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Structured count data regression
Ludwig Fahrmeir & Leyre Osuna

Department of Statistics, Ludwig–Maximilian–Universitt Mnchen

Overdispersion in count data regression is often caused by neglection or inappropriate

modelling of individual heterogeneity, temporal or spatial correlation, and nonlinear covari-

ate effects. In this paper, we develop and study semiparametric count data models which can

deal with these issues by incorporating corresponding components in structured additive form

into the predictor. The models are fully Bayesian and inference is carried out by computation-

ally efficient MCMC techniques. In a simulation study, we investigate how well the different

components can be identified with the data at hand. The approach is applied to a large data set

of claim frequencies from car insurance.

Keywords: Bayesian semiparametric count data regression, negative binomial distribution,

Poisson–Gamma distribution, Poisson–Log–Normal distribution, MCMC, spatial models.

1 Introduction

Count data regression has become a very active topic in methodological and applied research,

see Cameron and Trivedi (1998) and Winkelmann (2000) for recent surveys. In applications,

one is often confronted with one or several of the following issues, preventing use of standard

Poisson regression: individual unobserved heterogeneity caused by omitted covariates, tem-

poral or spatial correlation, and possibly nonlinear effects of metrical covariates or time scales.

This situation arises for example in our application to car insurance data where we analyze the

effects of some categorical covariates, of metrical covariates such as age of the policyholder and

age of the car, and of the residence of the policyholder on claim frequencies. While the effects

of categorical covariates may be modelled in usual linear parametric form, it is usual very dif-

ficult if not impossible to specify nonlinear effects of metrical covariates or of time scales and,

in particular, spatial effects a priori through conventional parametric functional forms.

Neglection or inappropriate modelling of these issues will often result in biased estimates

and in the problem of overdispersion. Statistical modelling of unobserved heterogeneity and

serially correlated data is well developed, see, for example, the books by Cameron and Trivedi

(1998) and Winkelmann (1997), as well as Wooldridge (1997), Chib, Greenberg and Winkel-
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mann (1998) and Toscas and Faddy (2003). Chib and Winkelmann (2001) develop a Markov

Chain Monte Carlo (MCMC) approach for analyzing correlated count data by introducing la-

tent effects which follow a multivariate Gaussian distribution with full unrestricted covariance

matrix. While this approach is useful in the case of several correlated responses for the same

subject, it is not feasible for high–dimensional spatial data. Also, in all this previous work the

remaining part of the predictor models the effect of covariates in usual linear parametric form.

In this paper, we develop hierarchical Bayesian semiparametrically structured count data

regression to deal with these aspects within a joint model and a unified framework for in-

ference. Parametric and nonparametric components for covariate effects, temporal or spatial

effects, and unobserved heterogeneity are included in an additive predictor. Given this predic-

tor, observations are assumed to be conditionally independent, with Poisson, negative bino-

mial, Poisson–Log–Normal or Poisson–Gamma distributions. Inference is fully Bayesian and

extends previous work by Fahrmeir and Lang (2001), Lang and Brezger (2003) and Brezger and

Lang (2003) within the exponential family framework. It is based on MCMC techniques, imple-

mented in BayesX. For model comparison, we routinely use the deviance information criterion

(DIC) developed in Spiegelhalter, Best, Carlin and van der Linde (2002).

In a simulation study, we investigate performance and how well the different components,

which are theoretically identifiable through different types of priors, can be separated in prac-

tice from the data at hand. Finally, we apply our approach to a massive set of claim frequency

data from a car insurance company.

The rest of the paper is organized as follows: Structured count data models are introduced

in Section 2, while Section 3 outlines inference through MCMC simulation. Section 4 contains

the simulation study, and the application is described in Section 5. The conclusions point out

some goals of future research.

2 Bayesian structured count data models

2.1 Observation models

Consider regression count data ���� ���� � � �� ���� �, where �� are observations on a counting

variable �, such as claim frequency, and �� are observed values of a covariate vector �. In

addition, known offsets ��, such as the exposure time of individual � within the time period
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under consideration, may be given. The basic regression model is a loglinear Poisson model,

where the observations �� � �� are (conditionally) independent

�� � �� � �����	��� (1)

with rate 	� � ����
�� and linear predictor 
� � ����. Equivalently, we can rewrite (1) as

�� � �� � ������� �� � ������ � 
��� (2)

with known offset ��. We extend this basic loglinear Poisson model in two ways: First, we

consider negative binomial, Poisson–Gamma and Poisson–Log–Normal distributions, which

can account for individuals–specific unobserved heterogeneity. Secondly, we generalize the

parametric linear predictor to a semiparametric structured additive predictor.

Given the predictor 
� and a scale parameter Æ  �, the negative binomial (NB) model assumes

conditionally independent observations

���
�� Æ � ������ Æ�� (3)

with probability function given by

� ����
�� Æ� �
���� � Æ�

���� � 	���Æ�

�
��

�� � Æ

���
�

Æ

�� � Æ

�Æ
for �� � � � ���. The mean and the variance are

�
���
�� Æ� � ���

� 
���
�� Æ� � �� �
���
Æ
�

In a Bayesian approach, priors have to be assigned to all unknowns. Priors for the components

of the predictor 
� are defined in the next subsection. For the scale parameter Æ  �, we assume

a Gamma prior

Æ � ���� �� (4)

with density

��Æ� �
��

����
Æ��� ������Æ�� (5)

and with mean �
Æ� � �
�

and variance � 
Æ� � �
��

.
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The parameters � and � can be chosen such that the Gamma distribution has a flat prior. As

a more data driven alternative, we consider them as hyperparameters and introduce a hyper-

prior in a further stage of the hierarchy. For reasons discussed in Section 4, we set � � 	 and

assume a flat Gamma hyperprior

� � ��	� ������ (6)

for �.

The NB model admits overdispersion. This is made more explicit in the Poisson–Gamma (PoGa)

model. To account for individual–specific effects, uncorrelated i.i.d. random effects ��� � �

	� ���� �, are introduced in multiplicative form by assuming

���
�� �� � ����� ���� (7)

The probability function, mean and variance, given �� and ��, are

� ����
�� ��� �
���������� ������

��

��
for �� � �� � ����

�
���
�� ��� � � 
���
�� ��� � �� ���

The PoGa model is obtained, if the �� follow a Gamma distribution with mean 1 and scale

parameter Æ  �:

���Æ � ��Æ� Æ�

�����Æ� �
ÆÆ

��Æ�
�Æ��� �����Æ ��� (8)

�
���Æ� � 	

� 
���Æ� �
	

Æ
�

Here, Æ can be considered as a hyperparameter, one level beneath in the model hierarchy, and

also has a Gamma hyperprior with flat density function as described in (5) in the NB–model.

The assumptions made in (6) for the hyperparameter � are also valid here.

Integrating out the �� parameters from � ��� � 
�� ���, that means computing the marginal

� ��� � 
�� Æ� � ��� 
� ��� � 
�� ���� �

�
�

�
� ��� � 
�� ������� � Æ����� (9)

leads to the NB model. As a consequence, marginal means�
�� � 
�� Æ� and variances � 
�� � 
�� Æ�

are the same as in the NB model. The advantage of the PoGa model is that latent variables are
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made explicit and can be generated in MCMC sampling techniques.

As alternatives to Gamma random effects ��, we also considered Poisson–Log–Normal (PoLN)

models and Poisson–Inverse–Gauss (PoIG) models. In a PoLN model, a log–normal distribution is

assumed for the i.i.d. random effects ��. This can be rewritten as

�� � ������ � ��� � 
��
where ��� are i.i.d. ���� �Æ� Gaussian random effects. For the variance �Æ, we make the usual

assumption of a weakly informative inverse Gamma prior

�Æ � ����� ���
with � � 	, � � ����� as a standard choice.

We also experimented with PoIG models, where the random effects � � follow an inverse

Gaussian distribution, which has heavier tails than a Gamma or log–normal prior. However,

performance in MCMC posterior inference was less reliable than for the other models, so that

we will not consider it in this paper.

In our second generalization, we extend the linear predictor 
� to a much more flexible additive

predictor. As in the application to car insurance data we split up the covariate vector � into

a vector � � ���� ���� ���
� including all metrical covariates and time scales (for longitudinal

data) as well as group indicators with many values such as car type, a vector � of categorial

covariates, and a spatial covariate �, which denotes the district or postal code where individual

� lives. The basic structured additive predictor 
� has the form


� �
��

���

������� � ��������� � �
�

��� (10)

� � 	� � � � � �. The unknown functions ������ are the nonlinear effects of a metrical covariate

�� or ������� are the (random) effects of a group indicator like car type with 31 groups. The

function �������� represents the effect of district � � �	� � � � � ��, with �= 327 districts in west

Germany in our application. We further split up this spatial effect into the sum

�������� � ���	��� � �
���	���

of structured (spatially correlated) and unstructured (uncorrelated) effects. A rationale for this

decomposition is that a spatial effect is usually a surrogate of many underlying unobserved
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influential factors. Some of them may be present only locally, while others are correlated with

neighboring effects. By estimating a structured and an unstructured effect we aim at taking

into account both kinds of influential factors, and we may be able to assess to some extent the

amount of spatial dependency in the data by observing which one of the two effects exceeds.

The last term in (10) is the usual linear part of the predictor, with fixed effects. To ensure

identifiability, an intercept is always included into ��, and the unknown functions are centered

about zero.

The basic additive predictor (10) can be extended further to include varying coefficient

terms �������, where � is a categorical covariate and � a metrical covariate, or interactions

����� �� between two metrical covariates �� and �, say.

2.2 Priors for the predictor

For Bayesian inference all functions and parameters in the predictor are regarded as random

variables with suitable priors. To formulate priors in compact and unified notation, we express

the predictor vector 
 � �
�� in matrix notation by


 �
��

���

�� � ���	 � �
���	 ���� (11)

where ��� � � � � ��� ���	� �
���	 are the vectors of corresponding function values and � � ����

is the design matrix for fixed effects. It turns out that each function vector can always be

expressed as the product of a design matrix  and a (high-dimensional) parameter vector �.

Using � �  � as a generic notation for functions, (10) becomes


 � � � �� � � � � � ����

For fixed effects �, we generally choose a diffuse prior !��� � "���#, but a (weakly) informative

normal prior is also possible. Constructions of the design matrix and priors for � depend on

the type of the function and on the degree of smoothness. For metrical covariates random pe-

nalized regression (P-)splines, P-splines and smoothing splines are suitable choices, structured

spatial effects are modelled through Markov random field priors, and unstructured random

effects through i.i.d. normal random effects. In any case, priors for the vectors � have the same

general Gaussian form

!���$�� � ���

�
�
��%�

�$�

�
� (12)
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The penalty matrix % penalizes roughness of the function. Its structure depends on the type

of covariate and on smoothness of the function. The variance $ � corresponds to the inverse

of a smoothing parameter in a frequentist setting and controls the trade–off between data fit

and smoothness. We outline this below, but refer to Fahrmeir and Lang (2001) and Lang and

Brezger (2003) for details.

2.2.1 P-splines

For metrical covariates, P-splines introduced by Eilers and Marx (1996) in a frequentist setting,

will be our standard choice. It is assumed that an unknown smooth function � of a covariate

� can be approximated by a polynomial spline of degree & defined on a set of equally spaced

knots ���� � '� ( '� ( � � � ( '	�� ( '	 � ���� within the domain of �. It is well known

that such a spline can be written in terms of a linear combination of ) � � � & B-spline basis

functions �� , i.e.

���� �
��
���

��������

Here � � ���� � � � � ��� corresponds to the vector of unknown regression coefficients. The � �

) design matrix  now consists of the basis functions evaluated at the observations ��, i.e.

 ��� *� � ������. The crucial point with regression splines is the choice of the number and the

position of the knots. For a small number of knots, the resulting spline may be not flexible

enough to capture the variability of the data. For a large number of knots, estimated curves

tend to overfit the data and, as a result, too rough functions are obtained. As a remedy to these

problems Eilers and Marx (1996) suggest a moderately large number of equally spaced knots

(usually between 20 and 40) to ensure enough flexibility, and to define a roughness penalty

based on differences of adjacent B-Spline coefficients to guarantee sufficient smoothness of the

fitted curves.

In a Bayesian approach, as considered here, the regression coefficients � have to be supple-

mented with appropriate prior distributions. The stochastic analogue of difference penalties

are first and second order random walks for the coefficients ��� � � � � �� defined by

�� � ���� � +� �� �� � ����� � ���� � +�

with i.i.d. noise +� � ���� $�� and diffuse priors !���� � "���# or !���� � "���#� !���� �

"���# for initial values. First order random walks penalize abrupt jumps between successive
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parameters, and second order differences penalize deviations from a linear trend. The variance

$� controls the amount of penalization. This prior for � � ���� � � � � ��� can be expressed in the

form (12). For a first order random walk the penalty matrix% is defined by

% �

�����������	

	 �	

�	 � �	

. . . . . . . . .

�	 � �	

�	 	


�����������
�

2.2.2 Spatial covariates

For a spatial covariate �, the values of � represent the locations or districts in connected ge-

ographical regions. For simplicity we assume � � �	� � � � � ��, i.e. the regions are labelled by

the numbers 	� � � � � �. A common way to deal with spatial covariates is to assume that neigh-

bouring sites are more alike than two arbitrary sites. Thus for a valid prior definition a set of

neighbours for each site � must be defined. For geographical data, one usually assumes that

two sites � and * are neighbours if they share a common boundary.

The simplest spatial smoothness prior for the function values ���	��� � �� is

����� * 	� �� $
� � �

�	�
����

	

��
�� �
$�

��


� � (13)

where �� is the number of adjacent sites and * � ,� denotes that site * is a neighbour of

site �. Thus the (conditional) mean of �� is an unweighted average of function evaluations

of neighbouring sites. Such a prior is called a Gaussian intrinsic autoregression, see Besag,

York and Mollie (1991) and Besag and Kooperberg (1995). The vector � � ���� ���� ��� ���� ���
�

of spatial effects has a joint–distribution of the form (12) with the elements of % defined by

-�� � ���� -�� � ���� for * � Æ�, where ��� � 	 and � denotes summation over the missing

subscript, and 0 else, .

A more general prior including (13) as a special case is given by

����� * 	� �� $
� � �

�	�
����

���

���
�� �

$�

���


� � (14)

where ��� are known weights and � denotes summation over the missing subscript.
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If we express the effect ���	 of the spatial covariate � as the product of a design matrix  

and the vector of unknown parameters �, then is a 0/1 incidence matrix.

2.2.3 Unordered group indicators

Suppose � � � � �	� � � � � �� is now a group variable indicating the group a particular observa-

tion � belongs to. We treat this type of covariate by introducing random effects ���� � �� . We

assume that the ��’s are i.i.d. Gaussian, i.e.

�� � ���� $��� � � 	� � � � � �� (15)

Formally, this prior can be once again brought into the general form (12). The design matrix is

again a ��� 0/1 incidence matrix, and% � � .

Apparently, there is only a slight difference to the smoothness priors described above for

metrical covariates. In fact, instead of specifying for example P-splines for a function � , the

i.i.d random effects prior (15) may also be specified. The main difference between the two

specifications is the amount of smoothness allowed for a function � . With the i.i.d. random

effects specification (15), successive parameters are allowed to vary more or less unrestricted,

whereas random walk priors guarantee that successive parameters vary smoothly over the

range of �. If � is a spatial covariate it can be even useful to incorporate both, a spatially

correlated smooth effect ���	��� as well as a spatially uncorrelated effect �
���	��� as in (15).

To distinguish group indicators from individual specific random effects, we have to assume

� ( �. Otherwise, the prior (15) is the same as for ������� in the PoLN normal and quite close

the prior for individual random effects on a logscale for the PoGa model.

3 Posterior inference

Bayesian inference is based on the posterior distribution of the usually very high–dimensional

vector of all parameters. In the following, we split up this vector into the subvector . con-

taining all parameters defining the predictor 
, and remaining parameters specifying the count

data distributions for given 
. MCMC inference is carried out by repeatedly drawing from

full conditionals of (blocks of) parameters given the remaining parameters and the data. Be-

cause drawings from full conditionals for components of . are identical or similar to sampling
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schemes in Fahrmeir and Lang (2001) and Brezger and Lang (2003), we focus on full condition-

als for the remaining parameters.

For the NB model, the posterior is defined by

!�.� Æ� � � �� � � �� � .� Æ���Æ � ������!�.��

where � �� � .� Æ� is the likelihood of the NB model, ��Æ � �� ist the prior of the scale parameters

Æ given by (5), ���� is the hyperprior (6) for � and !�.� is defined by the prior assumptions in

subsection 2.2. Then the full conditional

!�Æ� � � �� � � ���
� Æ� ��Æ���

�
�

���

�
���� � Æ�

���� � 	���Æ�

�
��

�� � Æ

��� � Æ

�� � Æ

�Æ� ��

����
Æ��� ������Æ�

�
�

���

�
���� � Æ�

��� � Æ�Æ���

�
��Æ�� Æ �Æ���� ������Æ�

This expression has no analytical closed form, so that we implement a MH algorithm with a

random walk proposal. Let Æ� denote the proposed value for Æ in an iteration step. We choose

a Gamma proposal

Æ��Æ � �

�
Æ�

!Æ
�
Æ

!Æ

�
(16)

with

�
Æ��Æ� � Æ

� 
Æ��Æ� � !Æ�

The parameter !Æ is a tuning parameter, that allows us to control the acceptance probability for

the MH algorithm. It is adapted in the burn in period to achieve acceptance probabilities for Æ

between 0.4 and 0.6.

For the hyperparameter � the full conditional is calculated as follows:

!��� � � �� � ��Æ��� ����

�
��

����
Æ��� ������Æ�

/���
��/��

����� �����/���

� ������� ������Æ � /����

� ��/� � �� Æ � /��� (17)
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where our standard choice is � � 	� /� � 	� /� � �����. Therefore � can be updated in a Gibbs

step.

For the PoGa model, the posterior is defined by

!�.� �� Æ� � � �� � � �� � .� ����� � Æ���Æ � ������!�.��

where � is the vector of all individual–specific effects ��� � � 	� ���� �, with likelihood and priors

defined in Section 2. The full conditional for ��� � � 	� ���� �, is a Gamma distribution:

!���� � � �� � � ����
�� ��� �����Æ�

�
������� ��� ��� ���

��

�

ÆÆ

��Æ�
�Æ��� ������� Æ�

� �
���Æ��
� ��� ���� ��� � Æ��

� ���� � Æ� �� � Æ�� (18)

Therefore, updates are obtained from direct Gibbs steps. For Æ the full conditional is propor-

tional to

!�Æ� � � �� � ����Æ���Æ���

�
�

���

�
ÆÆ

��Æ�
�Æ��� ������� Æ�

�
��

����
Æ��� �����Æ ��

�
Æ �Æ����

��Æ��

�
�

���

��

�Æ��

���

�
�Æ

�
��

��
���

��

��
�

The MH algorithm implemented for its update uses the same proposal as for the NB model.

Sampling from full conditionals for the variance �Æ of the random effects in the PoLN model as

well as for the components of the parameter vector . specifying the priors in the predictor are

performed along the lines detailed in Fahrmeir and Lang (2001) and Brezger and Lang (2003),

and implemented in BayesX.

4 Simulation study

The aim of this study is to explore the performance of the proposed methodology for complex

predictor structures similar to those which will be used in the real data application in the next

section. In particular, we will investigate how well different components in the predictor can

be identified and separated from each other.
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We generate data sets from PoGa and PoLN models �� � �� ����
�� and �� � �� ����
�� �

����
� � ����, respectively, with Gaussian random effects ��� in the PoLN case. The predictor 
� is

the same for both models and is defined by


� � �� � �� � ���� � ������� � ����� � ���	���� � �
���	����� � � 	� ���� 	����

The offsets �� are obtained by i.i.d. sampling from a uniform distribution on the interval [3,6].

The values �� are obtained as i.i.d. samples from a binary random variable � � ��	� ����. The

intercept and slope are �� � �� and �� � ���.

The realizations of the metrical covariate � are the 26 knots of an equidistant grid on the interval

[-3,3]. The observations ��� � � 	� ���� 	���, are generated by systematically repeating these 26

values until 	��� observations are reached. The nonlinear effect ���� of � is assumed to be a

sine–curve ���� � ������ on the interval [-3,3].

The covariate � represents a group indicator, as for the covariate type class of car in our car

insurance application. It has 7 levels � � 	� ���� �, with 7 equidistant effects

��	� � ����� ���� � ����� ���� ���� � ���� ���� � ����

The observations ������ � � 	� ���� 	���, are generated as a random sample from these values.

The structured spatial effects ���	���� are evaluations of the function ���	 � �� 
 �

���	�� � �+� 0�� � "������+ � 0�� "�

at the coordinates �� � �+�� 0��� � � 	� ���� ��, of the standardized centroids of the �� districts

in Bavaria. The normalizing constants "� and "� are chosen so that the function values are

centered about 0 and have approximate empirical variance 0.25. These structured spatial effects

���	���� � � 	� ���� ��, are visualized in Figure 5. For each district �, we assign ���	���� to 20

observations.

To generate the unstructured effects �
���	����, we draw �
���	���� � � 	� ���� ��, as an i.i.d.

sample from ���� $��. Then these values are assigned to the same 20 observations per district

as in the case of structured spatial effects. To investigate the impact of unstructured effects, we

generate data for three values

$� � �� $� � ���	� $� � ����
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of the variance $�, corresponding to no, small and large unstructured effects. For $ � � ����,

the unstructured effects have the same variability as the structured effects. A particular reason

for this choice is that we want to see whether ���	 and �
���	 can be separately identified in the

sum

����� � ���	 � �
���	

of total spatial effects.

The random effects ��� � � 	� ���� 	���, for the PoGa model are obtained as i.i.d. samples

from a ��Æ� Æ� distribution with

�
��� � 	� � ��
��� �
	

Æ
�

As for �
���	, we generate data for

Æ � ���� Æ � 	� Æ � �

corresponding to large, medium and small individual–specific effects. Random effects in the

PoLN model are obtained as i.i.d. samples

��� � ������� � �
�
��1�

�
� ��#2 1� � ���

�
	 �

	

Æ

�
�

Then the log–normal effects have

� ��
��� �
	

Æ
�

just as the Gamma random effects. Combining the possible values of the variance $ � of the

unstructured spatial effects and for the scale parameter Æ, we obtain data for 9 different NB,

PoGa and PoLN models. For the discussion of simulation results, we denote them by3�$ �� Æ�.

For example,3��� 	� is a (NB, PoGa or PoLN) model without �$ � � �� unstructured spatial ef-

fects and individual random effects with medium �Æ � 	� variability, and3������ �� is a model

with high variability �$� � ����� of unstructured spatial effects and low �Æ � �� variability of

individual random effects. With this simulation design, we can assess the impact of the relative

magnitude of spatial and individual random effects on estimation of the various components.

For each model, we generate counts

��
�	�
� � � � 	� ���� 	����� � � 	� ���� 4 � 	���
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for simulation runs � � 	� ���� 4. For each simulation run �, we calculate posterior means,

standard deviations, quantiles and the DIC criterion. From 4 � 	�� simulation runs, we then

obtain overall empirical bias, MSE, boxplots etc. for the estimates of all unknown parameters

and functions.

Four important messages arise from this simulation study. First, results for NB and PoGa

models, applied to the same data sets are virtually indistinguishable. Therefore, if one is not

interested in the latent individual random effects, a NB model may be preferable. Also, com-

putation time and storage requirements may be an issue, depending on the same size.

Second, unknown fixed effects ��� �� and the scale parameter Æ are estimated very well,

regardless of the specific model. This is illustrated for a sample of models in Table 1. This is

also true for estimating the nonlinear sine curve ���� � ������, see Figures 1 and 2. A reason for

this obviously quite stable identification of fixed effects and the nonlinear effect of the metrical

covariate � is that the priors are rather different from the priors for the remaining effects, which

supports separation from the latter ones.

Third, the effects ���� of the group indicator � can still be estimated quite well, but they

seem to be more sensitive to the specific model. Figure 3 displays boxplots of mean square

errors for the 9 models. It seems that variation of the scale parameters has some impact, while

results are comparably insensitive to variations in variability of unstructured spatial effects.

Figure 4 shows true effects and (averaged) posterior mean effects for selected models. We

can observe a shrinkage effect towards zero, which becomes larger for smaller Æ, i.e. larger

individual random effects.

Fourth, separation of structured and unstructured spatial effects is generally very unreli-

able. In particular, unstructured spatial effects are always underestimated, partly to a large

extent. Obviously their effects are already captured by structured spatial and by individual

effects. This can be particularly well recognized in the ”diagonal plots” of Figures 5 to 8, where

true and estimated individual specific random effects are plotted against each other. Ideally,

the scatter plots should be near to the diagonal; but they are almost horizontal! For models

with no �$ � � �� or small �$� � ���	� unstructured effects, the structured spatial effects are still

recovered satisfactorily (Figures 5 and 6). For models 3������ Æ�, where variability of struc-

tured and unstructured effects is the same, most of unstructured spatial variability is captured

by overestimating structured spatial effects, see Figure 7, 8 and 9.
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However, as Figure 10 shows, it makes always sense to include structured and unstructured

effects, because the sum

����� � ���	 � �
���	

has always the lowest MSE. Of course, then only the total spatial effects ����� can be interpreted.

5 Application to car insurance

We apply structured count data regression models to a data set of 171288 individuals claim

frequencies of a sample of policyholders with full comprehensive car insurance for one year.

Among others, the following covariates were included in the predictor:

-: kilometers driven per year in thousands;

�: car classification, measured by � � �	 scores from 10-40;

� district in Germany (”Zulassungsbezirk” resp. ”Landkreis”), with � � ��� districts.

To make the data source anonymous, some additional covariates used for the analysis are

not described in the paper. The first covariate will be considered as metrical, car classification

� as a group indicator, and � as a spatial covariate. Among others, the vector � of categorical

covariates comprises garage (yes/no). Claim frequencies were analyzed with structured addi-

tive NB, PoGa and PoLN models. Here only part of the results for the NB model are shown.

The predictor is defined by


� � � � �� ���-�� � ������ � ��������� � �
�

��� (19)

The dots indicate that the model comprises more than the metrical covariate -. The spatial

effect �������� is further split up into the sum

�������� � ���	��� � �
���	����

The vector � contains the categorical covariates and an intercept term. The effect �� of the

metrical covariate is modelled by cubic P-splines, the effect �� of car classification and the un-

structured spatial effect �
���	 are treated as i.i.d. random effects, and for the structured spatial

effect ���	 a Markov random field prior is used.

The posterior mean estimates of the functions �� and ��, together with 80� and 95� pointwise

confidence bands are displayed in Figure 11. The confidence intervals are constructed by com-

puting the lower and upper posterior quantiles corresponding to the respective nominal level,
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e.g. 10% and 90% quantiles for a nominal level of 80%. Note that the functions are centered

about zero.

The effect of kilometers driven per year shows a distinct, almost linear increase until about

20 000 km/year. Thereafter, the increase becomes much smaller. Looking at the confidence

bounds, even a constant effect cannot be rejected. A possible explanation is that these fre-

quently used cars are driven by experienced persons and, probably, to a larger extent on a

”Autobahn” than others. Because the covariate car classification was considered as a group in-

dicator with a random effects assumption, the estimated function looks considerably rougher

than the other function. It shows an increasing trend until about category 33 that is coherent

with the intended definition of the groups. The decreasing trend after this category may be

due to sparse data in these last categories. Let us now turn to the geographical, district-specific

effects which are displayed in Figures 12-14. The top panel of Figure 12 shows the posterior

means for the structured effects ���	 displaying a smooth but very clear regional pattern: There

is a clear decline from south to northwest, perhaps with the exception of parts in the southeast.

This is confirmed by the 95% and 80% ”significance maps” in the bottom panels of Figure 12.

White colored regions correspond to strictly negative confidence intervals (i.e. a ”significant

negative effect”) and blue colored regions to strictly positive confidence intervals (i.e. a ”sig-

nificant positive effect”). Districts with confidence intervals containing zero are colored in light

blue. The top map in Figure 13 shows the posterior means of the unstructured effects �
���	.

We cannot observe any typical pattern, and, moreover, the unstructured, local effects are much

smaller than the corresponding structured effects. This is confirmed by the significance maps

in the lower part: no district has significant effect neither for a nominal level of 80% nor for a

level of 90%. The maps for the sum ����� of structured and unstructured effects in Figure 14

resemble the maps in Figure 12, but are less smooth.

6 Conclusion

Structured count data models allow to analyze the effects of covariates of various types in much

more detail and with higher resolution than with traditional parametric GLM approaches. The

results permit a close look at characteristic features of specific effects and can be of great help

for monitoring premiums for risk classes of interest. In particular, regional geographical effects
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can be investigated on a district-specific level within a joint model that adjusts for the presence

of other covariates, and they can be compared with regional ratings suggested by experts.

Extensions of our approach to other count data models, such as zero–inflated or truncated

models, hurdle models etc. are a topic of future research.
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Figure 1: Average posterior mean estimates and MSE Box Plots for models M(0.01;1), M(0;0.5)

and M(0.01;2)
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Figure 3: MSE Box Plots for posterior mean estimates of group indicator effects
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Figure 5: True and estimated structured (left row), unstructured (middle) and total (right) spa-

tial effects toghether with diagonal plots (true versus estimated effects) obtained for the PoGa

model M(0.01, 1)
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Figure 6: True and estimated structured (left row), unstructured (middle) and total (right) spa-

tial effects toghether with diagonal plots (true versus estimated effects) obtained for the PoLN

model M(0.01, 1)
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Figure 7: True and estimated structured (left row), unstructured (middle) and total (right) spa-

tial effects toghether with diagonal plots (true versus estimated effects) obtained for the PoGa

model M(0.25, 1)
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model M(0.25, 1)
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Figure 9: MSE Box Plots for posterior mean estimates of structured spatial effects
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Figure 10: MSE Box Plots for posterior mean estimates of total spatial effects
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Figure 11: Estimated nonlinear functions �� and ��. Shown is the posterior mean toghether

with 80% and 95% pointwise credible intervals
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-0.178 0.2110

Figure 12: Structured spatial effect. The top panel shows the posterior mean, the bottom left

and right panels display posterior probabilities based on nominal levels of 95% and 80%, re-

spectively. White colored regions correspond to strictly negative credible intervals and blue

colored regions to strictly positive intervals. Districs with credible intervals containing zero are

colored in light blue.
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-0.041 0.0570

Figure 13: Unstructured spatial effect. The top panel shows the posterior mean, the bottom

left and right panels display posterior probabilities based on nominal levels of 95% and 80%,

respectively. White colored regions correspond to strictly negative credible intervals and blue

colored regions to strictly positive intervals. Districs with credible intervals containing zero are

colored in light blue.
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-0.205 0.2430

Figure 14: Sum of the structured and the unstructured spatial effect. The top panel shows the

posterior mean, the bottom left and right panels display posterior probabilities based on nom-

inal levels of 95% and 80%, respectively. White colored regions correspond to strictly negative

credible intervals and blue colored regions to strictly positive intervals. Districs with credible

intervals containing zero are colored in light blue.
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