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Abstract

Functional magnetic resonance imaging (fMRI) has become the standard technology
in human brain mapping. Analyses of the massive spatio–temporal fMRI data sets
often focus on parametric or nonparametric modeling of the temporal component,
while spatial smoothing is based on Gaussian kernels or random fields. A weakness
of Gaussian spatial smoothing is underestimation of activation peaks or blurring
of high–curvature transitions between activated and non–activated brain regions. In
this paper, we introduce a class of inhomogeneous Markov random fields (MRF) with
spatially adaptive interaction weights in a space–varying coefficient model for fMRI
data. For given weights, the random field is conditionally Gaussian, but marginally it
is non–Gaussian. Fully Bayesian inference, including estimation of weights and vari-
ance parameters, is carried out through efficient MCMC simulation. An application
to fMRI data from a visual stimulation experiment demonstrates the performance
of our approach in comparison to Gaussian and robustified non–Gaussian Markov
random field models.

Key words: Adaptive weights, human brain mapping, inhomogeneous Markov
random fields, MCMC, space–varying coefficient models, spatio–temporal modeling.



1 Introduction

Functional magnetic resonance imaging (fMRI) is the current standard technology in
human brain mapping, i.e., the detection of regions activated by sensory, motor and
cognitive functions. In fMRI experiments, a subject is exposed to controlled external
stimuli. Local increase of neural activity is indicated by a local increase of blood
oxygenation in activated areas, and this BOLD (blood oxygenation level dependent)
effect can be visualized by fMRI. In classical experiments the stimulus is presented
in a boxcar paradigm, i.e., a sequence of OFF and ON periods. The scanner records
images of several slices of the brain. Each slice is about 5 mm thick and consists of
128×128 pixels. Slices usually have a distance of several millimeters, and their images
are obtained sequentially in time. Therefore, slices are often analyzed separately.
For each pixel of a slice, an fMRI experiment with a boxcar stimulus generates an
MR signal time series, with an increase during the ON periods compared to the
control or rest condition OFF. Our application in Section 4 analyzes data from a
visual experiment. Figure 1 shows the boxcar stimulus and three MR time series
of length 70, observed at three pixels, which are selected from the center of the
activated region (b), near to its boundary (c), and from a non–activated region (d),
respectively. Obviously, the activation effect of the stimulus on the MR signal is
high in activated areas and is not present in non–activated areas.

To assess brain activity, separate regression models are applied at each pixel,
with the MR signal as response and a transformed version of the stimulus as the
regressor of primary interest. The value of the corresponding regression coefficient
is considered as the ”intensity” or ”amplitude” of activation at the pixel. In the
standard approach, spatial correlation between pixels is taken into account by sta-
tionary Gaussian random fields in a post–processing step (Friston et al., 1995), or
it is incorporated as part of a spatio–temporal Bayesian hierarchical model based
on Gaussian Markov random fields (Gössl et al., 2001). A potential weakness of
Gaussian random field priors is underestimation of peaks and smoothing over edges,
discontinuities or unsmooth parts of underlying functions.

In this paper, we combine separate pixelwise regressions through a Bayesian
space–varying coefficient model. To enhance spatial adaptivity for the activation ef-
fects array, we introduce a new class of inhomogeneous or compound Markov random
field priors where the interaction weights, determining the degree of spatial correla-
tions between adjacent pixels, are allowed to vary stochastically. Conditional upon
these weights, the prior is a Gaussian MRF, but marginally it is a non–Gaussian
MRF with edge–preserving properties. All model parameters, including the adap-
tive interaction weights, are estimated in a fully Bayesian setting using MCMC
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a) b)

c) d)

Figure 1: Visual fMRI : a) an 8 Hz flickering rectangular checkerboard (ON) is pre-
sented to the subject alternating every 30 s with an uniformly dark background and
a fixation point (OFF); an experiment consists of 4 OFFs and 3 ONs; additionally,
representative MR signal time courses from strongly (b), weak (c) and non–activated
(d) pixels.

techniques. Efficient sampling from Gaussian MRFs as described in Rue (2001) and
Rue and Held (2005) is combined with MH steps for updating interaction weights.
Details of the sampling scheme are given in the Appendix. In Section 4, we apply our
approach to fMRI data from a visual stimulation experiment and compare its per-
formance with results obtained with commonly used (unweighted) Gaussian MRFs
as well as with spatially more adaptive Laplace and Geman–Reynolds priors. We
conclude that our spatially adaptive modelling approach performs well and should
be a promising alternative in other applications too.

2 Space–varying coefficient models in fMRI

We start this section with a brief description of the standard approach for analyzing
fMRI data. In its basic form, fMRI time series {yit, t = 1, . . . , T} at each pixel or
voxel i – visualized for three pixels in Figure 1b), c), d), – are fitted separately by a
time series regression model. In its basic form, such a regression model for pixel i is
defined through the measurement model

yit = u′

tαi + zitβi + εit, εit ∼ N(0, σ2
i ) (1)
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for t = 1, . . . , T . The term u′

tαi models a smooth baseline trend, where the vector
ut consists of a few simple functions, for example (piecewise) polynomials or some
terms of a Fourier expansion, evaluated at t = 1, . . . , T . The second term, sometimes
called activation profile, is the product of the ”activation effect” βi at pixel i, and
the covariate zit, which is a smoothed and delayed version of the original ON–OFF–
stimulus xt, t = 1, . . . , T , visualized in Figure 1a).

This transformation takes into account that the cerebral blood flow, the source
of the MR signal, increases only approximately 6-8 s after the onset of the stimulus,
and that flow responses do not occur suddenly, but more continuously and delayed.
We will use transformations obtained by a delayed convolution with a so–called
hemodynamic response function, i.e.,

zit =

t−di
∑

s=0

h(s; θi)xt−di−s. (2)

Usually, Poisson (Po(λi)) or Gamma (GA(λi, ui)) densities are chosen for h. The
parameters θi = λi or θi = (λi, ui)

′ and the time lag di are estimated in a pilot step,
see Gössl et al. (2001).

The idea is that the (estimated) activation effect β̂i should be large in strongly
activated pixels (Fig. 1b)), medium for weakly activated pixels (Fig. 1c)), and close
to zero (’non–significant’) for non–activated pixels (Fig. 1d)). The estimates {β̂i, i =
1, . . . , I} for all pixels in a slice can be represented by and ”activation map” or, after
standardization, by a ”t–map” {ti = β̂i/se(β̂i), i = 1, . . . , I}. In the standard SPM
approach (see Friston et al., 1995), spatial correlation induced by neighboring pixels
is taken into account (if at all) by applying Gaussian random field theory to the t–
map, leading to an adjusted t–map. An adaptive smoothing procedure for pixelwise
activation maps with good edge–preserving properties is suggested in recent work by
Tabelow et al. (2005).

The basic model (1) has been refined by relaxing assumptions on the time series
structure, for example by introducing autoregressive error terms, or using flexible
regression splines (Genovese, 2000) and state space models (Gössl et al., 2000), for
nonparametric estimation of baseline trends and even time–varying activation effects.
Still, however, fMRI data are fitted separately at each pixel i based on (seemingly)
unrelated regression or time series models.

In this paper we look at the measurement model (1) as a joint model for all
pixels i = 1, . . . , I. Then the coefficients {αi, i = 1, . . . , I} and {βi, i = 1, . . . , I} are
spatially varying over the grid of pixels in a certain slice. To allow for activation
effects to vary smoothly with time during the fMRI experiment, we slightly extend
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model (1) to
yit = u′

tαi + zitv
′

tβi + εit, εit ∼ N(0, σ2
i ), (3)

for t = 1, . . . , T and all pixels i = 1, . . . , I. In addition to a time–varying baseline
trend u′

tαi, model (3) also admits the activation effect v′

tβi at pixel i to vary over
time, or, in other words, a time–varying activation profile. Model (3) can be seen as a
joint spatio–temporal regression model for fMRI data, with space–varying activation
coefficients {βi, i = 1, . . . , I}. Spatial models for the coefficients will be based on
Markov random fields. In Gössl et al. (2001) a hierarchy of spatial and spatio–
temporal Bayesian models based on homogeneous Gaussian Markov random field
smoothness priors has been presented and applied to fMRI data. A drawback of
Gaussian priors is that they tend to over–smooth peaks and to blur edges or areas of
high curvature between activated and non–activated areas. To avoid these problems,
we suggest Markov random field priors with spatially adaptive interaction weights
for adjacent pixels.

3 Spatially adaptive Markov random field priors

We will assume independent MRF priors for the components {βik, i = 1, . . . , I}
of the space–varying coefficient vectors {βi, i = 1, . . . , I} in (3). For notational
convenience, we focus on a scalar component {βi, i = 1, . . . , I} as in the simpler
model (1) with a time–constant activation effect. Multivariate MRFs for vectors βi

are conceivable, but will not be considered here.
The usual form of the prior for the vector β = (β1, . . . , βi, . . . , βI)

′ is a pairwise
interaction Markov random field (MRF)

p(β|τ,w) ∝ τ · exp{−
∑

i∼j

wijΦ(τ(βi − βj))}, (4)

where τ is a scale or precision parameter, Φ is symmetric with Φ(u) = Φ(−u), the
summation is over all pairs of pixels i ∼ j that are neighbors, and the interaction
weights wij’s are known or given. For regular grids as in image analysis, the weights
are all set equal to 1, i.e. wij = 1. For Φ(u) = 1

2
u2, these are the most popular (in-

trinsic) Gaussian MRFs, see Rue and Held (2005) for a comprehensive presentation.
The Laplace prior with Φ(u) = |u| is considered to have improved edge–preserving
properties as well as the Geman–Reynolds prior

Φ(u) = −λ/(1 + |u|p), (5)
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with p = 2 or p = 1, and λ as a tuning parameter, introduced by Geman and
Reynolds (1992). A practical problem with this prior is the appropriate choice of
hyperparameters by data driven methods. The normalizing constant c(λ, p) is an-
alytically intractable, making inclusion into a fully Bayesian MCMC difficult. In
the context of reconstruction in emission tomography, Higdon et al. (1997) propose
a simulation method for precomputing normalizing constants on a grid of values.
Conceptually, this approach might be adapted to our problem, but the computa-
tional burden increases dramatically.

Usually the weights in (4) are specified deterministically, e.g. by setting them
equal to one for regular grids or by measuring the distance between neighboring
sites in irregular lattices, see Besag et al. (1995). As an alternative, we suggest a
conditionally Gaussian MRF prior

βi|β−i, τ,w ∼ N

(

∑

j∈∂i

wijβj

wi+

,
1

τ 2wi+

)

, (6)

where the interaction weights wij are allowed to vary stochastically in a further stage
of the hierarchical model. The precision (or inverse variance) τ 2 acts as a smoothing
parameter. Based on experience in the one–dimensional case of locally adaptive
function estimation (Lang et al., 2002), we specify the weights to be i.i.d. random
variables following a Gamma hyperprior

wij ∼ GA
(ν

2
,
ν

2

)

, (7)

with small degrees of freedom, in particular ν = 1. The resulting marginal or
compound MRF prior p(β|τ 2) is non–Gaussian and does not admit a simple closed
analytical form. It gives additional flexibility when pixel i is near the border of an
activated area, where some neighbors j ∈ ∂i have similar activation effects and others
may be only weakly or not activated. At first glance, it seems more natural to assume
a spatial prior for the field of weights wij. Own experience in the closely related
situation of one–dimensional locally adaptive function estimation shows, however,
that i.i.d. priors combine computational advantages with desirable edge–preserving
properties. Spatial priors are only marginally better for highly–oscillating functions,
while computational efforts increase drastically.

The Bayesian specification is completed by priors for the variances σ2
i and the

precision parameter τ . We follow the common choice and assume weakly inverse
Gamma hyperpriors σ2

i ∼ IG(a, b) for observation variances, and τ 2 ∼ GA(c, d)
for Gauss and adaptive Gauss priors, and τ ∼ GA(c, d) for the Laplace prior. As a
standard option, we set a = b = c = d = 0.001, yielding highly dispersed hyperpriors.
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In principle, the same spatial priors could be chosen for the baseline parame-
ters αi = {αik, k = 1, . . . , dim(αi)}. However, because the focus is placed on
the activation effect, we assign only separate, independent diffuse priors p(αik) ∝
const or highly dispersed normal priors for each pixel i = 1, . . . , I and each k =
1, . . . , dim(αi).

Gathering parameters in vectors α = (α1, . . . ,αI), β = (β1, . . . ,βI), where βi =
{βik, k = 1, . . . , dim(βi)}, σ2 = (σ2

1, . . . , σ
2
I ), τ 2 = (τ 2

1 , . . . , τ 2

dim(β
i
)
), w = (wij, i ∼ j)

and observations in Y = (yit, i = 1, . . . , I, t = 1, . . . , T ), fully Bayesian inference is
based on the posterior

p(α, β, σ2, τ 2,w|Y) ∝ L(Y|α, β, σ2) · p(α) · p(β|τ 2,w) · p(σ2) · p(τ 2) · p(w).

The likelihood L(Y|α, β, σ2) is determined by the observation model, the other
factors by the priors, together with conditional independence assumptions.

Inference is performed by MCMC simulation through repeated drawings from
univariate or multivariate full conditionals. The general strategy is as follows:

1. Draw parameters αik from the Gaussian full conditionals.

2. Draw the blocks βk = {β1k, . . . , βIk} from the (multivariate) Gaussian full
conditionals, i.e. given current iterates for the weights w.

3. Draw the weights wij via the MH–step described in the Appendix.

4. Draw the variance parameters σ2
i and the hyperparameters τ 2 from their cor-

responding (inverse) Gamma full conditionals.

4 Application

We illustrate our approach based on adaptive Gaussian MRF priors (shortly adap-
tive Gauss) by application to an fMRI data set from a visual stimulation experiment
as described in the introduction. Visual paradigms are known to elicit great activa-
tion amplitudes in the visual cortical areas, which are sharply separated from other
functional areas.

In a first step we apply the parametric observation model (1) with time–constant
activation effect βi, where the transformed stimulus zit was determined through a
pilot estimate, see Gössl (2001, p.33) for details. The baseline trend was modeled
parametrically by u′

tαi = αi0+αi1·t+αi2·sin(π/16·t)+αi3·cos(π/25·t)+αi4·cos(π/40·
t). In a second step we apply observation model (3) with a time–varying activation
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a) b)

c) d)

Figure 2: estimated surfaces for the time–constant model: a) Gauss, b) adaptive
Gauss, c) Laplace, d) Geman–Reynolds

profile zitv
′

tβi. We replace βi by v′

tβi = βi0+βi1 ·t+βi2 ·cos(π/25·t)+βi3 ·cos(π/40·t).
All frequencies were selected through stepwise selection procedures.

For the time–constant model we estimated the activation surface {β̂i, i = 1, . . . , I}
using the Gauss, adaptive Gauss, Laplace and a Geman–Reynolds prior. Inverse
Gamma priors with a = b = 0.001 were chosen for the error variances σ2

i in all four
cases, as well as for the variance parameter τ 2 in the case of Gauss and adaptive
Gauss priors. Based on simulation results for a grid of values of the tuning parameters
p, τ and λ of the Geman–Reynolds prior as well as on visual inspection for the data
at hand we set them to p = 2, τ = 0.2 and λ = 3.

Figures 2a)–2d) show posterior mean estimates {β̂i, i = 1, . . . , I} for these four
models. Obviously, the Gauss prior oversmoothes the sharp peaks and ridges as
well as steep slopes in the area of the central visual cortex (on the left side of the
activation surface), while it undersmoothes in non–activated areas, resulting in a
comparably rough estimated surface. The result for the Laplace prior shows better
local adaptivity, but still oversmoothes the central activation area. Both the adaptive
Gauss and the Geman–Reynolds prior exhibit the desired features: non–activated
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areas are smooth and close to zero, but activated areas, in particular the distinct
physiologically known peak in the central visual cortex remains. The adaptive Gauss
prior has the advantage that hyperparameters can be estimated easily from the
data. This is much more difficult for the Geman–Reynolds prior with its complicated
normalizing constant.

This disadvantage becomes even more crucial when applying the time–varying
model (3), because one would have to specify hyperparameters for each of the com-
ponents of the parameter vector βi. Therefore we carry out comparative analyses
for Gauss and adaptive Gauss priors only. With the same choice of inverse Gamma
priors as in the time–constant case, we are able to estimate all space–varying para-
meters with the technique outlined in Section 3 and in the appendix. Figures 3a)–3f)
show the estimated activation surfaces {zitv

′

tβ̂i, i = 1, . . . , I} for two different points
of time which refer to the first and third activation period, respectively. Comparing
the smoothing qualities of the different priors, it can again be seen that the adaptive
Gauss prior has distinctly better local adaptivity properties.

5 Conclusion

Detection of activation areas in the living human brain using fMRI data offers chal-
lenging problems in spatio–temporal modeling. In particular, there is a need for
locally adaptive surface smoothers which still can cope with the massive data sets
and high–dimensional parameters arrays in the setting of space–varying regression
models from a computational viewpoint. Gaussian Markov random fields with adap-
tive interaction weights as developed in this paper seem to be a promising framework.
Although our methodological development was motivated by fMRI data, it should
also be of use in other spatial problems where local adaptivity and edge–preservation
are required.

Acknowledgement: We thank Dorothee Auer and Christoff Gössl (Max–Planck–
Institute of Psychiatry) for providing the data and for many discussions, motivating
and guiding this work, and the German National Science Foundation for financial
support through grants from the Sonderforschungsbereich 386 ”Statistical Analysis
of Discrete Structures”.
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a) d)

b) e)

c) f)

Figure 3: Estimated activation effects at t = 18 (a-c) and t = 58 (d-f) for Gauss
(a,d), Laplace (b,e), and adaptive Gauss (c,f)
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Appendix: Details on updating weights

Given the current iterates for the weights in the MCMC algorithm of Section 3, steps
1.), 2.) and 4.) are in complete analogy to estimation in spatial models with latent
Gaussian MFRs, see for example Lang and Brezger (2004) and Rue and Held (2005).
Thereby we make efficient use of sparse matrix operations for block updating in step
2.). In the following we focus on details of the MH–step 3.).

The full conditional for the weight w
(k)
ij is

p(w
(k)
ij |·) ∝ p(βk|·)p(w

(k)
ij )

∝

(

M2
∏

i=2

λi

)1/2

(w
(k)
ij )

ν
2
−1 exp

{

−w
(k)
ij

(

ν

2
+

(βik − βjk)
2

2τ 2
k

)}

. (8)

Here λi, i = 2, . . . ,M 2, are the non–zero eigenvalues of the penalty matrix Kk(w
(k))

corresponding to the joint prior p(βk|w
(k), τ 2

k ) derived from the conditional prior (6).
We explicitly denote the penalty matrix by Kk(w

(k)) to emphasize its dependency on

the weights w. Note that (8) is a Gamma GA

(

a′

w
(k)
ij

, b′
w

(k)
ij

)

density with parameters

a′

w
(k)
ij

=
ν

2
and b′

w
(k)
ij

=
ν

2
+

(βik − βjk)
2

2τ 2
k

, (9)

multiplied by
(

∏M2

i=2 λi

)1/2

. In order to sample from this distribution we employ

a MH–step and use a Gamma distribution with the parameters in (9) as proposal
density. Therefore the acceptance probability reduces to

α = min
{

1,

(

∏M2

i=2 λ∗

i
∏M2

i=2 λi

)1/2
}

,

where the λ∗

i denote the non–zero eigenvalues of the penalty matrix Kk(w
∗(k)
ij ) re-

sulting from a proposed weight w
∗(k)
ij . Acceptance rates are usually quite high. In

our implementation we use the fact that

∏M2

i=2 λ∗

i
∏M2

i=2 λi

=
|K∗

11|

|K11|
, (10)
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where |K11| and |K∗

11| denote the determinant of the sub–matrices of Kk(w
(k)
ij ) and

Kk(w
∗(k)
ij ), respectively, where the last row and the last column is deleted. The ad-

vantage arising from (10) is that, instead of an expensive computation of eigenvalues
of order O(n3), the ratio can be obtained by the computationally much more effi-
cient Cholesky decomposition of band matrices, which is of order O(n). Additionally,
we exploit the fact that it is sufficient to start the Cholesky decomposition in the
row corresponding to the position where a proposed new weight is located. Block
updating of several weights in one step speeds up computation considerably, since
the ratio (10) has to be evaluated only once per block. Since the proposal densities

p(w
(k)
ij ) are independent no further difficulties are imposed by sampling from a block

of weights. In our application to human brain mapping in Section 4 joint updating
of 6 weights still yields an acceptance rate > 50%. A proof of (10) can be found in
Brezger (2005).
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