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Consistent Estimation of a Simple Linear

Model Under Microaggregation

Matthias Schmid, Hans Schneeweiss and Helmut Küchenhoff

Department of Statistics, University of Munich

Ludwigstr. 33, 80539 München, Germany

Abstract

A problem statistical offices are increasingly faced with is guaranteeing confidentiality when

releasing microdata sets. One method to provide safe microdata to is to reduce the infor-

mation content of a data set by means of masking procedures. A widely discussed masking

procedure is microaggregation, a technique where observations are grouped and replaced

with their corresponding group means. However, while reducing the disclosure risk of a data

file, microaggregation also affects the results of statistical analyses. The paper deals with

the impact of microaggregation on a simple linear model. We show that parameter estimates

are biased if the dependent variable is used to group the data. It turns out that the bias of

the slope parameter estimate is a non-monotonic function of this parameter. By means of

this non-monotonic relationship we develop a method for consistently estimating the model

parameters.

Keywords: Microaggregation, simple linear model, bias, consistent estimation, dis-

closure control

1 Introduction

Over the last decades the development of empirical research in social and economic

sciences has led to an increasing demand on microdata. However, with the growing
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availability of databases, problems concerning data security have arisen: On the one

hand, data protection laws demand that the data sets, most often containing sensi-

tive information, have to be treated confidentially by the data collecting institutions.

On the other hand, scientists need a maximum amount of information to draw the

right conclusions from the data. Evidently, there is a trade-off between guaranteeing

confidentiality and providing sufficient information to the researcher. This is what

is commonly referred to as the statistical disclosure control problem.

One possibility to deal with this problem is the creation of factually anonymous mi-

crodata sets, also called scientific-use files. ”Factually anonymous” means that the

data user has to employ ”an excessive amount of time, expenses, and manpower to

allocate the data to the respondent” (Köhler (1999)). Clearly, factual anonymity im-

plies that the information content of a data set has to be reduced to a certain extent.

To achieve this, a rich variety of procedures has been developed, see Brand (2000) or

Gottschalk (2004) for an overview. As each of these procedures may have an effect

on data analysis, statistical research is confronted with the problem of investigat-

ing the impact of anonymization techniques on parameter estimation, hypothesis

testing, etc.

In this paper, we focus on microaggregation, a widely discussed anonymization pro-

cedure for continuous data (Anwar (1993), Defays and Nanopoulos (1993), Defays

and Anwar (1998), Domingo-Ferrer and Mateo-Sanz (2002), Lechner and Pohlmeier

(2003), Rosemann (2004)). The main idea of microaggregation is to group the obser-

vations in a data set and replace the original data values with their corresponding

group means. The various types of microaggregation procedures mainly differ in how
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the grouping of the data is done. Usually, a similarity criterion such as the Euclidean

distance or the Mahalanobis distance is used to form the groups.

The microaggregation technique considered in this paper uses a so-called ”lead-

ing variable” to group the data (Paass and Wauschkuhn (1985), Mateo-Sanz and

Domingo-Ferrer (1998)). The leading variable can either be one of the regressors

or the dependent variable in a statistical model. Groups are then formed by data

records having similar values for the leading variable. Throughout this paper, a fixed

group size (also called ”aggregation level”) is used.

We want to study the effect of this type of microaggregation on the estimation of

a simple linear regression in continuous variables. It is well-known that microag-

gregation with respect to one (or several) exogenous variables as well as random

microaggregation have no effect on the unbiasedness property of OLS, see Feige and

Watts (1972) or Lechner and Pohlmeier (2003). What seems to be less well-known

is that microaggregation with respect to the endogenous variable does have an ef-

fect (but see Feige and Watts (1972), who hint at the possibility of such an effect,

however, without investigating it in any detail). The purpose of this paper is to

study this effect, in particular the magnitude of the bias resulting from this kind

of microaggregation. By analyzing the relation between bias and model parameters,

we can then construct a consistent estimator of the slope parameter.

It turns out that the aggregation bias of the OLS of the slope parameter β in a simple

linear regression model depends on the error variance of the model and on the slope

parameter itself. Contrary to the well-known attenuation effect of measurement error

models, the OLS bias of the slope parameter is always positive for an ascending line
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and negative for a descending line. It is zero when the line is flat and again tends

to zero when the slope becomes infinite. The bias is thus a non-monotonic function

of β. The relative bias of OLS is, for β > 0, a monotonically decreasing function of

the correlation between the dependent variable and the regressor. These results are

proved and made plausible in the following sections. Furthermore, the behavior of

the OLS estimator for finite samples is examined by means of a systematic simulation

study.

In section 2, we start with a summary of the results concerning microaggregation

with respect to the exogenous variable X. In section 3, we illustrate the effect of

microaggregation with respect to the endogenous variable Y on a linear model. This

is done by discussing a very simple situation that involves a discrete error structure.

Section 4 contains theoretical results on the effects of microaggregation with respect

to Y on a linear model with normally distributed errors. Furthermore, a method for

correcting the aggregation bias is developed. In section 5, a systematic simulation

study is carried out. Section 6 contains a concluding summary. Proofs are relegated

to the appendix. Further results concerning t-tests and the effect of microaggregation

on the variance of the OLS estimator of β will be presented in a subsequent paper.

2 Microaggregation with Respect to X

As stated in the introduction we want to investigate the impact of microaggregation

on the parameter estimates of the simple linear model

Y = α + βX + ε . (1)
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Y denotes the continuous response (or endogenous variable) while X denotes the

continuous covariate (or exogenous variable). γ := (α, β)′ is the corresponding pa-

rameter vector. The random error ε is independent of X. Moreover, ε is assumed to

have zero mean and constant variance σ2
ε .

Suppose we have an i.i.d. sample of size n and two vectors y := (y1, ...yn)′,

x := (x1, ..., xn)′ containing the data values. Denote by e := (ε1, . . . , εn)′ the er-

ror vector having independent and identically normally distributed components.

Now, two possibilities of microaggregating the data exist:

A) The data can be aggregated with respect to the covariate X. As mentioned

before, this type of microaggregation (using X as the leading variable) has al-

ready been investigated by Feige and Watts (1972) and Lechner and Pohlmeier

(2003). In this section, we briefly discuss their results. In addition, we show

that β and σ2
ε can be consistently estimated by the naive least squares esti-

mates.

B) The data can be aggregated with respect to the dependent variable Y . This pro-

cedure (where Y is the leading variable) has not been studied in the literature

yet. In sections 3 - 5 we investigate the impact of this type of microaggregation.

Let us now explain how a data set is aggregated with respect to the covariate X:

First of all, the data set has to be ordered according to the magnitude of X. We say

for short that the data are ”sorted by X”. After having chosen an aggregation level

A, the sorted data set is subdivided into n/A groups, each consisting of A adjacent

data values. For simplicity, we assume that n is a multiple of A. In each group, the
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data (xi, yi), i = 1, . . . , n, are averaged and the averages are assigned to the items of

the group. The application of this procedure to the data is the same as multiplying

the sorted vectors ysort(x), xsort(x) with an idempotent matrix D consisting of ones

and zeroes:

D :=
1
A
·




1 · · · 1 · · · 0 · · · 0
... · · · ... · · · ... · · · ...
1 · · · 1 · · · 0 · · · 0

...
. . .

...
0 · · · 0 · · · 1 · · · 1
... · · · ... · · · ... · · · ...
0 · · · 0 · · · 1 · · · 1




. (2)

︸ ︷︷ ︸
A

Denote by ỹx and x̃x the vectors containing the data that have been aggregated with

respect to the random variable X. These vectors can now be written as ỹx = Dysort(x)

and x̃x = Dxsort(x). Similarly, the aggregated design matrix X̃x := (1, x̃x) can be

written as X̃x = D · (1, xsort(x)). It is easily seen that by aggregating the data with

respect to X, the means of the original variables in the data set are preserved.

Moreover, the aggregation procedure does not depend on the error structure of the

linear model, implying that the least squares estimate

γ̃ = (α̃, β̃)′ := (X̃ ′
xX̃x)−1X̃ ′

xỹx (3)

becomes unbiased, see Feige and Watts (1972) or Lechner and Pohlmeier (2003)

(we implicitely assume that X̃ ′
xX̃x is nonsingular). Moreover, the following theorem

holds:
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Theorem 1. The estimate γ̃ based on the microaggregated data is a consistent es-

timate of γ.

Proof: See appendix A.

Theorem 1 shows that γ̃ remains a consistent estimator of γ, just as the least squares

estimator γ̂ computed from the original data. But there is a loss of efficiency as γ̃

has greater variance than γ̂, see Feige and Watts (1972) or Lechner and Pohlmeier

(2003). This loss of efficiency, however, tends to zero with increasing n, so that

asymptotically γ̃ and γ̂ are equally efficient.

The next result concerns the residual sum of squares ẽ′xẽx := (ỹx− X̃xγ̃)′(ỹx− X̃xγ̃):

Theorem 2. (A/n) ẽ′xẽx is a consistent estimator of σ2
ε .

Proof: See appendix A.

Theorem 2 shows that the ”naive” variance estimate σ̃2
ε := 1/n (ỹx−X̃xγ̃)′(ỹx−X̃xγ̃)

does not converge to the true residual variance σ2
ε . However, by multiplying σ̃2

ε with

A, one can easily obtain a consistent estimate of σ2
ε .

Note that Theorems 1 and 2 also hold if a linear model with p predictors is considered

and a leading variable Xk, 1 ≤ k ≤ p, is used for microaggregation.

3 Microaggregation with Respect to Y - Analysis of a
Linear Model with Discrete Errors

In this and the remaining sections, we exclusively study what happens to model (1)

if the data have been aggregated with respect to Y . Aggregation with respect to Y is



8

carried out in the same way as described in section 2 for the analogous aggregation

procedure with respect to X: After the data set has been sorted by the leading

variable Y , the vectors ỹy and x̃y containing the aggregated data values become

ỹy = Dysort(y) and x̃y = Dxsort(y).

In the following and contrary to the notation of section 2, γ̃ denotes the least squares

estimate of γ computed from the data that have been microaggregated with respect

to Y (and not with respect to X as in section 2). Again, γ̃ can be written as

γ̃ = (X̃ ′
yX̃y)−1X̃ ′

yỹy

= (X ′
sort(y)DXsort(y))

−1X ′
sort(y)Dysort(y) , (4)

where X̃y := (1, x̃y). Xsort(y) denotes the design matrix after sorting the data with

respect to Y .

The main difference to situation A in section 2 is that Xsort(y) now depends on the

error structure of the respective linear model. This means that the results described

in section 2 can not be applied to γ̃. It is not obvious at all how to compute E(γ̃)

and how to assess whether γ̃ is unbiased or not.

In order to get a first idea of the effect of microaggregation with respect to Y , we

start by studying a very simple (artificial) linear model involving a discrete error

structure and a discrete regressor X. Let the vector x be given by (1, . . . , 8, 1, . . . , 8)′

and consider the deterministic vector of residuals e = (0.5, . . . , 0.5,−0.5, . . . ,−0.5)′.

Assuming α to be zero, the response vector y becomes

y = (β · 1 + 0.5, . . . , β · 8 + 0.5, . . . , β · 1− 0.5, . . . , β · 8− 0.5)′ . (5)
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Fig. 1 shows the resulting plot of y vs. x for β = 1.

1 2 3 4 5 6 7 8

2
4

6
8

x

y

Figure 1: Plot of y vs. x (β = 1)

Let us now see what happens if the data are aggregated with respect to Y (in the

following, we use an aggregation level of A = 2). Figs. 2 - 4 show the effects of the

aggregation step by step for five values of β (β= 0.05, β=0.18, β=0.25, β=0.5, and

β=1.5). The filled-in dots represent the aggregated data values.

As long as β is close to zero, aggregating the data set with respect to Y is the same as

aggregating the points lying below the true regression line and the points lying above

the true regression line separately. As the order of (x1, . . . , x8)′ and (x9, . . . , x16)′ is

the same as the order of (y1, . . . , y8)′ and (y9, . . . , y16)′ respectively, the least squares

estimate β̃ is unbiased, and the estimated regression line based on the aggregated

data values is the same as the true regression line (Fig. 2).
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Figure 2: Plot of y vs. x and ỹy vs. x̃y for β = 0.05 (dotted line = true regression)

Fig. 3 (β = 0.18) shows a different picture: As β increases, the ”middle” points

(1, β ·1+0.5), (7, β ·7−0.5) and (2, β ·2+0.5), (8, β ·8−0.5) are grouped, forcing the

corresponding aggregated data values to move in the direction of x̄ := 1
n

∑n
i=1 xi. It

is well known from linear model theory that extreme data values situated far from

x̄ (in this case, (1.5, 1
2(β · 1− 0.5 + β · 2− 0.5)) and (7.5, 1

2(β · 7 + 0.5 + β · 8 + 0.5)))

have a big influence on the slope of the estimated regression line. This is why β̃ in

Fig. 3 has a positive bias.

The above described effect becomes even stronger if β continues to increase (Fig. 3,

β = 0.25): Again, two aggregated data values move in the direction of x̄, causing

the bias of β̃ to increase even more.

However, as the true regression line becomes steeper, the number of points lying

exactly on the true regression line increases, too (two points if β = 0.18, four points

if β = 0.25). This has an adverse effect on the estimate of the slope: The bias of β̃
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Figure 3: Plot of y vs. x and ỹy vs. x̃y for β = 0.18 and β = 0.25 (dotted line = true
regression)
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Figure 4: Plot of y vs. x and ỹy vs. x̃y for β = 0.5 and β = 1.5 (dotted line = true
regression)

begins to decline as more and more aggregated data values lie on the true regression

line (Fig. 4, β = 0.5).

Finally, as β goes to infinity, all aggregated data values lie on the true regression
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line, and β̃ equals the true β again. This can be seen from Fig. 4 (β = 1.5) where

the two regression lines have become identical, just like in Fig. 2.

Thus we can conclude that the bias of β̃ is zero as long as β is close to zero. As the

values of β increase, bias(β̃) becomes positive at first. As β → ∞, bias(β̃) declines

and becomes zero again. Fig. 5 illustrates this result. It is also clear from Figs. 2 - 5

that for negative values of β, bias(β̃) becomes negative at first. As β → −∞, bias(β̃)

becomes zero again.

0.0 0.5 1.0 1.5 2.0

0.
00

0.
05

0.
10

0.
15

beta

bi
as

Figure 5: Plot of bias(β̃) vs. β, x = (1, . . . , 8, 1, . . . , 8)′

Fig. 6 shows what happens if the sample size n is increased (here, the first half of x

is (1, 1.02, 1.04, 1.06, . . . , 24)′): The bias of the least squares estimate β̃ is almost a

smooth function of β.
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Figure 6: Plot of bias(β̃) vs. β, first half of x equals (1, 1.02, 1.04, 1.06, . . . , 24)′

Finally, we modify the above model by replacing the deterministic residuals with

a simple stochastic error structure: Let the vector x be (1, 2, 3, 5)′. The residuals

ε1, . . . , ε4 are now assumed to take on the values +0.5 or −0.5, each with probability

1/2. As there are 24 = 16 possible values for the vector e = (ε1, . . . , ε4)′, the mean

of β̃ can be computed by averaging the 16 least squares estimates for each value

of β. The resulting bias curve shown in Fig. 7 is very similar to Fig. 5, and the

conclusions concerning the deterministic-error model can be applied to the above

stochastic-error model as well. In the next section, we show that the results derived

in this section also hold for a linear model with normally distributed variables.
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Figure 7: Plot of bias(β̃) vs. β, x = (1, 2, 3, 5)′

4 Microaggregation with Respect to Y - Analysis of a
Linear Model with Normally Distributed Variables

4.1 Bias of the Slope Parameter

In this section, we again consider model (1). X is now assumed to follow a nor-

mal distribution with mean µx and variance σ2
x. The error variable ε is assumed

to be normally distributed with zero mean and variance σ2
ε . Assuming X and ε

to be independent, it follows that Y is normally distributed as well with mean

µy := α + βµx and variance σ2
y := β2σ2

x + σ2
ε . Denote by ρ the correlation coefficient

between X and Y .
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Suppose we have n independent and identically distributed observations

(x, y) := (xi, yi)i=1,...,n. Again, we study what happens to the least squares esti-

mate β̃ if the data are microaggregated with respect to the response variable Y . Our

main concern is in the asymptotic properties of β̃.

First note that β̃ is given by

β̃ =
Sx̃y ỹy

S2
x̃y

, (6)

where

Sx̃y ỹy :=
1
n

n∑

i=1

(
x̃y,i − ¯̃xy

)(
ỹy,i − ¯̃yy

)
(7)

is the empirical covariance of x̃y and ỹy and

S2
x̃y

:=
1
n

n∑

i=1

(
x̃y,i − ¯̃xy

)2 (8)

is the empirical variance of x̃y. By investigating the asymptotic behavior of Sx̃y ỹy

and S2
x̃y

, we can analyze the asymptotic behavior of β̃.

Lemma 1. Denote by S2
ỹy

the empirical variance of ỹy. Then the following results

hold:

a) S2
ỹy

converges to σ2
y in probability.

b) S2
x̃y

converges in probability to σ̃2
x := σ2

x/f(ρ), where

f(ρ) :=
1

1
A +

(
1− 1

A

)
ρ2

. (9)

c) Sx̃y ỹy converges in probability to σxy := ρσxσy.
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Proof: See appendix B.

Now the following theorem holds:

Theorem 3. β̃ converges in probability to βf(ρ).

Proof: From Lemma 1 we have

β̃ =
Sx̃y ỹy

S2
x̃y

→ σxy

σ2
x/f(ρ)

= βf(ρ) . (10)

We see that for β 6= 0, the asymptotic relative bias of β̃ is equal to f(ρ). It follows

from (9) that f(ρ) > 1 for ρ 6= 1 and A > 1. Thus, |β| is systematically overestimated

by β̃, at least for large n. If β = 0, β̃ becomes a consistent estimate of β despite the

microaggregation of the data.

Fig. 8 shows the graph of f(ρ). The aggregation level A was set to three. We see

that if ρ = 0, f(ρ) = A. Furthermore, f(ρ) → 1 if |ρ| → 1. This means that for large

values of |ρ|, the bias of β̃ disappears. This is a very plausible result because a large

value of |ρ| implies that sorting the data with respect to Y is approximately the

same as sorting the data with respect to X. As β̃ is unbiased in case of aggregating

the data with respect to X, the least squares estimate based on the data that have

been aggregated with respect to Y should be (at least approximately) unbiased, too,

if |ρ| is large.

Noting that

ρ2 = ρ2(β, σ2
x, σ2

ε ) =
β2

β2 + σ2
ε /σ2

x

, (11)
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Figure 8: Plot of f(ρ) vs. ρ, A=3

we can express the asymptotic relative bias of β̃ as a function of β and σ2
ε :

f(ρ) =
A(β2 + v2)
Aβ2 + v2

, (12)

where v2 := σ2
ε /σ2

x. Similarly, the asymptotic bias of β̃, b := plim β̃ − β, is found to

be

b = β(f(ρ)− 1)

= (A− 1) · β

1 + A
v2 β2

. (13)

Thus, for small values of β, the bias grows approximately proportionally with

β, whereas for large values of β it flattens to zero. It has its extreme values at

βm = ±v/
√

A with largest absolute bias A−1
2

v√
A

.
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4.2 Bias of the Intercept

Concerning the estimation of the intercept α, the asymptotic bias a of the naive

estimate α̃ := ¯̃yy − β̃ ¯̃xy can be evaluated as follows:

a := plim
(¯̃yy − β̃ ¯̃xy

)− α

=
(
µy − βf(ρ)µx

)− (
µy − βµx

)

= −bµx . (14)

Thus, if β > 0 and µx > 0, α̃ is asymptotically smaller than the true value of α.

4.3 Bias of the Residual Variance

Finally, we show what happens to the naive estimate σ̃2
ε = S2

ỹy
− β̃2S2

x̃y
if n →∞.

By Lemma 1 and Theorem 3,

plim σ̃2
ε = σ2

y − β2f(ρ)2
σ2

x

f(ρ)

= β2σ2
x + σ2

ε − f(ρ)β2σ2
x

=
(
1− f(ρ)

)
β2σ2

x + σ2
ε

=
v2 + β2

v2 + Aβ2
σ2

ε

=
1
A

f(ρ)σ2
ε . (15)
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4.4 Bias Correction

We can use the bias formulas of the previous sections to correct for the bias of β̃,

α̃, and σ̃2
ε . Denote by ρ̃ the empirical correlation coefficient based on the aggregated

data. Now,

ρ̃2 =
S2

x̃y ỹy

S2
x̃y

S2
ỹy

plim−→ σ2
xy

σ2
xσ2

y

f(ρ) = ρ2f(ρ) . (16)

Therefore, we can find a consistent estimate ρ̃2
c by equating ρ̃2 to ρ2f(ρ):

ρ̃2 = ρ̃2
cf(ρ̃c) =

Aρ̃2
c

1 + (A− 1)ρ̃2
c

. (17)

Solving for ρ̃2
c yields

ρ̃2
c =

ρ̃2

A− ρ̃2(A− 1)
. (18)

From (10) and (18), we get a consistent estimate of β:

β̃c =
β̃

f(ρ̃c)
=

β̃
(
1 + (A− 1)ρ̃2

c

)

A
=

β̃

A− (A− 1)ρ̃2
. (19)

A consistent estimate of the intercept α can be obtained from (14) and (19):

α̃c = α̃ + (β̃ − β̃c)¯̃xy . (20)
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To derive a consistent estimate of σ2
ε , we make use of (15). σ2

ε can be consistently

estimated by

σ̃2
ε,c :=

A(S2
ỹy
− β̃2S2

x̃y
)

f(ρ̃c)
. (21)

5 Simulations

5.1 Bias of β̃ and σ̃2
ε for Finite Samples

In this section, we check to which extent the asymptotic results of section 4 hold

in realistic data situations. For this purpose, we carried out a systematic simulation

study, setting the sample size n to 300. For each parameter combination (β, σε), the

bias of the least squares estimate β̃ was estimated from 500 randomly generated

data sets (xi, εi), i = 1, . . . , 300. The random numbers xi were drawn iid from a

normal distribution with zero mean and variance σ2
x = 4. Note that it is sufficient to

consider variations in β and σ2
ε only. σ2

x can be kept fixed without loss of generality.

The aggregation level was chosen to be A = 3, α was set to one.

In Fig. 9, bias(β̃) is plotted vs. β for different values of σε, together with the asymp-

totic bias b from (13). Obviously, the approximation of the finite sample bias by its

asymptotic counterpart works very well. We see that the bias of β̃ becomes zero if

β is zero. Moreover, bias(β̃)→ 0 as |β| goes to infinity. If σε gets larger, bias(β̃) gets

larger as well. Note further the remarkable resemblance of Figs. 6 and 9: Obviously,

the results derived for the simple model in section 3 can be applied to the much

more realistic case of a linear model with normally distributed variables.
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Figure 9: Bias of β̃ as a function of β for various values of σε

In Fig. 10, the relationship between β, σε, and bias(β̃) is illustrated by means of

a three dimensional plot. Again, we see that bias(β̃) gets larger as σε increases.

Fig. 11 shows the relative bias of β̃ for various values of ρ, together with the asymp-

totic relative bias f(ρ). We see that the approximation of the relative bias by f(ρ)

is very good.
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Fig. 12 shows what happens if the aggregation level A is altered (in the following,

we set σε = 3). We see that |bias(β̃)| gets larger as A increases.
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Figure 12: Bias of β̃ for various aggregation levels (σε = 3)

For n sufficiently large, the bias of β̃ should approach the asymptotic bias b and

should therefore be essentially independent of n. Fig. 13 supports this result: n does

not seem to have any influence on bias(β̃). The curves corresponding to n = 50,

n = 100, n = 150, n = 200, n = 250, and n = 300 are almost identical. We see that

even for small sample sizes, the approximation of bias(β̃) by the asymptotic bias b

works well.

Fig. 14 shows the mean of the estimated residual standard deviations based on

the aggregated data from the above simulation study. We also see the graph of
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the function derived in (15). Again, the approximation of E(σ̃ε) by its asymptotic

counterpart is very good.

By (15), if β = 0, plim σ̃2
ε = σ2

ε . This is plausible because in this case, σ2
ε = σ2

y and

plimS2
ỹy

= σ2
y as well as plim β̃ = β.

We also see that as β → ±∞, plim σ̃2
ε goes to 1/A σ2

ε . Again, this is a plausible result:

As β → ±∞, aggregating with respect to Y is approximately the same as aggregating

with respect to X. Therefore the residual variance estimate approximately takes the

same value as when aggregation is performed with respect to X (see Theorem 2).

5.2 Finite Sample Bias of β̃c and σ̃2
ε,c

After having shown that the approximation of bias(β̃) by the asymptotic bias b works

very well in practice, we now investigate the behavior of the corrected estimator β̃c

in realistic data situations. To achieve this, we computed the bias of β̃c for various

n and various values of β. As before, we set σε = 3 and A = 3. Fig. 15 shows the

bias of β̃c, together with the bias of the estimator β̂ based on the non-aggregated

data. Obviously, if n is small, the bias of β̃c differs from its asymptotic bias (which

is equal to zero). As n increases, the correction of β̃ works as it should: The mean

of β̃c becomes almost identical to the true slope parameter.
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Figure 15: Bias curves of β̃c and β̂ (σε = 3)

In the same way, we computed the bias of σ̃2
ε,c for various n and various values of

σ2
ε . Here we set β = 1 and A = 3. Fig. 16 shows the bias of σ̃2

ε,c, together with the

bias of the estimator σ̂2
ε based on the non-aggregated data set. We see that if n is

small, the bias of the corrected estimator σ̃2
ε,c severely differs from its asymptotic

bias (which is equal to zero). As n increases, the correction of σ̃2
ε works as it should:

The mean of σ̃2
ε,c is almost identical to the true residual variance.
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Figure 16: Bias curves of σ̃2
ε,c and σ̂2

ε (β = 1)

6 Conclusion

As anonymization techniques and the creation of scientific-use files have become

more and more important over the last ten years, it is necessary to study both

disclosure risks and the impact of anonymization techniques on statistical analysis. In

this paper, we focused on the latter issue, dealing with the effects of microaggregation

on the estimation of the simple linear regression model.
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The main results concerning microaggregation with respect to the dependent variable

Y are:

1. The naive least squares estimate β̃ is biased if the data are aggregated with

respect to Y . The effect of the covariate X on the response Y is overestimated

on average. The only exception is the case β = 0, where the naive least squares

estimator yields a consistent estimate of the true β. If |β| → ∞, β̃ becomes

again asymptotically unbiased in the limit. By increasing the aggregation level

A, bias(β̃) increases as well and becomes more and more severe.

2. The above result shows that there is a major difference between aggregating

the data with respect to Y and aggregating the data with respect to X. In

the latter case, β̃ is unbiased for any value of β. Although aggregating with

respect to X therefore seems to be more convenient for statistical analysis, it

has to be pointed out that scientists do not necessarily know in advance which

variable is the dependent variable Y .

3. The naive least squares estimates α̃ and σ̃2
ε show similar biases. Again, α̃ and

σ̃2
ε are (asymptotically) unbiased for β = 0.

4. The asymptotic bias is a very good approximation to the finite sample bias

even if the sample size is rather small.

5. It is possible to remove the bias and to construct consistent estimates of α, β,

and σ2
ε by correcting the naive least squares estimates (see section 4.4).

6. The corrected estimators show some bias for small samples (e.g., n = 50). For

β̃c the bias is not very large, but for σ̃2
ε,c the bias can be aggravating, although

it becomes negligible again when n > 150.
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In summary, the above results suggest that it is not advisable to apply standard

linear model techniques to a microaggregated data set if the response variable Y has

been used to determine the similarity of the data values. However, we have shown

how to correct for the bias of α̃, β̃, and σ̃2
ε in order to get consistent estimates. In a

subsequent paper, we will focus on the variances of β̃ and β̃c. Moreover, the impact

of microaggregation on the power of t-tests will be analyzed.
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Appendix - Proofs

A Microaggregation with Respect to the Regressor

In the following, we use the notation of section 2. The data values are assumed to

be aggregated with respect to the regressor X of model (1). Denote by Xsort(x) the

design matrix (1, xsort(x)).

Theorem 1. The estimate γ̃ based on the microaggregated data is a consistent esti-

mate of γ.

Proof: Provided that X ′
sort(x)DXsort(x) is nonsingular, we have

γ̃ = (X ′
sort(x)DXsort(x))

−1X ′
sort(x)Dysort(x)

= (X ′
sort(x)DXsort(x))

−1X ′
sort(x)D(X ′

sort(x)γ + esort(x))

= γ + (X ′
sort(x)DXsort(x))

−1X ′
sort(x)Desort(x) , (22)

where esort(x) denotes the error vector after sorting the data with respect to X. As

E(esort(x)) = 0, it follows that E(γ̃) = γ. The variance of γ̃ becomes

var(γ̃) = E
[
(γ̃ − γ)(γ̃ − γ)′

]

= E
[
(X ′

sort(x)DXsort(x))
−1X ′

sort(x)Desort(x)

· e′sort(x)DXsort(x)(X
′
sort(x)DXsort(x))

−1
]

= σ2
ε (X ′

sort(x)DXsort(x))
−1

=
1
n

σ2
ε (

1
n

X ′
sort(x)DXsort(x))

−1 . (23)
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If the variable X follows a distribution with variance σ2
x, 1

nX ′
sort(x)DXsort(x) con-

verges to a finite matrix (see Lemma 1(a) and the note at the end of its proof in

appendix B). Therefore, var(γ̃) converges to zero. It follows that γ̃ is a consistent

estimate of γ.

For the proof of Theorem 2 we need the following lemma:

Lemma A. Denote by ẽ′xẽx the residual sum of squares based on the aggregated

data. Then, E(ẽ′xẽx) = (n/A− 2)σ2
ε , provided that X ′

sort(x)DXsort(x) is nonsingular.

Proof: The residual sum of squares can be written as

ẽ′xẽx = (ỹx − X̃xγ̃)′(ỹx − X̃xγ̃)

= y′sort(x)

(
D −DXsort(x)(X

′
sort(x)DXsort(x))

−1X ′
sort(x)D

)
ysort(x) . (24)

It is easily seen that Q := D −DXsort(x)(X ′
sort(x)DXsort(x))−1X ′

sort(x)D is an idem-

potent matrix. Moreover, QXsort(x) = 0, and thus

ẽ′xẽx = y′sort(x)Qysort(x)

= (Xsort(x)γ + esort(x))
′Q(Xsort(x)γ + esort(x))

= e′sort(x)Qesort(x)

= tr
[
Q (esort(x)e

′
sort(x))

]
. (25)
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Taking expectations we receive

E(ẽ′xẽx) = σ2
ε tr(Q)

= σ2
ε

( n

A
− 2

)
. (26)

Theorem 2. (A/n) ẽ′xẽx is a consistent estimator of σ2
ε .

Proof: From (25),

var
(

1
n

ẽ′xẽx

)
=

1
n2

var(e′sort(x)Qesort(x))

=
σ4

ε

n2
var

(
(esort(x)/σε)′Q(esort(x)/σε)

)
. (27)

Now, (esort(x)/σε)′Q (esort(x)/σε) follows a χ2
n/A−2-distribution, which implies

var
(

1
n

ẽ′xẽx

)
= 2

( n

A
− 2

) σ4
ε

n2
. (28)

Therefore, var
(
(A/n) ẽ′xẽx

) → 0 as n →∞. On the other hand, (26) implies

lim
n→∞E

(
A

n
ẽ′xẽx

)
= σ2

ε . (29)

This, together with (28), proves the theorem.
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B Microaggregation with Respect to the Dependent
Variable

In the following, we use the notation of section 4.

Lemma 1. Denote by S2
ỹy

the empirical variance of ỹy. Then the following results

hold:

a) S2
ỹy

converges to σ2
y in probability.

b) S2
x̃y

converges in probability to σ̃2
x := σ2

x/f(ρ), where

f(ρ) :=
1

1
A +

(
1− 1

A

)
ρ2

. (30)

c) Sx̃y ỹy converges in probability to σxy := ρσxσy.

Proof of a): Assume that the elements of y have been ordered according to their

magnitude: y1 < y2 < · · · < yn, and that the data have been grouped into groups

Gi := {yiA+1, . . . , yiA+A}, i = 0, . . . , (n−A)/A. Denote by S2
y,W and S2

y,B the within-

groups and between-groups variances, respectively. By definition, S2
y,B = S2

ỹy
. As

S2
y,B +S2

y,W is equal to the empirical variance S2
y of y and as S2

y → σ2
y , we only have

to show that S2
y,W → 0.

For any ε > 0 let B be such that
∫
|y|>B y2 dF (y) < ε (this is possible because σ2

y

exists). Now, S2
y,W can be written in the following way:

S2
y,W =

1
n

n/A∑

i=1

S2
i , (31)
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where S2
i :=

∑
j∈Gi

(yj − ȳi)2. Let u be such that min(Gu) < −B , max(Gu) >

−B. In the same way, define o such that min(Go) < B , max(Go) > B (compare

Fig. 17).

−B 0 B

x

Gu Go

Figure 17: Microaggregation with respect to Y - definition of groups

Furthermore, let Ḡi := {|yiA+1|, . . . , |yiA+A|}. By defining

S2
y,W1 :=

1
n

∑

i:max(Ḡi)<B

S2
i , (32)

S2
y,W2 :=

1
n

∑

i:min(Ḡi)>B

S2
i , (33)

S2
y,W3 :=

1
n

(S2
u + S2

o) , (34)

S2
y,W can be subdivided into

S2
y,W = S2

y,W1 + S2
y,W2 + S2

y,W3 . (35)
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Clearly, S2
y,W3 → 0 if n →∞. As

S2
y,W2 ≤ 1

n

∑

|yj |>B

y2
j

→
∫

|y|>B
y2 dF (y) < ε , (36)

S2
y,W2 → 0, too.

Finally, it can be shown that S2
y,W1 → 0: Divide [−B,B] into intervals

of length
√

ε/A. If each interval contains at least one observation yj , then

S2
y,W1 ≤ 1

n
n
A A (A

√
ε

A )2 = ε. As will be seen, the probability of this event goes to

one.

Denote by Ak the event that at least one observation yj , j = 1, . . . , n lies in the

kth interval Ik. Then P(Āk) = (1 − qk)n, where qk := P(Y ∈ Ik). Because Y is a

continuous variable, qk > 0. Therefore, limn→∞ P(Āk) = 0 for each k. It follows that

P
(⋂

k

Ak

)
= 1− P

(⋃

k

Āk

)
≥ 1−

∑

k

P(Āk)
n→∞−→ 1 , (37)

and thus P
(
S2

y,W1 ≤ ε
)

converges to one as well.

Note that the only assumption we needed to prove Lemma 1a) was the existence of

σ2
y . Normality of Y was not required.

Proof of b): To show Lemma 1b), we use the theory of induced order statistics

(see, e.g., David(1981)). Suppose we have an iid sample (xi, yi), i = 1, . . . , n from

a bivariate normal distribution with variances σ2
x, σ2

y and correlation ρ. Without
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loss of generality we set µx = µy = 0. Denote by Yr:n the r-th order statistic of

Y . The X-variable associated with Yr:n is then called induced order statistic or

concomitant X[r:n].

As X and Y are jointly normally distributed, we have

Xi = β∗Yi + δi , i = 1, . . . , n, (38)

where E(δi) = 0 and δi is independent of Yi. It follows that

X[r:n] = β∗Yr:n + δ[r] , (39)

where δ[r] denotes the random variable associated with Yr:n. Yr:n and δ[r] are in-

dependent. Moreover, δ[1], . . . , δ[n] are independent and identically distributed with

zero mean and variance σ2
δ = (1−ρ2)σ2

x. Now, with δ̃y denoting the vector containing

the aggregated values of δ, we have

x̃y = β∗ỹy + δ̃y , (40)

where ỹy,i and δ̃y,i, i = 1, . . . , n, are independent. By (40), we have

S2
x̃y

= β∗2S2
ỹy

+ S2
δ̃y

+ 2β∗Sỹy δ̃y
, (41)

where S2
δ̃y

denotes the empirical variance of δ̃y and Sỹy δ̃y
denotes the empirical

covariance of ỹy and δ̃y.
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As S2
ỹy

→ σ2
y , see Lemma 1a), S2

δ̃y
→ (1/A) σ2

δ = (1/A) (1 − ρ2) σ2
x, and

Sỹy δ̃y
→ σyδ = 0, we have, with β∗ = ρσx/σy,

S2
x̃y

→ β∗2σ2
y +

1
A

σ2
x(1− ρ2)

= σ2
x

( 1
A

+
(
1− 1

A

)
ρ2

)

=
σ2

x

f(ρ)
. (42)

Proof of c): From Lemma 1a) we know that S2
ỹy
→ σ2

y . Moreover, Theorem 1 yields

Sx̃y ỹy

S2
ỹy

→ β∗ =
σxy

σ2
y

. (43)

Hence the lemma is proved. Note that Sx̃xỹx and Sx̃y ỹy do not only have the same

limit σxy. They also have the same mean (see Lemma B).

Lemma B. Denote by Sx̃xỹx the empirical covariance of x̃x and ỹx. Then,

E(Sx̃xỹx) = E(Sx̃y ỹy).

Proof: Let us first assume that X and Y have equal variances σ2
x = σ2

y =: σ2. As

X and Y are jointly normally distributed random variables with density f , we have

f(x, y) = f(y, x). Define

c1(x, y) := Sx̃xỹx (44)

c2(x, y) := Sx̃y ỹy . (45)

As

c2(y, x) = Sỹxx̃x = Sx̃xỹx = c1(x, y) , (46)
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it follows that

E(Sx̃y ỹy) =
∫

c2(x, y)f(x, y) d(x, y)

=
∫

c2(y, x)f(y, x) d(y, x)

=
∫

c1(x, y)f(x, y) d(x, y)

= E(Sx̃xỹx) (47)

If X and Y have nonequal variances σ2
x and σ2

y , equation (47) still holds. This is

because the scaling of X and Y does not affect the ordering of (xi, yi), i = 1, . . . , n.

Therefore,

Sx̃xỹx = σxσy Sx̃∗
x∗ ỹ∗

x∗ and (48)

Sx̃y ỹy = σxσy Sx̃∗
y∗ ỹ∗

y∗ , (49)

where X∗ and Y ∗ denote the standardized variables corresponding to X and Y .

Clearly, X∗ and Y ∗ have equal variances σ2
x∗ = σ2

y∗ = 1. It follows from (47) that

E(Sx̃xỹx) = σxσy E(Sx̃∗
x∗ ỹ∗

x∗ )

= σxσy E(Sx̃∗
y∗ ỹ∗

y∗ )

= E(Sx̃y ỹy) . (50)
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