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Abstract

In recent years the introduction of aggregation methods led to many
new techniques within the field of prediction and classification. The most
important developments, bagging and boosting, have been extensively an-
alyzed for two and multi class problems. While the proposed methods
treat the class indicator as a nominal response without any structure, in
many applications the class may be considered as an ordered categorical
variable. In the present paper variants of bagging and boosting are pro-
posed which make use of the ordinal structure. It is demonstrated how the
predictive power is improved by use of appropriate aggregation methods.
Comparisons between the methods are based on misclassification rates as
well as criteria that take ordinality into account, like absolute or squared
distance measures.

1 Introduction

A common problem in multivariate statistics is classification where covariates
are used to predict the value of a class variable. Over the years various methods
of classification have been proposed ranging from Fisher’s linear discriminant
analysis over classification trees (Breiman, Friedman, Olshen & Stone, 1984)
to support vector machines. Statistical concepts of classification are nicely
summarized in McLachlan (1992), Ripley (1996), Hastie, Tibshirani & Friedman
(2001).

In recent years the introduction of aggregation methods led to spectacular im-
provements of standard techniques of classification. Especially the development
of bagging (Breiman, 1996; see also Breiman, 1998) and boosting (Freund, 1995;
see also Freund & Schapire, 1996) made aggregation methods an area of inten-
sive research. The principle is to use a basic discrimination method not only
once but for different (bootstrap) versions of the data set. While bagging sam-
ples are based on the unweighted bootstrap, boosting uses weights that depend
on the performance in the last sample.



The properties of bagging have been investigated extensively (e.g. Biihlmann
& Yu, 2002a; Friedman & Hall, 2000) and further improvements have been
proposed (e.g. Biithlmann, 2003; Hothorn & Lausen, 2003). Boosting has been
introduced originally in the machine learning community. Many authors con-
tributed to the field from a statistical point of view (e.g. Schapire, Freund,
Bartlett & Lee, 1998; Friedman, 1999; Friedman, Hastie & Tibshirani, 2000;
Friedman, 2001; Dudoit, Fridlyand & Speed, 2002; Dettling & Bithlmann, 2003;
Bithlmann & Yu, 2002b; Biithlmann, 2002; Dettling & Biithlmann, 2003). A
detailed overview can be found in Schapire (2002). Extensive studies of com-
parisons between bagging, boosting and variants have been carried out e.g. by
Breiman (1998), Dietterich (2000), Bauer & Kohavi (1999).

A problem that is closely related to classification is how to predict categorical
ordered response variables. In usual classification problems the class variable is
assumed to have nominal scale level. But if there is ordinal structure within the
classes, this additional information should be used for classification. The use
of parametric ordinal models has been investigated e.g. by Anderson & Philips
(1981) and Rudolfer, Watson & Lesaffre (1995).

The purpose of this paper is to develop aggregation methods that exploit the
ordering of the classes. In Section 2 the basic building blocks are considered.
In Section 3 classifiers for ordered response categories are built. We distinguish
between two methods: Fixed split boosting in which aggregation methods are
applied to a fixed dichotomization of the response categories and methods where
ordinal aggregation is performed in each iteration step.

2 Aggregating classifiers: bagging and boosting

In multivariate discrimination each object is assumed to come from one out
of k classes. On the basis of an observation vector x consisting of p char-
acteristics associated with the object an assessment as to the class is to be
made. A predictor or classifier has to be built from past experience. Let

L={(Y;,z;),i=1,...,np} denote a learning or training set of observed data,
where Y; € {1,...,k} denotes the class and z} = (%j1,..., %) are associated
covariates.

A classifier based on learning set L partitions the space X of covariates in the
form
c(,L)y: X — {1,...,k}
z — C(z,L)

where C'(x, L) is the predicted class for observation .

Breiman (1996, 1998) found some benefit by using perturbed versions of the
learning set and aggregate the corresponding predictors by plurality voting,
where the winning class is the one being predicted by the largest number of



predictors. In weighted plurality voting the predicted class for an observation
z is given by

M
argmax; Z cmI(C(x, L) = j)
m=1

where L, is the m-th version of the learning set, c¢,, are weights for learning
set Ly, and I(.) denotes the indicator function, equaling 1 if the condition in
parentheses is true, and 0 otherwise.

The strength of a prediction may be measured by prediction votes (Dudoit,
Fridlyand & Speed, 2002) which for observation z are defined by

max; an\;{zl CmI(O(x, Lm) = .7)
Z%:l Cm

In the bootstrap aggregating or bagging procedure (Breiman, 1996) perturbed
learning sets of size ny, are formed by drawing from the learning set L at random.
The predictor C(., Ly,) is built from the m-th bootstrap sample. Aggregating
uses the weights ¢, = 1. Alternatives to this simple nonparametric bootstrap
are the parametric bootstrap (Dudoit, Fridlyand & Speed, 2002) and learning
sets based on convex pseudo data (Breiman, 1998).

PV(z) =

In boosting the data are resampled adaptively and the predictors are aggregated
by weighted voting. The discrete AdaBoost procedure proposed by Freund
(1995) starts with weights w; = --- = wy,, = 1/nr. In the following the m-th
step of the algorithm is given.

Discrete AdaBoost (m-th step)

1. (a) The current weights wy,...,w,, form the resampling probabilities.
Based on these probabilities the learning set L, is sampled from L
with replacement.

(b) Based on L, the classifier C(., Ly,) is built.

2. The learning set is run through the classifier C(., L,,) yielding error in-
dicators ¢; = 1 if the i-th observation is classified incorrectly and ¢; = 0
otherwise.

3. With ey, = Y15 wi€i, by = (1—ey,) /e, and ¢, = log(byy,) the resampling
weights are updated for the next step by

w;bsi w;exp(cmé€;i)

Z?i1 w;by, B ?il w;jexp(cpm€;)

Wi new =

After M steps the aggregated voting for observation z is obtained by

M
argmax; (Z emI(C(x, Ly,) = ])) .

m=1




While e, is a weighted sum of errors the parameters ¢, = log ((1 —ep)/em)
are log odds comparing weighted hits to errors. It is easily seen that for the
new weighting scheme one has ) =1 Wisnew = > ei—0 Winew = 0.5 and therefore
in the next step the resampling probability put on the observations which have
been misclassified in the m-th step has sum 0.5 . If e,,, = 0 then ¢,, — o0 is no
longer defined. This problem is avoided by adding 1/nz, to the denominator of

b, yielding ¢, = log((1 — ep,)/(em + 1/n1)).

Step 1 of the algorithm is based on weighted resampling. In alternative versions
of boosting observations are not resampled. Instead the classifier is computed
by weighting the original observations by weights wy, ..., w,, , that are updated
iteratively. Then C(., Ly,) should be read as the classifier based on the current
weights wy, ..., wr, (in the m-th step). The use of weights instead of resampled
observations depends on the availability of program packages which can handle
weighted observations.

In the case of two classes it is more common to use binary observations y; €
{1,0} or g; € {1,—1} as indicators for class. The latter version is more often
used in the machine learning community. The class indicator YV € {1,2} is
transformed to the binary case by using y; = 1if Y; =1 and y; =0 if ¥; = 2.
The version g; € {1, —1} is obtained from g; = 2y; — 1 .

Real AdaBoost (Friedman, Hastie & Tibshirani, 2000) uses real valued classi-
fier functions f(z, L) instead of C'(x, L) with the convention that f(xz,L) > 0
corresponds to C(z,L) =1 and f(x,L) < 0 corresponds to C(z, L) = 2.

Real AdaBoost (m-th step)
1. Based on weights wy,...,w,, the classifier C(., Ly,) is built.

2. The learning set is run through the classifier C(., L,;,) yielding estimated

~

class probabilities p(z;) = P(g; = 1|x;).
3. Based on these probabilities a real valued classifier is built by

p(zi)
1 —p(x;)

and the weights are updated for the next step by

f (i, L) = 0.5 - log

wiexp(—7i f (x4, Lim))
i wiexp(=g; f (x5, Lim))

Wi new =

After M steps the aggregated voting for observation z is obtained by

M
sign (Z f(x,Lm)> |
m=1

It should be noted that in this version of Real AdaBoost either resampled ob-
servations or weighted observations may be used.



The essential term in the updating procedure is w;exp(—;f(zi, L)) which,
depending on hits (¢; = 0) and misclassifications (¢; = 1), has the form

wiexp(—|f(zi, Lm)|) € =0
wiexp(| f (i, Lim)|) € =1

It is seen that for misclassified observations the weight w; is increased whereas
for correctly classified observations w; is decreased. In order to ensure existence
of f(x;i, Ly), 1/nr is added to numerator and denominator of the fraction,
yielding

wiexp(—Yi f(zi, Lm)) = {

p(z:) +1/ng
—p(z;) +1/ng

f(xi, L) =0.5- log1

3 Ordinal prediction

For the multi class problem Y € {1,...,k} it is assumed that the responses or
classes are ordered. For example Y may be the years of survival in a survival
study with the last category denoting survival beyond the end of the study. In
the following we consider two approaches to exploit the ordinal structure of the
response categories. The first approach, fixed split boosting, reduces the prob-
lem to binary classification problems by splitting the response categories. After
using boosting techniques for the binary classification problems the resulting
classifiers are combined to obtain the final classifier. In the second approach
the ordinal structure is explicitely used within each boosting iteration.

3.1 Fixed split boosting

In the following the classification procedure is divided into two stages. At the
first stage one uses aggregation techniques after splitting the response cate-
gories. At the second stage the resulting binary classifiers are combined. Since
boosting is used for fixed splits within response categories we refer to the method
as fized split boosting.

The reduction to binary problems is made by considering splits within response
categories. It works by defining

Y(r)_ 1 YG{I,...,’I"}
12 Ye{r+1,...,k}

for r = 1,...,k — 1. Tt should be noted that this type of splitting is sensible
only for ordered categories.

Let C(")(, L) denote the classifier for the binary class problem defined by Y ("),
i.e. for the splitting {1,...,7},{r+1,...,k}. For fixed r, by using any form of
aggregate classifier one obtains the predicted class for observation z by

C&;)g(]j) — argmaxj C%)I(C(r) (x,L(r)) = ]) . (1)



The first stage aggregate classifier C,gz)g has been designed for a fixed split at

)

r. The combination of the aggregate classifiers C,%,g, cee, C,Sg; Y is based on
the second stage aggregation, now by exploiting the ordering of the categories.
Thereby one uses that the response Y € {1,...,k} may also be characterized
by the binary vector response (y1,...,y) where

1 Y=
Y=Y 0 otherwise

The classifier C’c(lg)g is a prediction of the binary class indicator Y("). Let the

result of the classifier be transformed into the sequence gY), e ,g)g) of binary

variables.

For C,Sz)g(m) = 1, corresponding to Y (z) € {1,...,r}, one has

i) = = g (@) = 1r, gfﬂ?ﬂ@ — = ??1(:)(9”) =0

For Cég)g(x) = 2, corresponding to Y (z) € {r+1,...,k}, one has
i) = =@ =0, Gh@ == @) =1/k-r)

Thus the classifier C’((L;)g yields the binary sequence (1/7)-(1,1,...,1,0,0,...,0)
or (1/(k —r))-(0,0,...,0,1,1,...,1) where the change from 1 to 0 or 0 to
1 is after the r-th component. We divide these sequences by r or k — r, re-
spectively, to take into account the different number of categories within each
dichotomization. The final classifier is given by the second stage aggregation

k—1
Cagg () = argmax; Y 3\ (z) . (2)

r=1

Therefore for observation x the prediction is in the class which is favoured by
a weighted majority of splits. Moreover, for each split r the ’score’

is a measure of the accuracy of the prediction (after aggregation by bagging or
boosting) which may be standardized to (") = s(’")/(Zf;f s(®).

It should be noted that in the second stage aggregation (2) the accuracy of the
binary prediction is not used for weighting. Therefore a weighted form is given

by
k—1

Caggw(z) = argmax; Z Py (™) (:E)?Qy)(ac)

r=1

where the weights

NM () (r) (ry _
Pv(T‘) ($) — max; Zm:l Cm I(C (J?,Lm ) .7)

Z%:l C(mr)




are the binary prediction votes from the first stage. The corresponding scores
which include the precision from the first stage aggregation are

k—1
st = > PV (@) (a)
r=1

which may be normalized to

Alternatively weights in (2) could be used to reflect the substantial importance
of splits instead of using the accuracy of prediction.

3.2 Linking bagging and boosting to the ordinal structure

The procedure suggested in Section 3.1 is similar to the one-against-all ap-
proaches which are popular in the machine learning community. In these ap-
proaches each response class is compared separately to all other classes and the
results of the bagging or boosting of the binary class problems are combined at
the end (see also Dettling & Biihlmann, 2003).

The distinct separation of the two stages means that for ordered responses the
ordering of the response category is not reflected at the first stage, i.e. in
the boosting or bagging procedure. Therefore in the following an algorithm is
suggested which connects the weights in boosting to the ordered performance
of the classifier.

Ordinal Discrete AdaBoost (m-th step)

1. Based on the current weights w,...,wy, classifiers C)(., L,,) are built
for all dichotomous splits of the ordinal class variable at value r.

2. The learning set is run through each classifier C(’")(., L,,) yielding the in-
formation if the i-th observation is predicted into a class higher or lower
than r. The results of the classifiers for different split values r are com-
bined by majority vote (2) yielding the aggregated classifier C(., Ly,).

3. Let the error indicators now be given by ¢; = W# Therefore with
the same notation for e,,, b, and ¢,, as in simple dichotomous Discrete

AdaBoost the weights are updated by

wieXp(Cm€i)
> g wiexp(cme;)

Wi new =

After M steps the aggregated voting for observation z is obtained by

M
argmax; (Z enI(C(zy L) = ])> O
m=1




The essential difference to the fixed split procedure in Section 3.1 is in step 2
of the algorithm. The aggregation across splits is now incorporated into the
boosting procedure. In addition, the error indicators ¢; reflect the distance
between the prediction and the true class. Alternatives for the standardized
distance criterion based on

|C (i, Lin) — Yil

= () 3)
are the unstandardized distance
€i = |C (i, Lm) — Yi| (4)

or the squared (standardized) distance

€; — —k—]_ .

Of course also the simple 0-1-error
e =1—I(C(xi, L) = Y5) (5)
can be used.

While ¢; refers to the error for single observations the weighted error e, =
Sk wie; refers to the total data set. The weights ¢, = log((1 — ey)/em)
which are based on e, are essentially constructed for two class problems. For k
class problems some adaptation is suggested which depends on the type of error
which is used. For the simple 0-1-error (5) in k class problems the error rate
that can always be obtained is (k — 1)/k, simply by classifying all observations
into the dominant class. Adaptation is based on

e ) - (25220

Thus for e,, — (k—1)/k one has ¢, — 0. Of course this correction is also rele-
vant for nominal multi class versions of the common AdaBoost algorithms. For
the simple distance (4) with range [0, £ —1] one computes that if all observations
are classified into one of k groups with equal sample sizes the corresponding
error (with equal weights w; = 1/ny) is given by (k—1)/2. Thus an appropriate
choice for ¢, has the familiar form

= (M ) e ()

The same value results for the standardized form given in the description of the
algorithm.

Since in the same way as for the common Discrete AdaBoost ¢, might deteri-
orate (¢, — o), we add a term 1/(nr(k — 1)) to the denominator of b,,. This
guarantees that ¢, =log((1 — ey,)/(em + 1/(nr(k — 1)))) is properly defined.



The construction of an ordinal Real AdaBoost is again based on the dichoto-
mous problem of distinguishing between classes {1,...,r} and {r + 1,...,k}.
For each dichotomization probabilities p(") () = P(Y < r|z) are provided by
a dichotomous classifier. From these probabilities one obtains a sequence of
scores (") (z) for each class by

i@ == i) =), i) = =5 @) = 1= ()

For the aggregation across splits one considers the value

which reflects the strength of prediction in class j. A version of Ordinal Real
AdaBoost, that is based on these scores, is given in the following.

Ordinal Real AdaBoost (m-th step)

1. Based on weights wy,...,w,, a classifier (6) for ordered classes 1,...,k
is built.

2. The learning set is run through the classifier yielding scores g;(z;), j =
1,...,k. Following the criterion in simple Real AdaBoost a variant for
the multi class situation is given by

7 . x.
[j(zi, Ly,) = 0.5 - log - y‘i( J —
(ITiz; 9u(zi)) +=

3. The weights are updated for the next step by

o wies(— (i L)
e S wyexp(=fy; @5, L)

After M steps the aggregated voting for observation z is obtained by

M
argmax; (Z fj(m,Lm)> |
m=1

The sign of f;(z;, L) depends on the ratio of the score for class j compared
to the average score of all other classes. Again in order to ensure existence of

fi(@i;s L), §;(w;) is replaced by g;(z;) + 1/ny.

This algorithm uses the ordinal structure in the aggregation step of the binary
classifiers. The criterion for updating the weights is based on misclassification
but not on distance to the true class. Therefore the technique is referred to



as Ordinal Real AdaBoost using the misclassification criterion. The updating
criterion fj(x, Ly,) can also be used for multi class problems in simple nominal
Real AdaBoost.

Based on this algorithm a variant may be derived, that takes ordinality into
account also in the updating step for the weights. One possible implementation
is given by
9 (i)
1 k ~
mzl# diti(i)
J (2

fj(@i, Ly,) = 0.5 - log

where d;; is the distance between true class and class j for observation i. This
criterion still shows a close relationship to Real AdaBoost, but class proba-
bilities are weighted according to the distance between current and true class.
Thus high probabilities for classes far away from the true class are penalized
stronger than high probabilities for neighbourhood classes. This technique is
referred to as Ordinal Real AdaBoost using the distance criterion.

Again the aggregated voting for observation z is obtained after M steps by

M
argmax; ( Z filz, Lm)>
m=1

4 Empirical studies

4.1 Study design

In this section we compare the different ordinal approaches to simpler alterna-
tive methods, that either do not use the ordinal information within the data or
do not use aggregation techniques. The first one is a simple classification tree,
called nominal CART in the following tables. Here we build a tree by means of
the deviance criterion and let it grow up to a maximum depth. Afterwards it
is pruned on the basis of resubstitution misclassification rates until a fixed tree
size (given by the user and dependent on the data set) is reached. An approach
which uses the ordering of the classes, but still without bagging or boosting, is
to build a tree for every dichotomization separately and aggregate them accord-
ing to (2). This method is called ordinal CART. In the same way two bagging
variants are considered: A nominal approach, where every tree predicts the
multi class target variable and the final result is obtained by a majority vote
of these predictions and ordinal bagging, in which bagging is applied to fixed
splits. The results are aggregated over dichotomizations according to (2) and
over the bagging cycles. The nominal methods are considered as baseline for
possible improvements by ordinal bagging or ordinal boosting.

In addition we consider eight different boosting versions: The simple nominal
multi class Discrete and Real AdaBoost, which do not use the ordinal structure
within the data, are used for comparison only. The new methods are the ordinal
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boosting techniques: On the one hand we distinguish between real and discrete
methods, on the other hand between three kinds of aggregation. Fixed split
means that every single dichotomization is boosted separately and combined at
the end. Ordinal AdaBoost, which combines the results from dichotomizations
in every boosting cycle, is based on the simple 0-1-misclassification-criterion (5)
or on the standardized distance criterion (3). In all of these methods boosting
can be done either by sampling with current weights or by using weighted
trees. Since we found better results with random sampling, only these results
are shown.

The evaluation of the methods is based on several measures of accuracy. As
criterion for the accuracy of the prediction we take the raw misclassification
error rate % > oie1 Lyy, 24,3+ In the case of ordinal class structure measures should
take into account that a larger distance is a more severe error than a wrong
classification into a neighbour class. Therefore we use two measures which
reflect the distance in different ways: The mean absolute value (here called
mean abs) of the differences £ "7 | |y; — §j;| and the mean squared difference
(here called mean squ) = > | (y; — ;) which penalizes larger differences even
harder.

In the measures of accuracy one has to distinguish between resubstitution error
and validation (or test) error. Resubstitution means that we build the classifi-
cation rule by using the whole dataset and measure the quality of the prediction
on the same data. Resubstitution error is used to examine how fast misclassifi-
cation error can be lowered by the different techniques, but because of its bias
it is not an appropriate measure for prediction accuracy. Therefore we divide
the data set at random into two parts consisting of one respectively two thirds
of the observations. From the larger (learning) data set the classification model
is built and the observations of the smaller (validation) data set are predicted.
We use 50 different random splits into learning and validation set and give the
mean over these splits.

When aggregating classifiers one has to choose the number of cycles, which
means the number of different classifiers that are combined in one bagging or
boosting run. As standard we use a number of 50 cycles in this study. The
last parameter that may be chosen is the (fixed) tree size, that is defined as the
number of terminal nodes of each tree. The values which have been used are
given with the results.

4.2 Datasets

4.2.1 Scapula Data

The scapula data are part of a dissertation (Feistl & Penning, 2001) written
at the Institut fur Rechtsmedizin der LMU Munchen. The aim was to predict

age of dead bodies only by means of the scapula. Therefore a lot of measures,
implying angles, lengths, descriptions of the surface, etc. were provided. We

11



preselected 15 important covariates to predict age, which was splitted into 8
distinct ordinal classes. Each class covers ten years. The data set consists of
153 complete observations.

4.2.2 Consumer-satisfaction of car-owners

The data are based upon a poll from a german car company and were published
in Fahrmeir, Hamerle & Tutz (1996). In 1983 questionnaires were sent to 2000
customers, who had bought a new car approximately three months earlier.
The point of interest was the degree of satisfaction, reasons for the particular
choice, consumer profile, etc. Participation was voluntary of course. Only 1182
persons answered the questions and after removing forms with missing values
only 793 questionnaires remained. Each form contained 46 questions, which
resulted in a dataset of 46 covariates with 793 observations each. The degree of
satisfaction, which was originally partitioned into 10 ordinal classes, was used
as class variable. As many of these classes consist of very few observations, they
have been aggregated to only four distinct ordered classes.

4.3 Results
4.3.1 Scapula Data

In the nominal approach we use trees with 15 terminal nodes. This seems
necessary for a problem with eight classes and after all 15 covariates. All ordinal
approaches are performed with trees of size five, because only two class problems
are treated.

The interpretation of Table 1 leads to the following conclusions: In resubsti-
tution all kinds of error measurements are improved by using aggregated clas-
sifiers. In comparison to fixed split boosting, which reduces the error to zero,
and nominal boosting variants, which get at least close to zero, other ordinal
boosting methods perform worse. However, they are still superior to bagging.

The more interesting results are based on validation since here the predictive
power of the classifier is tested. Concerning the misclassification error there
are only slight differences between the classifiers. However, the more important
measures for problems with ordinal classes are the distance measures. Both, the
absolute and the squared distances, show similar behaviour, but the distinction
between the classifiers is more pronounced for the squared error. The results of
CART are improved by all aggregation methods. Especially fixed split boosting,
but also some other ordinal boosting methods and ordinal bagging perform very
well. For example the mean squared distance 2.365 of the classification tree is
reduced to 1.215 by discrete fixed split boosting.

12



[ evaluation method criterion [ misclass mean abs mean squ_|
resubstitution CART (nominal) 0.418 0.608 1.183
CART (ordinal) 0.379 0.484 0.784
bagging (nominal) 0.176 0.327 0.824
bagging (ordinal) 0.294 0.386 0.621
boosting (nominal) discrete 0.046 0.046 0.046
boosting (nominal) real 0.026 0.026 0.026
boosting (ordinal) discrete (fixed split) 0.000 0.000 0.000
boosting (ordinal) real (fixed split) 0.000 0.000 0.000
boosting (ordinal) discrete (misclass) 0.118 0.118 0.118
boosting (ordinal) real (misclass) 0.373 0.399 0.451
boosting (ordinal) discrete (distance) 0.176 0.176 0.176
boosting (ordinal) real (distance) 0.405 0.418 0.444
test CART (nominal) 0.676 1.085 2.365
CART (ordinal) 0.652 0.995 2.112
bagging (nominal) 0.663 0.982 1.925
bagging (ordinal) 0.628 0.828 1.375
boosting (nominal) discrete 0.649 0.932 1.747
boosting (nominal) real 0.646 0.904 1.619
boosting (ordinal) discrete (fixed split) 0.629 0.799 1.215
boosting (ordinal) real (fixed split) 0.646 0.818 1.244
boosting (ordinal) discrete (misclass) 0.635 0.884 1.633
boosting (ordinal) real (misclass) 0.681 0.864 1.300
boosting (ordinal) discrete (distance) 0.611 0.841 1.473
boosting (ordinal) real (distance) 0.691 0.878 1.330

Table 1: Resubstitution and test error for scapula data

Figures 1 to 3 show the performance of four selected classification techniques.
While the y-axis describes one of the three measures of accuracy, the x-axis
marks the number of computed cycles. These figures show the development
of the predictive power across runs of the algorithms. Again one sees that
there is not much difference in the values of the misclassification error and
that especially fixed split boosting shows dominating performance according to
distance measures.

Figures 4 to 7 again show the performance of the same four selected methods.
Here the focus is on single observations of the data set. On the x-axis the
observations are given ordered by class label. The y-axis shows the median of
the predicted class over all 50 different partitions into learning and validation
set. Often the large differences between prediction and true value are found for
the same observations. This shows that there are some observations that are
particularly hard to classify.

4.3.2 Consumer-satisfaction of car-owners

In the nominal approach we use trees with 10 terminal nodes as this classifica-
tion problem copes with only four classes. All ordinal approaches are performed
with trees of size five, because only two class problems are treated.

Table 2 can be interpreted as follows: In the same way as for the scapula
data all kinds of error measurements concerning resubstitution are improved
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[ evaluation method criterion [ misclass mean abs mean squ_|
resubstitution CART (nominal) 0.632 0.803 1.146
CART (ordinal) 0.573 0.691 0.928
bagging (nominal) 0.520 0.646 0.903
bagging (ordinal) 0.517 0.585 0.721
boosting (nominal) discrete 0.266 0.346 0.507
boosting (nominal) real 0.270 0.333 0.464
boosting (ordinal) discrete (fixed split) 0.240 0.253 0.281
boosting (ordinal) real (fixed split) 0.102 0.106 0.113
boosting (ordinal) discrete (misclass) 0.494 0.541 0.634
boosting (ordinal) real (misclass) 0.575 0.579 0.586
boosting (ordinal) discrete (distance) 0.415 0.453 0.528
boosting (ordinal) real (distance) 0.588 0.595 0.610
test CART (nominal) 0.653 0.858 1.292
CART (ordinal) 0.635 0.787 1.107
bagging (nominal) 0.626 0.797 1.148
bagging (ordinal) 0.626 0.725 0.925
boosting (nominal) discrete 0.621 0.810 1.213
boosting (nominal) real 0.611 0.786 1.154
boosting (ordinal) discrete (fixed split) 0.613 0.769 1.105
boosting (ordinal) real (fixed split) 0.623 0.808 1.212
boosting (ordinal) discrete (misclass) 0.614 0.737 0.992
boosting (ordinal) real (misclass) 0.628 0.714 0.886
boosting (ordinal) discrete (distance) 0.609 0.799 1.217
boosting (ordinal) real (distance) 0.630 0.720 0.899

Table 2: Resubstitution and test error for consumer-satisfaction of car-owners

by using aggregated classifiers. Especially fixed split boosting reduces the error
close to zero, while other ordinal boosting methods perform worse. However,
according to distance measures they are still superior to bagging. All in all
the improvement by using aggregated classifiers is not as convincing as for the
scapula data.

The validation results, which are better indicators for the predictive power of
the classifier, show similar effects as for the scapula data. The most important
difference between the results concerning both data sets is the fact, that different
ordinal methods seem to dominate. The misclassification error shows only slight
differences between the classifiers and no superior technique can be pointed out.
Concerning the more important measures of distance, the results of CART are
improved at least a bit by all aggregation methods. But fixed split boosting,
which led to optimal results for the scapula data, is by far not the best procedure
here. Instead especially real variants of Ordinal AdaBoost perform very well,
just as ordinal bagging.

5 Concluding remarks

The concept to combine aggregating classifiers with techniques for ordinal data
structure led to new methods we refer to as Ordinal AdaBoost. Different up-
dating criteria and discrete as well as real valued boosting methods can be
used. Another suggestion is to boost dichotomizations only and combine these
single results, which we call fixed split boosting. Like boosting also bagging
can be combined with ordinal structure. All in all many different combinations
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are derived and compared in terms of their accuracy, which is measured by
raw misclassification error but also by distance measures in order to take into
account the ordinal structure.

We found promising results for two empirical data sets, since all ordinal tech-
niques improve the performance of a simple CART tree. There seems to be no
dominating method as for different data sets the best results occur by different
methods. Although ordinal bagging shows satisfying results for both data sets,
it is outperformed by at least one of the ordinal boosting techniques. While
in one data set fixed split boosting led to the best results, the other data set
shows superior performance of Ordinal AdaBoost.

These findings suggest that further research seems to be a worthwhile task, as
variations of these methods are still possible. Especially the transfer of Real
AdaBoost from nominal to ordinal data structure is arbitrary and other criteria
might be used.
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Figure 1: Mean misclassification rate (test error) across cycles for four selected
classification techniques
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MEAN ABSOLUTE DISTANCE
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Figure 2: Mean absolute distance (test error) across cycles for four selected
classification techniques

MEAN SQUARED DISTANCE

| bagging (nominal)
| - - - bagging (ordinal)
‘.j —— boosting (ordinal, discrete, fixed split)
3 4 n — boosting (ordinal, discrete, distance)
i
'
o] |
g7
=4
5 l
K] |
> )
el
5] |
T |
2 91
(2]
=4
I
Q
£
<
-
N
-

cycles

Figure 3: Mean squared distance (test error) across cycles for four selected
classification techniques
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Figure 4: Median of predicted class for every observation of the data set (vertical
lines distinguish between classes, horizontal lines show the true class within
limits; applied method: nominal bagging)
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Figure 5: Median of predicted class for every observation of the data set (vertical
lines distinguish between classes, horizontal lines show the true class within
limits; applied method: ordinal bagging)
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Figure 6: Median of predicted class for every observation of the data set (vertical
lines distinguish between classes, horizontal lines show the true class within
limits; applied method: discrete fixed split boosting)
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Figure 7: Median of predicted class for every observation of the data set (vertical
lines distinguish between classes, horizontal lines show the true class within
limits; applied method: Ordinal Discrete AdaBoost using distance criterion)
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