCH) model, based on a single bakgrounddriving L�evy proess, is di�erent from, though related to, other ontinuous timestohasti volatility models that have been proposed. The model generalises theessential features of disrete time GARCH proesses, and is amenable to furtheranalysis, possessing useful Markovian and stationarity properties.
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1 IntrodutionCertain time series models known as ARCH (autoregressive onditionally heterosedasti)and GARCH (Generalised ARCH) models are popular in �nanial eonometris wherethey are designed to apture some of the distintive features of asset prie, exhangerate, and other series. So-alled stylised fats haraterise �nanial returns data as heavy-tailed, unorrelated, but not independent, with time-varying volatility and a long rangedependene e�et evident in volatility, this last also being manifest as a \persistene involatility". Various attempts have been made to apture these features in a ontinuoustime model, a natural extension being given by di�usion approximations to the disretetime GARCH as in Nelson [21℄ and Duan [10℄ or also in de Haan and Karandikar [8℄.These lead to stohasti volatility models of the typedYt = �tdB(1)t ; d�2t = �( � �2t )dt+ ��2t dB(2)t ; t > 0 ; (1.1)where B(1) and B(2) are independent Brownian motions. For a review paper on suhontinuous time GARCH models we refer to Drost and Werker [9℄.Various related models have been suggested and investigated, many generalisationsbeing based on L�evy proesses replaing the Brownian motions and on relaxing the in-dependene property. We refer here to Barndor�-Nielsen and Shephard [2, 3℄ and Anh,Heyde and Leonenko [1℄ for quite sophistiated models.The main di�erene between models like (1.1) and the original GARCH setup is thefat that in the GARCH modelling one single soure of randomness suÆes; all stylizedfeatures are then aptured by the dependene struture of the model.We adopt this idea of a single noise proess and suggest a new ontinuous time GARCHmodel, whih aptures all the stylized fats as the disrete time GARCH does. As noiseproess, any L�evy proess is possible, its inrements replaing the innovations in the dis-rete time GARCH model. The volatility proess is modelled by a stohasti di�erentialequation, whose solution displays the \feedbak" and \autoregressive" aspet of the re-ursion formula for the disrete time GARCH model.Our paper is organised as follows. We start in Setion 2 with the basis, giving nees-sary and suÆient onditions (NASC) for the existene of stable solutions to the disretetime GARCH(1,1) model, assuming no a priori onditions whatsoever; in partiular, nomoment or log-moment assumptions are made.In Setion 3, motivated by the strutural results of the previous setion, we suggesta new ontinuous time GARCH(1,1) model taking a general L�evy proess as the drivingproess. The resulting volatility proess satis�es a stohasti di�erential equation andis stationary under analogous onditions as for the disrete time GARCH model. More-over, it is Markovian. For the ontinuous time GARCH model a bivariate state spae2



representation exists and is Markovian, again in analogy to the disrete time GARCH.Setion 4 is devoted to an investigation of the stylized fats for the volatility proess asmentioned above. The seond order properties of the ontinous time GARCH math thoseof the disrete time model, as alulated moments and autoorrelation funtions reveal.Moreover, the stationary volatility is heavy-tailed in the sense that not all moments existin a given parametrisation.Finally, in Setion 5 we summarize some moment properties of the GARCH proessitself, showing in partiular that its squared inrements are positively orrelated undersome onditions.2 Disrete time ARCH(1) and GARCH(1,1) proessesWe write the disrete time GARCH(1,1) proess in the formYn = "n�n; where �2n = � + �Y 2n�1 + Æ�2n�1 ; n 2 N : (2.1)The random variable (rv) �n is the positive square root of �2n and the "n, n = 1; 2; : : :, areindependent and identially distributed (i.i.d.) non-degenerate rvs with Pf"1 = 0g = 0.The parameters �, � and Æ satisfy � > 0, � � 0 and Æ � 0. When Æ = 0 in (2.1),GARCH(1,1) redues to ARCH(1), and if Æ = � = 0, (Yn)n2N is simply a sequene ofi.i.d. rvs, so we assume Æ + � > 0 to exlude this ase. We assume some initial almostsurely (a.s.) �nite (random, in general) values for "0 and �0, independent of eah otherand independent of ("n)n�1, and let Y0 = "0�0. For general bakground on ARCH we referto Engle [13℄, and for GARCH to Bollerslev, Engle and Nelson [6℄; see also Shephard [29℄.There have been many empirial and theoretial investigations into properties of themodels. Of major theoretial importane are onditions on the parameters in the modelunder whih a stationary version of the proess exists. De�ne the rvs�n = �n(�; Æ) := nYi=1(Æ + �"2i ) ; n 2 N :The next result will be used to motivate our ontinuous time model. Throughout, \ D!"means \onvergene in distribution", \ P!" means \onvergene in probability", and \D="means \has the same distribution as".Theorem 2.1. (a) (GARCH(1,1)) Assume the above setup with Æ > 0 and � � 0, butno further restritions. SupposeEj log(Æ + �"21)j <1 and E log(Æ + �"21) < 0: (2.2)3



Then we have stability of the mean and variane proesses, that is, Yn D! Y and �n D! �,as n!1, for �nite rvs Y and �. Conversely, if (2.2) does not hold, then �n P!1 andjYnj P!1 as n!1.(b) (ARCH(1)) Suppose Æ = 0 and � > 0. Then we have stability of (Yn)n�0 and (�n)n�0if (b1) (2.2) holds with Æ = 0, or (b2)E(log(�"21))� =1 and Z 10 x�Z x0 P (log(�"21) < �y) dy��1 dP (log(�"21) � x) <1 :(2.3)Conversely, if (2.2) with Æ = 0, and (2.3) both fail, then �n P! 1 and jYnj P! 1 asn!1.Proof. Take Æ � 0, � � 0. From (2.1) we have�2n = � + �Y 2n�1 + Æ�2n�1 = � + (Æ + �"2n�1)�2n�1 ; n 2 N ; (2.4)where "n�1 is independent of �2n�1. Iterate this to get (f. Goldie [16℄, Nelson [22℄ Eq. (6))�2n = � n�1Xi=0 n�1Yj=i+1(Æ + �"2j) + �20 n�1Yj=0(Æ + �"2j) ; n 2 N (2.5)(take �bj=a = 1 when a > b). This relation shows that the distribution of �n has the formof the distribution of a disrete time perpetuity, as in Goldie and Maller [17℄. SettingMj = Mj(Æ; �) = Æ + �"2j , and Qi = 1 in their notation, we an apply their Theorem 2.1to see that �2n D! �2 for a �nite rv �, provided limn!1 �n = 0 a.s. Assuming limn!1 �n =0 a.s., and taking limits in (2.4) shows that � satis�es �2 D= � + (Æ + �"2)�2, with "and � independent. From (2.1) we then get Yn D! Y , satisfying Y D= �", with " and �independent. If �n does not tend to 0 a.s., then Theorem 2.1 of [17℄ shows that �n P!1,and then jYnj P! 1 beause Pf"1 = 0g = 0. Thus, a NASC for stability of the disreteARCH(1) and GARCH(1,1) proesses is �n ! 0 a.s. as n!1.Now de�neS0 = 0 ; Sn = nXi=1 Xi ; n 2 N ; for Xi = � log(Æ + �"2i ) ; i 2 N :Sine Pf"i 6= 0g = 1, the Xi and Sn are a.s. �nite rvs for any Æ � 0, � � 0, Æ + � > 0.Further, �n ! 0 a.s. if and only if Sn ! 1 a.s. Let X = X1, X+ = max(0; X) andX� = �X +X+. Then, by Kesten and Maller [18℄ and Erikson [14℄, a NASC for �n ! 0a.s., or, equivalently, Sn !1 a.s., is:EjXj <1 and EX > 0 ; (2.6)4



or else EX+ =1 and Z[0;1)� xE(X+ ^ x)� dPfX� � xg <1 : (2.7)(a) Keep Æ > 0, � � 0. Now (2.6) is exatly (2.2), so we only have to hek that ondition(2.7) annot our in this ase. We do this by showing EX+ <1. Note that (2.2) impliesÆ < 1, as does limn!1 �n = 0 a.s. So we may keep 0 < Æ < 1. Then for x > 0,P (X > x) = P (� log(Æ + �"21) > x) = P (log(Æ + �"21) < �x) 1fx<� log Æg ;so EX+ = Z � log Æ0 P (log(Æ + �"21) < �x) dx;whih is always �nite, ompleting the proof of (a).(b) Next, keep Æ = 0, � > 0. This time (2.7) an our, the ondition being equivalent to(2.3). Alternatively, (2.6) is equivalent to (2.2) with Æ = 0 in this ase. This proves (b).2Remark 2.1. (i) Under the a priori assumption that the expetations of the positive andnegative parts of log(Æ+�"21) are not both in�nite, Nelson [22℄ gives a NASC for stabilityof the ARCH(1) and GARCH(1,1) volatility proesses as E log(Æ + �"21) < 0 (see alsoSampson [26℄). In the GARCH ase, Æ > 0 and � � 0, we always have E(log(Æ+�"21))� <1, and so (2.2) reovers Nelson's suÆient ondition. Nelson laims that if (2.2) fails,then �n !1 a.s., but his proof is inorret in the ase E log(Æ+�"21) = 0. Only the weakdivergenes, that �n P!1 and jYnj P!1 (n!1) as stated in our Theorem 2.1, an belaimed in general. This distintion is important in some appliations.In the ARCH ase, Æ = 0 and � > 0, then it is easy to onstrut ("n)n2N suh thatE(log(�"21))� = E(log(�"21))+ = 1, but (2.3) still holds. Thus Theorem 2.1 extendsNelson's result for the ARCH(1) ase.(ii) Condition (2.2) obviously implies Æ < 1. Conversely, if Æ > 0 andÆ + �E("21) < 1;then (2.2) holds by an appliation of Jensen's inequality. Under the �nite variane ondi-tion E("21) <1, Bougerol and Piard [7℄ give NASC for strit stationarity of GARCH(p,q)models.(iii) Note that limn!1 �n(�; Æ) = 0 a.s. for � > 0, Æ > 0 implies limn!1 �n(�; 0) = 0 a.s.for � > 0. Thus, the GARCH(1,1) stability ondition implies stability of ARCH(1). 2Remark 2.2. When Y and � exist in Theorem 2.1 they satisfy the random equationsY D= �"; where �2 D= � + (Æ + �"2)�2;5



with " D= "1 independent of �, as shown in the proof. Also, � has an expliit representationas an in�nite (absolutely onvergent) random series:�2 D= � 1Xi=0 iYj=1(Æ + �"2j): (2.8)Equation (2.8) makes it lear why limn!1 �n = 0 a.s. is neessary for the stability ofGARCH(1,1), but the suÆieny omes about using deeper properties of random walks,as exploited in Goldie and Maller [17℄. 2For onditions guaranteeing various useful properties of a stationary solution (existeneof moments, tail behavior, extremal behavior, et.) when it exists, Mikosh and Staria [20℄provide the most general investigation so far. Suh results of ourse have great pratialimportane as well. Connetions between GARCH models and the random di�ereneequation literature have been noted by various authors, among them Goldie [16℄; seeEmbrehts et al. [12℄, Setion 8.4 for further referenes. Rather than pursue these here,we turn to a ontinuous time setting.3 A ontinuous time GARCH proessOur aim now is to onstrut a kind of GARCH proess in ontinuous time. We want topreserve the essential features of (2.1), that innovations feed into the volatility proess,whih has in addition an autoregressive aspet. We proeed from the representation (2.5).The summation in (2.5) an be written as� Z n0 exp0� n�1Xj=bs+1 log(Æ + �"2j)1A ds; (3.1)whih suggests replaing the noise variables "j by inrements of a L�evy proess. Aord-ingly, let L be a (�adl�ag) L�evy proess with jumps �Lt = Lt � Lt�, t � 0, de�ned on aprobability spae with appropriate �ltration, satisfying the \usual onditions". We reallsome of its properties. For eah t � 0 the harateristi funtion of Lt an be written inthe formE(ei�Lt) = exp�t�iL� � � 2L �22 + Z(�1;1) �ei�x � 1� i�x1fjxj�1g��L(dx)�� ; � 2 R ;(3.2)(Sato [27℄, Theorem 8.1, Bertoin [4℄, p. 13). The onstants L 2 R, � 2L � 0 and themeasure �L on R form the harateristi triplet of L; as usual, the L�evy measure �L isrequired to satisfy RRmin(1; x2)�L(dx) < 1. If in addition RRmin(1; jxj)�L(dx) < 1,6



then L;0 := L� R[�1;1℄ x�L(dx) is alled the drift of L. We will only be interested in thesituation where �L is nonzero.Keep 0 < Æ < 1, � � 0, and, with (3.1) in mind, de�ne a �adl�ag proess (Xt)t�0 byXt = �t log Æ � X0<s�t log(1 + (�=Æ)(�Ls)2); t � 0 : (3.3)Then, with � > 0 and �0 a �nite rv, independent of (Lt)t�0, de�ne the left-ontinuousvolatility proess analogously with (2.5) by�2t = �� Z t0 eXsds+ �20� e�Xt�; t � 0; (3.4)and de�ne the Integrated Continuous Time GARCH (\COGARCH") Proess (Gt)t�0 asthe �adl�ag proess satisfyingdGt = �t dLt ; t � 0 ; G0 = 0 : (3.5)Thus G jumps at the same times as L does, and has jumps of size �Gt = �t�Lt, t � 0.Here �Lt is to play the role of the innovation "n in the disrete time GARCH, andthe intention is that (Gt)t�0 and (�2t )t�0 display a kind of ontinuous time GARCH-likebehaviour. This indeed turns out to be the ase.We begin our analysis by �rst investigating the proess (Xt)t�0, whih has a speialstruture.Proposition 3.1. (Xt)t�0 is a spetrally negative L�evy proess of bounded variation withdrift X;0 = � log Æ, Gaussian omponent � 2X = 0, and L�evy measure �X given by�X([0;1)) = 0 and �X((�1;�x℄) = �L(fy 2 R : jyj �p(ex � 1)Æ=�g) ; x > 0 :Proof. That (Xt)t�0 is a L�evy proess with no positive jumps is lear. The L�evy measureof (Xt)t�0 has negative omponent given by�Xf(�1;�x℄g = E X0<s�1 1f� log(1+(�=Æ)(�Ls)2)��xg= E X0<s�1 1fj�Lsj�p(ex�1)Æ=�g= �Lfy : jyj �p(ex � 1)Æ=�g ; x > 0 :This means that �X is the image measure of �L under the transformation T : R !(�1; 0℄, x 7! � log(1 + (�=Æ)x2). This shows in partiular thatZ[�1;1℄ jxj�X(dx) = Zfjyj�p(e�1)Æ=�g log(1 + (�=Æ)y2) �L(dy)7



is �nite, beause R[�1;1℄ y2�L(dy) is �nite. Thus (Xt)t�0 is a L�evy proess of boundedvariation (e.g., Sato [27℄, Theorem 21.9), having harateristi funtionE(ei�Xt) = exp��it� log Æ + t Z(�1;0) �ei�x � 1��X(dx)� ; � 2 R; (3.6)(e.g. Sato [27℄, Theorem 19.3), showing that X;0 = � log Æ and � 2X = 0. (In fat (Xt)t�0is the negative of a subordinator together with a positive drift.) 2We now proeed to investigate (Gt)t�0 and (�2t )t�0 given by (3.4) and (3.5).Proposition 3.2. The proess (�2t )t�0 satis�es the stohasti di�erential equationd�2t+ = �dt+ �2t eXt�d(e�Xt) ; t > 0 ; (3.7)and we have �2t = �t+ log Æ Z t0 �2sds+ (�=Æ) X0<s<t�2s(�Ls)2 + �20; t � 0: (3.8)Proof. Set Kt := t log Æ, St :=Q0<s�t(1+(�=Æ)(�Ls)2) and f(k; s) := eks. Then use Itô'slemma in two variables (e.g., Protter [23℄, Theorem 33, p. 81) to get, from (3.3),e�Xt = f(Kt; St)= 1 + log Æ Z t0 e�Xsds+ (�=Æ) X0<s�t e�Xs�(�Ls)2 ; t � 0 : (3.9)Integration by parts givese�Xt Z t0 eXsds = Z t0+ e�Xs�d�Z s0 eXydy�+Z t0+�Z s0 eXydy� d(e�Xs)+�e�X� ; Z �0 eXsds�t ;wherein the quadrati ovariation is, in view of (3.9),�log Æ Z �0 e�Xs�ds; Z �0 eXsds�t = Z t0 d[s log Æ; s℄ = 0; t � 0:Thus d�e�Xt Z t0 eXsds� = dt+ �Z t0 eXsds� d(e�Xt); t � 0;by the assoiativity of the stohasti integral. So we obtain from (3.4) that (3.7) holds,from whih (3.8) follows after appliation of (3.9). 2Equation (2.4) shows that the disrete GARCH(1,1) satis�es�2n+1 � �2n = � � (1� Æ)�2n + ��2n"2n; n 2 N0 ;8



whih by summation yields�2n = �n� (1� Æ) n�1Xi=0 �2i + � n�1Xi=0 �2i "2i + �20 ; (3.10)analogously to (3.8). (Note that we use (�2n)n2N0 to denote the squared disrete timeGARCH volatility proess, and (�2t )t�0 to denote the ontinuous time proess de�ned by(3.4); these are quite di�erent proesses but this should ause no onfusion.) Thus (3.8)aptures the \feedbak" and \autoregressive" aspets of the GARCH volatility proesswhih are important features of its appliation.By omparison with Theorem 2.1 we are now led to:Theorem 3.1. Suppose ZR log(1 + (�=Æ)y2) �L(dy) < � log Æ (3.11)(whih, sine Æ > 0, inorporates the requirement that the integral be �nite.) Then �2t D!�21, as t!1, for a �nite rv �1 satisfying�21 D= � Z 10 e�Xtdt(thus, the improper integral exists as a �nite rv, a.s.). Conversely, if (3.11) does not hold,then �2t P!1 as t!1.Proof. By a ontinuous time analogue to the Goldie and Maller [17℄ theorem, due toErikson and Maller [15℄, R10 e�Xs ds onverges a.s. to a �nite rv if Xt ! 1 a.s., and�2t P!1 as t!1 otherwise. By the stationarity of the inrements of (Xt)t�0,e�Xt Z t0 eXsds D= Z t0 e�Xsds ; t � 0:Hene we only need to show that (3.11) is equivalent to Xt ! 1 a.s. as t ! 1. Sine�Xf[0;1)g = 0, EX1 always exists (possibly, EX1 = �1) and Xt=t ! EX1 a.s. ast ! 1 (e.g., Sato [27℄, Theorem 36.3). If EX1 � 0 then Xt ! �1 a.s. or (Xt)t�0osillates, so we need to show that EX1 > 0 if and only if (3.11) holds. From (3.6) we getEX1 = � log Æ + Z(�1;0) x�X(dx) = � log Æ � ZR log(1 + (�=Æ)y2) �L(dy);implying the equivalene of EX1 > 0 and (3.11). 2Next we show that (�2t )t�0 is Markovian and further that, if the proess is started at�20 D= �21, then it is stritly stationary. 9



Theorem 3.2. The squared volatility proess (�2t )t�0, as given by (3.4), is a time ho-mogeneous Markov proess. Moreover, if the limit variable �21 in Theorem 3.1 exists and�20 D= �21, independent of (Lt)t�0, then (�2t )t�0 is stritly stationary.Proof. Let (Ft)t�0 be the �ltration generated by (�2t )t�0. Then for 0 � y < t�2t = � Z y0 eXsds e�Xy� e�(Xt��Xy�) + � Z ty eXsds e�Xt� + �20e�Xt�= (�2y � �20e�Xy�)e�(Xt��Xy�) + � Z ty eXsds e�Xt� + �20e�Xt�= �2yAy;t +By;t; say; (3.12)where Ay;t := e�(Xt��Xy�) and By;t := � Z ty e(Xs�Xy�)ds e�(Xt��Xy�)are independent of Fy. This means that, onditional on Fy, �2t depends only on �2y, fromwhih it follows easily that (�2t )t�0 is a Markov proess.Next, let D[0;1) be the spae of �adl�ag funtions on [0;1) and de�ne gy;t : D[0;1)!R2 ; x 7! �e�(xt��xy�) ; � R ty e�(xt��xs) ds�: Sine (Xt)t�0 is a L�evy proess, (Xs)s�0 D=(Xs+h � Xh)s�0 for any h > 0. Further, we have that (Ay;t; By;t) = gy;t((Xs)s�0) and(Ay+h;t+h; By+h;t+h) = gy;t((Xs+h � Xh)s�0). This shows that the joint distribution of(Ay;t; By;t) depends only on t � y. By independene of �2y and (Ay;t; By;t) the transitionfuntions are thus time homogeneous.It remains to show that �2t D= �21 for all t > 0, provided �20 D= �21. For alulating thedistribution of �2t+ = � Z t0 eXs��Xt ds+ e�Xt�20;we an take any version of �20, independent of (Ls)0�s�t, and with the distribution of �21.A suitable hoie is �20 := � R10 e�(Xs+t�Xt) ds. Then�2t+ = � Z t0 e(X(t�s)��Xt) ds+ e(X(t�t)��Xt)� Z 10 e�(Xs+t�Xt) ds:By the time reversal property of L�evy proesses (e.g. Bertoin [4℄, Lemma II.2, p. 45),(X(t�s)� � Xt)0�s�t D= (�Xs)0�s�t and both proesses are independent of �20 as hosen.Hene, �2t+ D= � Z t0 e�Xs ds+ e�Xt� Z 10 e�(Xs+t�Xt) ds= � Z t0 e�Xs ds+ � Z 1t e�Xs ds D= �20 :10



Sine �2t+ = �2t a.s. (�2t has no �xed points of disontinuity, a.s.), �2t D= �20 follows for allt > 0. 2For the proess Gt = R t0 �s dLs, t � 0, note that for any 0 � y < t,Gt = Gy + Z ty+ �s dLs ; t � 0 :Here, (�s)y<s�t depends on the past until time y only through �y, and the integrator isindependent of this past. From Theorem 3.2 we thus obtain:Corollary 3.1. The bivariate proess (�t; Gt)t�0 is Markovian. If (�2t )t�0 is the stationaryversion of the proess with �20 D= �21, then (Gt)t�0 is a proess with stationary inrements.Remark 3.1. (i) The analogy between (3.8) and (3.10) is not exat, in that the param-eterisation is slightly di�erent; (1� Æ) is replaed by � log Æ in the ontinuous version.(ii) The value � = 0 is permissible in (3.3), in whih aseXt = �t log Æ, t � 0, (0 < Æ < 1),and by (3.4) we have the trivial solution�2t = �(1� Æt)� log Æ + �20Æt ; t � 0 :For the disrete GARCH, from (2.5), when � = 0,�2n = � n�1Xi=0 Æn�1�i + �20Æn = �(1� Æn)1� Æ + �20Æn ; n 2 N ;again demonstrating the orrespondene between the disrete and ontinuous time version.(The same results if we take L � 0.)(iii) Only Æ > 0 is allowed in (3.3) { (3.9). Thus our ontinuous time GARCH does notontain a ontinuous time ARCH as a submodel. To aommodate the ase Æ = 0, whihis the ARCH situation, we have to go bak to (3.1). Then Xt should be taken asXt = �t log�� X0<s�t log(�Ls)21f�Ls 6=0g; t � 0;and this is only a well-de�ned (L�evy) proess, if L is ompound Poisson. 2We treat this important example in the more general GARCH setup.Example 3.1. (Compound Poisson COGARCH(1,1) model)Let (Lt)t�0 be a ompound Poisson proess, with jumps "n at the times Tn of an in-dependent Poisson proess (Nt)t�0. Thus, Lt = PNti=1 "i, with L0 = T0 = 0 and Nt =maxfn � 1 : Tn � tg, t � 0. Suppose Pf"1 = 0g = 0. Evaluated at Tn, L has jumps11



�LTn = LTn � LTn� = "n, so �XTn = XTn � XTn�1 = (1 � �Tn) log Æ � log(Æ + �"2n),where the �Tn = Tn�Tn�1 are i.i.d. exponential rvs. This shows that the ontinuous timeGARCH proess evaluated at the jump times di�ers from a disrete GARCH proess, dueto the term (1��Tn) log Æ, though it evidently has similar harateristis. A simulationof suh a proess, driven by a ompound Poisson proess with rate 1 and standard nor-mally distributed jump sizes, is given in Figure 1. The parameters were hosen as � = 1,Æ = 0:95 and � = 0:045. For these values, a stationary distribution of (�2t )t�0 exists andhas �nite seond, but not third, moment (by (4.12) below). The parameters were hosenso the simulated series is lose to non-stationarity, as is often observed for �nanial timeseries. 2Of ourse, the lass of ontinuous time proesses given by our model is muh larger thanthe ompound Poissons. Examples urrently of great interest in �nanial modelling arethe pure jump proess generated by a normal inverse Gaussian or hyperboli (Barndor�-Nielsen and Shephard [2℄ and Eberlein [11℄), a variane gamma (VG) proess (Madanand Seneta [19℄), a Meixner proess (e.g., Shoutens and Teugels [28℄), or simply a stableproess (e.g., Samorodnitsky and Taqqu [25℄). These proesses are not ompound Poisson{ they have in�nitely many jumps, a.s., in �nite time intervals { and have been suessfullyused for �nanial modelling in various appliations.It is instrutive to ompare the proess de�ned in (3.4) with the stohasti volatilitymodel of Barndor�-Nielsen and Shephard [2, 3℄, whih spei�esd�2t = ���2t dt+ dz�t; t � 0 ; (3.13)(with � > 0) for a subordinator (inreasing L�evy proess) (zt)t�0. The solution to (3.13)is the Ornstein-Uhlenbek-type proess�2t = e��t Z t0 e�sdz�s + e��t�20 ; t � 0 : (3.14)By omparison with (3.4), the L�evy proess is in the integrator rather than in the in-tegrand. A lass of proesses whih inludes both models is to let �2t have the samedistribution as e��t�20 + Z t0 e��s�d�s; t � 0; (3.15)where (�; �) is a bivariate L�evy proess. When (�t)t�0 is pure drift we get (3.4) and when(�t)t�0 is pure drift (to 1) we get an rv with the same distribution as the one in (3.14).Conditions for onvergene of (3.15) as t!1 are in Erikson and Maller [15℄, but we donot investigate further at this stage. 12



An alternative stohasti volatility model is introdued in Anh, Heyde and Leo-nenko [1℄, Setion 5, who propose as volatility the stationary proess�(t) = Z t�1M(t� s)dL(s) ; t � 0 ;where M is a \memory" funtion and (Lt)t�0 is a L�evy proess suh that L(1) is a rvwith positive support. In this paper, as well as in [2, 3℄, the logarithmi prie proess ismodelled by the SDEdx�(t) = (�+ b�2(t))dt+ �(t)dW (t) ; t > 0 ;where � and b are onstants and (W (t))t�0 is standard Brownian motion, independent ofthe L�evy proess (Lt)t�0. The Itô solution of this SDE is given byx�(t) = Z t0 �(u)dW (u) + �t+ b�2�(t) ; t � 0 ;where �2�(t) = R t0 �2(u)du. For � > 0 the rvsyn = x�(n�)� x�((n� 1)�) ; n 2 N ;model the logarithmi asset returns over time periods of length �.4 Seond order properties of the volatility proessIn this setion we derive moments and autoorrelation funtions of the squared stohastivolatility proess (�2t )t�0. It is obvious from equation (3.4) that moments of (�2t )t�0 or-respond to ertain exponential moments of (Xt)t�0. To speify the relationships exatly,we give Lemma 4.1.Lemma 4.1. Keep  > 0 throughout.(a) Let � > 0. Then the Laplae transform Ee�Xt of Xt at  is �nite for some t > 0, or,equivalently, for all t > 0, if and only if EL21 <1.(b) When Ee�X1 <1, de�ne 	() = 	X() = logEe�X1 . Then j	()j <1, Ee�Xt =et	(), and 	() =  log Æ + ZR �(1 + (�=Æ)y2) � 1� �L(dy): (4.1)() If EL21 < 1 and 	(1) < 0, then (3.11) holds, and �2t onverges in distribution to a�nite rv.(d) If 	() < 0 for some  > 0, then 	(d) < 0 for all 0 < d < .13



Proof. (a) By Sato [27℄, Theorem 25.17, the Laplae transform Ee�Xt is �nite for someand hene all t � 0 if and only ifZfjxj>1g e�x�X(dx) = Z(�1;�1) e�x�X(dx) = Zfjyj>p(e�1)Æ=�g(1 + (�=Æ)y2)�L(dy)is �nite, giving (a) (see e.g. Sato [27℄, Theorem 25.3).(b) follows from Sato [27℄, Theorem 25.17, and (3.6).() From (4.1) we see that 	(1) < 0 is equivalent to(�=Æ) ZR y2�L(dy) < � log Æ:Sine log(1 + (�=Æ)y2) < (�=Æ)y2, this implies (3.11).(d) Let 	() < 0. From (a) and (b) we onlude that 	(d) is de�nable for 0 < d � .From (4.1) it then follows that 	(d) < 0 if and only if�1d�ZR�(1 + ��Æ� y2)d � 1� �L(dy) < � log Æ:Sine the funtion (0;1)! R, d 7! (1=d)((1 + (�=Æ)y2)d � 1) is inreasing for any �xedy, the result follows. 2The next result gives the �rst two moments and the autoovariane funtion of (�2t )t�0in terms of the funtion 	, showing in partiular that the autoovariane funtion de-reases exponentially fast with the lag.Proposition 4.1. Let � > 0, t > 0, h � 0.(a) E�2t <1 if and only if EL21 <1 and E�20 <1. If this is so, thenE�2t = ��	(1) + �E�20 + �	(1)� et	(1); (4.2)where for 	(1) = 0 the righthand side has to be interpreted as its limit as 	(1)! 0, i.e.E�2t = �t+ E�20.(b) E�4t <1 if and only if EL41 <1 and E�40 <1. In that ase, the following formulaehold (with a suitable interpretation as a limit if some of the denominators are zero):E�4t = 2�2	(1)	(2) + 2�2	(2)� 	(1) �et	(2)	(2) � et	(1)	(1)�+2�E�20 �et	(2) � et	(1)	(2)� 	(1) �+ E�40 et	(2); (4.3)Cov(�2t ; �2t+h) = Var(�2t ) eh	(1): (4.4)14



Proof. (a) We start with the alulation of E�2t . Using Fubini's Theorem and the fatthat �20 is independent of all the other quantities, we onlude from equation (3.4) andLemma 4.1 thatE�2t = �E Z t0 eXs�Xt� ds+ E�20 Ee�Xt� = � Z t0 Ee�Xs ds+ E�20 Ee�Xtis �nite if and only if EL21 <1 and E�20 <1. Then (4.2) follows fromE�2t = � Z t0 es	(1) ds+ E�20et	(1):(b) Assume EL41 <1 and E�40 <1. We alulate E�4t as follows:E�4t = �2E �Z t0 eXs�Xt ds�2 + 2� E�20 E Z t0 eXs�2Xt ds + E�40 Ee�2Xt=: �2EI1 + 2�E�20 EI2 + E�40 et	(2) ; say.Using the stationarity of inrements, we get�Z t0 eXs�Xt ds�2 D= �Z t0 e�Xs ds�2= Z t0 Z t0 e�Xs e�Xu du ds = 2 Z t0 Z s0 e�(Xs�Xu) e�2Xu du ds:Then by the independene of inrements,EI1 = 2 Z t0 Z s0 �Ee�(Xs�Xu)� �Ee�2Xu� du ds= 2 Z t0 Z s0 e(s�u)	(1) eu	(2) du ds= 2	(1)	(2) + 2	(2)�	(1) �et	(2)	(2) � et	(1)	(1)� :By similar arguments,EI2 = E Z t0 eXs�2Xt ds = E Z t0 e�2(Xt�Xs)e�Xs ds= Z t0 e(t�s)	(2)es	(1) ds = et	(2) � et	(1)	(2)�	(1) :Putting all this together, we see that E�4t <1, and we obtain (4.3). The onverse followssimilarly.For the proof of (4.4), let (Ft)t�0 be the �ltration generated by (�2t )t�0. Then it followsfrom (3.12) and (4.2) thatE(�2t+hjFt) = �2t eh	(1) + � Z h0 es	(1)ds= (�2t � E�20)eh	(1) + E�2h: (4.5)15



Then E(�2t+h�2t ) = E ��2t ((�2t � E�20)eh	(1) + E�2h)�= �E�4t � E�2t E�20� eh	(1) + E�2t E�2h: (4.6)Calulations using (4.2) show thatE�2t E�2h � E�2t E�2t+h = (E�2t E�20 � (E�2t )2)eh	(1):Then (4.4) follows immediately from (4.6). 2The following results hold for the stationary version of the volatility proess. Reallfrom Theorem 3.2 that this is (�t)t�0 for �0 D= �1, where �1 is the limit rv from Theo-rem 3.1. Results related to the following proposition an be found in Bertoin and Yor [5℄,see also the referenes therein.Proposition 4.2. Let � > 0. Then the k-th moment of �21 is �nite if and only if EL2k1 <1 and 	(k) < 0, k 2 N. In this ase,E�2k1 = k! �k kYl=1 1�	(l) : (4.7)Proof. Using Fubini's Theorem and the independent and stationary inrements property,it follows from Theorem 3.1 that for k 2 NE�2k1 = �kE �Z 10 e�Xt dt�k= �kE Z 10 : : :Z 10 e�Xt1 � � � e�Xtk dtk : : : dt1= k! �kE Z 10 Z t10 : : :Z tk�10 e�(Xt1�Xt2)e�2(Xt2�Xt3) � � � e�(k�1)(Xtk�1�Xtk ) e�kXtk dtk : : : dt1= k! �k Z 10 Z t10 : : :Z tk�10 et1	(1)et2(	(2)�	(1)) � � � etk(	(k)�	(k�1)) dtk : : : dt1= k! �k kYl=1 1�	(l) ;provided that 	(1); : : : ;	(k) are all de�ned and negative. The last equality follows fromanalyti alulations. If j 2 f1; : : : ; kg is the �rst index for whih 	(j) � 0, or Ee�jX1 =1, then the alulation shows that E�2j1 = 1. Sine E�2k1 < 1 implies E�2j1 < 1 forj < k, it follows from Lemma 4.1 that E�2k1 < 1 if and only if 	(k) is de�ned (i.e.EL2k1 <1) and negative. 2From this result we obtain the mean and seond moment of �21; we also alulate theautoovariane funtion of the stationary proess (�2t )t�0.16



Corollary 4.1. If (�2t )t�0 is the stationary proess with �20 D= �21, thenE�21 = ��	(1) ; (4.8)E�41 = 2�2	(1)	(2) ; (4.9)Cov(�2t ; �2t+h) = �2� 2	(1)	(2) � 1	2(1)� eh	(1) ; t; h � 0 ; (4.10)provided EL2k1 <1 and 	(k) < 0, with k = 1 for (4.8), and k = 2 for (4.9), (4.10).Proof. (4.8) and (4.9) are immediate from (4.7) for � > 0, and (4.10) follows by inserting(4.8) and (4.9) into (4.4). 2Of ourse it is our goal to express the quantities 	X in terms of the driving L�evyproess (Lt)t�0. We obtain the following results for the existene of moments.Theorem 4.1. Let k 2 N, 0 < Æ < 1, � � 0. Then the limit variable �21 exists and has�nite k-th moment if and only if�1k�ZR �(1 + �Æ y2)k � 1� �L(dy) < � log Æ: (4.11)Proof. By Lemma 4.1, EL2k1 < 1 and 	(k) < 0 imply EL21 < 1 and 	(1) < 0, whihimplies the stability ondition (3.11). Now the ondition for E�2k1 <1 is EL2k1 <1 and	(k) < 0, whih is (4.11). 2As for the disrete GARCH model, also the ontinuous time GARCH turns out to beheavy-tailed. This is an impliation of the fat that the volatility proess never has mo-ments of all orders.Proposition 4.3. Let k 2 N, 0 < Æ < 1, � � 0.(a) For any L�evy proess (Lt)t�0 with nonzero L�evy measure suh that RR log(1+y2) �L(dy)is �nite, there exist parameters Æ; � 2 (0; 1) for whih �21 exists, but E�21 =1.(b) For any L�evy proess (Lt)t�0 suh that EL2k1 <1 and for any Æ 2 (0; 1) there exists�Æ > 0 suh that the limit variable �21 exists with E�2k1 < 1 for any pair of parameters(Æ; �) suh that 0 � � � �Æ.() Suppose 0 < Æ < 1, � > 0. Then for no L�evy proess (Lt)t�0 (with nonzero L�evymeasure) do the moments of all orders of �21 exist. In partiular, the Laplae transformof �21 does not exist for any negative argument.17



Proof. (a) Let Æ0 := exp(� RR log(1 + y2)�L(dy)) and Æ1 := exp(� RR y2�L(dy)). Then0 � Æ1 < Æ0 < 1, and for any � = Æ 2 (Æ1; Æ0), (3.11) holds, but (4.11) does not.(b) Let 0 < Æ < 1 be �xed. Sine EL2k1 <1, the lefthand side of (4.11) is �nite for any� > 0, and goes to zero as �! 0. Choosing � suÆiently small then implies (4.11).() Let � > 0 be suh that q := �L(fy : jyj � �g) > 0. Then for k 2 N ,ZR �(1 + (�=Æ)y2)k � 1� �L(dy) � q ��1 + (�=Æ)�2�k � 1� :If all moments of �21 existed, this would imply that�1 + ��Æ� �2�k � 1 < k�� log Æq � 8 k 2 N ;a ontradition. 2Example 4.1. (Compound Poisson GARCH(1,1) model)Let (Lt)t�0 be a ompound Poisson proess with Poisson rate  > 0 and jump distribution#. Then �L = #. Let Y be a random variable with distribution # and set Z := �Y 2=Æ.Then for k 2 N , ZR((1 + (�=Æ)y2)k � 1)�L(dy) = E((1 + Z)k � 1);and (�2t )t�0 is a stationary Markov proess whose stationary distribution has �nite k-thmoment if and only if E(1 + Z)k � 1 + (k=) log Æ < 0; (4.12)whih is equivalent to (4.11) in this ase. 25 Seond order properties of the GARCH proessIn (3.5), the integrated GARCH proess was de�ned to satisfy dGt = �tdLt, t > 0, i.e. Gjumps at the same time as L does and has jumps of size �Gt = �t�Lt. This de�nitionimplies that for any �xed timepoint t all moments of �Gt are zero. It makes sense, however,to alulate moments for the inrements of G in arbitrary time intervals. Consequently,for r > 0 set G(r)t := Gt+r �Gt = Z t+rt+ �s dLs ; t � 0 :We shall restrit ourselves to the ase of stationary (�2t )t�0. Reall from Corollary 3.1,that this implies strit stationarity of (G(r)t )t�0.18



Proposition 5.1. Suppose (Lt)t�0 is a quadrati pure jump proess (i.e. � 2L = 0 in (3.2))with EL21 < 1, EL1 = 0, and that 	(1) < 0. Let (�2t )t�0 be the stationary volatilityproess with �20 D= �21. Then for any t � 0 and h � r > 0,EG(r)t = 0; (5.1)E(G(r)t )2 = �r�	(1)EL21; (5.2)Cov (G(r)t ; G(r)t+h) = 0: (5.3)Assume further that EL41 <1 and 	(2) < 0. ThenCov((G(r)t )2; (G(r)t+h)2) = �e�r	(1) � 1�	(1) � EL21 Cov(G2r; �2r ) eh	(1): (5.4)Assume further that � > 0, that EL81 <1,  (4) < 0, that R[�1;1℄ jxj�L(dx) <1 and thatRR x3�L(dx) = 0. Then the righthand side of (5.4) is stritly positive.Proof. Sine (Lt)t�0 is quadrati pure jump, its quadrati variation proess is given by[L℄t = X0<s�t(�Ls)2; t � 0(e.g. Protter [23℄, p. 71). Then, by the properties of the stohasti integral,EG2r = E Z r0 �2s d[L℄s = E X0<s�r �2s(�Ls)2:The last an be alulated from the ompensation formula (e.g. Bertoin [4℄, p. 7) and(4.8) as the righthand side of (5.2). This shows square integrability of Gr and (5.2) thenfollows from stationarity of the inrements of (Gt)t�0.From the Itô isometry for square integrable martingales as integrators (e.g. Rogers andWilliams [24℄, IV 27) followsE(G(r)t G(r)t+h) = E Z t+h+r0 �2s 1(t;t+r℄(s) 1(t+h;t+h+r℄(s) d[L℄s = 0for h � r. By the martingale property of (Lt)t�0 we have (5.1), and hene also (5.3)follows.For the proof of (5.4), assume further that EL41 < 1 and 	(2) < 0, and let Er denoteonditional expetation given Fr, the �{algebra generated by (�2s)0�s�r. Integration by
19



parts, the ompensation formula and the use of (3.12) and (4.5) giveEr�G(r)h �2 = Er �2 Z h+rh+ Gs�dGs + [G℄h+rh �= Er �2 Z h+rh+ Gs��sdLs�+ Er Z h+rh+ �2sd[L℄s= 0 + Er Xh<s�h+r ��2rAr;s +Br;s� (�Ls)2= EL21 Z h+rh ��2rEAr;s + EBr;s� ds= EL21 Z h+rh Er(�2s) ds= EL21 Z h+rh [(�2r � E�20)e(s�r)	(1) + E�2s�r℄ ds= (�2r � E�20)EL21 Z r0 e�s	(1) ds eh	(1) + E�20EL21 r:Conditioning on Fr givesE�(G(r)0 )2(G(r)h )2� = E �G2rEr(G(r)h )2�= EL21 �e�r	(1) � 1�	(1) �E �G2r�2r �G2rE�20� eh	(1) + E�20EL21 r EG2r:This showsCov(G2r; (G(r)h )2) = �e�r	(1) � 1�	(1) � EL21 Cov(G2r; �2r) eh	(1) + EG2r � �r�	(1)EL21 � EG2r� :Equation (5.4) then follows from (5.2).Finally, assume that EL81 <1, 	(4) < 0 and that R[�1;1℄ jxj�L(dx) <1 and RR x3�L(dx) =0, and we prove that Cov(G2t ; �2t ) > 0. First, we alulate E(G2t�2t ). Using integration byparts, G2t = [G℄t + 2 Z t0 Gs�dGs = X0<s�t �2s(�Ls)2 + 2 Z t0 Gs��sdLs:Substituting from (3.8) gives(�=Æ)G2t = �2t+ � �t� log Æ Z t0 �2sds� �20 + 2(�=Æ) Z t0 Gs��sdLs; (5.5)whih we will multiply through by �2t and take expetations. Sine R[�1;1℄ jxj�L(dx) <1,(Lt)t�0 is of bounded variation, and the last term in (5.5) gives rise via (3.12) to�2t Z t0 Gs��sdLs = Z t0+Gs��s ��2sAs;t +Bs;t� dLs; (5.6)20



wherein we substituteAs;t = eXs��Xt� and Bs;t = � Z ts eXu�Xt�du:Let It := R t0+ eXs�Gs��3sdLs. Sine Xt has no �xed points of disontinuity, a.s., to showthat the A-omponent in (5.6) has expetation 0 it will suÆe to show that E(e�XtIt) = 0.Integration by parts givese�XtIt = Z t0+ e�Xs�dIs + Z t0+ Is�d(e�Xs) + Ct; (5.7)where Ct is the quadrati ovariation. Sine EL1 = 0 and  (4) < 0, It is a loally squareintegrable zero-mean martingale and hene the �rst term on the righthand side of (5.7)has expetation 0. Substitutingd(e�Xt) = et	(1)d(e�Xt�t	(1) � 1) + e�Xt	(1)dt;we an write the seond term on the righthand side of (5.7) as an integral with re-spet to a loally square integrable zero-mean martingal, hene having expetation 0,plus 	(1) R t0 e�XsIsds. Sine Lt is pure jump,�Ct = (�e�Xt)(�It) = ��Æ�Gt��3t (�Lt)3(using (3.9)). Letting Mt =P0<s�t(�Ls)3, the quadrati ovariation isCt = ��Æ�Z t0+Gs��3sdMs;and sine Mt is a loally square integrable martingale, with mean zero as a result of ourassumption that RR x3�L(dx) = 0, we see that Ct has expetation 0. Taking expetationsin (5.7) thus gives E(e�XtIt) = 	(1) R t0 E(e�XsIs)ds, implying E(e�XtIt) = 0.Write the B-omponent in (5.6) as� �Z t0 eXu�Xt�du��Z t0+Gs��sdLs�� � Z t0+Gs��s�Z s0+ eXu�Xt�du� dLs:After integration by parts this equals� Z t0 �Z s0+Gu��udLu� e�(Xt��Xs)ds+ � ~Ct; (5.8)where� ~Ct = ��(e�Xt Z t0 eXudu)� (Gt��t�Lt) = ��Æ� e�Xt� �Z t0 eXudu�Gt��t(�Lt)3:21



Here ~Ct has expetation 0 again as a result of RR x3�L(dx) = 0, so (5.8) has expetation0. Thus the last term in (5.5) ontributes 0 to the expetation.To deal with the other integral in (5.5), use (4.6) to writeE(�2t �2s) = Var(�20)e(t�s)	(1) + (E(�20))2;sine we are using the stationary version. Thus, from (5.5),��Æ�E(G2t�2t )= E�40 � �tE�20 � log Æ Z t0 �Var(�20)e(t�s)	(1) + (E(�20))2� ds� E(�20�2t ) + 0= Var(�20)(1� et	(1))� �tE�20 � log ÆVar(�20)�1� et	(1)�	(1) �� t log Æ (E�20)2: (5.9)Note that (�=Æ)EL21 = 	(1)� log Æ (see (4.1)). Thus from (5.2)��Æ�EG2tE�2t = ��tEL21E�20�Æ	(1) = ��tE�20 � �t log Æ E�20�	(1)= ��tE�20 � t log Æ (E�20)2(using (4.8)). Subtrating this from (5.9) gives��Æ�Cov(G2t ; �2t ) = Var(�20)�1� et	(1) � log Æ�1� et	(1)�	(1) �� ;whih is positive. 2In Figure 2 we show the simulated autoorrelation funtions of �t and of the inrementG(1)t , and of their squares, for the same proess simulated in Figure 1. A feature of the� and �2 autoorrelations is their very slow derease with inreasing lag. As expeted,the sample autoorrelation funtions of the inrement G(1)t , and its square, are zero, andpositive, respetively, within sampling errors.AknowledgementsWe thank Charles Goldie, Alex Szimayer and Mark Van De Vyver for interesting and use-ful disussions onerning GARCH models, perpetuities, and many other things. thanksalso to Henghsiu Tsai for a helpful orretion. CK and AL take pleasure in thanking theDepartment of Aounting and Finane of the Western University of Australia for itspleasant hospitality.
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Figure 1: Simulated ompound Poisson proess (Lt)0�t�10 000 with rate 1 and standard normally dis-tributed jump sizes (�rst) with orresponding COGARCH proess (Gt) (seond), volatility proess (�t)(third) and di�erened COGARCH proess (G(1)t ) of order 1, where G(1)t = Gt+1�Gt (last). The param-eters were: � = 1, Æ = 0:95 and � = 0:045. The starting value was hosen as �0 = 10.
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Figure 2: Sample autoorrelation funtions of �t (top left), �2t (top right), G(1)t (bottom left) and (G(1)t )2(bottom right), for the proess simulated in Figure 1. The dashed lines in the bottom graphs show theon�dene bounds �1:96=p9999.
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