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Abstract

Mortality projections are major concerns for public policy, social security and private in-
surance. This paper implements a Bayesian log-bilinear Poisson regression model to forecast
mortality. Computations are carried out using Markov Chain Monte Carlo methods in which
the degree of smoothing is learnt from the data. Comparisons are made with the approach
proposed by Brouhns, Denuit & Vermunt (2002a,b), as well as with the original model
of Lee & Carter (1992).

Key words and phrases: projected lifetables, expected remaining lifetimes, Poisson regres-
sion, MCMC.



1 Introduction

1.1 Lee-Carter model for mortality projections

Mortality forecasts are used in a wide variety of fields: for health policy making, for directing
pharmaceutical research, social security, for retirement fund planning and for life insurance,
to name just a few. During the 20th century, it is now well documented that the human
mortality globally declined: in most industrialized countries, mortality at adult and old ages
reveals decreasing annual death probabilities.

In this paper, we analyze the changes in mortality as a function of both age x and calendar
time t. Henceforth, µx(t) will denote the force of mortality at age x and time t. Throughout
this paper, we assume that given any integer age x and calendar year t,

µx+ξ(t + τ) = µx(t) for 0 ≤ ξ, τ < 1. (1.1)

This is best illustrated with the aid of a coordinate system that has calendar time as abscissa
and age as coordinate. Such a representation is called a Lexis diagram after the German
demographer who introduced it. Both time scales are divided into yearly bands, which
partition the Lexis plane into square segments. Model (1.1) assumes that the mortality rate
is constant within each square, but allows it to vary between squares. We denote as Dxt the
number of deaths recorded at age x during year t, from an exposure-to-risk Ext (that is, Ext
is the number of person-years from which Dxt occurred).

A powerful and elegant approach to mortality forecasts has been pioneered by Lee &
Carter (1992). Those authors proposed a remarkably simple model for mortality projec-
tions, specifying a log-bilinear form for the force of mortality µx(t). The method is in essence
a relational model

ln µ̂x(t) = αx + βxκt + εx(t) (1.2)

where µ̂x(t) = Dxt/Ext denotes the observed force of mortality at age x during year t, the
εx(t)’s are homoskedastic centered error terms and where the parameters are subject to the
constraints ∑

t

κt = 0 and
∑

x

βx = 1 (1.3)

ensuring model identification.
An important aspect of Lee-Carter methodology is that the time factor κt is intrinsically

viewed as a stochastic process. Box-Jenkins techniques are then used to estimate and forecast
κt within an ARIMA time series model. From this forecast of the general level of mortality,
the actual age-specific rates are derived using the estimated age effects. This in turn yields
projected life expectancies.

For a review of recent applications of the Lee-Carter methodology, we refer the interested
readers to Lee (2000). It is worth to mention that the Lee-Carter model is used by the
US Census Bureau as a benchmark for their population forecasts, and its use has been
recommended by the US Social Security Technical Advisory Panels. It appears to be the
determinant method in the literature.
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1.2 Poisson log-bilinear model for mortality projections

According to Brillinger (1986) and Alho (2000), the Poisson approximation for the
number of deaths occurring in a square of the Lexis diagram is plausible. This lead Sithole,
Haberman & Verrall (2000) and Renshaw & Haberman (2003a,b) to implement an
alternative approach to mortality forecasting: calendar time enters the model as a known
covariate and a regression model based on heteroskedastic Poisson error structures is used.

A closely related model has been proposed by Brouhns, Denuit & Vermunt (2002a,b),
keeping the Lee-Carter log-bilinear form for the forces of mortality. Specifically, Brouhns
et al. (2002a,b) considered that

Dxt ∼ Poisson
(
Extµx(t)

)
with µx(t) = exp (αx + βxκt) (1.4)

where the parameters are still subjected to the constraints (1.3).
There is thus a key difference between Renshaw & Haberman (2003a) and Brouhns

et al. (2002b) that centres on the intepretation of time: in Brouhns et al. (2002b)
time is modeled as a factor and under the approach proposed by Renshaw & Haberman
(2003) is modelled as a known covariate. We believe that the former approach is preferable
since we do not constrain ex ante the effect of calendar time to some known functional form.

Instead of resorting to SVD for estimating αx, βx and κt, Brouhns et al. (2002a,b)
estimated the parameters by maximizing the log-likelihood based on model (1.4). As in the
Lee-Carter approach, ARIMA models are then used to forecast the κt’s.

1.3 Scope of the paper

In all the papers mentioned above, the modelling still proceeds in two steps: first the mortal-
ity index κt is estimated and then it is extrapolated using Box-Jenkins methodology. Possible
incoherence may arise from this two-step procedure. In order to avoid this flaw, we purpose
to integrate both steps into a Bayesian model. Bayesian formulations assume some sort of
smoothness of age and period effects in order to improve estimation and facilitate prediction.
Intuitively, we expect smooth variations of the mortality rates over the Lexis plane. In order
to implement this idea, we resort to a Bayesian model in which the prior portion imposes
smoothness by relating the underlying mortality rates to each other over the Lexis plane. As
a consequence, the rate estimate in each age-year square “borrows strength” from informa-
tion in adjacent squares. An important advantage of incorporating the idea of smoothness
is that it is possible to use the model for purposes of forecasting future mortality rates.

The Bayesian modelling treats all unknown parameters αx, βx and κt as random variables
and derives their distribution conditional upon the known information (Ext, Dxt). Until re-
cently, fully Bayesian analyses had been computationally infeasible and approximation meth-
ods were often utilized instead. This changed in the early 1990’s with computer-intensive
Markov Chain Monte Carlo (MCMC) simulation methods (see Chib (2001) for a summary
and Gilks et al. (1996) for applications). The Monte Carlo approach allows for inference
based on sampling the posterior distribution of the parameters. A particularly attractive
feature of this approach is the ease with which we can then explore the uncertainty associated
with the estimates and the forecasts.
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A Bayesian treatment of mortality projections has been proposed by Girosi & King
(2003). The approach followed by these authors is nevertheless entirely different from the
one adopted in this paper. We refer the reader to the interesting monograph written by
these authors for more details.

1.4 Agenda

Section 2 describes the model and details the prior assumption on each set of parameters.
Section 3 derives the MCMC algorithm yielding the a posteriori distribution of the parame-
ters. A numerical illustration is discussed in Section 4, where the results obtained with the
methodology developed in this paper are compared with former ones.

By convention, vectors and matrices are denoted by bold lower and upper cases, re-
spectively. Parameters and hyper-parameters are denoted by Greek letters. All the vectors
are assumed to be column vectors and the superscript ′ indicates transposition. We de-
note as xmin, xmin + 1, . . . , xmax the observed age range and as tmin, tmin + 1, . . . , tmax the
observed calendar time range. Moreover, M = xmax − xmin + 1 is the number of different
ages considered in the model, and T = tmax − tmin + 1 is the number of calendar years. We
denote as IM (resp. IT ) the M -dimensional (resp. T -dimensional) identity matrix. Further,
X ∼ N ormal(m, σ2) indicates that the random variable X is normally distributed with
mean m and variance σ2, while X ∼ N ormald(m,Σ) indicates that the random vector X
is normally distributed with mean vector m and variance-covariance matrix Σ.

2 Model and prior distributions

2.1 Likelihood function

Let us consider the Poisson log-bilinear model (1.4) supplemented with the constraints (1.3)
in order to ensure the identifiability of the model. This model comprises three sets of
parameters: α = (αxmin

, ..., αxmax)′, β = (βxmin
, ..., βxmax)′ and κ = (κtmin

, ..., κtmax)′. The
likelihood function associated with the data points (Ext, Dxt), x = xmin, xmin + 1, . . . , xmax

and t = tmin, tmin + 1, . . . , tmax, writes

L(α,β,κ) =
∏

x

∏

t

exp
(
−Ext exp(αx + βxκt)

)(
Ext exp(αx + βxκt)

)Dxt

Dxt!

∝
∏

x

∏

t

exp
(
−Ext exp(αx + βxκt) +Dxt(αx + βxκt)

)
. (2.1)

As usual, the first stage of a Bayesian analysis is to specify a prior probability density
for the parameters α, β and κ involved in the Poisson log-bilinear model. This prior should
support the local regularities that are believed to exist.

2.2 Prior distribution for the time index κ

The time index κt represents the time trend. The actual forces of mortality change accord-
ing to an overall mortality index κt modulated by an age response βx. In the Lee-Carter
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approach, as well as in its Poisson counterpart, the κt’s are projected using an ARIMA
model. In that respect, a random walk with drift was found the most appropriate for the
data analyzed by Lee & Carter (1992). In practice, that simple model for κt is used
almost exclusively and accounts for nearly all real applications.

Our prior assumption for the time index derives from these empirical evidences. We use
an autoregressive prior distribution with a linear mean for κ. More specifically, we consider
the model

κt − γ1 − γ2t = ρ
(
κt−1 − γ1 − γ2(t− 1)

)
+ εt for t = tmin, ..., tmax (2.2)

with κtmin−1 = γ1 + γ2(tmin − 1). The errors εt ∼ N ormal(0, σ2
κ) are mutually independent.

Denoting as ηt = γ1 + γ2t the linear trend for the κt’s, (2.2) can be re-written as

(κ−Xγ) = P (κ−Xγ) + ε

with

P =




0 · · · · · · · · · 0

ρ
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 ρ 0



, X =




1 tmin
...

...
1 tmax


 , γ =

(
γ1

γ2

)
and ε ∼ N ormalT (0, σ2

κIT ).

This leads to the prior κ ∼ N ormalT (Xγ, σ2
κQ
−1) for the time index, with

Q =




1 + ρ2 −ρ 0 · · · 0

−ρ 1 + ρ2 −ρ . . .
...

0 −ρ . . .
. . . 0

...
. . .

. . . 1 + ρ2 −ρ
0 · · · 0 −ρ 1



.

We consider the unknown γ, ρ and σ2
κ involved in the prior distribution of κ as hyper-

parameters. They are treated as random variables with their own prior distributions. The
corresponding priors are

γ ∼ N ormal2(γ0,Σ0)

ρ ∼ N ormal(0, σ2
ρ) truncated to the interval (0, 1)

and we follow the standard practice and chose an inverse gamma prior for σ2
κ, that is

σ−2
κ ∼ Gamma(aκ, bκ).

With this choice, E[σ−2
κ ] = aκ

bκ
and Var[σ−2

κ ] = aκ
b2κ

. The prior distribution for the vector κ is

thus determined by the three constants aκ, bκ and σ2
ρ, by the vector γ0 and by the matrix

Σ0.
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2.3 Prior distribution for β

The parameters βx represent the age-specific pattern of mortality change: βx indicates the
sensitivity of the logarithm of the force of mortality at age x to variations in the time index.
The shape of the βx profile tells which rates decline rapidly and which slowly over time in
response of change in κt.

The βx profile is usually much more erratic (see Brouhns et al. (2002a) for an illus-
tration with Belgian data). Some of the βx’s are close to zero (especially for the ages around
the accident hump, for which mortality improvements are weak, as well as for older ages)
while others are quite large (around birth for instance).

Our prior assumption for the βx’s is

β ∼ N ormalM(0, σ2
βIM).

In words, we start from the assumption that no mortality improvements occur for the pop-
ulation under study. The data will of course appropriately transform the prior distribution
in case improvements do occur, as expected. Prior distributions for the hyperparameter σ2

β

is taken to be inverse gamma, to facilitate the computation. Specifically,

σ−2
β ∼ Gamma(aβ, bβ)

for some constants aβ and bβ.

2.4 Prior distribution for α

For technical reasons, it is more convenient to deal with the transformed vector e = expα.
The prior distribution for e is

ex ∼ Gamma(ax, bx)

for some constants ax and bx, with x = xmin, ..., xmax.

2.5 Summary of the model

The model can be summarized as follows:

Numbers of deaths D
↑

Mortality rates → → µ
↗ ↑ ↖

↗ ↑ ↖
Parameters κ β α

↗ ↑ ↖ ↑ ↑
Hyperparameters γ ρ σ2

κ σ2
β e

↗ ↑ ↑ ↑ ↖ ↑ ↖ ↑ ↖
Constants γ0 Σ0 σ2

ρ aκ bκ aβ bβ ax bx

The bottom line components are constants determining the distributions of the hyperpa-
rameters. The hyperparameters can be viewed on the line above. The third line represents
the three sets of parameters of the Poisson log-bilinear model (1.4).
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3 A posteriori distributions

3.1 MCMC approach

Inference about the αx’s, βx’s and κt’s is based on the posterior density of (α,β,κ) given
the mortality statistics, that is on the density

p(α,β,κ|D) ∝ f(D|α,β,κ)p(α,β,κ). (3.1)

We make inference empirically by collecting many realizations from the posterior distribution
p(α,β,κ|D). This is done by simulation: it is possible to set up a Markov chain whose
stationary distribution is consistent with the posterior distribution (3.1). The Monte Carlo
approach allows for inference based on sampling the posterior distribution of the parameters.
A particularly attractive feature of this approach is the ease with which we can then explore
the uncertainty associated with the estimates and the forecasts.

In this section, we discuss implementation of the Bayes procedures via Markov Chain
Monte Carlo (MCMC). In particular, we use the Gibbs sampler and Metropolis-Hastings
algorithm to generate samples from the posterior (3.1).

Let us now describe the MCMC procedure more formally. Consider a random vector Z
with joint probability density function h. In a Bayesian context, some of the components ofZ
are model parameters, while others may represent unobserved past or future data. Suppose
h is so complicated and analytically intractable that it does not permit independent random
draws. In this case a MCMC simulation method may be used.

The main idea behind a MCMC method is to simulate realizations from a Markov chain
which has h as its stationary distribution. The resulting random draws Z (1),Z(2), . . . are no
longer independent, but under mild regularity conditions (as described in the Appendix of
Smith & Roberts (1993), for example), the value of Z (t) tends in distribution to that of
a random draw from h as t becomes moderately large.

Determining how long a MCMC simulation should be run is a function of the particular
application. Usually, several tens of thousands of iterations are enough. In any case, the
first portion of the simulated Markov chain is discarded in order to reduce the effect of the
starting values. An ad hoc but useful test of convergence is obtained by running several
simulations in parallel, with different starting values, and then comparing the results: the
number of iterations must be increased if the results look rather different.

3.2 Metropolis-Hastings sampling for the time index vector κ

Metropolis-Hastings algorithms produce Markov chains whose stationary distribution is pre-
cisely (3.1) from which the sample have to be drawn. These algorithms are based on a
Markov chain whose dependence on the predecessor is split into two parts: a proposal and
an acceptance of the proposal. The proposals suggest an arbitrary next step in the trajectory
of the chain and the acceptance makes sure the appropriate limiting direction is maintained
by rejecting unwanted moves of the chain.

Let us denote as

κ−t = (κtmin
, ..., κt−1, κt+1, ..., κtmax)′

6



the time index vector κ without its t-th component. Denoting as

Dt = (Dxmint, . . . , Dxmaxt)
′,

the vector of the Dxt’s, we define in the same way

D−t = (Dtmin
, ...,Dt−1,Dt+1, ...,Dtmax)′

as the matrix of the death counts Dxt without the column corresponding to calendar year t.
Now, each κ update is realized elementwise according to Metropolis-Hastings sampling.

Specifically we look for the conditional probability density function f(κt|κ−t,α,β,D, σ2
κ, σ

2
β,γ, ρ)

that is, the density of κt given all other parameters and hyper-parameters, as well as data
points. Some manipulations yield

f(κt|κ−t,α,β,D, σ2
κ, σ

2
β,γ, ρ)

=
f(κ,α,β,D, σ2

κ, σ
2
β,γ, ρ)

f(κ−t,α,β,D, σ2
κ, σ

2
β,γ, ρ)

=
f(κtmax ,Dtmax |κ−tmax ,D−tmax ,α,β, σ

2
κ, σ

2
β,γ, ρ)f(κ−tmax ,D−tmax ,α,β, σ

2
κ, σ

2
β,γ, ρ)

f(κ−t,D,α,β, σ2
κ, σ

2
β,γ, ρ)

.

Iterating this formula gives

f(κt|κ−t,α,β,D, σ2
κ, σ

2
β,γ, ρ)

=
f(α,β, σ2

κ, σ
2
β,γ, ρ)

f(κ−t,D,α,β, σ2
κ, σ

2
β,γ, ρ)

f(κtmin
,Dtmin

|α,β, σ2
κ, σ

2
β,γ, ρ)

tmax∏

s=tmin+1

f(κs,Ds|κtmin
, ..., κs−1,Dtmin

, ...,Ds−1,α,β, σ
2
κ, σ

2
β,γ, ρ)

∝ f(κtmin
,Dtmin

|α,β, σ2
κ, σ

2
β,γ, ρ)

tmax∏

s=tmin+1

f(κs,Ds|κtmin
, ..., κs−1,Dtmin

, ...,Ds−1,α,β, σ
2
κ, σ

2
β,γ, ρ).

Remember that the random vectors Ds are mutually independent given κ,α,β, σ2
κ, σ

2
β,γ, ρ.

Moreover, their conditional distribution only depends on (κs,α,β). This allows us to write

f(κs,Ds|κtmin
, ..., κs−1,Dtmin

, ...,Ds−1,α,β, σ
2
κ, σ

2
β,γ, ρ)

= f(Ds|κtmin
, ..., κs−1, κs,Dtmin

, ...,Ds−1,α,β, σ
2
κ, σ

2
β,γ, ρ)

f(κs|κtmin
, ..., κs−1,Dtmin

, ...,Ds−1,α,β, σ
2
κ, σ

2
β,γ, ρ)

= f(Ds|κs,α,β)f(κs|κtmin
, ..., κs−1,Dtmin

, ...,Ds−1,α,β, σ
2
κ, σ

2
β,γ, ρ)

= f(Ds|κs,α,β)f(κs|κs−1,γ, σ
2
κ, ρ).

Finally we find the following expression for the conditional density of κt:

f(κt|κ−t,α,β,D, σ2
κ, σ

2
β,γ, ρ)

∝ f(Dtmin
|κtmin

,α,β)f(κtmin
|γ, σ2

κ)

tmax∏

s=tmin+1

f(Ds|κs,α,β)f(κs|κs−1,γ, σ
2
κ, ρ).

Let us now consider three cases:
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(i) if t = tmin then

f(κt|κ−t,α,β,D, σ2
κ, σ

2
β,γ, ρ)

∝ f(Dt|κt,α,β)f(κt|γ, σ2
κ)f(κt+1|κt,γ, σ2

κ, ρ)

∝
∏

x

exp
(
−Ext exp(αx + βxκt)

)∏

x

exp
(
βxκtDxt

)

exp
(
− 1

2σ2
κ

(κt − ηt)2
)

exp
(
− 1

2σ2
κ

(
κt−1 − ηt−1 − ρ(κt − ηt)

)2
)
. (3.2)

(ii) if t = tmax then

f(κt|κ−t,α,β,D, σ2
κ, σ

2
β,γ, ρ)

∝ f(Dt|κt,α,β)f(κt|κt−1,γ, σ
2
κ, ρ)

∝
∏

x

exp
(
−Ext exp(αx + βxκt)

)∏

x

exp
(
βxκtDxt

)

exp
(
− 1

2σ2
κ

(
κt − ηt − ρ(κt−1 − ηt−1)

)2
)
. (3.3)

(iii) if tmin < t < tmax then

f(κt|κ−t,α,β,D, σ2
κ, σ

2
β,γ, ρ)

∝ f(Dt|κt,α,β)f(κt|κt−1,γ, σ
2
κ, ρ)f(κt+1|κt,γ, σ2

κ, ρ)

∝
∏

x

exp
(
−Ext exp(αx + βxκt)

)∏

x

exp
(
βxκtDxt

)

exp
(
− 1

2σ2
κ

(
κt − ηt − ρ(κt−1 − ηt−1)

)2
)

exp
(
− 1

2σ2
κ

(
κt+1 − ηt+1 − ρ(κt − ηt)

)2
)
. (3.4)

Let us decompose iteration (i+1) of Metropolis-Hastings sampling for κt update. Suppose

that we have to update the value κ
(i)
t obtained at iteration i. At this stage, we have already

updated the preceding kappa’s, so that we have at our disposal the κ
(i+1)
s for s < t. We then

proceed as follows:

1. First generate a candidate κ∗t from the N ormal(κ(i)
t , σ

2
t ) distribution with known vari-

ance σ2
t .

2. Then compute acceptance probability

ψ(κ
(i)
t , κ

∗
t ) = min

(
1,
f(κ∗t |κ(i)

−t,D,α,β, σ
2
κ, σ

2
β,γ, ρ)

f(κ
(i)
t |κ(i)

−t,D,α,β, σ2
κ, σ

2
β,γ, ρ)

)

where

κ
(i)
−t = (κ

(i+1)
tmin

, ..., κ
(i+1)
t−1 , κ

(i)
t+1, ..., κ

(i)
tmax

)′.
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3. Afterwards generate a realization u from the Uniform(0, 1) distribution. If u ≤
ψ(κ

(i)
t , κ

∗
t ) then the candidate is kept and κ

(i+1)
t = κ∗t . On the contrary, if u > ψ(κ

(i)
t , κ

∗
t )

then the candidate is rejected and the Markov chain does not move (κ
(i+1)
t = κ

(i)
t ).

4. Finally we have to transform

κ(i+1) =
(
κ

(i+1)
tmin

, . . . , κ
(i+1)
t , κ

(i)
t+1, . . . , κ

(i)
tmax

)′

and α(i) in order to fulfill the constraints (1.3). To this end, we use the following
formulas:

κ(i+1) ← κ(i+1) − κ
α(i) ← α(i) + β(i)κ

where

κ =
1

T

(∑

s≤t
κ(i+1)
s +

∑

s>t

κ(i)
s

)
.

Remark that the choice of parameter σ2
t is free but not neglectable. It directly influences

acceptance rate of the proposals: a large variance will reduce the chance for the candidate
to be kept and for the chain to move to another state. In practice we want the acceptation
probability to be in the interval [20%, 50%]. Therefore, a trial and error method is used
to select σ2

t . Starting from some initial value, we compute the acceptation probability (on
about one hundred iterations, say). If it is too small, we have to increase the variance σ2

t

(make it double, say). On the contrary, if more than half the candidates are kept, we reduce
the value of σ2

t .

3.3 Metropolis-Hastings sampling for β

The β update is quite similar to the κ one. Let us define

β−x = (βxmin
, ..., βx−1, βx+1, ..., βxmax)′

and in the same way

D−x = (Dxmin
, ...,Dx−1,Dx+1, ...,Dxmax)′

9



where Dx is the (x − xmin + 1)-th row of D. With the same developments as in previous
section we find

f(βx|β−x,α,κ,D, σ2
κ, σ

2
β,γ, ρ)

∝
xmax∏

y=xmin

f(βy,Dy|βxmin
, ..., βy−1,Dxmin

, ...,Dy−1,α,κ, σ
2
κ, σ

2
β,γ, ρ)

∝
xmax∏

y=xmin

f(Dy|βxmin
, ..., βy−1, βy,Dxmin

, ...,Dy−1,α,κ, σ
2
κ, σ

2
β,γ, ρ)

xmax∏

y=xmin

f(βy|βxmin
, ..., βy−1,Dxmin

, ...,Dy−1,α,κ, σ
2
κ, σ

2
β,γ, ρ)

∝
xmax∏

y=xmin

f(Dy|βy,α,κ)f(βy)

∝ f(Dx|βx,α,κ)f(βx)

∝
∏

t

exp
(
−Ext exp(αx + βxκt)

)∏

t

exp
(
βxκtDxt

)
exp
(
− 1

2σ2
β

β2
x

)
. (3.5)

Now we can decompose iteration (i+ 1) of Metropolis-Hastings sampling for βx update.

Suppose the parameter is estimated at iteration i by β
(i)
x and we have estimations β

(i+1)
y for

y < x. We then proceed as follows:

1. Select a candidate β∗x from the N ormal(β(i)
x , σ2

x) distribution with known variance σ2
x.

2. Compute the acceptance probability

ψ(β(i)
x , β

∗
x) = min

(
1,
f(β∗x|β(i)

−x,D,α,κ, σ
2
κ, σ

2
β,γ, ρ)

f(β
(i)
x |β(i)

−x,D,α,κ, σ2
κ, σ

2
β,γ, ρ)

)

where

β
(i)
−x = (β(i+1)

xmin
, ..., β

(i+1)
x−1 , β

(i)
x+1, ..., β

(i)
xmax

)′.

3. Afterwards generate a realization u from the Uniform(0, 1) distribution. If u ≤
ψ(β

(i)
x , β∗x), the candidate is kept and β

(i+1)
x = β∗x. On the contrary, if u > ψ(β

(i)
x , β∗x),

the candidate is rejected and the Markov chain does not move (β
(i+1)
x = β

(i)
x ).

4. Finally we have to transform vectors

β(i+1) =
(
β(i+1)
xmin

, . . . , β(i+1)
x , β

(i)
x+1, . . . , β

(i)
xmax

)′

and κ(i+1) in order to fulfill constraints (1.3):

β(i+1) ← β(i+1)

β•
κ(i+1) ← κ(i+1)β•

10



where

β• =
∑

y≤x
β(i+1)
y +

∑

y>x

β(i)
y .

As for κ update, the variance σ2
x must be adjusted in order to have acceptance probabil-

ities between 20% and 50%.

3.4 Gibbs sampling for α

Another standard approach which produces a Markov chain whose stationary distribution
is consistent with the posterior distribution (3.1) is based on a variant of the Metropolis
algorithm called the Gibbs sampler. It will enable us to exploit conditional densities to obtain
realizations from the posterior density. The Gibbs sampler requires that the unknown model
parameters are first assigned arbitrary values. Then an iterative sampling process takes place.
At each iteration, the Gibbs sampler visits each unknown parameter in turn, and generates
a random value from its full conditional distribution, conditional upon current values of all
other parameters and upon the data. Then, each iteration yields a sample realization of the
complete set of unknown parameters in the model. The generated realizations converge in
distribution to the joint posterior distribution of the unknwown parameters.

Let us consider the likelihood function (2.1) as function of the vector e only:

L(e,β,κ) ∝
∏

x

∏

t

exp
(
−Ext exp(αx + βxκt) +Dxt(αx + βxκt)

)

∝
∏

x

exp(−cxex)eDx•x

with
cx =

∑

t

Ext exp(βxκt) and Dx• =
∑

t

Dxt.

To draw random samples from the posterior density, we use the Gibbs sampling algorithm.
The essence of the Gibbs sampler lies in breaking a complicated joint probability density
into a set of full conditional densities, and sampling one variable at a time, conditional on
the values of the others.

For x = xmin, ..., xmax, we can write

f(ex|β,κ,D, σ2
κ, σ

2
β,γ, ρ) = f(ex|β,κ,D)

∝ f(ex,β,κ,D)f(ex)

∝ exp(−cxex)eDx•x eax−1
x exp(−bxex)

∝ exp
(
−(bx + cx)ex

)
eax+Dx•−1
x

so that the distribution of ex given β,κ,D, σ2
κ, σ

2
β,γ, ρ is still gamma with updated param-

eters, that is,

(ex|β,κ,D, σ2
κ, σ

2
β,γ, ρ) ∼ Gamma(ax +Dx•, bx + cx). (3.6)

Realizations of ex given β,κ,D, σ2
κ, σ

2
β,γ, ρ are thus easily generated.

11



3.5 Gibbs sampling for ρ

From conditional distribution definition we have

f(ρ|α,β,κ,D, σ2
κ, σ

2
β,γ) =

f(ρ,α,β,κ,D, σ2
κ, σ

2
β,γ)

f(α,β,κ,D, σ2
κ, σ

2
β,γ)

∝ f(D|ρ,α,β,κ, σ2
κ, σ

2
β,γ)f(ρ,α,β,κ, σ2

κ, σ
2
β,γ)

= f(D|α,β,κ)f(κ, ρ|α,β, σ2
κ, σ

2
β,γ)f(α,β, σ2

κ, σ
2
β,γ)

∝ f(κ, ρ)

= f(κ|ρ)f(ρ).

The conditional density of κ given ρ is given by

f(κ|ρ) =
∏

t

f(κt|κt−1, ρ) ∝ exp
(
− 1

2σ2
κ

(aρρ
2 − 2bρρ)

)

with
aρ =

∑

t

(κt−1 − ηt−1)2 and bρ =
∑

t

(κt − ηt)(κt−1 − ηt−1)

and the convention κtmin−1 = ηtmin−1. Therefore,

f(ρ|α,β,κ,D, σ2
κ, σ

2
β,γ) ∝ exp

(
− 1

2σ2
κ

(aρρ
2 − 2bρρ)

)
exp
(
− 1

2σ2
ρ

ρ2
)

∝ exp
(
− 1

2σ2
ρ
∗ (ρ− µ∗ρ)2

)

with

µ∗ρ =
bρ

aρ + σ2
κ

σ2
ρ

and σ2
ρ
∗

=
σ2
κ

aρ + σ2
κ

σ2
ρ

.

The distribution of ρ given α,β,κ,D, σ2
κ, σ

2
β,γ can then be written as

(ρ|α,β,κ,D, σ2
κ, σ

2
β,γ) ∼ N ormal(µ∗ρ, σ2

ρ
∗
) truncated to (−1, 1). (3.7)

Simulation from (3.7) is easy.

3.6 Gibbs sampling for σ2
κ

By using the same principles as previously we find

f(σ2
κ|α,β,κ,D, σ2

β,γ, ρ) ∝ f(κ|σ2
κ)f(σ2

κ).

Since

f(κ|σ2
κ) =

1

2πσ2
κ

exp
(
− 1

2σ2
κ

∑

t

(
κt − ηt − ρ(κt−1 − ηt−1)

)2
)

12



and the prior distribution of σ−2
κ is Gamma(aκ, bκ), we find

f(σ2
κ|α,β,κ,D, σ2

β,γ, ρ) ∝ σκ
−2(aκ+1+T

2
) exp

(
− 1

σ2
κ

(
bκ +

1

2

∑

t

(
κt − ηt − ρ(κt−1 − ηt−1)

)2
))

with κtmin−1 = ηtmin−1. The distribution of σ−2
κ given α,β,κ,D, σ2

β,γ, ρ is then given by

(σ−2
κ |α,β,κ,D, σ2

β,γ, ρ) ∼ Gamma
(
aκ +

T

2
, bκ +

1

2

∑

t

(
κt − ηt − ρ(κt−1 − ηt−1)

)2
)
. (3.8)

3.7 Gibbs sampling for σ2
β

Applying the same reasoning as before, we find

f(σ2
β|α,β,κ,D, σ2

κ,γ, ρ) ∝ f(β|σ2
β)f(σ2

β)

∝ σβ
−2(aβ+1+M

2
) exp

(
− 1

σ2
β

(
bβ +

1

2
β′β

))
.

The distribution of σ−2
β given α,β,κ,D, σ2

κ,γ, ρ is then given by

(σ−2
β |α,β,κ,D, σ2

κ,γ, ρ) ∼ Gamma(aβ +
M

2
, bβ +

1

2
β′β). (3.9)

3.8 Gibbs sampling for γ

As previously we have

f(γ|κ, σ2
κ, σ

2
β, ρ) ∝ f(κ|γ, ρ, σ2

κ)f(γ).

Because γ is a priori distributed according to N ormal2(γ0,Σ0), we find

f(γ|κ, σ2
κ, σ

2
β, ρ) ∝ exp

(
− 1

2σ2
κ

(κ−Xγ)′Q(κ−Xγ)
)

exp
(
−1

2
(γ − γ0)′Σ−1

0 (γ − γ0)
)

∝ exp
(
− 1

2σ2
κ

(γ − γ∗)′Σ∗−1(γ − γ∗)
)

with
Σ∗ = (X ′QX + σ2

κΣ
−1
0 )−1 and γ∗ = Σ∗(X ′Qκ+ σ2

κΣ
−1
0 γ0).

Thus the distribution of γ given κ, σ2
κ, σ

2
β, ρ is

(γ|κ, σ2
κ, σ

2
β, ρ) ∼ N ormal2(γ∗, σ2

κΣ
∗). (3.10)
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4 Numerical illustration

4.1 Data set

Our data are about French male population aged 0 to 89 between 1950 and 2000. The
data related to calendar years 1950 to 1997 come from INED (Institut National d’Etudes
Démographiques based in Paris, France). Those related to calendar years 1998, 1999 and
2000 have been obtained from INSEE (Institut National de la Statistique et des Etudes
Economiques based in Paris, France). The following information is available: the numbers
Lxt of people aged x on January 1 of year t (for x between 0 and 89), and the numbers
Dxt of people aged x dying during year t. The exposure-to-risk Ext is then computed under
assumption (1.1).

4.2 Initialization and choice of prior distributions for the hyper-
parameters

As seen in the previous section, we work with three vectors of parameters (α, β and κ) and
with five hyperparameters (ρ, σ2

κ, σ2
β and the two components of γ). We also have to fix the

constants aκ, bκ, aβ, bβ, σ2
ρ, the M components ax, the M components bx, the vector γ0 and

the matrix Σ0 involved in the distribution of the hyperparameters.
The choices for the constants determining the distributions of the hyperparameters are

made in an empirical Bayes approach. In empirical Bayes, hyperparameters from the last
level of a hierarchical model are estimated rather than chosen a priori. Although this proce-
dure might seem better because it lets the data decide about reasonable values for obscure
hyperparameters, many theoretical arguments have been levelled against it. Despite the
inferential problems, this procedure is often used (namely because using the data in this way
turns out to be equivalent to making the prior indifferent to certain chosen parameters; see
e.g. Carlin & Louis (2000)).

Specifically, we first compute the frequentist estimates of α, β and κ by maximizing the
likelihood (2.1), as described in Brouhns et al. (2002a,b). Because of the presence of
the bilinear term βxκt, it is not possible to estimate the proposed model with commercial
statistical packages that implement Poisson regression. A uni-dimensional or elementary
Newton method is used instead as proposed by Goodman (1979) for estimating log-linear
models with bilinear terms. The estimators of α, β and κ obtained in this way are further
referred to as Goodman estimates.

We take for γ0 the estimated parameters of a linear regression of κ on calendar time.
Then, Σ0 is taken to be the estimated covariance matrix of these estimates. Afterwards, ρ
and σ2

κ can be initialized by fitting an AR(1) model on (κ− γ0X). Finally σ2
β is initialized

to be the empirical variance of the Goodman β̂x’s.
When the model (1.2) is fitted by ordinary least-squares, the fitted values of αx exactly

equal the average of ln µ̂x(t) over time t so that expαx is the general shape of the mortality
schedule. Also, in the Poisson log-bilinear model, the fitted expαx mimick the observed
average of the µ̂x(t)’s. In order to obtain an uninformative prior distribution (i.e. with large
variance), we have to choose a small bx, 0.001 say. Afterwards, ax can be choosen equal to
bx exp α̂x (so that E[ex] = exp α̂x).
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In the same way, if σ−2
β ∼ Gamma(aβ, bβ), then E[σ2

β] =
bβ

aβ−1
for aβ > 1 and Var[σ2

β] =
b2β

(aβ−1)2(aβ−2)
for aβ > 2. So constants aβ and bβ control prior mean and variance of σ2

β.

Taking aβ near to (but greater than) 2 will give a huge variance. So we find bβ = (aβ− 1)σ2
β.

The same argument can be used for aκ and bκ. We use aβ = aκ = 2.1 for the application.
Finally the initial value of σ2

ρ does not seem to be very influential since ρ is restricted to
interval (0, 1). We choose σ2

ρ = 1.
It is worth to mention that other constants have also been used. Typically, we have

increased the a priori variance of parameters and hyperparameters. These more diffuse prior
choices were based on smaller values of bx (from 0.001 to 0.00001), values of aβ closer to
2 (from 2.1 to 2.00001), and “greater” matrix Σ0 (up to 10 times the initial matrix). The
results were similar to those obtained with the initial values deduced from the empirical
Bayes approach.

Instead of basing the prior choices of the parameters on the Goodman’s estimations of α,
β and κ, we also used the Lee-Carter estimates to fix the constants and init hyperparameters
and parameters involved in the model (in an empirical Bayes setting). Again, the results
obtained in this way were almost identical to those obtained with the Goodman’s estimations.

4.3 Convergence diagnostics

In practice, we typically run the Gibbs sampler for an initial period of a few thousands
cycles and then collect information from several further thousands of cycles (of which we
store every 10th for the subsequent construction of approximate interval estimates). The
posterior means are estimated by the corresponding sample means. Here, 20 000 iterations
are computed. The first 10 000 iterations are considered as the burn-in period. The last 10
000 iterations are used for estimation of the posterior distribution.

A sample from the distribution of interest (the posterior distribution of the parameter
in our example) is only attained with MCMC when the number of iterations of the chain
approaches infinity. This is of course impossible in practice and a value obtained at a
sufficiently large iteration is taken instead. This raises the question of how large this iteration
should be.

Some informal checks of convergence based on graphical techniques are commonly used.
Several chains can be run in parallel with different initial states or a single chain is screened
for exhibiting the same qualitative behavior through iterations (often after a transient initial
period). More formal diagnostics are developed in Cowles & Carlin (1996) and Brooks
& Roberts (1998).

Figure 4.1 gives the selected σ2
t and σ2

x and corresponding acceptation probabilities.
These variances are selected by a trial an error method. Algorithm starts with σ2

x = σ2
t = 1

for all x and t, and a first 100-iteration-pilot run is computed. Variance σ2
x (or σ2

t ) is
made double if the corresponding acceptation probability is below 20%; it is divided by 2
if corresponding acceptation probability is greater than 50%. A second 100-iteration-pilot
run is then computed and variances σ2

x and σ2
t are moving as previously. The algorithm

stops when rates for each age x and each year t are between 20% and 50%. We observe
larger variances σ2

x where mortality is very specific, i.e. between ages 0 and 40 (new borns,
accidental hump). In the same way variance σ2

t grows with year t.
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Once we know how to sample from the a posteriori distribution of the parameters, we
can compute a posteriori means by averaging the values obtained by repeating these steps a
large number of times (after having discarded a suitable number of “burn-in” iterations to
ensure that the algorithm has converged). Note that we do not worry about autocorrelation
as long as we are not computing standard errors. Figure 4.2 shows the trajectory of the
ergodic averages. Clearly, the asymptotic behavior is attained after the first 10 000 runs.

In order to get samples with no significant autocorrelations, we take only one realization
of each parameter by each 10-iteration-block after a burn-in period of 10 000 iterations. We
then have a sample of size 10 000 / 10 = 1 000 from the a posteriori distribution of each
parameter. Autocorrelations of these series are depicted in Figure 4.3. We clearly see there
that no significant autocorrelations remain in the samples.

4.4 Comparison with other methods

Since the Lee-Carter method is the most popular one, it is interesting to compare MCMC
estimates to this benchmark. To obtain the Lee-Carter estimates the model (1.2) is fitted
to the matrix of age-specific observed forces of mortality using singular value decomposition
(SVD). Then, α̂x is taken to be the row average of the ln µ̂x(t)’s, and the β̂x’s and κ̂t’s are
obtained from the first term of a SVD of the matrix ln µ̂x(t)− α̂x.

Figures 4.4-4.5-4.6 depict estimates of αx’s, βx’s and κt’s according to the Lee-Carter
SVD algorithm, the Poisson Goodman algorithm and the MCMC algorithm. Some numerical
values for several ages x and years t can be viewed at Table 4.1. From Figure 4.4, we se that
the pattern of the estimated αx is almost identical whatever the estimation method used.
On the contrary, Figures 4.5-4.6 show that there are significant differences in the κ̂t and β̂x
patterns. The values obtained with Lee-Carter SVD lie outside the MCMC credible intervals
for numerous ages and calendar years.

Table 4.2 displays the mortality rates for the generation aged 30 in calendar year 1950.
Whereas the values obtained with the Poisson log-bilinear model always lie inside the 95%
MCMC credible interval, those derived from the Lee-Carter methodology are about half the
time outside this interval. These results highlight significant differences with Lee-Carter
estimates. They are nevertheless in agreement with those obtained with the Poisson log-
blinear model.
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Figure 4.2: Ergodic mean of parameters αx (left), βx (center) and κt (right) for some selected
ages (0, 30, 60 and 89) and years (1950, 1975 and 2000).
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Figure 4.3: Autocorrelations of parameters αx (left), βx (center) and κt (right) for some
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x
αx 0 30 60 89
MCMC mean -4.140164 -6.335586 -3.964490 -1.238194
MCMC median -4.140165 -6.335663 -3.964502 -1.238182
95% MCMC CI [-4.144406,-4.136435] [-6.346393,-6.324829] [-3.968566,-3.960367] [-1.243415,-1.233119]
Goodman estimate -4.140167 -6.335124 -3.964446 -1.237482
Lee-Carter estimate -4.115651 -6.340877 -3.968640 -1.235153

x
βx 0 30 60 89
MCMC mean 0.040547 0.006034 0.010351 0.008887
MCMC median 0.040546 0.006039 0.010351 0.008887
95% MCMC CI [0.040255,0.040852] [0.005479,0.006568] [0.010125,0.010578] [0.008646,0.009116]
Goodman estimate 0.040465 0.006057 0.010338 0.008911
Lee-Carter estimate 0.035692 0.006561 0.010307 0.009243

t
κt 1950 1975 2000
MCMC mean 30.383239 4.708426 -38.939200
MCMC median 30.382987 4.707171 -38.937704
95% MCMC CI [30.096920,30.667779] [4.418210,5.002447] [-39.356280,-38.529110]
Goodman estimate 30.405785 4.723949 -38.998415
Lee-Carter estimate 33.875870 4.789799 -39.475417

Table 4.1: Estimations of αx, βx and κt for several ages x and years t.
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Age Year MCMC mean MCMC median MCMC 95% CI Goodman Lee-Carter

30 1950 0.00213 0.00213 [0.00209,0.00217] 0.00213 0.00220
31 1951 0.00217 0.00217 [0.00213,0.00222] 0.00218 0.00224
32 1952 0.00229 0.00229 [0.00225,0.00233] 0.00229 0.00235
33 1953 0.00243 0.00243 [0.00238,0.00248] 0.00244 0.00247
34 1954 0.00252 0.00252 [0.00248,0.00257] 0.00253 0.00253
35 1955 0.00267 0.00267 [0.00263,0.00271] 0.00267 0.00267
36 1956 0.00284 0.00284 [0.00279,0.00288] 0.00284 0.00281
37 1957 0.00308 0.00308 [0.00304,0.00313] 0.00309 0.00311
38 1958 0.00321 0.00321 [0.00317,0.00325] 0.00321 0.00317
39 1959 0.00348 0.00348 [0.00344,0.00352] 0.00348 0.00347
40 1960 0.00382 0.00382 [0.00378,0.00386] 0.00382 0.00373
41 1961 0.00404 0.00404 [0.00400,0.00408] 0.00404 0.00400
42 1962 0.00459 0.00459 [0.00454,0.00463] 0.00459 0.00452
43 1963 0.00503 0.00503 [0.00498,0.00508] 0.00504 0.00490
44 1964 0.00534 0.00534 [0.00530,0.00539] 0.00534 0.00527
45 1965 0.00591 0.00591 [0.00586,0.00596] 0.00591 0.00583
46 1966 0.00638 0.00637 [0.00633,0.00642] 0.00638 0.00625
47 1967 0.00695 0.00695 [0.00690,0.00701] 0.00696 0.00686
48 1968 0.00772 0.00772 [0.00766,0.00777] 0.00772 0.00765
49 1969 0.00853 0.00853 [0.00847,0.00859] 0.00853 0.00847
50 1970 0.00903 0.00903 [0.00897,0.00908] 0.00902 0.00906
51 1971 0.00981 0.00981 [0.00975,0.00987] 0.00982 0.00988
52 1972 0.01049 0.01049 [0.01043,0.01056] 0.01049 0.01061
53 1973 0.01131 0.01131 [0.01124,0.01137] 0.01131 0.01145
54 1974 0.01223 0.01223 [0.01216,0.01230] 0.01223 0.01240
55 1975 0.01323 0.01323 [0.01316,0.01331] 0.01324 0.01321
56 1976 0.01421 0.01421 [0.01413,0.01429] 0.01421 0.01403
57 1977 0.01487 0.01487 [0.01479,0.01495] 0.01486 0.01492
58 1978 0.01608 0.01608 [0.01600,0.01617] 0.01609 0.01609
59 1979 0.01706 0.01706 [0.01697,0.01715] 0.01706 0.01709
60 1980 0.01850 0.01850 [0.01840,0.01860] 0.01850 0.01861
61 1981 0.01981 0.01981 [0.01971,0.01992] 0.01981 0.01978
62 1982 0.02085 0.02084 [0.02074,0.02096] 0.02084 0.02078
63 1983 0.02269 0.02269 [0.02258,0.02281] 0.02270 0.02272
64 1984 0.02384 0.02384 [0.02371,0.02396] 0.02383 0.02377
65 1985 0.02580 0.02580 [0.02567,0.02594] 0.02581 0.02526
66 1986 0.02727 0.02727 [0.02712,0.02742] 0.02727 0.02699
67 1987 0.02842 0.02842 [0.02826,0.02858] 0.02842 0.02825
68 1988 0.03025 0.03025 [0.03007,0.03043] 0.03025 0.03029
69 1989 0.03225 0.03225 [0.03206,0.03245] 0.03226 0.03244
70 1990 0.03452 0.03452 [0.03431,0.03473] 0.03452 0.03477
71 1991 0.03683 0.03683 [0.03660,0.03705] 0.03683 0.03766
72 1992 0.03942 0.03942 [0.03916,0.03967] 0.03941 0.03989
73 1993 0.04276 0.04276 [0.04248,0.04304] 0.04277 0.04329
74 1994 0.04507 0.04507 [0.04477,0.04539] 0.04506 0.04602
75 1995 0.04927 0.04927 [0.04893,0.04961] 0.04927 0.04956
76 1996 0.05364 0.05364 [0.05327,0.05401] 0.05366 0.05353
77 1997 0.05762 0.05762 [0.05721,0.05805] 0.05762 0.05732
78 1998 0.06313 0.06313 [0.06267,0.06360] 0.06312 0.06166
79 1999 0.06878 0.06878 [0.06827,0.06929] 0.06879 0.06730
80 2000 0.07477 0.07477 [0.07417,0.07536] 0.07476 0.07440

Table 4.2: Mortality rates for generation aged 30 in 1950.
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