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Abstract

For instance nutritional data are often subject to se-
vere measurement error, and an adequate adjustment of
the estimators is indispensable to avoid deceptive conclu-
sions. This paper discusses and extends the method of
regression calibration to correct for measurement error in
Cox regression. Special attention is paid to the modelling
of quadratic predictors, the role of heteroscedastic mea-
surement error, and the efficient use of replicated mea-
surements of the surrogates. The method is used to ana-
lyze data from the German part of the MONICA cohort
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study on cardiovascular diseases. The results corroborate
the importance of taking into account measurement error
carefully.

Keywords: Error-in-variables; replication data; heteroscedastic
measurement error in quadratic variables; Cox model; regression
calibration; MONICA/KORA study.

1 Introduction

A widespread problem in applying regression analysis is the pres-
ence of measurement error. Often the variables of interest, called
ideal variables or gold standard, cannot be observed directly or
measured correctly, and one has to be satisfied with so called sur-
rogates (often also named indicators or proxies), i.e., with some-
how related, but different variables. If one ignores the difference
between the ideal variables in the model and the observable vari-
ables and just plugs in the surrogates instead of the variables
(‘naive estimation’), then all the estimators must be suspected
to be severely biased. Error-in-variables modelling provides a
methodology, which is serious about that fact. Based on an error
model describing the relation between ideal variables and surro-
gates, it develops procedures to adjust for the measurement error.
Recent surveys on measurement error modelling, also containing
many examples from different fields of application, include Cheng
and van Ness [1], who concentrate on linear models, and Car-
roll, Ruppert, and Stefanski [2], Stefanski [3], and Van Huffel and
Lemmerling [4], who are concerned with non-linear models.

It should be stressed explicitly that the topic of measurement er-
ror is not simply a matter of sloppy research; quite often the ‘true
value’ is unascertainable eo ipso. A typical example is the record-
ing of the protein intakes in surveys on eating habits and their
influence on certain diseases. Though much attention is paid to
the high quality of the questionnaire and the subsequent proce-
dures, a considerable random distortion in the data can not be
avoided. Below we analyze data from the WHO MONICA Augs-
burg substudy on the surveillance of dietary intake, see [5, 6].
This study, which is embedded into the WHO MONICA project
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(MONItoring of trends and determinants in CArdiovascular dis-
ease), is concerned with the question whether changes in dietary
intake can explain trends in the incidence and mortality of cardiac
infarctions. Indeed severe error is present in the measurements of
the animal and plant protein intake from a seven day food diary,
and so applying Cox regression without adjusting for the error
could lead to wrong conclusions. The MONICA Augsburg study
is currently continued as the KORA study (Cooperative health
research in the area of Augsburg).

Recently the quality of Swedish nutrition data was investigated in
[7], where the reproducibility of food frequency measurements of
a sample of respondents to the Swedish MONICA study was con-
sidered. It may be mentioned that, if such local studies were com-
bined and compared, additional measurement error would arise:
It is quite important to take into account the variation in these
aggregated observations (cf. [8]).

Covariate measurement error correction in Cox regression is cur-
rently an area of intensive and fruitful research (see, in particular,
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] — as well as the survey
and comparison of basic approaches in [20]).

In this paper we rely on a variant of the regression calibration
approach, which is one of the most universal methods to correct
for measurement error (see [2, Chapter 3] for a general descrip-
tion). Its basic idea is to run a standard analysis where the un-
observable variables are replaced by values predicted from the
observable ones. For Cox regression, regression calibration type
methods were introduced by Prentice ([21]) and were studied and
developed further in [22, 23, 24, 9] and [17].

Here we adapt and extend this method taking into account three
general methodological issues, which also deserve special attention
in the data analyzed below:

• Heteroscedastic measurement error. Recent research in nu-
tritional epidemiology strongly suggests that the measure-
ment error must be expected to vary considerably among
the different study participants (cf., e.g., [25, pp. 33-48]).

• The presence of replication data. The protein intake mea-
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surements are based on diaries, where all food intake had
to be recorded in great detail for seven days. Taking for ev-
ery individual the errors in these measurements as indepen-
dently and identically distributed gives us the opportunity
to estimate the error variances.

• The non-linearity of the influence. Pre-studies showed that
the effect of protein intake on morbidity and mortality could
be nonlinear: both types of extreme intakes, very high as
well as very low intakes, could be detrimental, and so it
is of great importance to work with quadratic predictors.
While introducing non-linearity in the covariates does not
encounter much difficulty in the error-free situation, under
measurement error it is often hard or even impossible to han-
dle non-linear terms. (For the problems already arising in
the linear polynomial model see, e.g., [26]. For some models
a general result [27, Theorem 1] can be used to prove even
the non-existence of a so-called corrected score function.)

As shown below, the convenience of regression calibration is main-
tained in this extended setting; still the core parts of the estima-
tion can be done by standard software packages. Applying this
correction method shows a complex relationship between naive
and corrected estimates. After having adjusted for measurement
error, some of the estimates change substantially, others do not.
Sometimes there is a high deattenuation, sometimes the absolute
values even get smaller. Since, however, regression calibration is
known to be only an approximative correction method, reducing
the bias but not necessarily producing consistent estimators, we
understand our analysis more as a motivation for further method-
ological development than as the last word on the topic.

The paper is organized as follows: The next section describes our
modelling of the replication data. Section 3 adapts the idea of
regression calibration to replication data and to quadratic pre-
dictors. The application to the MONICA data is reported in
Section 4, while Section 5 concludes by sketching some topics for
further research.
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2 Survival Data with Replicated Co-

variate Measurements

2.1 The Main Setting

Let n be the sample size and T1, . . . , Tn the lifetimes, which may
be subject to noninformative independent censorship in the sense
of, e.g., [28]. For every i = 1, . . . , n we split the vector of covari-
ates into a vector Xi and a vector Zi. All error-prone variables
are collected in Xi, while Zi consists of the correctly measured
variables. Let all elements of Xi be measured on a metrical scale,
Zi may contain metrical and categorical covariates in 0/1-coding.
Both types of covariates should not be time-varying. With the ap-
plication below in mind, we additionally consider another vector,

denoted by X➁
i , which contains the squared elements of Xi.

We assume that Cox’s ([29]) proportional hazard model describes
the relationship between the lifetimes and the covariates; the in-
dividual hazard rate λ(t|Xi, Zi) has the form

λ(t|Xi, Zi) = λ0(t) · exp
(
β′

1Xi + β′
2X

➁
i + β′

ZZi

)
, (1)

with the unspecified baseline hazard rate λ0(t) and the regression
parameter vector β = (β′

1, β
′
2, β

′
Z)′.

For Xi, i.e., plant and animal protein in the application discussed
below, replicated measurements Wi1, . . . ,Wik, k > 1 (later on,
k=7) are available for every unit i. We assume them to follow the
additive error model

Wij = Xi + Uij, j = 1, . . . , k, i = 1, . . . , n, (2)

and make the usual assumptions: The errors (Uij), j = 1, . . . , k,
i = 1, . . . , n should have zero mean (see however the last para-
graphs of this section) and they should be independent among
each other as well as of X1, . . . , Xn and T1, . . . , Tn. It will prove
important to allow for heteroscedasticity of the errors, where, for i
fixed, Ui1, . . . , Uik are i.i.d., but the covariance matrix Σi may vary
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among the units i = 1, . . . , n. The common covariance matrix in
the homoscedastic case will be denoted by Σ .

In a naive analysis, for every unit i, the individual average

W i :=
1

k

k∑
j=1

Wij

would function as the surrogate for Xi. Additionally defining

U i :=
1

k

k∑
j=1

Uij

leads us back to the classical error model

W i = Xi + U i, i = 1, . . . , n, (3)

with E(U i) = 0 and V(U i) = 1
k
·Σi . The particular attractiveness

of replication data is based on the fact that the measurement
error variances can be estimated from the data. Therefore, in
contrast to most cases relying on the classical error model, it is
possible here to avoid additional assumptions, which are quite
often difficult to justify.

2.2 A Note on Systematic Measurement Error

Before addressing this topic, the assumption E(Uij) = 0 deserves
some attention. If it is violated, i.e. if systematic measurement
error with E(Uij) = a �= 0 with a unknown is present, then it be-
comes important to distinguish whether the covariates act merely
linearly or also in a nonlinear way. In order to bring out this
point most clearly, concentrate on the following special case: Xi

is one-dimensional, there are no error-free covariates Zi, and there
is only a deterministic error a so that (3) reads as

W i = Xi + a, i = 1, . . . , n.

In the case of no quadratic influence, where β2 ≡ 0 a priori,
Relation (1) can be written as

λ0(t) · exp(β1W i) = λ0(t) · exp(β1a + β1Xi)
(4)

=: λ∗
0(t) · exp(β1Xi) .
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Therefore, the naive partial likelihood estimator based on replac-
ing Xi by W i still estimates β1 consistently, and a bias only occurs
in the estimation of λ0(t), where the naive standard methods es-
timate λ∗

0(t) = λ0(t) · exp(β1a) instead of λ0(t) itself. If, however,
quadratic terms are taken into account, then we have to consider

λ0(t) · exp(β1W i + β2W
2

i )

= λ0(t) · exp(β1a + β1Xi + β2X
2
i + 2β2aXi + β2a

2)

=: λ∗∗
0 (t) · exp(β1Xi + β2X

2
i + 2β2aXi) ,

and also inconsistencies in the estimation of the regression param-
eters must be expected.

3 Regression Calibration under Repli-

cation Data

3.1 The Basic Concept

Regression calibration (cf., in particular, [2, Chapter 3]) is an uni-
versally applicable, easy-to-handle method to adjust for measure-
ment error. The main idea is to utilize the surrogate W i, together
with the error-free variable Zi, to predict the corresponding value
of the unobservable variable Xi, and then to proceed with a stan-
dard analysis where Xi is replaced by its prediction X̂i.

Applying this concept, the vector (X
′
i , Z

′
i)

′ of covariates is as-
sumed to be i.i.d., with unknown mean vector (µ′

X , µ′
Z)′ and un-

known covariance matrix(
ΣX,X ΣX,Z

Σ′
X,Z ΣZ,Z

)
.

Based on Relation (3), the best linear prediction of Xi given Wi

and Zi is

X̂i = µX + (ΣX,X ΣX,Z)
(5)

×
(

ΣX,X + 1
k
Σi ΣX,Z

Σ′
X,Z ΣZ,Z

)−1(
W i − µX

Zi − µZ

)
.
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If additionally Xi, Ui and Zi are Gaussian then (5) is exactly the
conditional expectation of Xi given Wi and Zi.

Under replication data all nuisance parameters in (5), i.e. the
parameters µX , µZ , ΣX and ΣZ of the distribution of (X ′

i, Z
′
i)

′ as
well as the measurement error variances Σi, can be estimated
powerfully from the data. We firstly adopt the procedure for the
homoscedastic case (Σi ≡ Σ), taken from [2, p. 47f.], and then
present the generalization to the heteroscedastic case.

3.2 The Case of Homoscedastic Measurement
Error

Equation (3) immediately suggests the overall mean

W :=
1

n

n∑
i=1

W i (6)

as an unbiased estimator for µX ; analogously µZ is estimated by
Z := 1

n

∑n
i=1 Zi.

In order to derive estimators for the other parameters, it is illu-
minating to embed the situation under homoscedastic measure-
ment error into the theory of design of experiments. Then (2) is
reinterpreted as a one-factorial model with a random effect (e.g.,
Toutenburg ([30], pp. 147-150)), yielding the estimators

Σ̂ =
1

n(k − 1)
·

n∑
i=1

k∑
j=1

(
Wij − W i

) (
Wij − W i

)′
(7)

Σ̂X,X =

(
1

n − 1
·

n∑
i=1

(
W i − W

) (
W i − W

)′) − 1

k
· Σ̂ (8)

Σ̂X,Z =
1

n − 1
·

n∑
i=1

(
W i − W

) (
Zi − Z

)′
(9)

Σ̂Z,Z =
1

n − 1
·

n∑
i=1

(
Zi − Z

) (
Zi − Z

)′
. (10)
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3.3 The Case of Heteroscedastic Measurement
Error

Under heteroscedastic measurement error, the relation

V(Uij) = V(Uij|Xi) = V(Xi|Xi) + V(Uij|Xi)

= V(Xi + Uij|Xi)

= V(Wij|Xi)

plays a central role. It provides

Σ̂i =
1

(k − 1)
·

k∑
j=1

(
Wij − W i

) (
Wij − W i

)′
, i = 1, . . . , n, (11)

as an estimator for the error covariance matrices Σi at the indi-
vidual level. ΣX,Z and ΣZ,Z are estimated in the same way as in
(9) and in (10). To get an idea how to estimate ΣX,X it is helpful
to apply the covariance decomposition formula

Cov(W i[l1],W i[l2]) = Cov
(
E

(
W i[l1] |Xi

)
, E

(
W i[l2]

∣∣ Xi

))
+ E

(
Cov

(
W i[l1],W i[l2]

∣∣ Xi

))
to every pair (W i[l1],W i[l2]) of components of W i. For the covari-
ance matrices this finally yields, in somewhat informal notation,
the relation

V(W i) = V
(
E(W i|Xi)

)
+E

(
V(W i|Xi)

)
= V(Xi)+E

(
V(U i|Xi)

)
,

which suggests to generalize (8) by using the pooled version

Σ̂X,X =
1

n
·

n∑
i=1

((
W i − W

) (
W i − W

)′ − 1

k
· Σ̂i

)
. (12)

3.4 Calibrating the Quadratic Part

The most consequential way to deal with the quadratic part X➁
i is

to replace every component (Xi[l])
2 of X➁

i by the square
(
X̂i[l]

)2

of the corresponding component X̂i[l] of X̂i. Alternatively to this
procedure, which is also pursued in the analysis below, one could
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prefer to calibrate (Xi[l])
2 ‘directly’ by an appropriate approxi-

mation to E((Xi[l])
2|Wi, Zi). By means of the relation

E

(
(Xi[l])

2|Wi, Zi

)
=

(
E

(
Xi[l]|Wi, Zi

))2

+ V(Xi[l]|Wi, Zi)

≈
(
X̂i[l]

)2

+ V(Xi[l]|Wi, Zi)

and arguments very similar to (4), both approaches lead to the
same estimator for β as long as V(Xi[l]|Wi, Zi) does not depend on
i. This is the case, for instance, if under homoscedastic Gaussian
measurement error (X ′

i, Z
′
i)

′ are Gaussian, too.

4 Application to the MONICA Data

4.1 The Data

Within the WHO MONICA project (MONItoring of trends and
determinants in CArdiovascular disease) also the influence of nu-
trition was considered. We analyze data from a panel of the WHO
MONICA substudy on the surveillance of dietary intake, con-
ducted in 1984/1985 in Southern Germany, which is currently
continued as the KORA study (Cooperative health research in
the area of Augsburg), see [5, 6]. A subpopulation of 899 male
respondents, aged from 45 to 65, filled in a comprehensive diary.
For seven consecutive days all meals had been listed in detail. By
using a nutritional data base also containing standard recipes, nu-
tritional variables were derived from the raw data given in every-
day units like ladle or gram of certain ingredients. Among other
questions the role of plant protein intake (PLANT in the tables
below) and animal protein intake (ANIMAL) was investigated.
Though high attention has been paid to the exactness of the mea-
surement procedure, substantial error in the calculation of protein
intake is unavoidable, and so we applied the correction methods
developed above to adjust for it.

By a mortality and morbidity follow-up for more than 10 years,
the respondents’ first cardiac infarctions (total number 71 of 858
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observations) and deaths (114 cases of 892 observations1) had
been registered.2 The main interest focused on the influence
protein intake had on the response variable which was defined
as age at the event. In the analysis also confounders were in-
corporated, namely cholesterol (mg/dl) (CHOL), daily alcohol
consumption (g/day) (ALC) as continuous variables, as well as
hypertension (HYPER) and smoking3 (SMOKER) as categori-
cal variables (1=yes, 0=no). The measurement error in these
variables may be expected to be quite low compared to that in
the protein intakes, and so the confounders were treated as error
free. The estimated regression coefficients are written in the form
β̂[V ARIABLE], i.e., β̂[PLANT ], β̂[ANIMAL], etc.

4.2 The Results

Table 1 and Table 2 summarize the results of naive and corrected
proportional hazards regression. The first two columns belong to
the naive analysis, which used the seven-days averages of calcu-
lated animal protein intake and of calculated plant protein intake
as surrogates for the true corresponding intake. They contain
the naive estimates and the p-values based on them.4 Column 3
and 5 report the corrected estimates after having adjusted for ho-
moscedastic measurement error by the methods of Subsection 3.2,
and for heteroscedastic measurement error along the lines of Sub-
section 3.3, respectively. In Column 4 and 6 also “approximative
p-values” are given, which, however, have to be used with particu-
lar reservation here. They are based on the standard errors which
usual software calculates after every Xi was replaced by the corre-

1The number of overall observations slightly differs for the two events,
because for some units there was no information about morbidity, but it
could be found out whether they died or survived the follow-up period.

2The median of the follow-up times with respect to the occurrence of
infarction was 2302 days for the cases and 3996 days for the censored ob-
servations. The median of the follow-up times concerning the death event
was 2598.5 days for the cases and 4006 days for the censored observations,
respectively.

3In this analysis persons who are currently smoking or are ex-smokers
were summarized into the smoker category.

4It may be noted explicitly that not only the naive estimators of the
regression parameters are inconsistent, but also the estimators of the standard
error.
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sponding X̂i; they are only meant to give a very rough impression
and should not be taken literally. Correct estimators for the stan-
dard error of regression calibration estimators are not straightfor-
wardly found (cf. [2, Section 3.5 and Subsection 3.12.2]), and so
we used those easy available values as a rule of thumb to judge
the significance. Though they are not correct, they still should
give an impression of the correct magnitude.

In order to illustrate the overall influence of animal and plant
protein intake on morbidity and mortality, it is helpful to look at
the functions

f(x) = β̂[ANIMAL] · x + β̂[(ANIMAL)2] · x2 (13)

g(y) = β̂[PLANT ] · y + β̂[(PLANT )2] · y2 . (14)

They describe the effect of the animal protein intake x, and of
the plant protein intake y, respectively, on the predictor in the
hazard function in (1). The domains of x and y are chosen such
that they cover approximately the whole range of the observed
values. These functions are plotted below in Figure 3, where the
dotted and dashed line corresponds to the naive estimation. The
results, after having adjusted for homoscedastic or heteroscedas-
tic measurement error, are plotted by thin and thick solid lines,
respectively.

4.2.1 The Naive Analysis

For the naive analysis the seven-days averages of calculated an-
imal protein intake and of calculated plant protein intake were
used as surrogates for the true corresponding intake in a propor-
tional hazards regression. The naive analysis judges the linear
and quadratic terms for animal protein to be significant at the
five percent level, and cholesterol to have a highly significant in-
fluence on morbidity. For mortality the estimates β̂[PLANT ] and
β̂[(PLANT )2] are significant at least at the ten percent level, and
hypertension becomes highly significant.
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The decisive question following the naive analysis now is: are
these result still valid if one takes into account the substantial
measurement error which is naturally inherent in the protein in-
take?

4.2.2 Adjusting for Homoscedastic Measurement Error

First the homoscedastic error model is considered. In order to ob-
tain corrected estimates the regression calibration method based
on (5) and the estimators from (7) to (10) are applied. Column 3
and 4 of Table 1 report the corrected estimates for the influence
on morbidity. In comparison to the naive estimates the effects of
animal protein are estimated about twice as high; this results in
the thin solid line in Figure 3a) below. The point of minimal risk
(x=59038) is about the same as in the naive analysis (x=60079),
and also the zeros are equal in essence, but the curve is much
steeper. β̂[PLANT ] is half as high as the naive estimate. Now
β̂[(PLANT )2] has a negative sign, too. The corresponding func-
tion g(y), which is depicted as the thin solid line in Figure 3b), is
concave and decreasing in y in a monotone way: the higher the
plant intake the higher is the reduction of the risk by an additional
unit of intake.

The role of the confounders is more or less the same. The esti-
mated strong influence of hypertension and smoking is confirmed.
The regression parameter for alcohol intake changes its sign, but
it remains insignificant.

Turning to mortality (cf. Table 2), the absolute values of the re-
gression parameters of the linear and the quadratic terms in the
protein variables become higher by factors between 1.4 and 1.8,
the effects of the confounders remain unchanged in essence. Fig-
ure 3c) and Figure 3d) show the corresponding curves, which are
of the same shape as those from the naive analysis, but run steeper
again.
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4.2.3 Adjusting for Heteroscedastic Measurement Error

As discussed above, the presence of replication data also allows,
for every unit i, i = 1, . . . , n, to estimate the covariance matrix Σi

of the error variable in animal protein intake and in plant protein
intake at the individual level (cf. Equation (11)). Even if one
takes into account that only seven observations are available to
estimate Σi, the variation in the estimated variances (Figure 1 and
Figure 2) is high enough that a detailed study of heteroscedastic
measurement error is promising.

Figure 1: Estimated individual error variances for animal protein
intake: overall and detail figure.

The last two columns in Table 1 refer to the corrected estimates
for morbidity, the corresponding curves are shown by the thick
solid lines in Figure 3a) and Figure 3b).

Compared to the analysis assuming homoscedastic measurement
error, the absolute values of the estimates of the regression coef-
ficients for the linear and the quadratic terms in animal protein
intake are attenuated, indeed they are even closer to the results
from the naive analysis. The curve grows flatter (cf. Figure 3a),
the point of minimal risk and the second zero are shifted to the
left: from about x=60000 to x=52408, and from about x=120000
to x=104098, respectively. In contrast to this, the quadratic na-
ture of the influence of plant protein becomes much clearer. The
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Figure 2: Estimated individual error variances for plant protein
intake: overall and detail figure.

regression coefficient for the quadratic term now again has a pos-
itive sign, its value is about 30 times as high as in the naive
analysis.

As can also be seen in Figure 3b), the risk is still decreasing with
increasing plant protein intake, but now the curve is clearly con-
vex: the relative gain in risk reduction becomes the smaller the
higher the intake is, and there would be a border value (outside
the domain of the data, at y=73241), where further intake would
increase the risk again. Correcting for heteroscedastic measure-
ment error in the estimation of mortality confirms the results
obtained from the homoscedastic error model for plant protein
intake (cf. also Figure 3d)). The absolute values of the estimated
coefficients of animal protein intake are by the factor 2.4 lower,
which results in a much flatter curve in Figure 3c).
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Figure 3: Estimated overall influence of animal/plant protein in-
take on morbidity and mortality (cf. (13) and (14)), calculated
from the naive estimates (dotted line), from the estimates af-
ter having corrected for homoscedastic measurement error (thin
solid line), and from the estimates after having corrected for het-
eroscedastic measurement error (thick solid line), respectively.

It is also worth mentioning that morbidity and mortality differ
with respect to the consequences a certain amount of protein in-
take has. High plant protein intake considerably reduces the risk
of cardiac infarction, but increases the risk of death. In the case
of animal protein the intake which minimizes the risk of death
(x=94263 for the heteroscedastic error model) has already a rather
high risk for cardiac infarction.

5 Concluding Remarks

We discussed an extended version of regression calibration to cor-
rect for possibly heteroscedastic measurement error in Cox re-
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gression with a quadratic predictor when replication data are
available. This method was applied to a part of the MONICA
Augsburg survey to study the influence of eating habits on car-
diovascular diseases.

It has become clear how important it is to take into account mea-
surement error carefully. In particular under heteroscedastic mea-
surement error there is a complex relationship between naive and
corrected estimation, which may alter the estimates substantially.
Nevertheless, the results reported here must be taken only as a
first step towards a comprehensive analysis, suggesting and mo-
tivating further research in several directions. Four topics should
be mentioned explicitly:

First of all, it must not be forgotten that the regression calibra-
tion method is only an approximate method, reducing the bias of
naive analysis but not necessarily producing consistent estimators.
Furthermore, the parameter estimates have to be interpreted in
relative terms because correct estimators for their standard errors
are missing. To derive such appropriate estimators is demanding
(cf. [2, Section 3.5 and Subsection 3.12.2]), an interesting alter-
native would be bootstrapping.

Secondly, alternative correction methods should be applied, in
order to justify, or to correct, the preliminary results obtained
here. Of special interest here is a so-to-say dynamic regression
calibration procedure, developed by [17], where at every failure
time only those units are taken into account which still are under
risk (cf. also [31]).

Another powerful method to correct for homoscedastic measure-
ment error in the Cox model was developed by Nakamura ([32])
and extended to heteroscedastic error by [19]. However, prior to
applying this method, further theoretic development is needed, in
order to be able to model the quadratic influence of the covari-
ates. The inherent restriction to linear predictors is also the main
hurdle for an application of Huang and Wang’s nonparametric
functional correction method (cf. [15]), which would provide an
appealing alternative to utilize replicated measurements.

There are good reasons to doubt the assumption made above that
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the measurement error should be independent of the true protein
intake, and so more complex error models deserve special atten-
tion (cf., e.g., [33, 34, 35]).

The third issue to keep in mind is that valuable insights in the
data may be gained by applying accelerated failure time mod-
els instead of Cox’s proportional hazards model. Techniques for
measurement error correction in such survival models have not
yet received much attention. One of the very rare exceptions is
[36] where Nakmura illustrates his general method of so-called
corrected score functions with members of the exponential fam-
ily. His approach is generalized to possibly censored Weibull dis-
tributed lifetimes in [37]. A procedure to correct for covariate
measurement error in the nonparametric log-linear lifetime model
is suggested by [38], while [39, Chapter 5f.] proposes two methods
for corrected quasi-likelihood estimation in arbitrary parametric
accelerated failure time models. As discussed there, the latter
approaches need some non-standard treatment of censored obser-
vations, but have, on the other hand, the advantage of being able
to take also error-prone lifetimes into account.

The last item to be mentioned is the most difficult one: Eating
habits may change! Even if the Xi to be measured by the diary
could be determined exactly, this measurement would only stem
from a cursory glance at a process developing over time. Morbid-
ity and mortality is also affected by the intake before as well as
after the recording of the eating habits. This leads to the superpo-
sition of the heteroscedastic measurement error treated here with
a complex kind of measurement error where a time-dependent co-
variate is only observed at a certain time point. (Compare for
this also [40], considering a Cox model where a time dependent
covariate is only observed irregularly.)
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