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Summary

The methodological development and the application in this paper originate from

diffusion tensor imaging (DTI), a powerful nuclear magnetic resonance technique

enabling diagnosis and monitoring of several diseases as well as reconstruction

of neural pathways. We reformulate the current analysis framework of separate

voxelwise regressions as a 3d space-varying coefficient model (VCM) for the entire

set of DTI images recorded on a 3d grid of voxels. Hence by allowing to borrow

strength from spatially adjacent voxels, to smooth noisy observations, and to esti-

mate diffusion tensors at any location within the brain, the three-step cascade of

standard data processing is overcome simultaneously. We conceptualize two VCM

variants based on B-spline basis functions: a full tensor product approach and a

sequential approximation, rendering the VCM numerically and computationally

feasible even for the huge dimension of the joint model in a realistic setup. A

simulation study shows that both approaches outperform the standard method



of voxelwise regressions with subsequent regularization. Due to major efficacy,

we apply the sequential method to a clinical DTI data set and demonstrate the

inherent ability of increasing the rigid grid resolution by evaluating the incorpo-

rated basis functions at intermediate points. In conclusion, the suggested fitting

methods clearly improve the current state-of-the-art, but ameloriation of local

adaptivity remains desirable.
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1 Introduction

Our methodological work on space-varying coefficient models results from collabo-

rative research in neuroscience where statistical approaches in functional magnetic

resonance imaging (fMRI) and diffusion tensor imaging (DTI) are confronted with

manifold challenging problems. While fMRI aims at detecting task-related neural

activation which translates into signal changes of the involved cortical areas, the

ultimate goal of DTI is to recover anatomical connections between brain regions.

The latter which is also referred to as fiber tracking, and the physical basis of the

underlying principle of directional diffusion have been comprehensively reviewed

by e. g. Basser and Jones (2002). Though we will focus on DTI, the presented

methodology can equally be applied to fMRI.

As described in more detail in Section 2, the basic quantity in DTI is the so-called

diffusion tensor D(s) which can be interpreted as the three-dimensional (3d) co-

variance matrix of an anisotropic Wiener process at any location s ∈
� 3 of interest

in the human brain. Using spectral decomposition, several tensor derived met-

rics can be obtained, providing insight into microstructural tissue properties and

pathological alterations. While eigenvalue based measures used in diagnosing and

monitoring acute and chronic neurological diseases such as stroke, brain tumours

or inflammatory disease, the eigenvectors allow for fiber tracking, a promising

high-end application of DTI with the outlook to improve neurosurgical planning.

DTI raw data are inherently artifact-prone and recorded at limited resolution on
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a discrete 3d grid of voxels, indexed by s = 1, . . . , n. In a realistic setup, a typical

image comprises n1 × n2 × n3 = 128 × 128 × 24 voxels, resulting in a total of

n = 393, 216 voxels. A complete data volume consists of multiple images recorded

under different conditions and can be transformed to repeated continuous mea-

surements yi(s), i = 1, . . . , r, at each voxel s. These measurements can be related

to the vector β(s) = (β1(s), . . . , β6(s))
′ of unknown elements in D(s) through a

regression model

yi(s) = xi
′β(s) + εi(s) , i = 1, . . . , r . (1.1)

The covariate vector xi is determined by the design of the DTI experiment. A

similar regression model can be derived for fMRI data though with different in-

terpretation (Gössl et al., 2001).

For the purpose of estimating the coefficients β(s), and thus the diffusion tensor

D(s), some regression technique is currently applied in each image voxel sepa-

rately, reaching from standard least squares (Basser et al., 1994) to more sophis-

ticated techniques such as robust (Mangin et al., 2002; Chang et al., 2005) or

non-Gaussian error regression (Assaf et al., 2004). Spatial correlation induced by

adjacent voxels is taken into account, if at all, in a postprocessing step, e. g. by

Gaussian kernel smoothing of estimated diffusion tensors (Gössl et al., 2002).

In this work, we propose to connect the seemingly unrelated regression models

in Eq. (1.1) to a joint model for all measurements y = {yi(s), i = 1, . . . , r; s =
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1, . . . , n} with β = {β(s), s = 1, . . . , n} being a high-dimensional space-varying

coefficient vector. This approach considers not only spatial correlation within

the model but also corroborates the tensor fitting by the diffusivity information

of adjacent voxels. Moreover, the use of spline-basis functions serves to model

the spatial field D = {D(s), s ∈
� 3}, i. e. the field β = {β(s), s ∈

� 3}. As a

consequence, estimates for D(s) are accessible at any arbitrary position s ∈
� 3 in

the brain, not only on the discrete grid of voxels s = 1, . . . , n. This approximation

property is an important pre-requisite of any DTI tracking algorithm which needs

estimates of D(s) on a markedly finer 3d grid than available by the acquisition

resolution in order to reconstruct fiber bundles in a biologically smooth fashion.

Current techniques mostly use some sort of simple interpolation technique between

voxels, see e. g. Gössl et al. (2002) and the references given therein.

At first glance, our proposed concept of a space-varying coefficient model seems

to be straightforward. However, the massive dimension of the 3d array β =

{β(s), s = 1, . . . , n} of coefficient vectors of length six, thus of a 4d array, implies

methodological and computational challenges which cannot be solved adequately

with existing methods. Originally, VCMs have been suggested by Hastie and

Tibshirani (1993) for regressions with coefficients varying smoothly over a one-

dimensional continuous variable such as time-varying effects. Extensions to 2d-

space-varying coefficients have been developed more recently, ranging from 2d-

surface smoothers to (Markov) random field models (Assunção, 2003; Eilers and
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Marx, 2003; Fahrmeir et al., 2004). Further extensions from two dimensions to

three- or higher-dimensional arrays are more challenging than it may seem at

first sight and much less efforts have been spent on this topic, with the noteable

exception of the array regression method proposed by Eilers et al. (2006). Based

on a suggestion in Heim et al. (2004), array regression was used in a first attempt

to analyze DTI data with a VCM model in Eilers et al. (2005). Unfortunately,

the method of Eilers et al. (2005) of implementing the tensor product model does

not allow for enough knots in 3d-space, thus smoothing away important details

contained in DTI data.

In this work, two techniques are developed to overcome these problems. The first

one (see Section 3.1) shares the theoretical model with the array regression but

takes advantage of the sparsity of the spatial arrays involved. The second one (see

Section 3.2) basically adapts the ’new smoothing spline’ in Dierckx (1982), thus

reducing the 3d (or higher-dimensional) problem to a sequence of one-dimensional

smoothers. In the next section we provide a brief overview of the physical back-

ground of DTI. Section 3 describes our conceptual framework composed of the two

estimation techniques. The performance of the proposed methods for DTI analy-

sis is explored through a simulation study in Section 4, and Section 5 is devoted to

a real data DTI application. Discussions and conclusions are presented in Section

6 while technical details of the implementation are deferred to the Appendix.
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2 Diffusion tensor imaging (DTI)

DTI is named according to its fundamental quantity, the field {D(s), s ∈
� 3} of

diffusion tensors

D(s) =

















D1(s) D4(s) D5(s)

D4(s) D2(s) D6(s)

D5(s) D6(s) D3(s)

















.

A diffusion tensor characterizes the local diffusivity of water molecules at each

location s ∈ � ⊂
� 3 within a continuous subspace � ⊂

� 3 of the brain, and can

be interpreted as the (local) covariance matrix of an anisotropic Wiener process

describing the random movement of water molecules. The eigenvalues ξi(s), i =

1, 2, 3, and eigenvectors of this symmetric and (theoretically) positive definite

matrix correspond to the axis lengths and directions of the local diffusion ellipsoid.

Among the eigenvalue-based intravoxel measures, fractional anisotropy (FA) is

the most popular metric to assess the local degree of anisotropy of the diffusion

process. By its definition (Basser and Pierpaoli, 1996)

FA(s) =

√

3

2

∑

i(ξi(s) − ξ̄(s))2

∑

i
ξ2
i (s)

,

the FA index assumes zero in a perfect isotropic medium and equals one in a purely

anisotropic medium. FA and other eigenvalue based metrics are used to character-

ize the physiological brain microstructure and neuropathological processes. How-

ever, both the analysis of specified brain regions and whole brain approaches such
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as voxel based morphometry are hampered by the generally coarse spatial reso-

lution of diffusion images and by error prolongation caused by noise. Therefore,

sufficient approximation techniques for high resolution mapping of small scale pro-

cesses and complex anatomical structures, e. g. the hippocampus, are desirable.

On the other hand, the dominant eigenvector of the diffusion ellipsoid reflects

the principal diffusion direction which is particularly pronounced in white matter:

Neural fibers in this brain compartment are densely packed and highly ordered

such that the water molecules therein preferentially pass along the biophysiolog-

ical structures instead of perpendicular to them. Hence the main eigenvector is

assumed to coincide (approximately) with the local fiber orientation in space. This

conceptual postulate underlies all existing tracking algorithms which, as high-end

DTI analysis, aim at reconstructing neural fiber bundles (Mori and van Zijl, 2002).

Figure 1 outlines this basic idea for a certain slice of a 3d data grid. The gray curve

corresponds to a stylized part of a fiber bundle, and for each discrete grid point,

indexed by s, the gray arrow indicates the dominant eigenvector of the “true” un-

observable diffusion tensor D(s). The orientation of these true eigenvectors varies

more or less randomly in isotropic parts of the volume while eigenvectors associ-

ated with the unobservable fiber bundle correspond to anisotropic diffusion tensors

and provide good information about local directionality of the neural tract, that

is still to be reconstructed. Linking together the eigenvectors by some suitable

tracking algorithm would allow to recover the neural tract. However, as described
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below, only (noisy) tensor estimates D̂(s) can be obtained from the recorded DTI

data and hence the derived principal eigenvectors will likely be erroneous as visu-

alized by black arrows in Fig. 1. Clearly, tracking algorithms working with these

unsatisfactory principal eigenvectors can yield spurious results due to fairly mis-

leading orientation of some estimated eigenvectors. See, for instance, the severely

distorted main eigenvector in the middle fiber-transit voxel of Fig.1. There is an

evident need to denoise raw estimates by some kind of spatial smoothing, bor-

rowing strength from adjacent voxels. In the following we describe the standard

approach of obtaining estimates of D(s) as well as its eigenvalues and -vectors

from DTI raw data.

Physical theory states that the relation between a measured magnetic resonance

signal Si(s) in voxel s and a certain gradient gi = (g1i, g2i, g3i)
′ (see Mori and

Barker, 1999, for physical background) is given by the (deterministic) Stejskal-

Tanner equation (Stejskal and Tanner, 1965):

Si(s) = S0(s) exp {−b gi
′D(s)gi} , i = 1, . . . , r , s = 1, . . . , n. (2.1)

Here, b is a scalar comprising several acquisition parameters such as magnetic

gradient strength and duration. Yet in practice, the relation (2.1) is disturbed by

thermal and physiological noise. Following Papadakis et al. (1999), Eq. (2.1) can

be reformulated, for voxel s, s = 1, . . . , n, as

yi(s) = −
1

b
log

(

Si(s)

S0(s)

)

= xi
′β(s) + εi(s) , i = 1, . . . , r , (2.2)
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with noise εi(s)
iid
∼ N(0, σ2), the vector β(s) = (D1, D2, D3, D4, D5, D6)

′(s) of the

unknown elements of the diffusion tensor and the design vector xi = (g2
1i, g

2
2i, g

2
3i,

2g1ig2i, 2g1ig3i, 2g2ig3i)
′, constructed from the known values of gi. In Eq. (2.2) we

recognize a linear regression problem with the unknown p-dimensional vector β(s).

Note that xi is the same for all voxels, and thus we face a repeated measures design

with X = (x1, . . . ,xr)
′ ∼ (r, p) which plays a role for efficient implementation (see

Appendix).

The current standard approach uses least squares (Basser et al., 1994) or more

sophisticated techniques (Mangin et al., 2002; Chang et al., 2005; Assaf et al.,

2004) to estimate β(s) through separate regressions at each voxel s, requiring at

least r ≥ 6 independent images obtained at different magnetic gradients. Usually,

measurements are repeated for the same gradient set or the number of different

gradients is chosen to be over determined in order to mitigate the effects of noise.

Due to ethical as well as financial reasons, the clinical time frame is however

limited.

In general, the first step of the standard tensor fitting is thus multiple regression

on a voxel-by-voxel basis. In a second step, spatial smoothing (of the estimated)

diffusion tensor field is often performed, for example by applying a Gaussian

kernel as in Gössl et al. (2002). If required some subsequent interpolation serves

to increase the resolution in a third step.

8



3 The space-varying coefficient model

Our concept combines the n separate regression models of the standard approach

to a joint space-varying coefficient model by a suitable (spatial) design of the

3d array {β(s), s = 1, . . . , n}. Thus, spatial correlation and information from

adjacent voxels are taken into account. In addition, the number r of repetitions

at each voxel can be kept small as desirable to avoid long acquisition times.

3.1 Multidimensional smoothing with tensor products

The elements of βj (j = 1, . . . , p = 6) are modelled non-parametrically by project-

ing them onto penalized tensor product B-splines or multidimensional P-splines.

We first present a direct VCM presentation. Consider

βj(s) =

KLM
∑

v=1

B(s, v)γj(v) = B(s, ·)γj,

where the (n×KLM)-matrix B = B3 ⊗B2 ⊗B1 contains the 3d tensor products

of 1d B-splines, i. e. of (n1 × K)-matrix B1, (n2 × L)-matrix B2, and (n3 × M)-

matrix B3 evaluated at x-, y-, and z-coordinates, respectively. Regarding the full

jth coefficient surface we equivalently write

βj = Bγj . (3.1)

Note that B is the same for all coefficient surfaces βj and has to be calculated only

once. The vector γj denotes the unknown amplitudes of the basis functions, and

9



K × L×M is determined by the (generous and regularly gridded) knot partition

and degree of the basis functions. To ensure sufficiently fine reconstruction of

essential features in DTI, one knot is required at each 1.25 voxel as suggested by

a pilot study. Furthermore, the spline degree is set linear in order to keep the

influencing regions of the basis functions as locally restricted as possible. There is

nothing prohibative in the general methodology from using other choices of basis

degree.

Using the tensor coefficient expression in (3.1), the least squares term conforms

to

LS(γ) = ‖y −

p
∑

j=1

ΥX(·,j)βj‖
2 = ‖y −

p
∑

j=1

ΥX(·,j)Bγj‖
2 ,

where the observations in y ∼ (rn, 1) are ordered according to repeats first and

voxel number last, βj = (βj(1), . . . , βj(n))′, B is of dimension n × KLM , γj of

KLM × 1, and γ = (γ ′

1, . . . , γ
′

p)
′. The (rn × n)-matrix ΥX(·,j) = X(·, j) ⊗ In

with (n × n)-identity matrix In consists of n blocks, each one containing the r-

dimensional regressor j. We then aim to find a practical solution to the penalized

objective

LSpen(λ, γ) = LS(γ) + Pen(λ, γ)

= ‖y − (B ⊗ X)γ‖2 + Pen(λ, γ)

Note that the second equality of LS(γ) in (3.2) holds because the p interaction

variables are space-invariant in the present application of DT imaging and, hence,
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the n blocks in ΥX(·,j) are the same. This restatement plays an important role in

the implementation.

The penalty term Pen(λ, γ) serves to avoid overfitting. For each regressor j,

difference penalties are placed on the rows, columns, and layers of tensor product

coefficients, such that

Pen(λ, γ) =

p
∑

j=1

K
∑

k=1

L
∑

l=1

M
∑

m=1

{λ1(∆
d
1γjklm)2 + λ2(∆

d
2γjklm)2 + λ3(∆

d
3γjklm)2}

= λ1‖(ILM ⊗ ∆1 ⊗ Ip)γ‖
2 + λ2‖(IM ⊗ ∆2 ⊗ IKp)γ‖

2

+λ3‖(∆3 ⊗ IKLp)γ‖
2

= λ1‖P1γ‖
2 + λ2‖P2γ‖

2 + λ3‖P3γ‖
2 . (3.2)

Here ∆d
1, ∆

d
2, and ∆d

3 denote the d-th order differences across a row, down a

column, and along a layer of the K × L × M matrix of tensor product B-spline

coefficients, Γj = [γklm], respectively. Note that, in general, different values of

d are conceivable for the three penalized dimensions. In the present application

to DTI data, d = 1 proved most appropriate with respect to satisfactory detail

sustainment. The (K−d×K)-matrix ∆1, (L−d×L)-matrix ∆2, and (M−d×M)-

matrix ∆3 indicate the corresponding matrices of difference penalties, while P1,

P2, and P3 consists of a carefully arranged, full matrix representation using block

diagonal matrices of right Kronecker products. If λ1 6= λ2 6= λ3, the smoothing

parameter is dimension-specific. In contrast, the smoothing parameter is global if

λ1 = λ2 = λ3. In both cases, it determines the trade-off between smoothness and
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fidelity to the data. Details on data-driven optimization of the tuning parameter

are given in the Appendix.

In theory, an explicit solution to γ = (γ ′

1, . . . , γ
′

p)
′ can be found using

γ̂ = (U′U + P)−1U′y, (3.3)

where U = [ΥX(·,1)B, . . . ,ΥX(·,p)B] = B ⊗ X is (rn × pKLM)-dimensional, and

P = λ1P1 + λ2P2 + λ3P3 is derived from (3.2). Given γ, then the varying

coefficient volumes can be built. Since the basis functions can routinely be eval-

uated at a large number of (intermediate) points, the resolution can be increased

straightforwardly without an additional interpolation method.

For practical brain imaging applications, we may need K × L ×M = 32× 32× 8

knots for a region of interest sized 40×40×10 voxels. Thus B has approximately

3 × 109 elements: if each floating point takes 8 bytes, then B will use several Gb

of memory, which is beyond reach of current computers. The left hand side of

the normal equations preceding Eq. (3.3) would occupy more than 18 Gb for the

above number of parameters, i. e. 6 × 32 × 32 × 8. Hence efficient algorithmic

implementation and programming using sparsity and approximations is essential

(see also the Appendix).
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3.2 Successive smoothing with univariate basis func-

tions

A simplification of the VCM version with tensor products can be derived from

Dierckx (1982; 1993: p. 172ff) who proposes the so-called “new smoothing spline”

for penalized 2d smoothing. The key point concerns the data arrangement which

is left in multidimensional array structure, here (r×n1 ×n2 ×n3)-array Y. Start-

ing from the univariate B-spline matrices augmented by the corresponding differ-

ence penalties, the normal equations can be transformed employing linear algebra

properties of the Kronecker product. Then the coefficient vector γ results from

consecutive univariate smoothing with the observational data as input to the first

smoothing cycle exclusively. The (preliminary) coefficients attained last serve

each as input to further iterations.

The generalization to higher dimensions can be implemented on the basis of the

function ρ(V,W, i) published by Eilers et al. (2006) and described in detail by

Currie et al. (2006). The argument V is a 2d matrix, W a higher-dimensional

array, and i a dimension index. This function performs the usual computations of

the matrix product, along the rows of V and along dimension i of W. The core

trick is to rotate dimension i of W to the front by dimension permutation, reduce

the array W to two dimensions, compute the standard matrix product with V,

transform W back to its original dimensionality and rotate the ith dimension back
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to place. Repeated application of ρ to the signal intensities Y yields the following

(p × K × L × M)-array estimate of Γ = vec(γ), where the vec-operator performs

column-wise stacking of its argument:

Γ̂ = ρ
(

(X′X)−1X′, ρ
(

(B′

1B1 + λ1∆
′

1∆1)
−1B′

1, ρ
(

(B′

2B2 + λ2∆
′

2∆2)
−1B′

2,

ρ
(

(B′

3B3 + λ3∆
′

3∆3)
−1B′

3, Y, 4
)

, 3
)

, 2
)

, 1
)

. (3.4)

Starting from the inner brackets, ρ smoothes the fourth dimension of Y, thereby

transforming the orginal (r×n1 ×n2 ×n3)-dimensional Y to a (r×n1 ×n2 ×M)-

array. Analogous proceeding renders this (r×n1×n2×M)-array (r×n1×L×M)-

dimensional, then (r×K×L×M)- and finally (p×K×L×M)-dimensional. Note

that sequential univariate smoothing according to Eq. (3.4) is highly attractive

in terms of working memory and computation time. This approach affords an

entirely different opportunity to overcome implementational deficiencies. Due to

the sequential character of the procedure, involved matrices are small a priori

allowing to place a large number of basis functions. Moreover, the GCV can be

computed very efficiently since the trace of Kronecker products equals the product

of traces.
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4 Simulation study

For the purpose of performance rating of the VCM approaches versus the standard

estimation method, a simulation study is conducted with quasi-realistic parameter

settings and a fiber tract following the geometry of a spiral. Figure 2 displays the

stylized fiber bundle together with the auxillary grid of anisotropic voxel size

typical to clinical experiments. Since each fiber-transit voxel is considered a fiber

voxel (compare e. g. the projection on the XY-plane), the overall ratio of fiber to

non-fiber voxels amounts to 0.2.

———— figure 2 around here ————

In the given simulation model the background tensors are spherically shaped cor-

responding to a totally isotropic diffusion process. Yet, in spiral voxels the tensor

shape is cigar-like. This means that the underlying diffusion process is unambigu-

ously one-directional. In other terms, the template eigenvalues determining the

spiral tensors obey a ratio of 2:1:1 giving a fractional anisotropy value of FA = 0.4.

We defer to Fig. 5 for a complete map of the true tensors. The imposed amount

of Gaussian error is taken from 70 real data sets as the average background noise.

Also the voxel size mimics real data situation generally occuring in DTI.

In the following, standard voxelwise regression is abbreviated ST1, ST2 if Gaus-

sian kernel smoothing is appended, and ST3 for additional interpolation. Among
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the VCM variants, realization with tensor product basis functions, as well as suc-

cessive univariate smoothing according to Dierckx, are examined constrained to

global and dimension-specific smoothing parameters, respectively. We will refer

to these approaches as TPglob, TP3d, DXglob, and DX3d. To ensure sufficient

reconstruction of fine, although essential features, one knot is required at each 1.25

voxel in both artificial and real data. Linear spline basis functions and first order

difference penalties further promote texture preservation. Note that the analysis

is restricted to the fitted coefficient surfaces {β̂j, j = 1, . . . , p} constituting the

tensor field, and to the derived 3d field of FA which represents the most widely

used scalar measure of anisotropy. The total number of regression coefficients,

i. e. of amplitudes of the basis functions, amounts to 12× 12× 4× 6 = 3456 in all

VCM approaches.

For each of the N = 100 simulation runs, we assessed the overall quality of the

competing estimation procedures by the averaged mean squared error (AMSE) of

the tensor fit, depending on the voxel type ’spiral’:

AMSE(i)
sp

=
1

p nsp

∑

s∈spiral

∥

∥

∥
β(s) − β̂

(i)
(s)

∥

∥

∥

2

, i = 1, . . . , N ,

or ’background’:

AMSE
(i)
bg =

1

p nbg

∑

s∈background

∥

∥

∥
β(s) − β̂

(i)
(s)

∥

∥

∥

2

, i = 1, . . . , N .
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The β(s) and β̂
(i)

(s) denote the template coefficient vector and its counterpart

fitted from the ith simulation run, respectively. Note that AMSE is a region-

specific error measure per simulation run, averaged over all region-related voxels

and all tensor elements. Analogous definitions holds for FA.

Thus, we can obtain empirical error distributions of the estimated coefficient sur-

faces and also of the FA values once confined to fiber tissue (spiral) and once

confined to background tissue. From the comparison of the relevant boxplots, we

are able to judge which estimation method performs best with regard to tissue

types of different diffusivity properties.

With respect to the spiral voxels that are of particular importance for fiber track-

ing, Figure 3 confirms the superiority of the VCM approaches over the current

state-of-the-art ST2 when fitting the tensor components. DX3d performs best,

followed by DXglob, TP3d, TPglob and ST2 with medians at -18.98, -18.93, -

18.85, -18.83, and -18.53 (left boxplots of top supfigure). This ranking changes

to advantage of 3d tuning parameter when the resolution is duplicated as evident

from the left boxplots of the bottom subfigure. On this last level of data pro-

cessing prior to fiber tracking, the various VCM approaches outperform the ST3

procedure (median = −18.24) with the clearest improvement yielded by DX3d (-

19.04), followed by TP3d (-18.91), DXglob (-18.87) and lastly by TPglob (-18.82).

In the isotropic background, error distributions appear rather similar between the

considered approaches both at original and refined resolution.
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———— figure 3 around here ————

If the fitted tensor field is transformed to the 3d FA field, almost the same relation-

ship of quality of fit holds for the different techniques: FA is fitted more accurately

in the background than in the spiral voxels, where the various VCM approaches

lead to clearly smaller errors than ST2. This latter distinction becomes more

pronounced with respect to interpolated estimates though the ranking remains

exactly the same, i. e. DX3d, TP3d, TPglob, DXglob, and ST2/ST3 in decreasing

performance order. It is worth to mention that the VCM variants result in even

smaller errors of spiral than background FA estimates, if the degree of anisotropy

is further augmented to an eigenvalue ratio of 10:1:1 (FA = 0.89; data not shown).

In the background compartment, all methods show a tendency of larger errors at

increased resolution compared to original acquisition.

———— figure 4 around here ————

Concerning AMSE of both tensor and FA estimation, VCM approaches with a

3d penalty perform altogether better than those with a global tuning parameter.

Based on these results and from a computational point of view, we clearly favor

DX3d. For comparison, TP3d and ST2 are also examined in more detail, namely

for the tensor estimation.
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To glean intravoxel quality information, we compute for each coefficient surface

βj, j = 1, . . . , r, the voxelwise mean squared error (VMSE) defined as

VMSE
(s)
j =

1

N

N
∑

i=1

(

βj(s) − β̂
(i)

j (s)
)2

, s = 1, . . . , n .

This measure reflects the error of each coefficient at each voxel s, averaged over

the simulation runs.

Figure 5 displays the error ratio of two respective estimation procedures on a log

scale. The VSME map corresponding to one method is set relative to the VMSE

map resulting from the other method. Taking the logarithm leads to a symmetric

scale of the ratio. For example, if log(VMSEDX3d/VMSEST2) = 2 this corresponds

to an error ratio of exp(2) = 7.389 ≈ 7 : 1, meaning that method DX3d results in

seven times larger errors than the standard ST2 and vice versa.

———— figure 5 around here ————

In general, this type of graphic allows to assess both the relative magnitude and the

distributional structure of the errors. The emerging color-coded pattern suggests

that the standard method mainly results in more biased tensor components at the

ridges while the basis function approaches lead to larger errors at the edges (see

bottom row of Fig. 5). This becomes obvious from comparison of the log error

ratios (bottom row) with the template structure (top left). Whereas green spots

occur above all at true edges and in a second instance in the background, rose
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colored points tend to build up artificial ridges which can be associated with spiral

echoes. For example, the second slice from below shows a u-shaped semicircle for

all true tensor elements. Exactly at the edges of these semicircles, the VCM

approach performs worse than the standard procedure (green points). Reversely,

the standard procedure exhibits larger errors than the VCM approach not only at

the true ridges, but also in the upper half of the slice (rose points). Yet compared

to DX3d (bottom left), the TP3d variant (bottom right) seems to lack successful

reproduction of the spiral structure: The upper half of the second slice contains

slightly more rim artifacts on the basis of TP3d than of DX3d (see green spots).

Note that errors of the dark-green range do hardly occur at all whereas we can

detect a considerable number of points colored dark-rose. With respect to DX3d

(bottom left), the impression arises that the same proportional shift holds for

the medium saturated nuances. This can be understood as superiority of VCM

approaches over the standard procedure.

Analogous comparison of the two best VCM approaches against each other is

included top right in Fig. 5. The prevailing texture of green and rose colored

voxels suggests that TP3d does not agglomerate as large errors in artificial clusters

as the DX3d method (green), but loses in accuracy at true edges (rose).

To conclude, there is an obvious preferability of the VCM approaches compared

to the current standard, in particular, if the advantage of inherent approximation

and, thus, resolution refinement is considered.
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5 Application to real data

Besides from being the preferential estimation procedure according to the simula-

tion study, successive smoothing with dimension-specific penalties exhibits several

computational advantages for application to real data (see Discussion and Ap-

pendix). The data set was shrunken from a recorded number of 128× 128 within

plane voxels to 90× 75 due to non-informative background voxels. Furthermore a

selection of six subsequent slices was considered sufficient, also if fiber tracking of,

for instance, the visual system is intended. From the remaining volume of human

brain images, the diffusion tensor field was derived using ST1, ST2 and DX3d.

The same knot density as in the simulation study served to maintain important

biological features. In total, 72×60×5×6 coefficients needed to be determined in

the VCM; this are 113, 400 unknown parameters less than in the standard model

of voxelwise regression.

Figure 6 contains the respective results of the first tensor element, i. e. β̂1,ST1
, β̂1,ST2

and β̂1,DX3d
with an inferior-superior ordering of the axial slices from left to right.

When the focus is on fiber tracking, standard estimation on the basis of voxelwise

regression (ST1, top row) is usually regularized to eliminate noise artifacts as in

the present manner of Gössl et al. (2002) (ST2, middle row). The bottom slices

depict the estimated surface achieved by the VCM application. Looking at the

second and sixth column, in particular, reveals an obvious oversmoothing of the
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Gaussian kernel causing ventricles (bright blobs) to be severely smeared across

neighbouring slices.

———— figure 6 around here ————

The described combined algorithm for smoothing and interpolating can enhance

typical image post-processing steps in brain mapping as image segmentation and

coregistration. Especially non-linear spatial transformation steps needed for the

matching of interindividual brain anatomy can benefit from a continuous vector

field. Refinement of the observational grid - as also required by each tracking

algorithm - is demonstrated for a smaller area superimposed as white sketch (Fig.

6). The box segment comprises three tissue types (cerebro-spinal fluid, gray and

white matter) holding distinct diffusivity properties. In practice, some interpola-

tion method leading to ST3 is appended to the standard 2-step procedure in order

to allow for quasi-continuous fiber reconstruction. With respect to the alternative

VCM, additional evaluation of the basis functions at intermediate points complies

with this demand. Figure 7 delineates the close-up of the respective segment lay-

ers including two intermediate planes at double resolution: The VCM estimation

(bottom) reveals by far more details and achieves a stronger contrast than the

standard data preprocessing cascade ST3 (here with tri-linear interpolation, top

row).

———— figure 7 around here ————
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6 Discussion

In this paper, we proposed the varying coefficient model with 3d basis functions

as alternative estimation method in diffusion tensor imaging. A simulation study

proved the superiority of our VCM variants in terms of averaged mean squared

error (AMSE) and voxelwise mean squared error (VMSE) to the current standard

procedure of voxelwise regression with subsequent regularization. A salient prop-

erty of a VCM approach with basis functions is the inherent possibility of going

beyond the rigid grid resolution limited by the data acquisition process. For real

data a higher contrast of the diffusion tensor field could be achieved than with

tri-linear interpolation that completes the standard estimation method. We solely

succeeded to handle the clinical example of 90×75×6 selected voxels by applying

the sequential and thus computationally advantageous DX3d VCM. Despite the

approximative character, it had also turned out to be the ’candidate of choice’

in the simulation study. In contrast to a global penalization, the optimization

of a dimension-specific tuning parameter showed to account for the commonly

anisotropic voxel size more appropriately as evident from slightly smaller mean

squared errors.

Linear B-splines were used in all cases although cubic B-splines are conventionally

preferred for their quasi-isotropy. For DT application however, the sustainment

of important biological features is of primary concern, but likely to be impaired
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by too large influence regions of adjacent voxels. Therefore, a lower spline degree

seems more appropriate as confirmed from a pilot study. First order difference

penalties and a knot at every 1.25 voxel were additionally chosen for both sim-

ulated and real data. Unfortunately, the demands on computer memory and

computation time load increase sharply with knot density. We faced this chal-

lenge by the extensive use of the sparsity of the involved matrices, hence solving

the penalized normal equations in an efficient way again. Yet, for 3d images of the

original size it will essentially be impossible to explicitly form the necessary tensor

products. The sequential methods DXglob and DX3d represent so far the one and

only possibility to handle such big problems. See the Appendix for remarks on

implementational matters.

Despite all efforts to preserve enough detail, the proposed VCM approach still

suffers from so-called Gibbs phenomena as obvious from Fig. 5 of the VMSE

quotient. This under- and overshoot around discontinuities or areas with high

curvature appears when the reconstruction of a discontinuous or rapidly chang-

ing function is aimed for by a set of continuous ones. Similar phenomena are

also known from the one- and two-dimensional case, i. e. in nonparametric curve

and surface estimation, and various proposals have been made to improve local

adaptivity of estimators. Two main concepts seem promising: The first one still

relies on spline basis functions but introduces spatially adaptive penalties, see

e. g. Ruppert and Carroll (2000), Lang et al. (2002), Brezger and Lang (2005) for
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the 1d case, and Brezger et al. (2005) for the 2d case. The latter paper shows that

computational demands already grow enormously when extending 1d-methods to

two dimensions. A second possibility is to switch to different basis functions such

as wavelets and radial basis functions, or to base the model on anisotropic ran-

dom fields. Though being conceptually published in 2d, all these locally adaptive

modifications are again extremely challenging in 3d from an algorithmic point of

view.
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Appendix

Implementational Issues

As the straightforward approach to VCM (Eq. (3.3)) runs into difficulties, we can

alleviate computation by taking advantage of the repeated measures structure,

i. e. X does not vary across voxels. Since X is on grid, the expectation of Y

can be expressed as a tensor product involving X. Hence, we can apply the fast,

compact smoothing algorithm of Eilers et al. (2006). Such an approach avoids

the computation of large Kronecker products of B-spline bases, and with a trick,

this algorithm turns the 3d VCM into smoothing with 4d tensor products. The

limiting bottleneck remains the size of the equation system to be solved, which

consists of several tens of thousands normal equations in a realistic scenario. The

relevant left hand side, namely U′U + P, would occupy more than 18 Gb for a

realistic number of parameters, i. e. 6 · 32 · 32 · 8 = 49, 152.

We achieve a crucial storage gain by exploiting the sparsity of the involved ma-

trices, making the brain VCM model tractable again. For illustration purpose,

Figure 8 includes a spy diagram of row, column, slice, and complete penalty ma-

trices with non-zero entries colored black.

———— figure 8 around here ————

Beyond the conspicuously large amount of zeros, the banded structure strikes at
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first glance. Since the matrix B of tensor product basis functions is also sparse and

exhibits a band pattern, U = B⊗X and U′U inherit these two properties being

unaffected by the addition of the complete penalty. At least, the usage of suitable

sparse matrix libraries is therefore indispensable. For example, the aforementioned

scenario then becomes feasible again with a required amount of 53 Mb working

memory for storing the left hand side of the corresponding equation system. Note

that combination with array regression as decsribed in Eilers et al. (2006) and

Currie et al. (2006) would require a compressed format for sparse 4d arrays which

is, to the best of our knowledge, not available with current software packages.

Concerning the optimization of the smoothing parameter, a greedy grid search

with look-up table was performed in the dimension-specific case while a combina-

tion of golden section search and successive parabolic interpolation (as available

in R; R Development Core Team, 2004) was applied in the one-dimensional case.

The greedy grid search finds the minimum GCV correctly on a refined 10×10×10

log-scaled grid with equidistant exponents, λ1 and λ2 varying from 10−3 to 100.5,

and λ3 within the range of 10−8 to 10−3. It has to be pointed out that fixing

the tuning parameter to the average over the optimal parameter values corre-

sponding to data sets from a small sample of representative healthy subjects, is

expected to satisfy the application of our proposed VCM in daily use. Hence, the

time-expensive optimization is dispensable in practice.

All routines are implemented in R (R Development Core Team, 2004) and available
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on the first author’s website (URL http://www.stat.uni-muenchen.de/∼heim). A

respective R-package will be posted. To this end, the library Taucs (Toledo, 2003)

is incorporated to assess the GCV.
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Figure 1: Vector map of template (gray) and recorded (black) principal diffusivity

directions; the underlying fiber tract is indicated as gray curve. Note, at the middle

fiber-transit voxel, the severe distortion of the main eigenvector due to noise.

– 3d data grid of {15 × 15 × 5} ⊂ R
3 voxels

– 2 × 2 × 4 mm3 voxel size

– six 3d varying coefficient surfaces

– spiral tensors are anisotropic;

background tensors are isotropic

– simulated Gaussian error with σ = 10

Figure 2: Design of the simulation study and geometry of the underlying fiber

bundle.
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Figure 3: Log AMSE of all six tensor elements estimated by different approaches

and grouped according to background (left) and spiral voxels (right). Boxplots

comprise the voxel volume at original (top) and duplicated (bottom) resolution.
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Figure 4: Log AMSE of FA values for different estimation approaches based on

the original (top) and the duplicated resolution (bottom). Distinction refers to

background (left) and spiral voxels (right).
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Figure 5: Template coefficient surfaces (top left) correspond to the six elements

of the 3d tensor field. Log ratio of VMSE is given for both DX3d (bottom left) and

TP3d approach (bottom right) relative to ST2. Top right shows the log ratio of

VMSE from DX3d versus TP3d.
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Figure 6: Second diagonal element of the diffusion tensor estimated by mere vox-

elwise regression (top row), plus subsequent regularization with a Gaussian kernel

(middle row) and by applying the VCM with DX3d (bottom row). The white rect-

angulars indicate the segment that was interpolated to double resolution as shown

in Fig. 7.

Figure 7: Top row represents the second diagonal element of the diffusion ten-

sor at duplicated resolution when the current 3-step data processing is applied.

Juxtaposed are the corresponding results yielded by the sophisticated VCM model

(bottom row).
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column penalty row penalty layer penalty complete penalty

Figure 8: Penalty matrices corresponding to 3× 3× 3 knots, quadratic B-splines,

first order of difference penalties.
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