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Abstract

The present article considers the problem of consistent estimation in measurement

error models. A linear relation with not necessarily normally distributed mea-

surement errors is considered. Three possible estimators which are constructed as

different combinations of the estimators arising from direct and inverse regression

are considered. The efficiency properties of these three estimators are derived

and analyzed. The effect of non-normally distributed measurement errors is ana-

lyzed. A Monte-Carlo experiment is conducted to study the performance of these

estimators in finite samples and the effect of a non-normal distribution of the

measurement errors.
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1 Introduction:

In a linear measurement error model, the parameters can be estimated consistently

only when some additional information besides the data set is available. There

are various ways such additional information can be employed; e.g.; Cheng and

Van Ness (1999) and Fuller (1987). Among them, application of the knowledge of

all or one of the measurement error variances is the most prominent approach.

There are three basic consistent estimators of the slope parameter of the linear

model depending on what knowledge is used. If only one of the two error variances

is known and used, estimators can be constructed by adjusting either the direct (or

ordinary) least squares (LS) or the inverse least squares estimator for measurement

errors. A third, most prominent, estimator is orthogonal (or total) least squares

(TLS), which relies on the knowledge of the ratio of the error variances. For

normally distributed measurement errors, this latter estimator is the maximum

likelihood estimator. However the former two can be combined in various ways to

construct new estimators that can compete with the TLS estimator, in particular

in small samples and when the measurement errors are non-normal.

We have considered three such combinations of the direct and inverse adjusted

LS estimators. They are modelled after analogous combinations found in the

literature, where, however, they have been constructed from non-adjusted direct

and inverse LS estimators. Sokal and Rohalf (1981) considered the geometric

mean of these two estimators (which they call the technique of reduced major

axis) and Aaronson et al. (1986) work with the arithmetic mean. In addition,

the slope parameter may be estimated by the slope of the line that bisects the

angle between the direct and inverse regression lines; see, e.g., Pierce and Tully

(1988). While all these estimators are not consistent (although they possibly

reduce the bias inherent in their constituent direct and inverse LS estimators),

the present paper constructs consistent estimators by using error adjusted direct

and inverse LS rather then non-adjusted direct and inverse LS estimators. A
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simple question then arises: which out of these suggested estimators is better

under what conditions. This question has been partly dealt with in Dorff and

Gurland (1969), but for a model with replicated observations and unknown error

variances.

It seems plausible that the reliability ratios associated with study and explana-

tory variables are often easily available or can be well estimated in measurement

error models, see, Gleser (1992, 1993) for more details on this aspect. An attempt

is made in this paper to express the efficiency properties of all the estimators

under consideration as a function of reliability ratios associated with study and

explanatory variables only. This helps in obtaining conditions for the superiority

of one estimator over the other in terms of reliability ratios only.

Further, most of the literature associated with measurement error models gen-

erally assumes the normal distribution for the measurement errors. In practice,

such an assumption may not always hold true. The distribution of measurement

errors essentially depends on the nature of experiment. The specification of nor-

mality may thus sometimes lead to invalid and erroneous statistical consequences.

The effect of departure from normality is another aspect of the study which is

attempted in this paper.

The finite sample properties of the proposed estimators under different types

of distributions of measurement errors are studied through a Monte-Carlo exper-

iment.

The plan of our presentation is as follows. In Section 2, we describe a linear

model with measurement errors and present the estimators of the slope parameter

when the error variances are known. Section 3 analyzes the asymptotic properties

of the estimators when the underlying error distributions are not necessarily nor-

mal. The details of the Monte-Carlo experiment and its outcomes are reported in

Section 4. Some concluding remarks are offered in Section 5. Lastly, the Appendix

outlines the derivation of the main results.
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2 Model Specification And the Estimators :

Consider a linear measurement error model in which the variables are related by

the linear relation

Yj = α + βXj (j = 1, 2, . . . , n) (2.1)

where Yj and Xj denote the true but unobserved values of the variables, α is the

unknown intercept term and β is the unknown slope parameter.

The observed values yj and xj are expressible as

yj = Yj + uj (2.2)

xj = Xj + vj (2.3)

where uj and vj denote the associated measurement errors.

We assume that X1, X2, . . . , Xn are independently distributed random vari-

ables such that plimn→∞X̄ =: µX and plimn→∞
1
n

∑
(Xj − X̄)2 =: σ2

X exist and

σ2
X > 0. The measurement errors u1, u2, . . . , un are assumed to be independently

and identically distributed with mean 0, variance σ2
u third moment γ1uσ

3
u and

fourth moment (γ2u + 3)σ4
u. The quantities γ1. and γ2. represent the measures of

skewness and kurtosis of the respective distributions denoted in subscripts. Sim-

ilarly, the errors v1, v2, . . . , vn are assumed to be independently and identically

distributed with mean 0, variance σ2
v third moment γ1vσ

3
v and fourth moment

(γ2v + 3)σ4
v . Further, the random variables (Xj, uj, vj) are assumed to be jointly

independent.

It may be noted that this model comprises the so-called ultrastructural model,

see Dolby (1976), which in turn contains the structural and the functional model

as special cases. In the structural model, the Xj’s are i.i.d. random variables

with mean µX and variance σ2
X . In the functional model, the Xj are unknown

constants with the property that limn→∞X̄ =: µX and 1
n

∑
(Xj−X̄)2 =: σ2

X exist.

Consistent estimation of the parameters α and β in the relationship (2.1) with

the help of given data (xj, yj), j = 1, . . . , n, is possible only when some additional
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information is available.

This additional information, let us suppose, specifies the error variances σ2
u

and σ2
v . We can then estimate the slope parameter β consistently by the method

of moments. This provides the following estimators of β.

bd =
sxy

sxx − σ2
v

; sxx > σ2
v (2.4)

bi =
syy − σ2

u

sxy

; syy > σ2
u (2.5)

where

sxx =
1

n

∑
(xj − x̄)2 , x̄ =

1

n

∑
xj ;

syy =
1

n

∑
(yj − ȳ)2 , ȳ =

1

n

∑
yj ;

sxy =
1

n

∑
(xj − x̄)(yj − ȳ).

When sxx < σ2
v in bd or syy < σ2

u in bi, then one possible solution is to disregard

the whole sample because the measurement errors are too high to spoil the whole

data set. Another alternative is to use the small sample modifications in the

estimators as suggested in Fuller (1987). Further discussion on this issue is out of

the purview of this paper.

The estimator bd can be regarded as the direct OLS estimator of the slope

parameter in the regression of yj on x∗j instead of xj; see, e.g., Srivastava and

Shalabh (1997a) and Shalabh (1998), where

x∗j = x̄ +

(
1− σ2

v

sxx

)
(xj − x̄). (2.6)

Similarly, if we write

y∗j = ȳ +

(
1− σ2

u

syy

)
(yj − ȳ), (2.7)

the inverse estimator bi essentially arises from the regression of xj on y∗j instead

of yj.
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It may be observed that the estimators bd and bi utilize the knowledge of only

one error variance at a time. An estimator using the knowledge of both the error

variances is given by

bp = tp +

(
t2p +

σ2
u

σ2
v

) 1
2

; tp =
1

2sxy

(
syy −

σ2
u

σ2
v

sxx

)
; sxy 6= 0 (2.8)

which is obtained by minimizing the sum of squares of the perpendicular distance

from the data points to the line in a scatter diagram, (i.e., orthogonal regression)

after the data xj and yj have been transformed to xj/σv and yj/σu, respectively.

In the technique of “reduced major axis”, the slope parameter β is estimated

by the geometric mean of the estimators arising from direct and inverse regression

estimators as

bg = sign(sxy) |bdbi|
1
2 , (2.9)

where sign(sxy) is the sign of sxy which can be either positive or negative.

Similarly, we may estimate β by

bm =
1

2
(bd + bi) , (2.10)

which is the arithmetic mean of estimators bd and bi.

Another interesting estimator of β is

bb = tb + (t2b + 1)
1
2 ; tb =

bdbi − 1

bd + bi

, (2.11)

which is the slope of the line that bisects the angle between the two regression

lines specified by bd and bi.

It may be observed that all six estimators of β can be seen to have arisen from

the method of moments.

3 Asymptotic Properties:

The asymptotic variances of the estimator bd, bi and bp under an ultrastructural

model and when errors are not necessarily normally distributed have been studied

6



by Shalabh, Gleser and Rosen (2004), see also, Srivastava and Shalabh (1997b),

Schneeweiss (1976) and Fuller (1987). For the sake of convenience to the reader,

we restate these results. In addition, we give an expression for the asymptotic

covariance of bd and bi, which will be used in the derivation of the asymptotic

variances of bg, bm and bb.

Proposition 1: The estimators bd and bi are asymptotically jointly normally

distributed as

√
n

 bd − β

bi − β

 → N(0, Σb) where Σb =

 σdd σdi

σdi σii


with

σdd = β2

(
1− λx

λ2
x

)
[λx + q + (1− λx)(2 + γ2v)] (3.1)

σii = β2

(
1− λx

λ2
x

) [
λx + q + q2(1− λx)(2 + γ2u)

]
(3.2)

σdi = β2

(
1− λx

λ2
x

)
[λx + q(2λx − 1)] (3.3)

where

λx =
σ2

X

σ2
x

=
σ2

X

σ2
X + σ2

v

λy =
β2σ2

X

β2σ2
X + σ2

u

q =
λx(1− λy)

λy(1− λx)

The proof of this Proposition is stated in the Appendix.

Notice that λx and λy are the reliability ratios of the explanatory and study

variables in the model. Obviously, 0 < λx ≤ 1, 0 ≤ λy ≤ 1, and q ≥ 0.

Proposition 2: The estimators bp is asymptotically normally distributed as

√
n(bp − β) → N(0, σpp)
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with asymptotic variance

σpp = β2

(
1− λx

λ2
x

) [
λx + q +

q2(1− λx)

(q + 1)2
(γ2u + γ2v)

]
. (3.4)

The proof of the Proposition 2 follows from Shalabh et al. (2004).

Proposition 3: Let β̂1 and β̂2 be two consistent, asymptotically jointly normal

estimators of β. Any estimator β̂ of β which is a differentiable and symmetric

function g(β̂1, β̂2) of β̂1 and β̂2 such that β = g(β, β) is consistent and asymptot-

ically normally distributed with an asymptotic variance given by

σ2
β̂

=
1

4
(σ11 + 2σ12 + σ22) ,

where Σ = (σij), i, j = 1, 2, is the asymptotic covariance matrix of (β̂1, β̂2).

The proof of this Proposition is stated in the Appendix.

Thus, using Propositions 1 and 3, it is seen that the estimators bg, bm, and bb

are all consistent and asymptotically normal with the same asymptotic variance

given by

β2 (1− λx)δ

4λ2
x

(3.5)

where

δ = 2[q2(1− λx) + 1 + λx + 2qλx] + (1− λx)(γ2v + q2γ2u). (3.6)

It is interesting to observe from (3.5) and (3.6) that the skewness of the dis-

tributions of measurement errors has no influence on the asymptotic variances of

the estimators. It is only the kurtosis that shows its effect. Further, it is seen

that the asymptotic variance for each estimator under normality of errors could

be quite different when the distributions depart from normality.

It is interesting to note that the estimators bg, bm and bb are equally efficient.

Comparing the asymptotic variances, we find that the estimator bp is more efficient

than bg, bm or bb if, and only if,

2(q2 − 1)2 ≥ (q − 1)[(1 + 3q)γ2v − q2(q + 3)γ2u] (3.7)
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Condition (3.7) is clearly satisfied when both measurement errors have mesokur-

tic (e.g., normal) distributions. The condition also holds true when q > 1 and

γ2u ≥ 0 and γ2v < 0.

When either of the measurement errors has a distribution with non-zero coef-

ficient of kurtosis, the inequality (3.7) may not always hold true. So the estimator

bp may not necessarily have minimum variance under non-normal distributions of

measurement errors.

Next, we compare the asymptotic variances of bg, bm or bb with bd and bi. We

find that bg, bm or bb are better than bd if, and only if,

3γ2v − q2γ2u > 2(q − 3)(q + 1) (3.8)

Condition (3.8) is always satisfied for mesokurtic (e.g., normal) distributions of u

and v when q < 3.

Similarly, bg, bm or bb are better than bi if, and only if,

γ2v − 3q2γ2u < 2(3q − 1)(q + 1). (3.9)

Condition (3.9) is always satisfied for mesokurtic (e.g., normal) distributions of u

and v when q > 1
3
.

From (3.8) and (3.9), it is clear that the use of two types of additional in-

formation to obtain a consistent estimator is not always a good idea, at least

asymptotically. Rather, it depends on the values of reliability ratios associated

with dependent and independent variables as well as on the degree of peakedness

of the distributions of measurement errors to decide which of the information can

give better asymptotic results.

4 Monte Carlo Simulation:

The asymptotic theory developed in the previous section gives an idea about the

behaviour of estimators for large samples only. We conducted a Monte-Carlo sim-
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ulation to study the behaviour of the estimators in finite samples. The following

probability distributions of measurement errors are considered to have an idea of

the effect of departure from the normal distribution on the efficiency properties

of the estimators:

1. normal distribution,

2. t-distribution with 6 degrees of freedom,

3. beta distribution Beta(4, 2), and

4. Weibull distribution with shape parameter 1 and scale parameter 2.

Two data sets of sample sizes n = 40 (treated as small sample) and n = 400

(treated as large sample) are considered, for which σ2
X = 0.08. The empirical bias

(EB) and empirical mean squared error (EMSE) of the estimators bd, bi, bp, bg, bm,

and bb are computed based on 10000 replications for both the sample sizes and for

different combinations of λx = 0.1, 0.3, 0.5, 0.7, 0.9 and λy = 0.1, 0.3, 0.5, 0.7, 0.9

under different distributions of measurement errors. The values of EB and EMSE

of these estimators are presented in Tables 1 to 8 and are plotted against λx and

λy in 3-dimensional surface plots in Fig. 1 to 8. It should be noted that the

figures employ different scalings on the Z-axis. So the behaviour and dependency

of EB and EMSE with respect to λx and λy is more clearly visible from the values

compiled in the Tables 1 to 8. On the other hand, the shape of the functions

EB(λx, λy) and EMSE(λx, λy) comes out more clearly in the figures.

The following notations are used in figures 1 to 8: λx = lx, λy = ly, bd = bd,

bi = bi, bp = bp, bg = bg, bm = bm and bb = bb.

Now we analyze the behaviour of EB and EMSE of different estimators through

Fig. 1 to 8 under a given distribution of measurement errors. We are mainly

concerned in the pattern of the surfaces rather than the magnitude of values.

First we compare the properties of the various surface plots of EB in Fig. 1

to 4 under small and large samples. Generally speaking, the small sample plots
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(n = 40) show much more variability than the large sample plots (n = 400). This

is particularly true for small λx and λy. This variability reflects the extremely

high variances of the estimates for small λx and λy (see below). Nevertheless, the

bias is statistically significant in most cases.

In the case of normal measurement errors (Fig. 1), the surface plots of EB of

bd and bi are similar under small and large samples, whereas the surface plots of bp,

bg, bm, and bb differ between small and large samples. The The EB of bg changes

sign when going from small to large samples and when λx and λy are small. Under

the t distribution of measurement errors, (see Fig. 2), only the EBs of bg and bb

are similar in their behaviour under small and large samples. The sign of EB of

bd is partly positive and partly negative in small samples depending on the values

of λx and λy, whereas it is always negative in large samples. Under the beta

distribution of measurement errors, (see Fig.3), only bd has similar surface plots

in small and large samples, while the rest shows differences. In small samples, bi

and bg are negatively biased either for very low or very high values of λx and λy,

whereas they are always positively biased in large samples. The EB of bd and bg

have similar surface plots in small and large samples under Weibull distributed

measurement errors (see Fig. 4). Only bd is negatively biased, whereas the sign

of the bias of the other estimators depends on the values of λx and λy.

Next, we analyze the dependence of the EMSE of the estimators from Fig. 5

to 8 on the sample size. In general, all EMSE values become small when λx and

λy are large, whereas for small λx and/or λy, the EMSE often becomes extremely

large. Under normally distributed measurement errors (see Fig. 5), the surface

plots of bi are quite similar for small and large samples, whereas those for the

other estimators show marked differences in small and large samples especially

if λx and/ or λy are small. Under the t distribution of measurement errors (see,

Fig. 6), no similarity can be seen between small and large samples. Only the

surface plots of EMSEs of bd and bi under the beta distributed measurement
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errors (see Fig. 7) are similar between small and large samples. More variation in

the corresponding EMSEs of all estimators under small and large samples is seen

in Weibull distributed measurement errors (see Fig. 8). None of the estimators

have similar surface plots in small and large samples.

Now we compare the different surface plots of EB (Fig. 2 to 4) with those of

the normal distribution (Fig. 1) thereby studying the effect of deviations from

normality on the EB of the various estimators. Comparing the surface plots of EB

of different corresponding estimators under normal and t-distributed measurement

errors (Fig.1 and 2), we find that all are different except bp. The difference is more

pronounced in the EBs of corresponding estimators in small samples than in large

samples. Such a difference may be seen as the contribution of peakedness of the

distribution on EB. The surface patterns of all estimators under normal and beta

distributions of measurement errors are remarkably similar (Fig. 1 and 3). The

reason being that the coefficients of skewness and kurtosis of the distributions

under consideration have very small values. The surface plots of each of the

corresponding estimators under normal and Weibull distributions of measurement

errors (Fig. 1 and 4) are different except for bp in large samples. This clearly

indicates that the departure from normality do affect the EB of these estimators.

Now we compare the surface plots of the empirical mean squared error (EMSE)

of different estimators under different distributions of measurement errors (Fig. 6

to 8) to those under normally distributed measurement errors (Fig. 5). Firstly,

we compare the surface plots under normal and t-distributions of measurement

errors (Fig. 5 and 6). We observe that the surface plots of EMSEs of only bi and

bp are similar in large samples only and all others are different. This indicates

that the kurtosis of the distribution of measurement errors affects the EMSEs

of the estimators significantly. Comparison of the surface plots of EMSEs under

beta with those under normal distributions of measurement errors (Fig. 8 and

9) reveals that most of the surface plots of estimators are similar because of low
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values of coefficient of skewness and kurtosis of the beta distribution (Fig. 5 and

7). Similarly, comparing the surface plots of EMSEs under Weibull distribution

and normal distribution reveals that only bi, bd and bm have similar behaviour with

respect to λx and λy in small samples, but the corresponding large sample plots

are different. It is worth noting that bp has similar whereas bm has different surface

plots in large samples in respective distributions. We note that the asymptotic

theory indicates that bg, bm and bb should have similar surface plots. So it is clear

that the departure from normality of the distribution of measurement errors play

an important role in determining the EMSE of the estimators. However, this is

only true for small λx and λy.

Now we look at the behaviour of EB and EMSE with respect to λx and λy

under different distributions from Tables 1 to 8. It is observed that the values

of EB and EMSE under n = 400 are closer to the true values of the parameters

than under n = 40 for all distributions, which confirms the consistency of the

estimators.

We observe that under the normal distribution of measurement errors (Table

1 and 2) that as either of the values of λx or λy increases, the EB and EMSE of all

the estimators decreases. But the magnitude of EB and EMSE of every estimator

is different. The EB of bg has smallest magnitude among other estimators in

small samples when λx and λy are low, say, less than 0.3, otherwise bp has lowest

magnitude of EB. An interesting finding is that when λx and λy are very low,

the performance of bb is best among other estimators with respect to EMSE. This

dominance is stronger in small samples over a wider range of values of λx and

λy. In fact, both bg and bb have smaller variability than bp when λx and λy are

low. The estimator bp outperforms other estimators only when λx and λy are

not very low. We know from large sample theory that bg, bb and bm have the

same asymptotic variance. We may therefore expect a similar variability for these

estimators in large samples. This however holds true only when λx and λy are
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high. In small samples and with lower values of λx and λy, this is no more true.

The performance of bp is adversely affected when λy is low in comparison to when

λx is low. For higher values of λx and λy, the performance of all the estimators

stabilizes. It can also be seen from Fig. 1 and 6 that for low values of λx and

λy, say less than 0.5, the surface plots are changing, whereas when λx and λy are

grater than 0.5, the plots are smooth. The behaviour of different estimators for

different values of λx and λy, in particular when they are small, varies differently

in different distributions.

For the t-distribution of measurement errors (Tables 3 and 4), bg and bb have

smaller magnitude of EB than other estimators in small samples. The estimator

bd is always negatively biased, whereas the direction of bias of other estimators

depends on the values of λx and λy. Comparing the EMSEs, bb dominates all other

estimators when λx and λy are low. The dominating range of λx and λy is wider in

small samples than in large samples for both the EB and EMSE. The estimator bp

is adversely affected by the lower values of λy than λx in small samples. Overall,

bb emerges as a good choice when λx is small. When both are high, then bp is a

better choice.

Under the beta distribution of measurement errors (Tables 5 and 6), The

magnitude of EB of bg and bb is smaller than of other estimators in small samples

but in large samples, bp has smaller magnitude of EB. Comparing the EMSEs, we

find that bd has very high EMSE when λx ≤ 0.3, whereas bi, bp and bm have high

EMSE for λx ≤ 0.3 or λy ≤ 0.3. The estimator bg and bb have relatively much

lower EMSE than other estimators in small samples. This remains true in large

samples only when λx is very low, say, 0.1. Among all estimators, bb has smalle

EMSE for lower values of λx and λy. The estimator bp outperforms bg and bb only

when λx and λy are high in small samples and that over a wide range of values of

λx and λy. In large sample, this remains true over a narrower range of values of

λx and λy. Again, bp is severely affected by the lower values of λy in small sample.
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As λx and λy increase, the performance of all the estimators stabilize. In large

samples, this stabilization comes much faster than in small samples.

Now we consider Tables 7 and 8. The values of the magnitude of EBs and

EMSEs of all the estimators are higher under Weibull distributed measurement

errors than the corresponding values under the other distributions. This effect is

essentially due to the presence of extreme values in the sample and the shape of the

Weibull distribution considered here, which is a J-shaped curve. In spite of this,

bb shows its clear dominance with respect to the magnitude of EB and EMSE over

bp and bg in small sample when λx ≤ 0.9 and λy ≤ 0.3. In case of large samples,

this dominance is still present, but the ranges of λx and λy shrink. Under similar

conditions, bg emerges as the second best choice of estimator. The performance

of bi and bp is more severely affected by the lower values of λy than by the lower

values of λx. The difference in the values of magnitude of EBs and EMSEs under

small and large samples is higher under Weibull distributed measurement errors

than under other distributions considered earlier. It can be noticed here that the

performance of bp under this case is worst among other cases considered earlier.

Still bb and bg turns out to be more robust than bp, and bb emerges as winner.

5 Conclusions :

We considered six estimators bd, bi, bp, bg, bm, and bb for the slope parameter β

when the error variances σ2
u and σ2

v are known in a linear ultrastructural model.

These estimators can be regarded as arising from the method of moments. All

these estimators are found to be consistent and asymptotically normally distrib-

uted.

When the distributions of errors depart from normality, it is interesting to ob-

serve that the asymptotic variances of the estimators are influence by the peaked-

ness, and not the asymmetry, of the error distributions. Further it is seen that
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the superiority of an estimator over another under the popular specification of

normality may not necessarily carry over when the distributions depart from nor-

mality. For example, the uniform superiority of the estimator bp over bg, bm, and bb

is perturbed when the distributions are not normal and in particular platykurtic.

A study from a Monte Carlo simulation experiment gives an insight into the

finite sample properties of the estimators and the effect of departure from nor-

mality on the efficiency properties of the estimators. It is clear from the study

that the efficiency properties of the estimators are affected by non-normality of

the distribution of measurement errors. In particular, the effect of peakedness is

clearly seen, which is more pronounced in small samples than in large samples.

For large samples, most of the estimators show a behaviour that corresponds to

the asymptotic theory, at least for higher values of reliability ratios. As a rule of

thumb, the reliability ratios can be said to be large when λx ≥ 0.5 and λy ≥ 0.5.

In particular, when n, λx, and λy are large, then bp is best. Also, in this case bg,

bm, and bb are almost similar, which is in accordance with the asymptotic theory.

For lower values of the reliability ratios, there is no unique dominance of any of

the estimators. The uniform superiority of bp is questionable when the values of

the reliability ratios are very low under not necessarily normally distributed mea-

surement errors. In most of the cases, bb emerges as a better choice than bp when

λx and λy are low (although otherwise bp dominates). If λx and λy are small,

very large samples are needed to produce results similar to asymptotic theory;

n = 400 is not large enough. It is revealed from the simulation study that the

choice of a good estimator depends on the values of the reliability ratios as well

as the distribution of measurement errors under consideration.
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6 Appendix

Using the fundamental relations of the model (2.1)-(2.3), we find with some alge-

bra
√

n(β̂d − β) =

√
n

s2
x − σ2

v

Zd,

where

Zd = sXu + suv − βsXv − β(s2
v − σ2

v).

Denoting the centralised variable X by X∗ = X − µX , we obtain

√
nZd =

1√
n

n∑
j=1

[
X∗

j uj + ujvj − βX∗
j vj − β(v2

j − σ2
v)

]
+ op(1).

Similarly,
√

n(β̂i − β) =

√
n

sxy

Zi

with
√

nZi =
1√
n

n∑
j=1

[
βX∗

j uj − βujvj − β2X∗
j vj + u2

j − σ2
u

]
+ op(1).

By the central limit theorem,

√
n

 Zd

Zi

 → N(0, ΣZ), where ΣZ =

 σZdZd
σZdZi

σZdZi
σZiZi


with

σZdZi
= σ2

Xσ2
u + σ2

uσ
2
v + β2σ2

Xσ2
v + β2(E(v4)− σ4

v)

σZiZi
= β2σ2

Xσ2
u + β2σ2

uσ
2
v + β4σ2

Xσ2
v + E(u4)− σ4

u

σZdZi
= βσ2

Xσ2
u − βσ2

uσ
2
v + β3σ2

Xσ2
v .

As plimn→∞(s2
x − σ2

v) = σ2
X and plimn→∞sxy = βσ2

X , we finally obtain

σdd =
1

σ4
X

[
σ2

u(σ
2
X + σ2

v) + β2σ2
Xσ2

v + β2(γ2v + 2)σ4
v

]
σii =

1

σ4
X

[
σ2

u(σ
2
X + σ2

v) + β2σ2
Xσ2

v +
1

β2
(γ2u + 2)σ4

u

]
σdi =

1

σ4
X

[
σ2

u(σ
2
X − σ2

v) + β2σ2
Xσ2

v

]
17



Using the definitions of λx and q, one can see the equivalence of these expres-

sions to the corresponding ones in Proposition 1.

Proof of Proposition 3:

Denote the partial derivatives of g with respect to the first and second argu-

ment of g by g1 and g2, respectively. Then by the symmetry of g, the equation

β = g(β, β) implies

1 = g1(β, β) + g2(β, β) = 2g1(β, β) = 2g2(β, β),

i.e., g1(β, β) = g2(β, β) = 1
2
. We then can evaluate σ2

β̂
by the delta-method as

σ2
β̂

=
1

4
(1, 1)Σ(1, 1)′

which is the statement of Proposition 3.
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Figure 1: Empirical bias of estimators when measurement errors follow normal

distribution
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Figure 2: Empirical bias of estimators when measurement errors follow t - distri-

bution
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Figure 3: Empirical bias of estimators when measurement errors follow beta dis-

tribution
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Figure 4: Empirical bias of estimators when measurement errors follow Weibull

distribution
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Figure 5: Empirical mean squared error of estimators when measurement errors

follow normal distribution
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Figure 6: Empirical mean squared error of estimators when measurement errors

follow t - distribution
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Figure 7: Empirical mean squared error of estimators when measurement errors

follow beta distribution

27



Figure 8: Empirical mean squared error of estimators when measurement errors

follow Weibull distribution

28



T
ab

le
1:

E
m

p
ir
ic

al
b
ia

s
an

d
em

p
ir

ic
al

m
ea

n
sq

u
ar

ed
er

ro
r

of
es

ti
m

at
or

s
u
n
d
er

N
or

m
al

d
is

tr
ib

u
ti

on
w

it
h

n
=

40

λ
x

λ
y

E
B

(b
d
)

E
B

(b
i
)

E
B

(b
p
)

E
B

(b
g
)

E
B

(b
m

)
E

B
(b

b
)

E
M

(b
d
)

E
M

(b
i
)

E
M

(b
p
)

E
M

(b
g
)

E
M

(b
m

)
E

M
(b

b
)

0
.1

0
.1

2
.3

7
7
8

0
.0

9
7
0

2
.9

8
3
7

-0
.1

5
1
5

1
.2

3
7
4

0
.1

9
7
5

2
3
3
8
.3

3
4
7

7
2
6
4
.9

6
2
6

6
7
0
9
.6

8
9
7

6
.2

7
1
3

2
3
9
8
.4

4
8
2

1
.0

2
5
9

0
.1

0
.3

2
.9

5
3
3

2
.8

1
9
7

2
.8

1
5
9

-0
.3

0
6
8

2
.8

8
6
5

-0
.0

2
2
2

8
3
7
2
.1

1
5
3

1
1
1
1
2
0
.0

2
2
2

4
2
0
6
1
.1

7
8
1

2
.8

3
5
8

2
9
8
7
0
.8

6
8
1

0
.6

6
5
4

0
.1

0
.5

1
.7

7
8
0

-0
.6

1
9
0

0
.6

1
4
9

-0
.2

2
6
9

0
.5

7
9
5

-0
.1

1
7
9

5
9
2
3
.5

7
5
3

3
5
6
7
.5

5
8
3

9
3
.0

3
0
0

1
.9

7
7
7

2
3
7
0
.1

4
0
2

0
.2

8
0
7

0
.1

0
.7

2
.3

6
6
4

-0
.6

8
7
8

0
.4

6
1
5

0
.0

9
9
5

0
.8

3
9
3

-0
.0

0
8
5

2
8
0
2
.5

0
7
9

2
6
7
8
.2

7
6
0

9
5
.1

4
0
4

2
.1

8
9
6

1
3
6
5
.6

5
5
5

0
.2

6
0
6

0
.1

0
.9

2
.1

0
9
5

0
.2

1
7
1

0
.6

0
2
3

-0
.0

4
4
3

1
.1

6
3
3

-0
.0

9
9
0

2
8
2
6
.3

5
6
6

3
4
0
.8

7
0
6

2
2
0
.4

2
2
9

1
.8

7
7
0

7
8
8
.4

4
0
9

0
.2

4
0
9

0
.3

0
.1

2
.8

7
0
8

0
.4

3
3
8

5
.9

2
5
0

0
.1

9
7
2

1
.6

5
2
3

0
.5

2
0
3

2
2
5
1
.0

4
0
2

9
9
8
0
.3

7
2
3

7
0
9
9
.3

0
8
2

1
2
.2

6
9
0

3
0
5
7
.0

2
1
0

1
.9

4
7
6

0
.3

0
.3

1
.2

9
6
4

0
.1

4
3
4

0
.1

8
9
7

0
.1

7
8
2

0
.7

1
9
9

0
.1

0
9
8

5
5
1
.5

3
6
1

1
8
.9

5
4
9

4
.5

8
8
3

1
.5

1
3
4

1
4
1
.6

7
5
4

0
.3

2
8
2

0
.3

0
.5

1
.2

0
6
6

0
.0

7
5
7

0
.1

0
1
9

0
.2

1
7
8

0
.6

4
1
2

0
.1

2
7
0

1
9
3
.5

4
2
3

7
.6

5
7
7

4
.4

9
4
0

1
.1

1
5
6

4
9
.3

8
9
6

0
.2

5
6
6

0
.3

0
.7

1
.7

2
2
9

0
.0

4
6
2

0
.0

5
4
1

0
.2

6
7
9

0
.8

8
4
6

0
.1

4
2
3

5
3
9
.3

2
3
1

0
.3

8
4
3

0
.2

0
9
2

1
.6

7
6
8

1
3
2
.9

6
2
6

0
.2

5
8
6

0
.3

0
.9

1
.4

2
4
6

0
.0

3
7
5

0
.0

4
0
2

0
.2

5
3
8

0
.7

3
1
1

0
.1

5
3
2

5
7
4
.9

0
0
5

0
.0

7
5
2

0
.0

7
3
4

1
.4

0
1
5

1
4
2
.4

7
2
4

0
.2

2
1
0

0
.5

0
.1

0
.2

3
7
0

1
.2

3
9
5

3
.3

1
0
3

0
.2

2
5
5

0
.7

3
8
3

0
.2

4
8
4

0
.6

8
9
7

2
9
6
1
.1

6
6
4

3
1
2
9
.7

8
8
9

0
.5

6
5
2

7
4
0
.7

2
2
7

0
.3

6
3
3

0
.5

0
.3

0
.1

3
6
9

0
.0

1
6
0

0
.0

6
4
8

0
.0

1
4
6

0
.0

7
6
5

0
.0

1
9
9

0
.2

9
0
7

9
.8

3
6
7

0
.7

7
6
7

0
.1

4
6
1

2
.5

3
0
1

0
.1

2
4
1

0
.5

0
.5

0
.2

1
5
3

-0
.0

0
1
3

0
.0

3
3
7

0
.0

5
0
1

0
.1

0
7
0

0
.0

4
1
0

1
0
.2

1
2
3

0
.1

4
0
0

0
.0

8
6
8

0
.1

7
3
8

2
.5

8
3
2

0
.0

9
9
5

0
.5

0
.7

1
.0

3
1
9

0
.0

3
8
5

0
.0

5
5
7

0
.1

8
0
1

0
.5

3
5
2

0
.1

1
6
1

4
9
5
.7

9
8
9

0
.3

3
7
1

0
.2

5
6
6

1
.0

0
5
0

1
2
3
.4

0
3
0

0
.1

8
6
2

0
.5

0
.9

0
.1

4
4
1

0
.0

1
9
5

0
.0

2
4
2

0
.0

6
8
4

0
.0

8
1
8

0
.0

6
3
9

0
.3

6
6
8

0
.0

3
0
9

0
.0

3
1
0

0
.0

7
4
2

0
.1

0
9
1

0
.0

6
0
6

0
.7

0
.1

0
.1

4
0
7

1
.0

4
2
7

6
.4

0
1
0

0
.2

2
5
2

0
.5

9
1
7

0
.2

2
4
6

0
.2

8
5
6

9
2
3
.0

0
8
7

2
3
1
7
3
.2

0
7
6

0
.4

3
1
1

2
3
1
.0

0
2
9

0
.2

8
0
9

0
.7

0
.3

0
.0

8
7
2

0
.1

3
9
1

0
.1

7
5
7

0
.0

1
3
0

0
.1

1
3
2

0
.0

2
3
4

0
.1

4
6
8

4
1
.0

8
4
1

3
4
.1

4
5
0

0
.1

5
7
7

1
0
.2

9
1
7

0
.1

3
0
4

0
.7

0
.5

0
.0

5
1
6

-0
.0

2
7
1

0
.0

1
8
7

-0
.0

1
0
8

0
.0

1
2
3

-0
.0

0
7
7

0
.0

8
4
1

0
.1

4
6
4

0
.0

5
9
8

0
.0

7
4
4

0
.0

6
9
2

0
.0

6
8
8

0
.7

0
.7

0
.0

4
0
1

-0
.0

0
8
1

0
.0

0
9
4

0
.0

1
0
6

0
.0

1
6
0

0
.0

1
0
4

0
.0

4
8
1

0
.0

3
8
4

0
.0

2
9
0

0
.0

3
1
0

0
.0

3
0
3

0
.0

3
0
6

0
.7

0
.9

0
.0

3
2
2

0
.0

0
4
1

0
.0

0
8
9

0
.0

1
6
7

0
.0

1
8
2

0
.0

1
6
6

0
.0

2
2
2

0
.0

1
3
4

0
.0

1
2
9

0
.0

1
4
6

0
.0

1
4
1

0
.0

1
4
6

0
.9

0
.1

0
.1

4
7
5

0
.7

1
0
3

9
.0

6
8
8

0
.1

8
4
5

0
.4

2
8
9

0
.1

8
2
0

0
.1

9
3
5

3
3
.1

1
0
8

4
3
3
8
9
.9

5
2
7

0
.3

1
1
4

8
.5

8
4
3

0
.2

3
6
9

0
.9

0
.3

0
.0

4
2
8

0
.0

3
3
3

0
.0

3
9
2

-0
.0

1
2
7

0
.0

3
8
1

-0
.0

0
3
1

0
.0

7
3
0

0
.3

9
0
0

0
.0

6
9
9

0
.1

2
6
3

0
.1

2
7
7

0
.1

0
7
4

0
.9

0
.5

0
.0

1
3
0

-0
.0

5
4
7

0
.0

0
4
8

-0
.0

3
8
9

-0
.0

2
0
9

-0
.0

3
4
4

0
.0

4
2
9

0
.1

3
5
2

0
.0

4
0
6

0
.0

6
6
0

0
.0

5
9
7

0
.0

6
0
2

0
.9

0
.7

0
.0

0
9
7

-0
.0

1
7
3

0
.0

0
2
7

-0
.0

0
5
9

-0
.0

0
3
8

-0
.0

0
5
8

0
.0

1
6
8

0
.0

2
5
2

0
.0

1
5
5

0
.0

1
7
0

0
.0

1
6
8

0
.0

1
6
9

0
.9

0
.9

0
.0

0
7
8

-0
.0

0
2
1

0
.0

0
2
6

0
.0

0
2
6

0
.0

0
2
9

0
.0

0
2
6

0
.0

0
6
0

0
.0

0
5
7

0
.0

0
5
3

0
.0

0
5
3

0
.0

0
5
3

0
.0

0
5
3

29



T
ab

le
2:

E
m

p
ir
ic

al
b
ia

s
an

d
em

p
ir

ic
al

m
ea

n
sq

u
ar

ed
er

ro
r

of
es

ti
m

at
or

s
u
n
d
er

n
or

m
al

d
is

tr
ib

u
ti

on
w

it
h

n
=

40
0

λ
x

λ
y

E
B

(b
d
)

E
B

(b
i
)

E
B

(b
p
)

E
B

(b
g
)

E
B

(b
m

)
E

B
(b

b
)

E
M

(b
d
)

E
M

(b
i
)

E
M

(b
p
)

E
M

(b
g
)

E
M

(b
m

)
E

M
(b

b
)

0
.1

0
.1

1
.5

2
6
3

0
.8

6
5
2

0
.4

6
4
5

0
.1

7
0
0

1
.1

9
5
8

0
.1

0
5
5

3
6
2
.1

5
5
5

2
0
8
8
.5

9
1
5

1
1
7
.7

5
5
8

1
.4

5
8
7

6
1
2
.3

9
0
2

0
.3

3
8
7

0
.1

0
.3

1
.6

5
3
1

0
.1

1
5
1

0
.0

8
2
6

0
.2

1
6
6

0
.8

8
4
1

0
.1

0
3
8

7
8
1
.7

2
1
8

1
0
.8

0
3
9

8
.1

2
3
5

1
.3

1
2
6

1
9
8
.1

2
0
2

0
.2

0
2
5

0
.1

0
.5

1
.5

7
8
6

0
.0

3
3
4

0
.0

2
6
0

0
.2

3
1
0

0
.8

0
6
0

0
.1

0
7
8

2
9
2
.5

0
3
9

0
.0

7
2
7

0
.0

6
0
8

1
.3

4
0
0

7
3
.2

3
9
3

0
.1

8
7
5

0
.1

0
.7

1
.8

7
7
5

0
.0

2
1
1

0
.0

1
9
4

0
.2

3
0
5

0
.9

4
9
3

0
.1

1
4
8

2
0
2
3
.7

9
5
7

0
.0

3
8
5

0
.0

3
6
3

1
.5

8
2
4

5
0
6
.0

3
0
9

0
.1

7
7
8

0
.1

0
.9

1
.3

1
5
6

0
.0

1
4
5

0
.0

1
3
9

0
.2

0
0
3

0
.6

6
5
1

0
.1

0
2
8

4
4
4
.2

8
3
3

0
.0

2
7
4

0
.0

2
7
0

1
.0

4
0
9

1
1
1
.1

3
3
3

0
.1

6
1
7

0
.3

0
.1

0
.0

6
0
7

0
.1

4
7
1

0
.0

4
4
9

0
.0

1
1
7

0
.1

0
3
9

0
.0

1
8
0

0
.1

4
6
6

0
.9

6
7
5

0
.2

0
4
4

0
.1

2
5
5

0
.2

4
9
0

0
.1

0
1
4

0
.3

0
.3

0
.0

6
4
8

0
.0

0
8
1

0
.0

1
5
1

0
.0

1
6
8

0
.0

3
6
5

0
.0

1
5
8

0
.1

0
9
8

0
.0

7
1
3

0
.0

3
3
5

0
.0

3
8
2

0
.0

8
4
7

0
.0

3
5
7

0
.3

0
.5

0
.0

5
6
6

0
.0

0
7
1

0
.0

1
0
0

0
.0

2
2
1

0
.0

3
1
9

0
.0

2
1
1

0
.0

7
8
8

0
.0

2
2
6

0
.0

1
6
6

0
.0

2
3
6

0
.0

2
7
4

0
.0

2
2
3

0
.3

0
.7

0
.0

5
7
5

0
.0

0
6
4

0
.0

0
8
2

0
.0

2
5
4

0
.0

3
2
0

0
.0

2
4
6

0
.0

6
5
9

0
.0

1
0
7

0
.0

1
0
0

0
.0

1
9
8

0
.0

2
2
5

0
.0

1
8
9

0
.3

0
.9

0
.0

5
2
4

0
.0

0
6
0

0
.0

0
6
6

0
.0

2
4
4

0
.0

2
9
2

0
.0

2
3
8

0
.0

5
3
3

0
.0

0
7
0

0
.0

0
6
9

0
.0

1
6
9

0
.0

1
8
7

0
.0

1
6
3

0
.5

0
.1

0
.0

2
0
2

0
.1

0
8
4

0
.0

2
1
3

0
.0

0
2
5

0
.0

6
4
3

0
.0

0
9
6

0
.0

5
3
7

0
.4

3
4
5

0
.0

4
6
5

0
.1

0
7
6

0
.1

1
4
1

0
.0

8
7
0

0
.5

0
.3

0
.0

1
1
5

-0
.0

0
3
3

0
.0

0
3
3

-0
.0

0
4
2

0
.0

0
4
1

-0
.0

0
3
9

0
.0

2
1
6

0
.0

4
8
9

0
.0

1
5
6

0
.0

1
9
0

0
.0

1
8
9

0
.0

1
8
6

0
.5

0
.5

0
.0

1
2
5

-0
.0

0
0
1

0
.0

0
3
1

0
.0

0
3
0

0
.0

0
6
2

0
.0

0
3
0

0
.0

1
5
8

0
.0

1
5
5

0
.0

0
8
9

0
.0

0
9
0

0
.0

0
9
2

0
.0

0
9
0

0
.5

0
.7

0
.0

1
6
0

0
.0

0
1
5

0
.0

0
3
6

0
.0

0
7
1

0
.0

0
8
8

0
.0

0
7
1

0
.0

1
2
5

0
.0

0
6
1

0
.0

0
5
2

0
.0

0
6
0

0
.0

0
6
1

0
.0

0
6
0

0
.5

0
.9

0
.0

1
8
1

0
.0

0
2
2

0
.0

0
3
0

0
.0

0
9
0

0
.0

1
0
2

0
.0

0
8
9

0
.0

1
2
7

0
.0

0
4
0

0
.0

0
3
9

0
.0

0
5
7

0
.0

0
5
9

0
.0

0
5
7

0
.7

0
.1

0
.0

1
6
0

0
.1

2
3
2

0
.0

1
8
1

0
.0

0
9
4

0
.0

6
9
6

0
.0

1
6
5

0
.0

3
8
4

0
.4

5
8
3

0
.0

3
6
5

0
.1

1
7
8

0
.1

2
2
8

0
.0

9
3
8

0
.7

0
.3

0
.0

0
3
0

-0
.0

0
9
5

0
.0

0
0
7

-0
.0

0
8
6

-0
.0

0
3
3

-0
.0

0
8
3

0
.0

1
0
3

0
.0

4
1
0

0
.0

0
9
5

0
.0

1
5
8

0
.0

1
5
3

0
.0

1
5
4

0
.7

0
.5

0
.0

0
2
8

-0
.0

0
3
8

0
.0

0
0
5

-0
.0

0
1
6

-0
.0

0
0
5

-0
.0

0
1
6

0
.0

0
4
9

0
.0

0
8
8

0
.0

0
4
2

0
.0

0
4
7

0
.0

0
4
7

0
.0

0
4
7

0
.7

0
.7

0
.0

0
4
3

-0
.0

0
0
9

0
.0

0
1
3

0
.0

0
1
3

0
.0

0
1
7

0
.0

0
1
3

0
.0

0
3
1

0
.0

0
3
0

0
.0

0
2
3

0
.0

0
2
3

0
.0

0
2
3

0
.0

0
2
3

0
.7

0
.9

0
.0

0
2
9

-0
.0

0
0
1

0
.0

0
0
4

0
.0

0
1
3

0
.0

0
1
4

0
.0

0
1
3

0
.0

0
2
0

0
.0

0
1
4

0
.0

0
1
3

0
.0

0
1
4

0
.0

0
1
4

0
.0

0
1
4

0
.9

0
.1

0
.0

1
3
2

0
.0

7
5
9

0
.0

1
3
6

-0
.0

0
4
2

0
.0

4
4
6

0
.0

0
4
6

0
.0

2
6
1

0
.3

5
6
3

0
.0

2
5
8

0
.1

0
5
2

0
.0

9
9
4

0
.0

8
4
5

0
.9

0
.3

0
.0

0
1
5

-0
.0

0
8
5

0
.0

0
1
0

-0
.0

0
6
8

-0
.0

0
3
5

-0
.0

0
6
6

0
.0

0
6
2

0
.0

2
9
0

0
.0

0
6
2

0
.0

1
1
7

0
.0

1
1
4

0
.0

1
1
5

0
.9

0
.5

-0
.0

0
0
1

-0
.0

0
5
7

-0
.0

0
0
7

-0
.0

0
3
6

-0
.0

0
2
9

-0
.0

0
3
6

0
.0

0
2
8

0
.0

0
7
3

0
.0

0
2
8

0
.0

0
3
7

0
.0

0
3
7

0
.0

0
3
7

0
.9

0
.7

0
.0

0
0
8

-0
.0

0
1
2

0
.0

0
0
3

-0
.0

0
0
3

-0
.0

0
0
2

-0
.0

0
0
3

0
.0

0
1
4

0
.0

0
2
0

0
.0

0
1
3

0
.0

0
1
4

0
.0

0
1
4

0
.0

0
1
4

0
.9

0
.9

0
.0

0
1
1

-0
.0

0
0
1

0
.0

0
0
5

0
.0

0
0
5

0
.0

0
0
5

0
.0

0
0
5

0
.0

0
0
7

0
.0

0
0
7

0
.0

0
0
6

0
.0

0
0
6

0
.0

0
0
6

0
.0

0
0
6

30



T
ab

le
3:

E
m

p
ir
ic

al
b
ia

s
an

d
em

p
ir

ic
al

m
ea

n
sq

u
ar

ed
er

ro
r

of
es

ti
m

at
or

s
u
n
d
er

t-
d
is

tr
ib

u
ti

on
w

it
h

n
=

40

λ
x

λ
y

E
B

(b
d
)

E
B

(b
i
)

E
B

(b
p
)

E
B

(b
g
)

E
B

(b
m

)
E

B
(b

b
)

E
M

(b
d
)

E
M

(b
i
)

E
M

(b
p
)

E
M

(b
g
)

E
M

(b
m

)
E

M
(b

b
)

0
.1

0
.1

0
.4

0
0
0

-0
.6

0
8
9

4
.9

9
6
3

-0
.5

6
5
9

-0
.1

0
4
4

0
.2

0
4
9

3
9
2
8
.4

2
9
1

1
7
7
4
8
.1

3
5
2

1
2
3
0
5
.0

3
6
0

1
1
.3

4
3
9

5
4
2
4
.3

5
1
6

1
.3

4
6
7

0
.1

0
.3

-0
.1

5
6
8

-0
.8

4
8
6

2
.7

5
8
3

-0
.4

3
8
5

-0
.5

0
2
7

-0
.0

6
8
1

1
8
2
.9

6
1
5

2
4
0
6
4
.2

1
2
1

7
8
9
7
.0

1
2
4

1
.4

5
3
4

6
0
6
2
.5

8
4
3

0
.4

5
6
1

0
.1

0
.5

-0
.0

2
7
7

0
.7

4
3
3

1
.0

3
3
7

-0
.2

0
5
2

0
.3

5
7
8

-0
.1

4
5
3

6
6
.4

3
3
0

2
0
0
3
.0

0
7
9

1
1
0
5
.6

0
3
9

0
.7

6
2
0

5
1
7
.1

7
8
2

0
.2

3
1
0

0
.1

0
.7

-0
.0

3
6
1

0
.5

1
2
9

0
.6

6
2
8

-0
.2

2
2
6

0
.2

3
8
4

-0
.1

8
5
2

6
7
.7

7
4
8

1
9
5
.0

0
9
4

1
0
3
.4

1
9
4

0
.7

3
4
5

6
5
.6

0
2
2

0
.2

0
9
9

0
.1

0
.9

-0
.1

0
1
7

0
.2

9
0
4

0
.6

9
9
0

-0
.3

2
9
8

0
.0

9
4
3

-0
.2

4
7
8

8
0
.5

7
2
2

1
4
6
.9

3
3
7

6
4
.0

0
3
8

0
.7

4
3
9

5
6
.8

2
4
2

0
.2

2
0
6

0
.3

0
.1

0
.0

2
6
3

3
.2

0
2
6

7
.5

2
3
0

0
.2

5
5
1

1
.6

1
4
4

0
.4

3
1
9

2
6
.0

9
5
9

3
6
4
6
9
.0

9
7
0

1
1
0
3
1
.6

5
5
4

3
.8

8
8
3

9
1
2
4
.3

8
2
9

1
.2

0
3
9

0
.3

0
.3

-0
.0

6
1
0

0
.7

8
3
4

0
.7

0
9
0

0
.0

7
4
9

0
.3

6
1
2

0
.0

7
3
8

1
7
.8

7
7
6

2
2
1
8
.9

9
1
5

6
2
0
.2

4
1
3

0
.5

5
4
5

5
5
9
.2

0
8
2

0
.2

2
3
3

0
.3

0
.5

0
.0

0
9
6

0
.4

3
9
4

0
.1

8
6
0

0
.0

0
8
8

0
.2

2
4
5

-0
.0

0
1
8

9
7
.2

6
2
3

3
6
.6

4
8
9

1
.2

7
9
0

0
.5

8
1
2

3
3
.5

5
2
7

0
.1

6
0
6

0
.3

0
.7

-0
.0

3
0
1

0
.2

5
7
5

0
.1

2
6
1

-0
.0

4
4
9

0
.1

1
3
7

-0
.0

5
4
2

2
5
.3

7
8
2

2
.5

7
8
9

0
.9

8
4
2

0
.4

1
7
5

7
.0

3
9
4

0
.1

4
3
0

0
.3

0
.9

-0
.0

5
1
2

0
.0

9
5
5

0
.0

7
0
3

-0
.0

6
9
3

0
.0

2
2
2

-0
.0

7
4
5

4
7
.1

4
3
1

0
.7

4
4
4

0
.5

6
2
6

0
.2

4
4
3

1
2
.0

0
2
6

0
.0

9
8
3

0
.5

0
.1

-0
.1

0
6
5

1
.3

1
4
3

7
.5

5
1
1

0
.4

8
0
2

0
.6

0
3
9

0
.4

4
5
0

0
.4

6
9
0

2
8
9
7
0
.6

5
0
8

8
3
2
2
.1

8
1
8

1
.5

6
3
9

7
2
4
3
.4

3
8
2

0
.5

5
4
9

0
.5

0
.3

-0
.1

2
6
7

0
.6

6
7
6

0
.1

5
9
9

0
.1

1
5
2

0
.2

7
0
5

0
.1

0
0
7

0
.1

4
0
3

2
6
3
.8

1
3
9

3
7
.7

5
7
3

0
.1

4
2
4

6
5
.9

0
4
5

0
.1

1
3
4

0
.5

0
.5

-0
.1

4
7
6

0
.5

6
5
9

0
.1

2
4
2

0
.0

4
8
6

0
.2

0
9
1

0
.0

4
4
2

0
.1

9
5
9

5
5
.2

7
2
1

2
.7

7
9
3

0
.1

1
1
5

1
3
.7

6
2
2

0
.0

9
4
0

0
.5

0
.7

-0
.1

2
1
7

0
.2

2
6
6

0
.0

6
8
7

-0
.0

1
3
6

0
.0

5
2
5

-0
.0

1
6
1

2
.7

1
1
6

0
.5

9
3
1

0
.3

3
2
4

0
.1

4
0
8

0
.8

3
0
5

0
.0

8
2
0

0
.5

0
.9

-0
.1

4
6
4

0
.0

8
7
4

0
.0

4
3
1

-0
.0

5
8
3

-0
.0

2
9
5

-0
.0

5
7
0

0
.2

6
3
0

0
.1

3
9
6

0
.0

6
3
3

0
.0

6
9
0

0
.1

0
6
4

0
.0

5
8
8

0
.7

0
.1

-0
.0

6
4
1

2
.8

2
0
1

3
3
.5

8
9
4

0
.7

0
2
6

1
.3

7
8
0

0
.5

8
1
3

0
.4

6
7
8

3
0
8
1
6
.6

4
5
6

5
0
0
1
2
7
.1

3
6
1

2
.3

4
0
6

7
7
0
4
.7

7
3
2

0
.7

4
9
1

0
.7

0
.3

-0
.0

7
5
1

0
.7

4
7
2

0
.1

4
2
7

0
.2

0
0
8

0
.3

3
6
0

0
.1

7
4
7

0
.1

0
0
3

3
8
.6

1
5
0

4
5
.2

9
9
0

0
.1

9
1
3

9
.6

3
9
2

0
.1

4
3
5

0
.7

0
.5

-0
.0

6
8
9

0
.2

4
6
3

0
.0

1
7
3

0
.0

6
2
2

0
.0

8
8
7

0
.0

5
9
3

0
.0

4
5
6

0
.2

1
4
8

0
.0

5
3
3

0
.0

4
8
2

0
.0

6
2
7

0
.0

4
5
1

0
.7

0
.7

-0
.0

9
7
4

0
.1

6
6
1

0
.0

2
0
6

0
.0

1
3
2

0
.0

3
4
4

0
.0

1
2
6

0
.0

5
4
5

0
.1

9
8
8

0
.0

9
8
4

0
.0

3
6
0

0
.0

6
0
2

0
.0

3
4
5

0
.7

0
.9

-0
.0

8
4
7

0
.0

4
9
8

0
.0

1
4
6

-0
.0

2
3
3

-0
.0

1
7
4

-0
.0

2
3
0

0
.0

3
3
7

0
.0

2
5
3

0
.0

2
0
4

0
.0

1
8
0

0
.0

1
7
8

0
.0

1
7
8

0
.9

0
.1

0
.0

0
8
5

3
.7

5
2
7

2
1
.8

5
1
9

0
.6

5
8
4

1
.8

8
0
6

0
.5

1
0
3

0
.2

0
7
5

6
7
1
5
.3

3
7
8

2
5
8
4
1
6
.7

5
5
7

1
.0

6
0
0

1
6
7
8
.1

9
4
0

0
.5

2
7
7

0
.9

0
.3

-0
.0

2
0
2

0
.7

4
3
3

0
.0

1
3
5

0
.2

3
8
5

0
.3

6
1
5

0
.2

1
1
5

0
.0

7
0
7

2
.5

4
0
9

0
.0

7
8
1

0
.1

9
7
8

0
.6

2
8
7

0
.1

5
7
1

0
.9

0
.5

-0
.0

3
1
0

0
.3

9
7
5

0
.0

1
2
5

0
.1

3
6
9

0
.1

8
3
2

0
.1

2
8
0

0
.0

4
5
4

0
.6

0
6
7

0
.0

5
2
3

0
.0

8
9
3

0
.1

6
1
3

0
.0

7
8
7

0
.9

0
.7

-0
.0

4
5
5

0
.2

1
5
5

0
.0

0
9
0

0
.0

6
7
0

0
.0

8
5
0

0
.0

6
4
8

0
.0

3
1
6

0
.1

5
3
5

0
.0

3
5
6

0
.0

3
9
4

0
.0

4
8
0

0
.0

3
7
2

0
.9

0
.9

-0
.0

4
3
0

0
.0

5
9
2

0
.0

0
5
8

0
.0

0
5
1

0
.0

0
8
1

0
.0

0
5
1

0
.0

1
5
4

0
.0

2
1
2

0
.0

1
3
5

0
.0

1
1
8

0
.0

1
2
1

0
.0

1
1
7

31



T
ab

le
4:

E
m

p
ir
ic

al
b
ia

s
an

d
em

p
ir

ic
al

m
ea

n
sq

u
ar

ed
er

ro
r

of
es

ti
m

at
or

s
u
n
d
er

t-
d
is

tr
ib

u
ti

on
w

it
h

n
=

40
0

λ
x

λ
y

E
B

(b
d
)

E
B

(b
i
)

E
B

(b
p
)

E
B

(b
g
)

E
B

(b
m

)
E

B
(b

b
)

E
M

(b
d
)

E
M

(b
i
)

E
M

(b
p
)

E
M

(b
g
)

E
M

(b
m

)
E

M
(b

b
)

0
.1

0
.1

-0
.7

2
7
9

3
.4

3
9
7

0
.6

7
5
4

-0
.0

2
1
7

1
.3

5
5
9

0
.0

0
5
8

0
.5

5
2
0

1
3
0
9
.4

2
4
4

4
5
.3

6
9
5

0
.1

1
8
2

3
2
6
.1

7
5
5

0
.0

1
0
5

0
.1

0
.3

-0
.7

7
1
1

1
.1

6
4
9

0
.1

7
7
9

-0
.3

4
2
2

0
.1

9
6
9

-0
.2

2
1
5

0
.6

0
4
3

9
4
.9

9
2
9

4
.6

6
9
5

0
.1

3
3
0

2
3
.4

2
6
7

0
.0

5
8
0

0
.1

0
.5

-0
.7

2
2
9

0
.3

7
7
6

0
.0

4
8
5

-0
.3

9
9
4

-0
.1

7
2
7

-0
.3

1
8
2

0
.5

3
0
4

0
.2

7
8
0

0
.0

8
5
7

0
.1

6
7
4

0
.0

5
9
1

0
.1

0
7
2

0
.1

0
.7

-0
.7

0
1
8

0
.1

5
2
5

0
.0

2
9
3

-0
.4

2
3
6

-0
.2

7
4
7

-0
.3

6
0
2

0
.4

9
9
3

0
.0

6
7
4

0
.0

3
6
8

0
.1

8
5
6

0
.0

8
5
5

0
.1

3
4
2

0
.1

0
.9

-0
.7

3
3
8

0
.0

6
7
8

0
.0

2
6
8

-0
.4

7
5
7

-0
.3

3
3
0

-0
.4

0
6
2

0
.5

4
4
3

0
.0

4
0
1

0
.0

3
3
5

0
.2

3
1
7

0
.1

1
9
2

0
.1

6
8
9

0
.3

0
.1

-0
.3

8
7
0

2
.8

4
7
3

0
.0

4
8
8

0
.4

6
7
3

1
.2

3
0
2

0
.3

0
5
2

0
.1

7
9
2

1
1
.9

2
4
8

0
.2

4
0
7

0
.2

6
7
0

2
.3

9
6
7

0
.1

1
5
2

0
.3

0
.3

-0
.4

2
5
9

0
.8

1
7
9

0
.0

2
3
2

0
.0

0
7
2

0
.1

9
6
0

0
.0

0
5
3

0
.1

9
5
3

0
.8

2
4
2

0
.0

5
2
5

0
.0

1
5
0

0
.0

7
3
5

0
.0

1
0
9

0
.3

0
.5

-0
.4

3
0
0

0
.3

5
5
8

0
.0

1
1
3

-0
.1

2
7
7

-0
.0

3
7
1

-0
.1

1
6
4

0
.1

9
4
9

0
.1

6
7
7

0
.0

2
4
6

0
.0

2
4
5

0
.0

1
2
3

0
.0

2
0
4

0
.3

0
.7

-0
.4

0
7
6

0
.1

4
2
3

0
.0

0
9
0

-0
.1

8
0
8

-0
.1

3
2
7

-0
.1

7
1
4

0
.1

7
4
1

0
.0

3
3
7

0
.0

1
1
2

0
.0

3
8
1

0
.0

2
2
8

0
.0

3
4
1

0
.3

0
.9

-0
.4

3
6
5

0
.0

4
7
9

0
.0

0
5
3

-0
.2

3
4
5

-0
.1

9
4
3

-0
.2

2
3
9

0
.1

9
7
9

0
.0

1
0
7

0
.0

0
7
8

0
.0

5
9
6

0
.0

4
1
8

0
.0

5
4
1

0
.5

0
.1

-0
.2

1
8
3

2
.7

4
0
8

0
.0

1
4
7

0
.6

6
9
7

1
.2

6
1
3

0
.4

7
8
1

0
.0

7
4
1

8
.8

7
5
5

0
.0

5
2
5

0
.5

0
0
9

1
.8

9
6
3

0
.2

5
3
9

0
.5

0
.3

-0
.2

3
8
4

0
.7

6
8
4

0
.0

1
0
0

0
.1

5
2
2

0
.2

6
5
0

0
.1

3
6
9

0
.0

6
7
9

0
.6

8
8
4

0
.0

2
2
3

0
.0

3
6
7

0
.0

9
4
6

0
.0

2
9
5

0
.5

0
.5

-0
.2

3
7
3

0
.3

2
5
9

0
.0

0
4
9

0
.0

0
2
6

0
.0

4
4
3

0
.0

0
2
4

0
.0

6
3
2

0
.1

2
8
4

0
.0

1
1
1

0
.0

0
6
2

0
.0

0
9
3

0
.0

0
5
7

0
.5

0
.7

-0
.2

4
4
0

0
.1

5
1
6

0
.0

0
9
2

-0
.0

6
9
7

-0
.0

4
6
2

-0
.0

6
8
4

0
.0

6
5
1

0
.1

8
6
6

0
.1

5
8
1

0
.0

1
0
7

0
.0

4
4
7

0
.0

0
8
5

0
.5

0
.9

-0
.2

7
1
0

0
.0

4
9
2

0
.0

0
2
7

-0
.1

2
6
7

-0
.1

1
0
9

-0
.1

2
4
4

0
.0

7
8
6

0
.0

0
6
7

0
.0

0
3
9

0
.0

1
9
1

0
.0

1
5
1

0
.0

1
8
3

0
.7

0
.1

-0
.1

0
6
1

2
.6

6
0
4

0
.0

0
3
6

0
.7

7
7
6

1
.2

7
7
1

0
.5

8
5
6

0
.0

3
4
6

8
.1

5
2
0

0
.0

3
0
3

0
.6

5
8
7

1
.8

7
6
4

0
.3

6
8
6

0
.7

0
.3

-0
.1

1
9
7

0
.7

7
3
4

0
.0

0
4
5

0
.2

4
3
6

0
.3

2
6
8

0
.2

2
5
9

0
.0

2
2
5

0
.6

7
9
1

0
.0

1
1
6

0
.0

7
2
4

0
.1

2
8
4

0
.0

6
1
5

0
.7

0
.5

-0
.1

2
4
6

0
.3

4
5
0

0
.0

0
2
6

0
.0

8
3
1

0
.1

1
0
2

0
.0

8
0
8

0
.0

2
0
2

0
.1

3
8
0

0
.0

0
6
4

0
.0

1
2
3

0
.0

1
8
6

0
.0

1
1
6

0
.7

0
.7

-0
.1

2
2
9

0
.1

4
4
8

0
.0

0
1
8

0
.0

0
1
4

0
.0

1
1
0

0
.0

0
1
4

0
.0

1
8
1

0
.0

2
6
3

0
.0

0
3
4

0
.0

0
2
6

0
.0

0
2
8

0
.0

0
2
5

0
.7

0
.9

-0
.1

2
8
4

0
.0

4
3
7

0
.0

0
1
0

-0
.0

4
6
5

-0
.0

4
2
4

-0
.0

4
6
3

0
.0

1
8
8

0
.0

0
3
9

0
.0

0
1
8

0
.0

0
3
7

0
.0

0
3
3

0
.0

0
3
7

0
.9

0
.1

-0
.0

3
5
8

2
.7

0
9
9

-0
.0

0
1
5

0
.8

6
3
3

1
.3

3
7
0

0
.6

6
3
2

0
.0

2
2
6

8
.3

5
7
6

0
.0

2
3
0

0
.8

0
4
4

2
.0

2
3
5

0
.4

6
7
3

0
.9

0
.3

-0
.0

3
6
8

0
.7

4
8
9

0
.0

0
0
7

0
.2

9
3
3

0
.3

5
6
1

0
.2

7
7
3

0
.0

0
7
7

0
.6

2
9
8

0
.0

0
6
9

0
.0

9
8
3

0
.1

4
5
8

0
.0

8
7
0

0
.9

0
.5

-0
.0

3
9
8

0
.3

4
5
4

0
.0

0
0
3

0
.1

3
5
2

0
.1

5
2
8

0
.1

3
2
7

0
.0

0
4
8

0
.1

3
6
0

0
.0

0
3
6

0
.0

2
3
2

0
.0

2
9
2

0
.0

2
2
3

0
.9

0
.7

-0
.0

3
8
7

0
.1

4
3
3

0
.0

0
0
3

0
.0

4
8
0

0
.0

5
2
3

0
.0

4
7
8

0
.0

0
3
1

0
.0

2
4
3

0
.0

0
1
7

0
.0

0
4
1

0
.0

0
4
6

0
.0

0
4
1

0
.9

0
.9

-0
.0

3
6
5

0
.0

3
8
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
7

0
.0

0
0
0

0
.0

0
2
0

0
.0

0
2
2

0
.0

0
0
7

0
.0

0
0
6

0
.0

0
0
6

0
.0

0
0
6

32



T
ab

le
5:

E
m

p
ir
ic

al
b
ia

s
an

d
em

p
ir

ic
al

m
ea

n
sq

u
ar

ed
er

ro
r

of
es

ti
m

at
or

s
u
n
d
er

B
et

a
d
is

tr
ib

u
ti

on
w

it
h

n
=

40

λ
x

λ
y

E
B

(b
d
)

E
B

(b
i
)

E
B

(b
p
)

E
B

(b
g
)

E
B

(b
m

)
E

B
(b

b
)

E
M

(b
d
)

E
M

(b
i
)

E
M

(b
p
)

E
M

(b
g
)

E
M

(b
m

)
E

M
(b

b
)

0
.1

0
.1

5
.2

6
5
5

1
.1

5
7
4

2
.7

9
6
9

-0
.3

5
7
9

3
.2

1
1
5

0
.1

6
8
4

4
6
3
0
4
.3

9
1
9

8
2
7
2
.0

0
3
7

4
7
3
6
.4

9
5
3

8
.5

7
9
6

1
3
6
4
4
.8

1
9
0

0
.9

3
8
0

0
.1

0
.3

2
.8

0
9
7

-0
.6

4
1
4

1
.0

4
1
5

-0
.1

4
1
8

1
.0

8
4
2

-0
.0

3
1
2

1
0
0
6
0
.3

2
3
4

8
9
2
0
.9

0
6
0

1
7
7
7
.5

7
5
8

4
.3

3
5
8

4
7
4
6
.2

4
9
1

0
.5

2
1
3

0
.1

0
.5

1
.1

3
9
4

-1
.4

6
4
7

0
.5

0
0
0

-0
.1

7
7
5

-0
.1

6
2
7

-0
.0

9
4
8

2
3
7
.9

6
4
9

3
8
6
4
.7

6
7
5

1
6
4
.4

0
3
8

1
.5

5
9
6

1
0
2
6
.4

4
8
2

0
.2

5
8
5

0
.1

0
.7

3
.3

2
7
1

0
.1

4
6
8

0
.2

3
9
5

0
.1

1
5
2

1
.7

3
7
0

-0
.0

0
8
2

1
5
7
1
8
.1

0
8
3

1
5
.4

9
3
4

1
0
.2

6
6
6

2
.7

6
7
7

3
9
3
3
.1

6
2
3

0
.2

5
9
9

0
.1

0
.9

1
.8

8
3
8

0
.2

2
7
2

0
.5

4
1
8

0
.0

1
2
6

1
.0

5
5
5

-0
.0

6
7
4

1
4
9
1
.0

6
4
2

2
2
8
.2

9
3
5

1
1
6
.2

7
5
3

1
.9

5
8
9

4
2
9
.7

7
6
0

0
.2

8
4
4

0
.3

0
.1

2
.8

7
0
7

-1
.1

3
0
5

5
.1

5
1
8

0
.2

7
2
3

0
.8

7
0
1

0
.4

3
3
3

5
2
8
4
.9

1
5
9

7
5
3
3
.1

3
4
4

6
5
9
8
.5

1
0
7

6
.7

3
6
8

3
2
0
7
.2

8
3
2

1
.2

2
5
8

0
.3

0
.3

2
.0

0
7
8

-0
.0

4
0
4

0
.8

3
0
6

0
.1

8
3
6

0
.9

8
3
7

0
.1

4
5
4

5
7
4
.6

4
6
9

3
0
6
4
.6

5
3
3

2
1
8
.6

1
0
7

2
.3

3
5
3

9
1
0
.1

9
2
7

0
.4

8
0
5

0
.3

0
.5

1
.3

7
8
3

0
.0

4
9
8

0
.0

8
1
9

0
.2

1
9
0

0
.7

1
4
1

0
.1

1
7
2

2
7
7
.2

4
6
4

6
.1

6
6
1

0
.5

9
9
4

1
.4

0
4
3

7
1
.0

6
0
3

0
.2

7
6
6

0
.3

0
.7

1
.1

5
1
8

0
.0

3
7
7

0
.0

4
7
4

0
.2

2
8
2

0
.5

9
4
8

0
.1

3
9
6

2
0
1
.7

4
8
4

0
.1

3
9
5

0
.1

2
1
2

1
.0

1
7
4

5
0
.6

1
4
2

0
.2

3
4
5

0
.3

0
.9

1
.8

1
1
8

0
.0

4
4
2

0
.0

4
5
6

0
.2

8
0
2

0
.9

2
8
0

0
.1

5
0
3

1
0
9
6
.9

1
2
0

0
.1

4
0
5

0
.1

3
5
9

1
.8

1
8
1

2
7
4
.5

2
4
4

0
.2

7
6
4

0
.5

0
.1

0
.4

1
4
7

0
.7

3
4
8

7
.0

3
7
1

0
.2

7
5
2

0
.5

7
4
8

0
.3

2
5
6

5
5
.2

0
6
3

2
3
3
0
.6

8
6
9

2
7
9
6
3
.3

9
4
4

1
.0

2
5
6

5
9
6
.6

8
6
6

0
.5

0
7
1

0
.5

0
.3

0
.3

1
3
8

0
.1

5
6
9

0
.1

8
0
2

0
.0

5
2
5

0
.2

3
5
4

0
.0

4
9
7

4
0
.8

9
5
0

6
5
.4

4
0
7

1
0
.1

1
1
7

0
.3

8
1
2

2
6
.5

9
1
6

0
.1

7
9
1

0
.5

0
.5

0
.4

3
9
3

0
.0

4
5
0

0
.0

6
7
6

0
.0

9
8
7

0
.2

4
2
2

0
.0

7
4
2

3
2
.7

4
0
3

0
.4

8
4
6

0
.3

0
5
4

0
.3

9
5
9

8
.3

6
0
8

0
.1

8
4
2

0
.5

0
.7

0
.2

2
2
4

0
.0

1
9
1

0
.0

3
7
8

0
.0

8
3
6

0
.1

2
0
8

0
.0

7
2
3

2
.3

6
9
8

0
.0

7
4
0

0
.0

6
3
2

0
.1

5
5
5

0
.6

5
1
5

0
.0

9
5
9

0
.5

0
.9

0
.0

9
8
1

0
.0

1
3
5

0
.0

1
7
5

0
.0

4
8
7

0
.0

5
5
8

0
.0

4
6
9

0
.1

4
7
0

0
.0

2
5
9

0
.0

2
5
8

0
.0

4
7
0

0
.0

5
9
6

0
.0

4
2
7

0
.7

0
.1

0
.1

6
7
9

0
.7

0
7
1

8
.0

9
8
1

0
.2

3
0
2

0
.4

3
7
5

0
.2

4
7
8

0
.3

5
8
3

2
2
6
.7

9
2
5

1
1
2
0
0
.6

6
6
0

0
.4

8
8
2

5
6
.8

2
4
5

0
.3

0
6
4

0
.7

0
.3

0
.0

9
6
3

0
.0

6
7
1

0
.1

1
0
2

0
.0

1
0
9

0
.0

8
1
7

0
.0

2
0
1

0
.1

5
9
8

0
.6

4
0
1

1
3
.5

2
6
7

0
.1

4
3
9

0
.2

0
1
1

0
.1

2
1
6

0
.7

0
.5

0
.0

6
8
8

-0
.0

2
4
4

0
.0

2
4
5

-0
.0

0
3
6

0
.0

2
2
2

-0
.0

0
0
9

0
.1

1
0
2

0
.1

5
4
7

0
.0

6
7
8

0
.0

8
2
8

0
.0

8
1
9

0
.0

7
6
6

0
.7

0
.7

0
.0

3
7
5

-0
.0

0
3
3

0
.0

1
3
0

0
.0

1
3
6

0
.0

1
7
1

0
.0

1
3
5

0
.0

3
3
9

0
.0

2
8
5

0
.0

2
2
3

0
.0

2
3
6

0
.0

2
3
9

0
.0

2
3
4

0
.7

0
.9

0
.0

5
9
4

0
.0

0
6
7

0
.0

1
3
7

0
.0

2
9
8

0
.0

3
3
1

0
.0

2
9
4

0
.0

5
1
1

0
.0

2
1
4

0
.0

2
0
8

0
.0

2
7
2

0
.0

2
8
5

0
.0

2
6
7

0
.9

0
.1

0
.1

1
6
0

0
.4

9
0
9

2
2
.5

4
9
3

0
.1

7
6
1

0
.3

0
3
5

0
.1

7
3
2

0
.1

8
7
4

2
6
7
.2

8
5
6

8
3
1
3
0
8
.8

5
3
4

0
.2

8
6
0

6
6
.8

8
3
8

0
.2

2
0
2

0
.9

0
.3

0
.0

3
6
0

-0
.0

1
7
5

0
.0

3
1
2

-0
.0

2
7
9

0
.0

0
9
3

-0
.0

1
8
2

0
.0

6
4
9

0
.2

4
9
0

0
.0

6
2
0

0
.1

0
6
7

0
.0

9
4
7

0
.0

9
1
7

0
.9

0
.5

0
.0

0
7
1

-0
.0

2
0
7

0
.0

0
4
2

-0
.0

0
8
8

-0
.0

0
6
8

-0
.0

0
8
6

0
.0

1
5
2

0
.0

2
7
0

0
.0

1
4
8

0
.0

1
7
6

0
.0

1
7
3

0
.0

1
7
4

0
.9

0
.7

0
.0

0
6
7

-0
.0

1
4
3

0
.0

0
2
0

-0
.0

0
4
9

-0
.0

0
3
8

-0
.0

0
4
9

0
.0

1
2
4

0
.0

1
7
3

0
.0

1
1
8

0
.0

1
2
7

0
.0

1
2
7

0
.0

1
2
7

0
.9

0
.9

0
.0

0
6
8

-0
.0

0
1
3

0
.0

0
2
6

0
.0

0
2
6

0
.0

0
2
8

0
.0

0
2
6

0
.0

0
4
6

0
.0

0
4
5

0
.0

0
4
2

0
.0

0
4
2

0
.0

0
4
3

0
.0

0
4
2

33



T
ab

le
6:

E
m

p
ir
ic

al
b
ia

s
an

d
em

p
ir

ic
al

m
ea

n
sq

u
ar

ed
er

ro
r

of
es

ti
m

at
or

s
u
n
d
er

B
et

a
d
is

tr
ib

u
ti

on
w

it
h

n
=

40
0

λ
x

λ
y

E
B

(b
d
)

E
B

(b
i
)

E
B

(b
p
)

E
B

(b
g
)

E
B

(b
m

)
E

B
(b

b
)

E
M

(b
d
)

E
M

(b
i
)

E
M

(b
p
)

E
M

(b
g
)

E
M

(b
m

)
E

M
(b

b
)

0
.1

0
.1

1
.3

5
2
0

0
.2

7
0
1

0
.2

0
7
4

0
.1

4
3
0

0
.8

1
1
1

0
.0

8
5
8

6
4
3
.1

7
2
0

7
4
.6

6
4
0

1
0
.7

0
4
8

1
.0

2
0
2

1
7
9
.3

0
1
0

0
.2

3
8
3

0
.1

0
.3

1
.3

7
6
4

0
.0

5
0
3

0
.0

5
8
6

0
.2

0
0
2

0
.7

1
3
4

0
.0

9
9
2

4
6
3
.3

4
0
3

1
1
.6

9
1
8

0
.2

7
8
7

1
.1

6
5
7

1
1
8
.8

2
7
8

0
.1

8
6
9

0
.1

0
.5

1
.3

7
6
1

0
.0

3
5
5

0
.0

3
3
6

0
.2

1
7
0

0
.7

0
5
8

0
.1

1
6
9

2
8
7
.8

8
8
5

0
.0

6
1
6

0
.0

5
3
2

1
.0

8
2
0

7
2
.0

3
9
6

0
.1

6
7
6

0
.1

0
.7

1
.2

8
9
2

0
.0

2
0
8

0
.0

1
9
3

0
.2

0
7
8

0
.6

5
5
0

0
.1

0
6
6

2
3
1
.2

2
5
0

0
.0

3
8
8

0
.0

3
6
7

1
.0

4
5
0

5
7
.8

9
1
3

0
.1

6
7
6

0
.1

0
.9

1
.3

7
9
0

0
.0

1
4
8

0
.0

1
4
3

0
.2

1
5
2

0
.6

9
6
9

0
.1

0
7
5

3
4
9
.9

4
3
6

0
.0

2
9
8

0
.0

2
9
3

1
.1

3
5
2

8
7
.5

7
9
2

0
.1

6
9
7

0
.3

0
.1

0
.0

5
7
0

0
.1

2
0
4

0
.0

3
4
0

0
.0

0
5
4

0
.0

8
8
7

0
.0

1
1
9

0
.1

3
3
5

0
.7

8
0
4

0
.0

7
8
3

0
.1

1
0
2

0
.2

0
0
3

0
.0

9
0
0

0
.3

0
.3

0
.0

4
6
8

0
.0

0
9
7

0
.0

1
2
1

0
.0

1
3
1

0
.0

2
8
3

0
.0

1
2
7

0
.0

7
0
9

0
.0

5
5
5

0
.0

2
6
0

0
.0

2
8
2

0
.0

3
0
6

0
.0

2
7
1

0
.3

0
.5

0
.0

4
9
8

0
.0

0
7
4

0
.0

1
0
8

0
.0

2
0
6

0
.0

2
8
6

0
.0

2
0
0

0
.0

5
7
7

0
.0

2
1
0

0
.0

1
5
3

0
.0

1
9
8

0
.0

2
1
5

0
.0

1
9
2

0
.3

0
.7

0
.0

5
0
2

0
.0

0
6
9

0
.0

0
8
7

0
.0

2
2
8

0
.0

2
8
6

0
.0

2
2
1

0
.0

5
8
4

0
.0

1
1
3

0
.0

1
0
4

0
.0

1
8
5

0
.0

2
0
9

0
.0

1
7
6

0
.3

0
.9

0
.0

4
1
9

0
.0

0
5
1

0
.0

0
5
6

0
.0

1
9
6

0
.0

2
3
5

0
.0

1
9
2

0
.0

4
1
8

0
.0

0
6
7

0
.0

0
6
7

0
.0

1
4
2

0
.0

1
5
4

0
.0

1
3
8

0
.5

0
.1

0
.0

2
2
0

0
.0

8
0
5

0
.0

2
0
1

-0
.0

0
3
4

0
.0

5
1
3

0
.0

0
3
9

0
.0

5
3
7

0
.3

6
0
4

0
.0

4
5
5

0
.0

9
7
5

0
.0

9
7
6

0
.0

7
9
9

0
.5

0
.3

0
.0

1
0
1

-0
.0

0
6
7

0
.0

0
1
4

-0
.0

0
4
7

0
.0

0
1
7

-0
.0

0
4
5

0
.0

1
9
2

0
.0

3
6
9

0
.0

1
3
4

0
.0

1
5
5

0
.0

1
5
4

0
.0

1
5
2

0
.5

0
.5

0
.0

1
1
1

-0
.0

0
1
0

0
.0

0
2
5

0
.0

0
2
6

0
.0

0
5
1

0
.0

0
2
6

0
.0

1
2
9

0
.0

1
2
3

0
.0

0
7
4

0
.0

0
7
5

0
.0

0
7
6

0
.0

0
7
5

0
.5

0
.7

0
.0

1
1
5

0
.0

0
2
4

0
.0

0
3
8

0
.0

0
5
8

0
.0

0
7
0

0
.0

0
5
8

0
.0

0
9
3

0
.0

0
5
4

0
.0

0
4
5

0
.0

0
5
0

0
.0

0
5
0

0
.0

0
5
0

0
.5

0
.9

0
.0

1
2
0

0
.0

0
2
1

0
.0

0
2
6

0
.0

0
6
3

0
.0

0
7
1

0
.0

0
6
3

0
.0

0
8
0

0
.0

0
3
3

0
.0

0
3
2

0
.0

0
4
1

0
.0

0
4
2

0
.0

0
4
1

0
.7

0
.1

0
.0

1
4
2

0
.0

7
6
5

0
.0

1
4
6

-0
.0

0
7
4

0
.0

4
5
4

0
.0

0
1
4

0
.0

3
8
7

0
.3

6
7
5

0
.0

3
6
4

0
.1

0
5
8

0
.1

0
1
8

0
.0

8
5
4

0
.7

0
.3

0
.0

0
7
1

-0
.0

0
9
1

0
.0

0
3
5

-0
.0

0
6
4

-0
.0

0
1
0

-0
.0

0
6
1

0
.0

1
2
1

0
.0

3
8
7

0
.0

1
0
7

0
.0

1
5
5

0
.0

1
5
2

0
.0

1
5
2

0
.7

0
.5

0
.0

0
0
0

-0
.0

0
2
6

0
.0

0
1
5

-0
.0

0
0
2

-0
.0

0
1
3

-0
.0

0
0
2

0
.0

0
4
6

0
.0

0
7
0

0
.0

0
3
8

0
.0

0
4
0

0
.0

0
4
1

0
.0

0
4
0

0
.7

0
.7

0
.0

0
0
0

-0
.0

0
0
6

0
.0

0
1
7

0
.0

0
1
7

-0
.0

0
0
3

0
.0

0
1
7

0
.0

0
3
7

0
.0

0
3
7

0
.0

0
2
7

0
.0

0
2
7

0
.0

0
2
8

0
.0

0
2
7

0
.7

0
.9

0
.0

0
0
0

0
.0

0
1
1

0
.0

0
1
4

0
.0

0
2
1

0
.0

0
0
6

0
.0

0
2
1

0
.0

0
2
3

0
.0

0
1
6

0
.0

0
1
5

0
.0

0
1
6

0
.0

0
1
6

0
.0

0
1
6

0
.9

0
.1

0
.0

1
2
3

0
.0

3
9
4

0
.0

1
2
3

-0
.0

1
7
3

0
.0

2
5
9

-0
.0

0
7
7

0
.0

2
5
5

0
.2

9
9
6

0
.0

2
5
2

0
.0

9
6
6

0
.0

8
6
4

0
.0

7
8
7

0
.9

0
.3

0
.0

0
1
6

-0
.0

0
7
6

0
.0

0
1
2

-0
.0

0
6
3

-0
.0

0
3
0

-0
.0

0
6
1

0
.0

0
6
7

0
.0

2
9
4

0
.0

0
6
6

0
.0

1
2
1

0
.0

1
1
8

0
.0

1
1
9

0
.9

0
.5

0
.0

0
1
2

-0
.0

0
4
2

0
.0

0
0
6

-0
.0

0
2
3

-0
.0

0
1
5

-0
.0

0
2
3

0
.0

0
3
3

0
.0

0
8
2

0
.0

0
3
3

0
.0

0
4
2

0
.0

0
4
2

0
.0

0
4
2

0
.9

0
.7

0
.0

0
0
9

-0
.0

0
1
9

0
.0

0
0
3

-0
.0

0
0
7

-0
.0

0
0
5

-0
.0

0
0
7

0
.0

0
1
6

0
.0

0
2
3

0
.0

0
1
5

0
.0

0
1
6

0
.0

0
1
6

0
.0

0
1
6

0
.9

0
.9

0
.0

0
1
0

-0
.0

0
0
3

0
.0

0
0
3

0
.0

0
0
3

0
.0

0
0
4

0
.0

0
0
3

0
.0

0
0
7

0
.0

0
0
7

0
.0

0
0
6

0
.0

0
0
6

0
.0

0
0
6

0
.0

0
0
6

34



T
ab

le
7:

E
m

p
ir
ic

al
b
ia

s
an

d
em

p
ir

ic
al

m
ea

n
sq

u
ar

ed
er

ro
r

of
es

ti
m

at
or

s
u
n
d
er

W
ei

b
u
ll

d
is

tr
ib

u
ti

on
w

it
h

n
=

40

λ
x

λ
y

E
B

(b
d
)

E
B

(b
i
)

E
B

(b
p
)

E
B

(b
g
)

E
B

(b
m

)
E

B
(b

b
)

E
M

(b
d
)

E
M

(b
i
)

E
M

(b
p
)

E
M

(b
g
)

E
M

(b
m

)
E

M
(b

b
)

0
.1

0
.1

-0
.8

1
2
2

3
.9

1
2
7

8
.7

9
6
6

-0
.8

0
4
3

1
.5

5
0
3

0
.1

4
4
2

2
5
.6

2
2
6

3
1
0
3
5
.5

4
4
6

1
8
4
4
2
.4

4
4
1

6
.8

8
0
4

7
7
6
6
.3

7
7
2

1
.0

9
4
2

0
.1

0
.3

-0
.7

3
7
1

0
.2

8
9
2

3
.2

2
4
4

-0
.7

1
7
8

-0
.2

2
4
0

0
.0

2
8
8

1
7
.0

7
6
2

1
1
8
4
9
.4

5
8
5

2
2
9
4
.5

1
4
7

1
.9

3
4
8

2
9
6
7
.1

0
7
3

1
.0

3
9
3

0
.1

0
.5

-0
.7

2
0
9

-0
.1

0
6
1

1
.7

5
6
7

-0
.6

6
6
4

-0
.4

1
3
5

-0
.1

5
7
7

9
.9

1
4
3

1
0
5
7
4
.6

8
2
3

8
5
5
.5

4
5
1

0
.9

6
7
5

2
6
4
6
.3

8
0
0

0
.2

9
5
3

0
.1

0
.7

-0
.6

9
8
9

-0
.6

9
3
4

0
.9

9
1
3

-0
.6

2
7
0

-0
.6

9
6
2

-0
.2

5
3
1

8
.4

2
2
8

2
7
2
3
.2

3
7
9

1
0
7
.3

7
3
9

0
.7

0
7
6

6
8
3
.3

3
8
1

0
.2

6
6
5

0
.1

0
.9

-0
.6

9
0
5

-0
.1

2
9
7

1
.0

4
3
6

-0
.6

0
1
9

-0
.4

1
0
1

-0
.3

3
8
4

3
.6

9
6
4

1
7
1
5
.6

3
6
1

8
5
9
.6

3
1
4

0
.5

8
4
0

4
2
9
.9

3
3
3

0
.2

5
1
1

0
.3

0
.1

-0
.3

7
6
3

-2
.5

0
9
2

2
9
.2

0
2
4

-0
.2

6
1
1

-1
.4

4
2
8

0
.3

9
4
2

4
5
.1

6
3
1

6
8
7
1
1
9
.0

3
9
6

4
2
1
9
5
2
.3

9
6
3

9
.0

1
5
2

1
7
1
7
9
6
.7

4
0
0

1
.9

6
5
7

0
.3

0
.3

-0
.3

3
1
4

1
.0

8
8
6

3
.4

9
2
6

-0
.0

1
5
8

0
.3

7
8
6

0
.0

9
0
4

3
3
.4

6
3
4

2
5
9
6
1
.4

0
8
0

2
9
0
5
.1

7
4
6

1
.1

7
0
1

6
4
9
8
.9

0
8
5

0
.3

7
9
2

0
.3

0
.5

-0
.2

5
8
9

1
.2

4
8
8

0
.9

1
2
1

-0
.1

0
1
6

0
.4

9
5
0

-0
.0

5
4
0

1
8
6
.0

3
0
5

2
7
7
7
.4

7
5
1

4
0
0
.3

2
6
2

0
.8

3
0
7

7
4
0
.6

9
5
2

0
.1

7
6
7

0
.3

0
.7

-0
.3

0
3
0

1
.2

7
6
7

0
.9

6
2
7

-0
.1

9
7
7

0
.4

8
6
9

-0
.1

4
0
8

3
0
.4

6
6
4

1
5
3
1
.5

5
0
9

8
9
0
.6

1
4
0

0
.4

5
6
4

3
9
0
.0

4
7
9

0
.1

5
9
3

0
.3

0
.9

-0
.3

4
5
7

0
.0

5
1
4

0
.2

3
8
8

-0
.2

5
9
3

-0
.1

4
7
2

-0
.2

2
2
6

1
5
.8

1
3
3

3
7
9
.5

7
5
3

5
.2

2
8
6

0
.3

2
5
6

9
8
.8

9
7
7

0
.1

4
1
9

0
.5

0
.1

-0
.3

2
0
5

3
.3

2
1
2

3
5
.9

7
2
8

0
.5

2
4
6

1
.5

0
0
4

0
.5

1
9
2

0
.9

8
3
6

2
4
8
0
8
8
.9

2
7
6

3
1
0
0
3
6
4
.3

7
7
2

4
.4

9
9
7

6
2
0
2
3
.7

5
1
8

0
.8

9
5
2

0
.5

0
.3

-0
.3

4
3
2

1
.8

7
2
5

3
.0

5
2
9

0
.2

3
8
1

0
.7

6
4
7

0
.2

0
7
5

0
.5

3
7
1

9
3
0
7
.0

2
4
1

4
3
3
0
.2

5
0
0

0
.7

0
1
6

2
3
2
6
.7

1
4
5

0
.2

6
4
6

0
.5

0
.5

-0
.3

3
1
9

1
.0

6
4
0

0
.3

3
6
4

0
.0

5
2
0

0
.3

6
6
1

0
.0

4
6
7

0
.3

3
8
2

5
4
.9

2
0
7

2
2
.3

1
7
9

0
.1

6
6
9

1
3
.5

8
4
2

0
.1

1
1
1

0
.5

0
.7

-0
.3

4
0
1

0
.4

3
1
1

0
.1

0
0
6

-0
.0

7
6
2

0
.0

4
5
5

-0
.0

6
4
0

0
.2

5
0
4

4
.1

5
0
1

0
.3

9
9
5

0
.0

8
9
9

1
.0

2
3
4

0
.0

7
1
1

0
.5

0
.9

-0
.3

6
2
9

0
.2

3
0
0

0
.1

0
0
8

-0
.1

7
8
1

-0
.0

6
6
5

-0
.1

5
9
2

1
.0

5
9
5

0
.6

8
0
2

0
.3

4
3
4

0
.1

3
4
4

0
.3

9
0
5

0
.0

9
4
5

0
.7

0
.1

-0
.1

9
9
0

0
.9

5
5
8

3
1
.2

1
6
8

0
.8

9
6
1

0
.3

7
8
4

0
.6

6
0
2

0
.5

2
7
3

1
7
9
0
8
4
.0

9
6
7

4
7
1
1
8
5
.6

5
8
3

4
.4

9
9
7

4
4
7
7
3
.9

2
3
6

0
.9

5
1
2

0
.7

0
.3

-0
.2

9
1
1

5
.0

1
0
9

5
.9

9
6
3

0
.4

8
2
5

2
.3

5
9
9

0
.3

6
8
4

0
.3

7
2
4

8
5
9
7
8
.9

0
9
9

8
5
4
0
.4

8
2
8

1
.3

7
7
9

2
1
4
9
3
.6

3
1
8

0
.3

9
4
2

0
.7

0
.5

-0
.2

3
4
4

0
.5

3
3
4

0
.1

7
7
4

0
.1

8
6
7

0
.1

4
9
5

0
.1

5
2
2

0
.1

5
3
8

4
9
7
3
.5

2
0
3

4
.1

0
3
7

0
.1

8
3
1

1
2
4
3
.5

4
7
3

0
.1

2
0
4

0
.7

0
.7

-0
.2

1
4
1

0
.3

9
9
3

0
.0

4
3
0

0
.0

2
1
5

0
.0

9
2
6

0
.0

1
9
2

0
.1

0
2
0

0
.4

7
3
7

0
.1

1
0
1

0
.0

5
1
3

0
.0

9
8
4

0
.0

4
5
6

0
.7

0
.9

-0
.1

9
9
3

0
.1

0
8
9

0
.0

2
5
3

-0
.0

6
6
5

-0
.0

4
5
2

-0
.0

6
4
2

0
.0

7
7
1

0
.0

5
3
3

0
.0

3
4
8

0
.0

2
7
8

0
.0

2
5
2

0
.0

2
6
4

0
.9

0
.1

-0
.0

5
8
5

7
.8

7
3
0

1
2
8
.3

7
7
7

1
.2

4
1
8

3
.9

0
7
3

0
.7

9
7
3

0
.3

7
7
0

8
4
8
2
4
.8

9
1
8

2
3
6
3
8
6
8
6
.5

2
3
6

4
.3

0
2
9

2
1
2
0
5
.8

0
3
3

1
.1

0
0
2

0
.9

0
.3

-0
.0

6
8
8

2
.5

3
1
2

2
.2

4
8
7

0
.5

9
8
3

1
.2

3
1
2

0
.4

4
6
7

0
.1

2
5
2

3
7
2
.3

3
5
2

5
3
2
6
.9

0
6
6

0
.7

1
4
3

9
2
.8

3
9
3

0
.3

7
4
4

0
.9

0
.5

-0
.0

5
6
6

0
.6

5
2
4

0
.0

0
9
0

0
.2

1
9
2

0
.2

9
7
9

0
.2

0
0
2

0
.0

4
2
0

0
.8

8
8
1

0
.0

4
8
3

0
.1

1
6
1

0
.2

1
1
8

0
.0

9
6
6

0
.9

0
.7

-0
.0

7
8
1

0
.3

8
5
7

0
.0

1
0
8

0
.1

1
6
7

0
.1

5
3
8

0
.1

1
0
6

0
.0

3
3
9

0
.3

1
0
5

0
.0

3
7
4

0
.0

5
1
8

0
.0

7
5
0

0
.0

4
7
0

0
.9

0
.9

-0
.0

7
5
6

0
.0

9
1
3

0
.0

0
3
2

0
.0

0
2
3

0
.0

0
7
9

0
.0

0
2
3

0
.0

1
7
9

0
.0

2
6
9

0
.0

1
3
2

0
.0

1
0
8

0
.0

1
1
1

0
.0

1
0
7

35



T
ab

le
8:

E
m

p
ir
ic

al
b
ia

s
an

d
em

p
ir

ic
al

m
ea

n
sq

u
ar

ed
er

ro
r

of
es

ti
m

at
or

s
u
n
d
er

W
ei

b
u
ll

d
is

tr
ib

u
ti

on
w

it
h

n
=

40
0

λ
x

λ
y

E
B

(b
d
)

E
B

(b
i
)

E
B

(b
p
)

E
B

(b
g
)

E
B

(b
m

)
E

B
(b

b
)

E
M

(b
d
)

E
M

(b
i
)

E
M

(b
p
)

E
M

(b
g
)

E
M

(b
m

)
E

M
(b

b
)

0
.1

0
.1

-0
.8

8
6
4

1
2
.4

5
9
7

6
.0

7
5
0

-0
.2

4
0
5

5
.7

8
6
7

0
.0

0
1
8

0
.7

9
6
9

2
6
3
1
8
9
.7

6
1
3

1
5
8
4
1
.6

6
1
0

0
.5

6
5
8

6
5
7
9
1
.8

9
5
1

0
.0

0
3
2

0
.1

0
.3

-0
.8

7
6
3

2
.8

3
0
4

0
.5

7
8
9

-0
.4

1
0
9

0
.9

7
7
1

-0
.1

8
3
4

0
.7

7
1
9

1
2
0
2
.6

5
5
6

6
6
.3

3
3
2

0
.1

9
2
2

2
9
9
.5

6
5
1

0
.0

4
1
6

0
.1

0
.5

-0
.8

7
9
2

1
.1

2
6
4

0
.1

8
7
2

-0
.5

3
0
4

0
.1

2
3
6

-0
.3

1
1
1

0
.7

7
5
5

7
7
.6

6
1
9

5
.8

9
5
5

0
.2

8
7
7

1
9
.0

9
9
3

0
.1

0
4
6

0
.1

0
.7

-0
.8

9
5
8

0
.6

2
5
1

0
.1

4
3
3

-0
.6

1
5
2

-0
.1

3
5
4

-0
.3

9
8
9

0
.8

0
4
0

4
.9

8
6
7

1
.0

6
8
7

0
.3

8
2
0

1
.1

5
8
8

0
.1

6
6
6

0
.1

0
.9

-0
.8

8
7
9

0
.1

7
6
1

0
.0

6
4
8

-0
.6

4
9
7

-0
.3

5
5
9

-0
.4

7
9
3

0
.7

8
9
7

0
.2

0
6
4

0
.1

4
6
6

0
.4

2
4
4

0
.1

6
7
4

0
.2

3
4
0

0
.3

0
.1

-0
.6

4
3
8

9
.8

7
5
3

1
.1

5
1
2

0
.6

8
0
9

4
.6

1
5
8

0
.2

4
3
3

0
.4

4
1
8

1
9
7
1
9
.6

9
4
1

2
8
3
2
.6

5
2
0

0
.6

2
3
0

4
9
2
6
.4

1
0
5

0
.0

7
9
8

0
.3

0
.3

-0
.6

9
3
5

2
.8

0
1
6

0
.1

4
4
0

0
.0

1
2
3

1
.0

5
4
1

0
.0

0
4
2

0
.4

9
1
8

3
7
.5

5
3
0

0
.4

6
9
4

0
.0

2
3
2

8
.4

8
0
8

0
.0

0
7
4

0
.3

0
.5

-0
.6

7
4
9

1
.0

0
2
0

0
.0

3
9
8

-0
.2

1
1
1

0
.1

6
3
6

-0
.1

5
2
4

0
.4

6
2
6

1
.2

5
1
1

0
.1

0
2
5

0
.0

5
5
2

0
.0

8
1
4

0
.0

2
9
4

0
.3

0
.7

-0
.6

7
2
2

0
.4

2
5
3

0
.0

2
1
2

-0
.3

2
5
4

-0
.1

2
3
5

-0
.2

6
4
5

0
.4

5
7
5

0
.2

3
9
4

0
.0

3
7
9

0
.1

1
2
0

0
.0

2
8
3

0
.0

7
4
2

0
.3

0
.9

-0
.6

6
2
2

0
.1

1
1
2

0
.0

1
2
0

-0
.3

9
2
3

-0
.2

7
5
5

-0
.3

4
4
4

0
.4

4
3
4

0
.0

2
9
8

0
.0

1
5
2

0
.1

5
8
1

0
.0

8
0
6

0
.1

2
1
6

0
.5

0
.1

-0
.4

6
8
3

9
.7

8
1
8

0
.5

4
2
9

1
.1

9
0
3

4
.6

5
6
8

0
.4

6
6
5

0
.2

5
7
8

5
8
4
.6

6
7
5

3
4
7
.8

3
7
3

1
.5

5
6
4

1
4
3
.5

4
3
1

0
.2

5
6
7

0
.5

0
.3

-0
.5

0
0
4

2
.5

7
8
8

0
.0

6
0
7

0
.3

0
1
9

1
.0

3
9
2

0
.1

8
8
3

0
.2

6
4
9

7
.8

8
0
1

0
.1

4
0
4

0
.1

2
1
2

1
.3

5
9
5

0
.0

4
7
7

0
.5

0
.5

-0
.4

5
4
6

0
.8

9
6
9

0
.0

2
3
3

0
.0

0
7
5

0
.2

2
1
2

0
.0

0
5
5

0
.2

1
5
6

0
.9

1
7
8

0
.0

4
2
4

0
.0

1
1
5

0
.0

7
5
4

0
.0

0
8
0

0
.5

0
.7

-0
.4

8
7
8

0
.4

3
7
5

0
.0

1
1
3

-0
.1

4
7
2

-0
.0

2
5
2

-0
.1

3
0
1

0
.2

4
4
9

0
.2

2
6
1

0
.0

2
2
4

0
.0

2
8
2

0
.0

0
9
7

0
.0

2
2
0

0
.5

0
.9

-0
.4

6
9
9

0
.1

0
7
9

0
.0

0
5
3

-0
.2

3
6
3

-0
.1

8
1
0

-0
.2

2
2
2

0
.2

2
6
4

0
.0

2
0
0

0
.0

0
7
3

0
.0

5
9
6

0
.0

3
6
2

0
.0

5
2
5

0
.7

0
.1

-0
.2

9
7
7

1
0
.4

9
2
7

0
.1

6
7
4

1
.6

6
5
4

5
.0

9
7
5

0
.7

0
1
5

0
.1

3
4
5

2
0
4
.1

3
2
4

9
8
.5

2
3
1

2
.9

2
3
9

4
9
.0

9
6
6

0
.5

4
9
2

0
.7

0
.3

-0
.2

8
6
9

2
.3

0
4
4

0
.0

1
6
4

0
.5

1
4
3

1
.0

0
8
8

0
.3

7
4
0

0
.0

9
6
2

5
.9

3
1
1

0
.0

4
1
1

0
.2

9
5
9

1
.1

6
0
3

0
.1

5
4
9

0
.7

0
.5

-0
.2

7
8
8

0
.9

4
1
6

0
.0

1
0
9

0
.1

7
6
6

0
.3

3
1
4

0
.1

5
3
8

0
.0

8
5
6

0
.9

8
2
5

0
.0

2
0
9

0
.0

4
3
2

0
.1

3
3
9

0
.0

3
2
5

0
.7

0
.7

-0
.3

0
7
1

0
.1

2
1
6

0
.0

0
3
5

-0
.1

1
9
8

-0
.0

9
2
8

-0
.1

1
6
3

0
.0

9
8
7

0
.0

2
0
0

0
.0

0
4
4

0
.0

1
7
1

0
.0

1
1
3

0
.0

1
6
1

0
.7

0
.9

-0
.0

8
6
6

8
.5

1
2
1

0
.0

0
5
0

1
.8

5
4
0

4
.2

1
2
8

0
.9

4
7
2

0
.0

4
8
3

8
4
.4

4
8
0

0
.0

5
0
5

3
.5

8
0
7

2
0
.5

5
5
7

0
.9

5
1
2

0
.9

0
.1

-0
.1

0
2
3

2
.4

7
6
5

0
.0

0
2
6

0
.7

4
8
7

1
.1

8
7
1

0
.5

7
6
7

0
.0

2
3
5

6
.7

3
3
4

0
.0

1
7
1

0
.5

9
6
8

1
.5

4
9
1

0
.3

4
9
5

0
.9

0
.3

-0
.1

0
4
9

1
.0

7
3
2

0
.0

0
1
6

0
.3

5
6
5

0
.4

8
4
2

0
.3

2
1
1

0
.0

1
7
3

1
.2

5
4
1

0
.0

0
8
7

0
.1

4
0
5

0
.2

6
0
5

0
.1

1
2
8

0
.9

0
.5

-0
.0

8
9
4

0
.3

8
4
1

0
.0

0
1
1

0
.1

2
1
4

0
.1

4
7
4

0
.1

1
8
2

0
.0

1
0
7

0
.1

6
2
0

0
.0

0
3
6

0
.0

1
8
7

0
.0

2
6
6

0
.0

1
7
7

0
.9

0
.7

-0
.1

0
2
4

0
.1

1
5
5

0
.0

0
0
5

0
.0

0
0
4

0
.0

0
6
6

0
.0

0
0
3

0
.0

1
2
0

0
.0

1
5
7

0
.0

0
1
7

0
.0

0
1
3

0
.0

0
1
4

0
.0

0
1
3

0
.9

0
.9

-0
.1

0
3
7

0
.1

1
7
9

0
.0

0
0
9

0
.0

0
0
7

0
.0

0
7
1

0
.0

0
0
7

0
.0

1
2
3

0
.0

1
6
4

0
.0

0
1
7

0
.0

0
1
4

0
.0

0
1
5

0
.0

0
1
4

36


