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Abstract

The Poisson distribution has been widely used for modelling rater

agreement using loglinear models. Mostly in all life or social science re-

searches, subjects are being classified into categories by rater, interview-

ers or observers and most of these tables indicate that the cell counts are

mixtures of either too big values and two small values or zeroes which are

sparse data. We refer to sparse as a situation when a large number of cell

frequencies are very small. For these kinds of tables, there are tenden-

cies for overdispersion in which the variance of the outcome or response

exceeds the nominal variance, that is, when the response is greater than

it should be under the given model or the true variance is bigger than

the mean. In these types of situations assuming Poisson models means

we are imposing the mean-variance equality restriction on the estimation.

This implies that we will effectively be requiring the variance to be less

than it really is, and also, as a result, we will underestimate the true

variability in the data. Lastly, this will lead us to underestimating the

standard errors, and so to overestimating the degree of precision in the

coefficients. The Negative Binomial, which has a variance function, would

be better for modelling rater agreement with sparse data in the table in

order to allow the spread of the observations or counts. We observed that

assuming Negative Binomial as the underline sampling plan is better for

modelling rater agreement when there are sparse data in a limited number

of example.
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1 Introduction

In most analyzes on categorical data, like any cross-classified table between two
raters, the researchers frequently prefer assuming Poisson distribution as the
underlying sampling plan rather than using binomial, multinomial, or hyperge-
ometric or any other distribution because of its added advantage of having the
same mean and variance. The two major assumptions on Poisson distribution
for count data are assumptions of independence and of constant rates (Breslow,
1984). In this paper we propose Negative Binomial as a better underlying as-
sumption for modelling the rater agreement most especially when the resulted
cross-classified table of ratings is sparse. A square table can be used to display
joint ratings of two rater or observers. If the reliability test between the two
raters has been satisfied, it is highly expected that some of the cells counts in
the diagonal will be very big while those off the diagonal will be very small or
zero which leads to sparse data. And in a situation like this, there is a very high
tendency of observing overdispersion which is one of the main causes of lack
of fit. Overdispersion refers to the situation that the variance of the outcome
or response exceeds the nominal variance under the given model. McCullagh
and Nelder (1989) said that overdispersion is the rule rather than the exception.
Overdispersion has two major adverse effects. Firstly, the summary statistics
have a larger variance than anticipated under the simple model, and secondly,
there is a possible loss of efficiency in using statistics appropriate for the as-
sumed distribution. Deviance and Pearson Chi-square divided by the degrees
of freedom are used to detect overdispersion or underdispersion in the Poisson
regression. Values greater than 1 indicate overdispersion, that is, the true vari-
ance is bigger than the mean, values smaller than 1 indicate underdispersion,
the true variance is smaller than the mean. Evidence of underdispersion or
overdispersion indicates are an inadequate fit of the Poisson model. We can test
for overdispersion with a likelihood ratio test based on Poisson and this Negative
Binomial distribution. This tests equality of the mean and the variance imposed
by the Poisson distribution against the alternative that the variance exceeds the
mean. See also Cameron and Trivedi (1990) for more on overdispersion.

Before the introduction of modelling in rater agreement many authors have
described various testing procedures and various modifications of kappa liked
statistic for raters agreement measures Barnhart and Williamson (2002); Shoukri
(2004) and so on. Many categorical scales are quite subjective and reliability
assessment which has to be conducted at the initial stage depends on evalu-
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ation of agreement between the raters, interviewers or observers involved in
the measurements or tests, so as to assess the level of variability in the mea-
surement procedure to be used in the final tests. Due to the fact that most
of these authors have described raters agreement using generalization of Co-
hen’s kappa, some authors like Tanner and Young (1985a); Maclure and Willett
(1987) showed difficulties with summarizing agreement between two raters by a
single measure. These difficulties include: loss of information from summarizing
the table by a single number; sensitivity of value to the form of the marginal
distributions; and subsequence dangers in comparing values of kappa between
two tables. These authors then proposed modelling the structure of agreement
between raters. Modelling that involves loglinear and latent class models for
raters agreement measures. In this research work, modelling approach to rater
agreement will be considered with attention on ordinal scales data.

To these effects, in place of Poisson, we propose a natural variance function
distribution called Negative Binomial as an underlying sampling plan for mod-
elling rater agreement when there are sparse data. Negative Binomial model
was proposed because it is a parametric model and more dispersed than Pois-
son, and it allows the spread of the counts in the table (Cameron and Trivedi
1998).

We used generalized linear model (GLM) approach to fit both Poisson and
Negative Binomial models, and the algorithms for these models can be executed
with any of Splus or R-program. In sections 2 and 3 we present models as well
as their properties and estimation of parameters as well as modelling and in
section 4 we have various empirical examples on ordinal categorial scale data
followed by the summary of results and conclusion in section 5.

2 Models and their properties

The Poisson model can be used to model the number of occurrences of an event
of interest or the rate of occurrence of an event of interest, as a function of
one or more independent variables or factors. The Poisson distribution can be
expressed in terms of a linear regression model with dependent variable Y , cell
frequency or number of occurrences of an event, and independent variables or
factors Xi, i = 1, . . . , p, Cameron and Trivedi (1998). So Poisson distribution
for a random variable y given Xi, i = 1, . . . , p is given as

P (Y = y | x1, . . . , xp) =
λye−λ

y!
for y = 0, 1, 2, . . . , (2.1)

The mean and the variance of Poisson distribution are equal, that is, E(Y ) =
V (Y ) = λ. The Poisson model for yi assumes that the yi are independent.
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Suppose that y ∼ Poisson(λ), but λ itself is a random variable with a gamma
distribution. That is suppose

y/λ ∼ Poisson(λ),

λ ∼ Gamma(α, β),

where Gamma(α, β) is the gamma distribution with mean αβ and variance αβ2,
whose density is

P (λ) =

⎧⎪⎨⎪⎩
1

βαΓ(α)λ
α−1 exp(−(λ/β)) for λ, α, β > 0,

0 otherwise.

(2.2)

Then it is easy to show that the unconditional distribution of y is the Negative
Binomial,

f(y) =
Γ(α + y)
Γ(α)y!

(
β

1 + β

)y (
1

1 + β

)α

, for y = 0, 1, 2, . . . , (2.3)

This distribution has mean

E(Y ) = E[E(Y | λ)] = E(λ) = αβ

and variance

V ar(Y ) = E[var(Y | λ)] + var[E(Y | λ)]

= var(λ) + E(λ)

= αβ + αβ2 (2.4)

For building a regression model, it is natural to express the Negative Binomial
distribution in terms of the parameters µ = αβ and α = 1

k , so that

E(Y ) = µ and

V ar(Y ) = µ + kµ2 (2.5)

Notice that the variance function is quadratic. Therefore the distribution of y
is then

f(y) =
Γ(k−1 + y)
Γ(k−1)y!

(
kµ

1 + kµ

)y (
1

1 + kµ

) 1
k

, for y = 0, 1, 2, . . . , (2.6)

which approaches Poisson(µ) as k → 0 Adejumo (2002). k is not a dispersion
parameter, large value of k correspond to greater amounts of overdispersion .
Anscombe (1949) had worked on estimation of parameter k for single samples
and for several samples. See also Santos-Silva (1997), Cameron and Trivedi
(1998) and others for more on Negative Binomial models.
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3 Modelling and estimation of parameters

Loglinear models have been used to model agreement in terms of components,
such as chance agreement and beyond chance agreement by displaying patterns
of agreement among raters, Tanner and Young (1985). They expressed statis-
tical independence of the ratings or chance agreement and agreement beyond
chance respectively when there are rr raters through the following loglinear
models,

log(vij...l) = u + uR1
i + uR2

j + ... + uRrr

l , i, j, ...l = 1, ...m (3.1)

and

log(vij...l) = u + uR1
i + uR2

j + ... + uRrr

l + δij...l, i, j, ...l = 1, ...m (3.2)

where vij...l is the expected cell counts in the ij...lth cell of the joint rr-dimensional
cross classification of the ratings, u is the overall effect, uRi is the effect due to
categorization by the rth raters in the cth category (r = 1, ..., rr; c = 1, ...,m),∑m

i=1 uR1
i = ... =

∑m
l=1 uRrr

l = 0 and parameter δij...l represents agreement
beyond chance for the ij...lth cell.

Based on Tanner and Young (1985), for a two dimensional cross classification
of ratings, the independence model with agreement beyond chance will be

log(vij) = u + uR1
i + uR2

j + δij , i, j = 1, ...m, (3.3)

where δij can be homogenous or nonhomogeneous defined respectively as

δij =
{

δ If i = j,

0 if i �= j,
(3.4)

or

δij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δ1 If i = j = 1,

δ2 If i = j = 2,
...

...
δm If i = j = m,

0 if i �= j.

(3.5)

This illustrates the fact that model (3.3) is sensitive only to discrepancies that
are present on the main diagonal.

We also consider the uniform association model proposed by Goodman (1979)
under the assumption of Poisson model also, given as

log(vij) = u + uR1
i + uR2

j + βuivj , i, j = 1, ...m, (3.6)
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where u1 < u2 < . . . < um or v1 < v2 < . . . < vm are fixed scores assigned to
the response categories so as to reflect the category ordering.

In addition to these, Agresti (1988) also proposed a model of agreement plus
linear-by-linear association, which is the combination of the model of Tanner
and Young (1985) and the uniform association model of Goodman (1979) for
bivariate cross-classifications of ordinal variables. The model is

log(vij) = u + uR1
i + uR2

j + βuivj + δij , i, j = 1, ...m (3.7)

where

δij =
{

δ If i = j,

0 if i �= j,
(3.8)

u1 < u2 < . . . < um or v1 < v2 < . . . < vm are fixed scores assigned to the
response categories, and u, λR1

i , λR2
j and vij are as defined in equation (3.1).

In the same way, instead of assuming Poisson as we have in the above models
of Tanner and Young (1985) and Agresti (1988), let the distribution of yij , the
count frequency, follow a Negative Binomial in equation (2.6), with parameters
µij and k. In particular, that means, relaxing the assumption of Poisson on
equality of mean and variance, since the mean and variance of Negative Binomial
are not the same whenever k > 0 in equation (2.5). That is,

yij ∼ Negbin(µij , k).

Based on the generalized linear model (GLM) assumptions approach, let us
assume that

g(µij) = ηij = x′
ijβ, (3.9)

where g is a link function, xij contains n×p covariates, where n is the number of
cells and p is the number of parameters involve in the model. The most common
choice for g is the log link, see McCullagh and Nelder (1989) and Fahrmeir and
Tutz (2001).

The log likelihood function is

l(θ, φ) =
n∑

i=1

(
(yiθi − b(θi))

φ
+ c(yi, φ)

)
(3.10)

where θ subsumes all of the θi. It could also be written as a function of β and
φ because (given the xi), β determines all the θi. The main way of maximizing
β is by maximizing (3.10).

Early approaches to rater agreement measurement before the introduction of
modelling, have focused on the observed proportion of agreement, suggesting
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that chance agreement can be ignored. To these effect, just like Tanner and
Young (1985), the log link for g will be structured in such a way that this
chance agreement and beyond shall be accommodated but under the Negative
Binomial sampling plan.

So the log link for g will be an independence model which can also incorporate
agreement beyond chance given as

log(µij) = λ0 + λRx1
i + λRx2

j + αij (3.11)

where µij is the expected cell count in cell i, j; λ0 is the intercept; λRx1
i is the

effect of raters 1 in the ith category; λRx2
j is the effect of raters 2 in the jth

category and αij can be homogeneous or non-homogeneous agreement effect
between raters 1 and raters 2 in i, j categories which we define just like the δij

in (3.4) respectively as

αij =
{

α If i = j,

0 if i �= j,
(3.12)

and

αij = αiI(i = j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α1 If i = j = 1,

α2 If i = j = 2,
...

...
αI If i = j = I,

0 if i �= j,

(3.13)

However, the log link for g for ordinary statistical independence or chance agree-
ment between the ratings of the two raters can also be expressed as

log(µij) = λ0 + λRx1
i + λRx2

j (3.14)

Also for agreement plus linear-by-linear association model, as we have stated
above, the corresponding model under this underlying assumption will be

log(mij) = λ0 + λRx1
i + λRx2

j + βuivj + αij , i, j = 1, 2, . . . ,m (3.15)

where

αij =
{

α If i = j,

0 if i �= j,
(3.16)

where u1 < u2 < . . . < um or v1 < v2 < . . . < vm are fixed scores assigned to
the response categories, and λ0, λRx1

i , λRx2
i and mij are as defined in equation

(3.11).
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The fact that G(µ) = xijβ suggests a crude approximation estimate: regress
G(y) on xij , perhaps modifying yij in order to avoid violating range restric-
tions (such as taking log(0)), and accounting for the differing variances of the
observations.

We shall consider these models under the families of Poisson and Negative Bi-
nomial in the algorithms for the following maximization of parameter estimates
procedures.

Fisher scoring iteration is the widely used technique for maximizing the GLM
likelihood over β.

3.1 Negative Binomial model

The loglikelihood contribution of a single observation is

l = logΓ(k−1 + y) − logΓ(k−1) + ylog

(
kµ

1 + kµ

)
+ k−1log

(
1

1 + kµ

)
− log(y!),

(3.17)
For a fixed value of k, this has the form of a GLM. Therefore it can be fitted
by Fishers scoring, iteration re-weight least square (IRWLS), method. One
iteration is

β(t+1) = (X ′WX)−1X ′Wu,

where the weights are

W = Diag

[
var(yi)

(
∂ηi

∂µi

)2
]−1

and

u = η +
(

∂η

∂µ

)
(y − µ).

is the working variate. Recall from equation (2.5) that, V ar(yi) = µi + kµ2
i , so

under log link
∂η

∂µ
=

1
µ

,

the weights become

wi =
µ2

i

µi + kµ2
i

,

and the working variate is

ui = Xi
′β +

(yi − µi)
µi

.

8



As we usually do under the Poisson model, we regress u on X using the ui’s
as weights to get the new estimate of β and continue these processes until the
value of β converges. That is, the iteration is stopped when the consecutive
iteration values are close or the loglikelihood values are maximized. In most
applications k will be unknown. We can find the ML estimate for k by grid
search. For each value of k along a grid, we can find the maximized value of the
loglikelihood. Plotting this profile loglikelihood versus k will allow us to identify
the ML estimate k̂ . The estimated β̂ at k = k̂ is the ML estimate for β.

The ML estimates for k and β are asymptotically uncorrelated. This means
that uncertainty in the estimate of k does little to affect the precision of β̂. If
we were to use expectation rather than observed information, it would make no
difference whether we regard k as fixed at k̂.

3.2 Cases outlines

The following cases shall be considered with the algorithm written based on
the assumptions and properties of both Poisson and Negative Binomial models
discussed in the previous sub sections.

• Case 1:- When β = 0 and αij = 0, this results to equation 3.14

• Case 2:- When β = 0 and αij �= 0, this results to equation 3.11

• Case 3:- When β �= 0 and αij �= 0, this results to equation 3.15

4 Empirical examples

4.1 Example 1.

Consider the data on cross-classification of two independent interpretations of
Sputum cytology slides for lung by two observers taken from Becker (1990) based
on the following categorical scales: 1=Negative, 2=Ambigious cells, 3=suspect,
4=positive, and 5=technically unsatisfactory.
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Table 4.1: Cross-classification of two independent interpretations of Sputum
cytology slides for lung of 100 patients

Category Second observer
First observer 1 2 3 4 5 Total

1 26 19 1 0 7 53
2 2 11 5 3 4 25
3 0 1 6 6 0 13
4 0 0 0 4 1 5
5 1 1 0 0 2 4

Total 29 32 12 13 14 100

Table 4.2: Parameter estimates under Poisson model on Sputum cytology data
for Case 1: (G2 = 89.3338,X2 = 79.2964)

Coefficients Value Std. Error t-value p-value
intercept 2.7885975 0.16805904 16.59 < 0.0001
raters1 -0.7093479 0.09356623 -7.58 < 0.0001
raters2 -0.2516554 0.07361791 -3.42 0.001

Table 4.3: Parameter estimates under Poisson model on Sputum cytology data
for Case 2: (G2 = 59.3106,X2 = 55.6819)

Coefficients Value Std. Error t-value p-value
intercept 1.98958675 0.23177627 8.58 < 0.0001
raters1 -0.69309524 0.09786396 -7.08 < 0.0001
raters2 -0.04692543 0.08655485 -0.54 0.588
alpha 1.27889242 0.23387508 5.47 < 0.0001

4.2 Example 2.

Consider the following data arising from the diagnosis of multiple sclerosis re-
ported by two neurologists, on 69 patients of New Orleans , using the following
categorical scales for diagnostic classes: 1=certain multiple sclerosis, 2=prob-
able multiple sclerosis, 3=possible multiple sclerosis, 4=doubtful, unlikely, or
definitely not multiple sclerosis (Basu et al. 1999).
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Table 4.4: Parameter estimates under Poisson model for Sputum cytology data
for Case 3: (G2 = 54.9287,X2 = 49.3268)

Coefficients Value Std. Error t-value p-value
intercept 2.3594704 0.28683612 8.23 < 0.0001
raters1 -0.2120408 0.12119259 -1.75 0.080
raters2 -1.0128531 0.19182118 -5.28 < 0.0001
alpha 1.0042797 0.27111594 3.70 < 0.0001
beta 0.1552665 0.07411052 2.10 0.036

Table 4.5: Parameter estimates under Negative Binomial model on Sputum
cytology data for Case 1: (G2 = 49.8358,X2 = 38.3347)

Coefficients Value Std. Error t-value p-value
intercept 2.5074186 0.3113741 8.05 < 0.0001
raters1 -0.6709538 0.1253411 -5.35 < 0.0001
raters2 -0.1189377 0.1112238 -1.07 0.285

Table 4.6: Parameter estimates under Negative Binomial model on Sputum
cytology data for Case 2: (G2 = 34.0581,X2 = 30.2818)

Coefficients Value Std. Error t-value p-value
intercept 1.86113289 0.3493162 5.33 < 0.0001
raters1 -0.72004195 0.1350833 -5.33 < 0.0001
raters2 0.01503443 0.1223015 0.12 0.902
alpha 1.41712289 0.3671640 3.86 < 0.0001

Table 4.7: Parameter estimates under Negative Binomial model on Sputum
cytology data for Case 3: (G2 = 32.7313,X2 = 28.6627)

Coefficients Value Std. Error t-value p-value
intercept 2.1944387 0.4890735 4.49 < 0.0001
raters1 -0.1390016 0.1921464 -0.72 0.469
raters2 -0.9684229 0.2779526 -3.48 < 0.0001
alpha 1.2132863 0.4225651 2.87 0.004
beta 0.1179295 0.1067453 1.10 0.269

5 Results and Conclusion

5.1 Results

We present the summary of the working examples’ results obtained using Poisson
as well as the Negative Binomial as the underlying sampling plan in the previous
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Table 4.8: Cross-classification table of multiple sclerosis assessment for 69 pa-
tients.

Category Neurologist 2
Neurologist 1 1 2 3 4 Total

1 5 3 0 0 8
2 3 11 4 0 18
3 2 13 3 4 22
4 1 2 4 14 21

Total 11 29 11 18 69

Table 4.9: Parameter estimates under Poisson model on diagnosis of multiple
sclerosis data for Case 1: (G2 = 60.8985,X2 = 60.8701)

Coefficients Value Std. Error t-value p-value
intercept 1.01464926 0.2855009 3.55 < 0.0001
raters1 0.25379598 0.1106240 2.29 0.022
raters2 0.01739279 0.1076902 0.16 0.872

Table 4.10: Parameter estimates under Poisson model on diagnosis of multiple
sclerosis data for Case 2: (G2 = 43.9031,X2 = 47.2775)

Coefficients Value Std. Error t-value p-value
intercept 0.73003098 0.2774976 2.63 0.009
raters1 0.27470099 0.1167700 2.35 0.019
raters2 -0.06691349 0.1155491 -0.58 0.563
alpha 1.04167944 0.2476778 4.21 < 0.0001

Table 4.11: Parameter estimates under Poisson model on diagnosis of multiple
sclerosis data for Case 3: (G2 = 36.8981,X2 = 44.4871)

Coefficients Value Std. Error t-value p-value
intercept 1.6201426 0.4127650 3.93 < 0.0001
raters1 -0.6465883 0.2581471 -2.50 0.012
raters2 -0.1952360 0.2180004 -0.90 0.370
alpha 0.5028639 0.3261764 1.54 0.123
beta 0.3353320 0.1308588 2.56 0.010
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Table 4.12: Parameter estimates under Negative binomial model on diagnosis
of multiple sclerosis data for Case 1: (G2 = 34.3501,X2 = 31.7901)

Coefficients Value Std. Error t-value p-value
intercept 1.07108202 0.3745630 2.86 0.004
raters1 0.29094076 0.1512600 1.92 0.054
raters2 -0.06075422 0.1491649 -0.41 0.684

Table 4.13: Parameter estimates under Negative binomial model on diagnosis
of multiple sclerosis data for Case 2: (G2 = 25.5948,X2 = 26.3745)

Coefficients Value Std. Error t-value p-value
intercept 0.7432522 0.3860204 1.93 0.054
raters1 0.3157199 0.1586633 1.99 0.047
raters2 -0.1242281 0.1571962 -0.79 0.429
alpha 1.0511986 0.3620830 2.90 0.004

Table 4.14: Parameter estimates under Negative binomial model on diagnosis
of multiple sclerosis data for Case 3: (G2 = 20.7266,X2 = 26.0728)

Coefficients Value Std. Error t-value p-value
intercept 1.8495632 0.5778368 3.20 0.001
raters1 -0.8442744 0.3550601 -2.38 0.017
raters2 -0.2930215 0.2996202 -0.98 0.328
alpha 0.4586100 0.4609252 0.99 0.320
beta 0.4212744 0.1849612 2.28 0.023

section.

Table 5.1: Summary table of results for case 1 (When β = 0 and αij = 0) using
Poisson as underlying distribution

Poisson model
Example Mean Variance Pearson’s (χ2) Like. ratio (G2) df

1 4 39.9167 79.2964 89.3338 22
2 4.3125 19.8292 60.8701 60.8985 13
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Table 5.2: Summary table of results for case 1 (When β = 0 and αij = 0) using
Negative Binomial as underlying distribution

Negative Binomial model
Example Mean Variance Pearson’s (χ2) Like. ratio (G2) df k̂

1 4 39.9167 38.3347 49.8358 22 0.25
2 4.3125 19.8292 31.7901 34.3501 13 0.203

Table 5.3: Summary table of results for Case 2 (When β = 0 and αij �= 0) using
Poisson as underlying distribution

Poisson model
Example Mean Variance Pearson’s (χ2) Like. ratio (G2) df

1 4 39.9167 55.6819 59.3106 21
2 4.3125 19.8292 47.2775 43.9031 12

Table 5.4: Summary table of results for case 2 (When β = 0 and αij �= 0) using
Negative Binomial as underlying distribution

Negative Binomial model
Example Mean Variance Pearson’s (χ2) Like. ratio (G2) df k̂∗

1 4 39.9167 30.2818 34.0581 21 0.25
2 4.3125 19.8292 26.3745 25.5948 12 0.203

Table 5.5: Summary table of results for Case 3 (When β �= 0 and αij �= 0) using
Poisson as underlying distribution

Poisson model
Example Mean Variance Pearson’s (χ2) Like. ratio (G2) df

1 4 39.9167 49.3268 54.9287 20
2 4.3125 19.8292 44.4871 36.8981 11
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Table 5.6: Summary table of results for case 3 (When β �= 0 and αij �= 0) using
Negative Binomial as underlying distribution

Negative Binomial model
Example Mean Variance Pearson’s (χ2) Like. ratio (G2) df k̂

1 4 39.9167 28.6627 32.7313 20 0.25
2 4.3125 19.8292 26.0728 20.7266 11 0.203

Table 5.7: Summary table of results for αij and β under Poisson as underlying
distribution for Cases 2 and 3

Case 2 Case 3
Example αij p-value αij p-value β p-value

1 1.2789 < 0.0001 1.0043 < 0.0001 0.1553 0.0741
2 1.0417 < 0.0001 0.5029 0.123 0.3353 0.010

Table 5.8: Summary table of results for αij and β under Negative Binomial as
underlying distribution for Cases 2 and 3

Case 2 Case 3
Example αij p-value αij p-value β p-value

1 1.4171 < 0.0001 1.2133 0.004 0.1179 0.269
2 1.0512 0.004 0.4586 0.320 0.4213 0.023

By considering the descriptive statistics of each of the data in the examples
1 and 2, it is clearly shown that there are sparse due to their respective large
percentages of very small values in the cell counts. Also, their respective variance
is greater than their mean, which indicates the existence of overdispersion. In
Tables 5.1 to 5.6, the estimates of their respective Pearson’s χ2 and likelihood
ratio G2 under Poisson model assumptions for all the cases are greater than
their respective estimates under Negative Binomial model assumptions with the
same number of degrees of freedom. In addition to that, by observing each
of Figures A.1 to A.4 which are the plots of fitted values against residuals
under Poisson model or Negative Binomial model for cases 2 and 3, shows
that Negative Binomial has better fit than its Poisson counterpart. Which
hence means that Negative Binomial is a good substitute to Poisson for rater
agreement data of this form which have sparse data. Tables 5.7 and 5.8 give the
estimates for parameters αij and β under Cases 2 and 3 which can be used to test
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the null hypothesis Ho : αij = 0 against the alternative hypothesis H1 : αij �= 0
for case 2 and the null hypotheses Ho : αij = 0 and Ho : β = 0 against their
respective alternative hypotheses H1 : αij �= 0 and H1 : β �= 0, under each of
the Poisson and Negative Binomial models as underlying distribution. Based on
the p-values from Tables 5.7 and 5.8, we observed that for Case 2 parameter αij

is significant in all the examples under the two distributions. However, for Case
3, αij is only significant in examples 1 for both distributions, and parameter β

is only significant in example 2. This implies that, under case 3 whenever β is
significant αij will not be significant and vice versa. In addition to these results,
we used two different data arising from the study reported in Holmquist et al.
(1967) that investigated the variability in the classification of carcinoma in situ
of the uterine cervix in which seven pathologists were requested to separately
evaluate and classify 118 slides, we used (path A and path C) as well as (path
E and path F) and we used also one other one on dysplasia assessments data
by two different pathologists as presented by Barnhart and Williamson (2002).
From all these we have the same conclusion that Negative binomial model fits
better for rater agreement data that are sparse than Poisson model.

5.2 Conclusion

We observed that when there are sparse data, relaxing the assumption of Poisson
model and assuming a Negative Binomial model that allows the spreads of the
observations of the ratings between the two raters is better. In other word,
modelling Negative Binomial model instead of Poisson model for rater agreement
data that exhibit a large number of small values or zero cells is better in order
not to underestimate the true variability in the data and the standard errors and
also not to overestimating the degree of precision in the coefficients as well as in
the estimates of the underlying statistics. Lastly, Negative Binomial model is a
better substitute to Poisson for modelling the agreement of the ratings between
two raters with sparse data in the arising table.
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A Appendix

A.1 Figures A.1 and A.2 are for Case 2 when β = 0 and

αij �= 0 while Figures A.3 and A.4 are for Case 3 when

β �= 0 and αij �= 0

Plot of fitted poisson with Residuals(Sputum cytology)
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Plot of fitted negative binomial with Residuals(Sputum cytology)
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Figure A.1: Left is Fitted Poisson model and right is fitted Negative Binomial
model against their respective residuals for Sputum cytology slides

Plot of fitted poisson with Residuals(multiple sclerosis)
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Plot of fitted negative binomial with Residuals(multiple sclerosis)
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Figure A.2: Left is Fitted Poisson model and right is fitted Negative Binomial
model against their respective residuals for diagnosis multiple sclerosis

A.2 Matrix of fitted Poisson for case 2 on Sputum cytol-

ogy data

⎛⎜⎜⎜⎜⎜⎝
26.2714 6.9773 6.6574 6.3523 6.0611
3.6564 12.5342 3.3289 3.1763 3.0306884
1.8283 1.7445 5.9801 1.5882 1.5154229
0.9142 0.8723 0.8323 2.8531 0.7578
0.4571 0.4362 0.4162 0.3971 1.3612

⎞⎟⎟⎟⎟⎟⎠
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plot of fitted Poisson with Residuals(Sputum cytology slides)
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plot of fitted negative binomial with Residuals(Sputum cytology slides)
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Figure A.3: Left is Fitted Poisson model and right is fitted Negative Binomial
model against their respective residuals for Sputum cytology slides

plot of fitted Poisson with Residuals(Multiple Sclerosis)
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plot of fitted negative binomial with Residuals(Multiple Sclerosis)
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Figure A.4: Left is Fitted Poisson model and right is fitted Negative Binomial
model against their respective residuals for diagnosis multiple sclerosis

A.3 Matrix of fitted Negative binomial for Case 2 on Spu-

tum cytology data

⎛⎜⎜⎜⎜⎜⎝
26.5294591 6.5284354 6.6273283 6.7277191 6.8296307
3.1301814 13.1083346 3.2257317 3.2745951 3.3241987
1.5235589 1.5466378 6.4768918 1.5938497 1.6179933
0.7415646 0.7527979 0.7642013 3.2002637 0.7875289
0.3609431 0.3664107 0.3719611 0.3775956 1.5812658

⎞⎟⎟⎟⎟⎟⎠
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A.4 Matrix of fitted Poisson for Case 2 on diagnosis of

multiple sclerosis data

⎛⎜⎜⎝
5.880904 1.940833 1.815215 1.697727
2.731175 7.239108 2.389072 2.234442
3.594601 3.361944 8.910991 2.940832
4.730988 4.424780 4.138391 10.968998

⎞⎟⎟⎠

A.5 Matrix of fitted Negative binomial for case 2 on di-

agnosis of multiple sclerosis data

⎛⎜⎜⎝
6.016170 1.857115 1.640164 1.448557
2.883406 7.285912 2.249068 1.986328
3.953859 3.491963 8.823640 2.723745
5.421714 4.788341 4.228959 10.685914

⎞⎟⎟⎠
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