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Abstract

Ridge regression is a well established method to shrink regression parameters

towards zero, thereby securing existence of estimates. The present paper investigates

several approaches to combining ridge regression with boosting techniques. In the

direct approach the ridge estimator is used to fit iteratively the current residuals

yielding an alternative to the usual ridge estimator. In partial boosting only part of

the regression parameters are reestimated within one step of the iterative procedure.

The technique allows to distinguish between variables that are always included in

the analysis and variables that are chosen only if relevant. The resulting procedure

selects variables in a similar way as the Lasso, yielding a reduced set of influential

variables. The suggested procedures are investigated within the classical framework

of continuous response variables as well as in the case of generalized linear models. In

a simulation study boosting procedures for different stopping criteria are investigated

and the performance in terms of prediction and the identification of relevant variables

is compared to several competitors as the Lasso and the more recently proposed

elastic net. For the evaluation of the identification of relevant variables pseudo

ROC curves are introduced.

Key words: Ridge regression, boosting, Lasso, Pseudo ROC curves
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1 Introduction

Ridge regression has been introduced by Hoerl and Kennard (1970b) to overcome prob-

lems of existence of the ordinary least squares estimator and achieve better prediction.

In linear regression with y = Xβ + ε where y is a n-vector of centered responses, X an

(n × p)-design matrix, β a p-vector of parameters and ε a vector of iid random errors,

the estimator is obtained by minimizing the least squares (y−Xβ)T (y−Xβ), subject to

a constraint
∑

j |βj |2 ≤ t. It has the explicit form βR = (XT X + λIp)−1XT y where the

tuning parameter λ depends on t and Ip denotes the (p×p) identity matrix. The shrink-

age towards zero makes βR a biased estimator. However, since the variance is smaller

than for the ordinary least squares estimator (λ = 0), better estimation is obtained. For

details see Seber (1977), Hoerl and Kennard (1970b,a), Frank and Friedman (1993).

Alternative shrinkage estimators have been proposed by modifying the constraint.

Frank and Friedman (1993) introduced bridge regression which is based on the constraint∑
|βj |γ ≤ t with γ ≥ 0. Tibshirani (1996) proposed the Lasso which results for λ = 1

and investigated its properties. A comparison between bridge regression and the Lasso

as well as a new estimator for the Lasso is found in Fu (1998). Extensions of the

ridge estimator to generalized linear models have been considered by Le Cessie and van

Houwelingen (1992).

In the present paper boosted versions of the ridge estimator are investigated. Boost-

ing has been originally developed in the machine learning community as a mean to im-

prove classification (e.g. Schapire, 1990). More recently it has been shown that boosting

can be seen as the fitting of an additive structure by minimizing specific loss functions

(Breiman, 1999; Friedman et al., 2000). Bühlmann and Yu (2003) and Bühlmann (2005)

have proposed and investigated boosted estimators in the context of linear regression

with the focus on L2 loss. In the following linear as well as generalized linear models

(GLMs) are considered. In the linear case boosting is based an L2 loss whereas in the

more general case of GLMs maximum likelihood based boosting is used. In Section 2

we consider simple boosting techniques where the ridge estimator is used iteratively to
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fit residuals. It is shown that although the type of shrinkage differs for ridge regression

and boosted ridge regression, in practice the performance of the two estimators is quite

similar. In addition boosted ridge regression inherits from ridge regression that all the

predictors are kept in the model and therefore never produces a parsimonious model. In

Section 3 we modify the procedure by introducing partial boosting. Partial boosting is a

parsimonious modelling strategy like the Lasso (Tibshirani, 1996) and the more recently

proposed elastic net (Zou and Hastie, 2005). These approaches are appealing since they

produce sparse representations and accurate prediction. Partial boosting means that

only a selection of the regression parameters is reestimated in one step. The procedure

has several advantages: by estimating only components of the predictor the performance

is strongly improved; important parameters are automatically selected and moreover the

procedure allows to distinguish between mandatory variables, for example the treatment

effect in treatment studies, and optional variables, for example covariates which might

be of relevance. The inclusion of mandatory variables right from the beginning yields

coefficients paths that are quite different from the paths resulting for the Lasso or the

elastic net. An example is given in Figure 6 where two variables (“persdis” and “nosec”)

are included as mandatory in a binary response example (details are given in Section

6). An advantage of boosted ridge regression is that it can be extended to generalized

linear model settings. In Section 4 it is shown that generalized ridge boosting may

be constructed as likelihood based boosting including variable selection and customized

penalization techniques. The performance of boosted ridge regression for continuous

response variable and generalized linear model settings is investigated in Section 5 by

simulation techniques. It is demonstrated that componentwise ridge boosting behaves

often similar to the Lasso and elastic net with which it shares the property of automatic

variable selection. A special treatment is dedicated to the identification of influential

variables which is investigated by novel pseudo ROC curves. It is shown that for moder-

ate correlation among covariates boosted ridge estimators perform very well. The paper

concludes with a real data example.
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2 Boosting in ridge regression with continuous response

2.1 The estimator

Boosting has been described in a general form as forward stepwise additive modelling

(Hastie et al., 2001). Boosted ridge regression as considered here means that the ridge

estimator is applied iteratively to the residuals of the previous iteration. For the linear

model the algorithm has the simple form:

Algorithm: BoostR

Step 1: Initialization

β̂(0) = (XT X + λIp)−1XT y , µ̂(0) = Xβ̂(0)

Step 2: Iteration

For m = 1, 2, . . . apply ridge regression to the model for residuals

y − µ̂(m−1) = XβR + ε,

yielding solutions

β̂R
(m) = (XT X + λIp)−1XT (y − µ̂(m−1)),

µ̂R
(m) = Xβ̂R

(m).

The new estimate is obtained by

µ̂(m) = µ̂(m−1) + µ̂R
(m).

The procedure may be motivated by stagewise functional gradient descend (Fried-

man, 2001; Bühlmann and Yu, 2003). Within this framework one wants to minimize,

based on data (yi, xi), i = 1, . . . , n, the expected loss E{C(y, µ(x))} where C(y, µ) ≥ 0 is

a loss function and µ(x) represents an approximation to E(y|x). In order to minimize the

expected loss an additive expansion of simple learners (fitted functions) h(x, θ̂) is used

where θ represents a parameter. After an initialization step that generates µ̂(0), in an

iterative way the negative gradient vector uT = (u1, . . . , un), ui = −∂C(yi, µ)/∂µ|
µ=µ

(m)
i
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is computed and the real learner is fit to the data (yi, ui), i = 1, . . . , n. In boosted

ridge regression the learner is ridge regression, i.e. θ is given by β and the estimate is

β̂u = (XT X + λI)−1Xu. If L2 loss C(y, µ) = (y − µ)2/2 is used, ui has the simple form

of a residual since −∂C(y, µ)/∂µ = y− µ. Therefore one obtains the BoostR algorithm.

The basic algorithm is completed by specifying a stopping criterion. Since the stop-

ping criterion depends on the properties of the estimates, it will be treated later. In the

following properties of the estimator after m iterations are investigated.

2.2 Effects of ridge boosting

Simple ridge regression is equivalent to the initialization step with tuning parameter

λ chosen data-adaptively, for example by cross-validation. Boosted ridge regression is

based on an iterative fit where in each step a weak learner is applied, i.e. λ is chosen

very large. Thus in each step the improvement of the fit is small. The essential tuning

parameter is the number of iterations. As will be shown below, the iterative fit yields a

tradeoff between bias and variance, which differs from the tradeoff found in simple ridge

regression.

It is straightforward to derive that after m iterations of BoostR one has

µ̂(m) = Xβ̂(m)

where

β̂(m) = β̂0 +
m∑

j=1

β̂R
(j)

shows the evolution of the parameter vector by successive correction of residuals.

It is helpful to have the estimated mean µ̂(m) and parameter β̂(m) after m iterations

in closed form. With B = (XT X+λIp)−1XT , S = XB one obtains by using Proposition

1 from Bühlmann and Yu (2003)

µ̂(m) =
m∑

j=0

S(In − S)jy = (In − (In − S)m+1)y, (1)

β̂(m) =
m∑

j=0

B(In − S)jy. (2)
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Thus µ̂(m) = Hmy with the hat matrix given by

Hm = In − (In − S)m+1

= In − (In −X(XTX + λIp)−1XT)m+1.

Some insight into the nature of boosted ridge regression may be obtained by using

the singular value decomposition of the design matrix. The singular value decomposition

of the (n × p) matrix X with rank(X) = r ≤ p, is given by X = UDV T , where the

(n×p) matrix U = (u1, . . . , up) spans the column space of X, UTU = Ip, and the (p×p)

matrix V spans the row space of X, V TV = V V T = Ip. D = diag(d1, . . . , dr, 0, . . . , 0) is

a (p× p) diagonal matrix with entries d1 ≥ d2 ≥ · · · ≥ dr ≥ 0 called the singular values

of X.

One obtains for λ > 0

Hm = In − (In − UDV T(V DUTUDV T + λIp)−1V DUT)m+1

= In − (In − UDV T(V D2V T + λIp)−1V DUT)m+1

= In − (In − UD(D2 + λIp)−1DUT)m+1

= In − (In − UD̃UT)m+1,

where D̃ = diag(d̃2
1, . . . , d̃

2
p), with d̃2

j = d2
j/(d2

j +λ), j = 1, . . . , r, d̃2
j = 0, j = r +1, . . . , p.

Simple derivation shows that

Hm = U(In − (In − D̃)m+1)UT =
p∑

j=1

uju
T
j (1− (1− d̃2

j )
m+1).

It is seen from

µ̂(m) = Hmy =
p∑

j=1

uj(1− (1− d̃2
j )

m+1)uT
j y

that the coordinates with respect to the orthonormal basis u1, . . . , up, given by (1 −

(1 − d̃2
j )

m+1)uT
j y, are shrunken by the factor (1 − (1 − d̃2

j )
m+1). This shrinkage might

be compared to shrinkage in common ridge regression. The shrinkage factor in ridge

regression with tuning parameter γ is given by d2
j/(d2

j + γ). If λ 6= 0, usually no values
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γ, m exist such that d2
j/(d2

j +γ) = (1− (1−d2
j/(d2

j + λ))m+1) for j = 1, . . . , p. Therefore

boosting ridge regression yields different shrinkage than usual ridge regression.

Basic properties of the boosted ridge estimator may be summarized in the following

proposition (for proof see appendix).

Proposition 1. (1) The variance after m iterations is given by

cov(µ̂(m)) = σ2U(I − (I − D̃)m+1)2UT.

(2) The bias b = E(µ̂(m) − µ) has the form

b = U(I − D̃)m+1Uµ.

(3) The corresponding mean squared error is given by

MSE(BoostRλ(m)) =
1
n

(trace(cov(H(m)y)) + bT b)

=
1
n

p∑
j=1

{σ2(1− (1− d̃2
j )

m+1)2 + cj(1− d̃2
j )

2m+2)}

where d̃2
j = d2

j/(d2
j + λ), and cj = µT uju

T
j µ = ‖µT uj‖ depends only on the under-

lying model.

As consequence, the variance component of the MSE increases exponentially with

(1− (1− d̃2
j )

(m+1))2 whereas the bias component bT b decreases exponentially with (1−

d̃2
j )

(2m+2). By rearranging terms one obtains the decomposition

MSE(BoostRλ(m)) =
1
n

p∑
j=1

σ2 + (1− d̃2
j )

m+1{(σ2 + cj)(1− d̃2
j )

m+1 − 2σ2}.

It is seen that for large λ (1 − d̃2
j close to 1) the second term is influential. With

increasing iteration number m the positive term (σ2 + cj)(1 − d̃2
j )

m+1 decreases while

the negative term −2σ2 is independent of m. Then for appropriately chosen m the

decrease induced by −2σ2 becomes dominating. The following Proposition states that

the obtained estimator yields better MSE than the ML estimate (for proof see appendix).
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Proposition 2. In the case where the least squares estimate exists (r ≤ p) one obtains

(a) For m →∞ the MSE of boosted ridge regression converges to the MSE of the least

squares estimator rσ2/n

(b) For appropriate choice of the iteration number boosted ridge regression yields smaller

values in MSE than the least squares estimates

Thus if the least squares estimator exists boosted Ridge Regression may be seen

as an alternative (although not effective) way of computing the least squares estimate

(m →∞).

For simple ridge regression the trade-off between variance and bias has a different

form. For simple ridge regression with smoothing parameter γ one obtains

MSE(Ridgeγ) =
1
n

p∑
j=1

{σ2(d̃2
j,γ)2 + cj(1− d̃2

j,γ)2}

where d̃2
j,γ = d2

j/(d2
j +γ). While the trade-off in simple ridge regression is determined by

the weights (d̃2
j,γ)2 and (1− d̃2

j,γ)2 on σ2 and cj , respectively, in boosted ridge regression

the corresponding weights are (1−(1− d̃2
j )

m+1)2 and (1− d̃2
j )

2m+2 which crucially depend

on the iteration number.

Figure 1 shows the (empirical) bias and variance for example data generated from

model (3) which will be introduced in detail in Section 5. The minimum MSE obtainable

is slightly smaller for boosted ridge regression, probably resulting from a faster drop-off of

the bias component. We found this pattern prevailing in other simulated data examples,

but the difference between boosted ridge regression and simple ridge regression usually is

not large. Overall the fits obtainable from ridge regression and boosted ridge regression

with the penalty parameter and the number of steps chosen appropriately are rather

similar.

3 Partial and componentwise boosting

Simple boosted regression as considered in Section 2 yields estimates in cases where the

ordinary least-squares estimator does not exist. However, as will be shown, in particu-
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Figure 1: Empirical bias and variance of ridge regression (thin lines) and boosted ridge regression

(thick lines) (MSE: solid lines; bias: dotted lines; variance: broken lines) for example data

generated from (3) (see Section 5) with n = 100, p = 50, ρb = 0.7 and signal-to-noise ratio 1.

The horizontal scale of the ridge regression curves is adjusted to have approximately the same

degrees of freedom as boosted ridge regression in each step.

lar for high dimensional predictor space the performance can be strongly improved by

updating only one component of β in one iteration. Bühlmann and Yu (2003) refer

to the method as componentwise boosting and propose to choose the component to be

updated with reference to the resulting improvement of the fit. This powerful procedure

implicitly selects variables to be included in the predictor. What comes as an advantage

may turn into a drawback when covariates which are important to the practioner are not

included. For example in case-control studies the variables may often be grouped into

variables that have to be evaluated, including the treatment, and variables for which

inclusion is optional, depending on their effect. Moreover, componentwise boosting does

not distinguish between continuous and categorical predictors. In our studies continu-

ous predictors have been preferred in the selection process, probably since continuous

predictors contain more information than binary variables.

Therefore in the following partial boosting of ridge estimators is proposed where par-
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tial boosting means that in one iteration selected components of the parameter vector

βT

(m) = (β(m),1, . . . , β(m),p) are re-estimated. The selection is determined by a specific

structuring of the parameters (variables). Let the parameter indices V = {1, . . . , p} be

partitioned into disjunct sets by V = Vc∪Vo1∪ . . .∪Voq where Vc stands for the (compul-

sory) parameters (variables) that have to be included in the analysis, and Vo1, . . . , Voq

represent blocks of parameters that are optional. A block Vor may refer to all the

parameters which refer to a multicategorical variable, such that not only parameters

but variables are evaluated. Candidates in the refitting process are all combinations

Vc ∪ Vor, r = 1, . . . , q, representing combinations of necessary and optional variables.

Componentwise boosting, as considered by Bühlmann and Yu (2003) is the special case

where in each iteration one component from β(m), say β(m),j , is reestimated, meaning

that the structuring is specified by Vc = ∅, Voj = {j}.

Let now Vm = (m1, . . . ,ml) denote the indices of parameters to be considered for

refitting in the mth step. One obtains the actual design matrix from the full design

matrix X = (x·1, . . . , x·p) by selecting the corresponding columns, obtaining the design

matrix XVm = (x·m1 , . . . , x·ml
). Then in iteration m ridge regression is applied to the

reduced model

yi − µ̂(m−1),i = (xi,m1 , . . . , xi,ml
)T βR

Vm
+ εi

yielding solutions

β̂R
Vm

= (β̂R
Vm,m1

, . . . , β̂R
Vm,ml

)

= (XT
Vm

XVm + λIp)−1XT
Vm

(y − µ̂(m−1)).

The total parameter update is obtained from components

β̂R
(Vm),j =

 β̂R
Vm,j j ∈ Vm

0 j /∈ Vm ,

yielding β̂R
(Vm) = (β̂R

(Vm),1, . . . , β̂
R
(Vm),p)

T . The corresponding update of the mean is given

by µ̂(m) = µ̂(m−1) + XVm β̂R
Vm

= X(β̂(m−1) + β̂R
(Vm)), and the new parameter vector is

β̂(m) = β̂(m−1) + β̂R
(Vm).
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In the general case where in the mth step several candidate sets V
(j)
m = (m(j)

1 , . . . ,m
(j)
l ),

j = 1, . . . , l, are evaluated, an additional selection step is needed. In summary the mth

iteration step has the following form:

Iteration (mth step): PartBoostR

(a) Compute for j = 1, . . . , s, the parameter updates β̂
(V

(j)
m )

, and the corresponding

means

µ̂
(j)
(m) = µ̂(m−1) + X

V
(j)
m

β̂
V

(j)
m

.

(b) Determine which µ̂
(j)
(m), j = 1, . . . , l improves the fit maximally.

With Vm denoting the subset which is selected in the mth step one obtains the

updates β̂(m) = β̂(m−1) + β̂R
(Vm), µ̂(m) = Xβ̂(m). With S0 = X(XT X + λIp)−1XT ,

Sm = XVm(XT
Vm

XVm + λIp)−1XT
Vm

, m = 1, 2, . . . the iterations are represented as

µ̂(m) = µ̂(m−1) + Sm(y − µ̂(m−1))

and therefore

µ̂(m) = Hmy

where Hm =
∑m

j=0 Sj
∏j−1

i=1 (I − Si).

If Sj = S, Hm simplifies to the form of simple ridge boosting. One obtains cov(µ̂(m)) =

σ2H2
m, bias = (Hm − I)µ, and the MSE has the form

MSE =
1
n

(trace(σ2H2
m) + µT (Hm − I)2µ).

While mean squared error (MSE), bias and variance are similar for boosted ridge

regression and simple ridge regression (Figure 1), differences can be expected when

these approaches are compared to componentwise boosted ridge regression. Figure 2

shows MSE (solid lines), bias (dottes lines) and variance (broken lines) for the same

data underlying Figure 1, this time for boosted ridge regression (thick lines) and the

componentwise approach (thin lines). Penalties for both procedures have been chosen

such that the bias curves are close in the initial steps. The fit of a linear model that
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Figure 2: Empirical bias and variance of boosted ridge regression (thick lines) and componentwise

boosted ridge regression (thin lines) (MSE: solid lines; bias: dotted lines; variance: broken lines)

for example data generated from (3) with n = 100, p = 50 and uncorrelated (ρb = 0) (left panel)

and correlated (ρb = 0.7) (right panel) covariates.

incorporates all variables is indicated by a horizontal line. In the left panel of Figure 2

there are five covariates (of 50 covariates in total) with true parameters unequal to zero

and the correlation between all covariates is zero. It is seen that for data with a small

number of uncorrelated informative covariates the componentwise approach results in a

much smaller minimum MSE, probably due to a much slower increase of variance. When

correlation among all covariates (i.e. also between the covariates with non-zero param-

eters and the covariates with true parameters equal to zero) increases, the performance

of boosted ridge regression comes closer to the componentwise approach (right panel of

Figure 2). This may be due to the coefficient build-up scheme of BoostR (illustrated in

Figure 3) that assigns non-zero parameters to all covariates.

The idea of a stepwise approach to regression where in each step just one predictor

is updated is also found in stagewise regression (see e.g. Efron et al., 2004). The main

difference is the selection criterion and the update: The selection criterion in stagewise

regression is the correlation between each variable and the current residual and the

update is of fixed size ε, whereas in componentwise ridge regression a penalized model
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with one predictor is fitted for each variable and any model selection criterion may

be used. Since stagewise regression is closely related to the Lasso and Least Angle

Regression (Efron et al., 2004), it can be expected that componentwise boosted ridge

regression is also similar to the latter procedures.

3.1 Example: Prostate Cancer

We applied componentwise boosted ridge regression and boosted ridge regression to the

prostate cancer data used by Tibshirani (1996) for illustration of the Lasso. The data

with n = 97 observations come from a study by Stamney et al. (1989) that examined

the correlation between the (log-)level of prostate specific antigen and eight clinical mea-

sures (standardized before model fit): log(cancer volume) (lcavol), log(prostate weight)

(lweight), age, log(benign prostatic hyperplasia amount) (lbph), seminal vesical invasion

(svi), log(capsular penetration) (lcp), Gleason score (gleason) and percentage Gleason

scores 4 or 5 (pgg45).

Figure 3 shows the coefficient build-up in the course of the boosting steps for two

scalings. In the top panels the values on the abscissa indicate the L2-norm of parameter

vector relative to the least-squares estimate, whereas in the bottom panels the degrees

of freedom are given. A dot on the line corresponding to a coefficient indicates an

estimate; thus each dot represents one step in the algorithm. While for boosted ridge

regression (left panels) each coefficient seems to increase by a small amount in each step,

in the componentwise approach (center panels) only to a specific set of variables non-zero

coefficients are assigned within one step, the other coefficients remain zero. Therefore

the coefficient build-up of the componentwise approach looks much more similar to that

of the Lasso procedure (right panels) (fitted by the LARS procedure, see Efron et al.,

2004). One important difference to the Lasso that can be seen in this example is that

for BoostPartR the size of the coefficient updates varies over boosting steps in a specific

pattern, with larger changes in the early steps and only small adjustments in late steps.

Arrows indicate 10-fold cross-validation based on mean squared error which has been

repeated over 10 distinct splittings to show variability. It is seen that cross-validation
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Figure 3: Coefficient build-up of BoostR (left panels), PartBoostR (center panels) and the Lasso

(right panels) for the prostate cancer data plotted against standardized L2-norm of the parameter

vector (top panels) and degrees of freedom (bottom panels). Arrows indicate the model chosen

by 10-fold cross-validation (repeated for 10 times).

selects a model of rather high complexity for boosted ridge regression. When using the

componentwise approach or the Lasso, more parsimonious models are selected. Partial

boosting selects even more parsimonious models than the Lasso in terms of degrees of

freedom.

4 Ridge boosting in generalized linear models

In generalized linear models the dominating estimation approach is maximum likelihood

which corresponds to the use of L2 loss in the special case of normally distributed

responses. Ridge regression in generalized linear models is therefore based an penalized

maximum likelihood. Univariate generalized linear models are given by

µi = h(β0 + xT
i β̃) = h(zT

i β) = h(ηi)

14



where µi = E(yi|xi), h is a given (strictly monotone) response function, and the predictor

ηi = zT
i β has linear form. Moreover, it is assumed that yi|xi is from the simple exponen-

tial family, including for example binary responses, Poisson distributed responses and

gamma distributed responses.

The basic concept in ridge regression is to maximize the penalized log-likelihood

lp(β) =
n∑

i=1

li −
λ

2

p∑
i=1

β2
i

=
n∑

i=1

li −
λ

2

p∑
i=1

βT Pβ

where li is the likelihood contribution of the ith observation and P is a block diagonal

matrix with the (1× 1) block 0 and the (p×p) block given by the identy matrix Ip. The

corresponding penalized score function is given by

sp(β) =
n∑

i=1

zi
∂h(ηi)/∂η

σ2
i

(yi − µi)− λPβ.

where σ2
i = var(yi). A simple way of computing the estimator is iterative Fisher scoring

β̂(k+1) = β̂(k) + Fp(β̂(k))−1sp(β̂(k)),

where Fp(β) = E(−∂l/∂β∂βT ) = F (β) + λP , with F (β) denoting the usual Fisher

matrix given by F (β) = XT W (η)X, X = (x·0, x·1, . . . , x·p), xT
·0 = (1, . . . , 1), W (η) =

D(η)Σ(η)−1D(η), Σ(η) = (σ2
1, . . . , σ

2
n), D(η) = diag(∂h(η1)/∂η, . . . , ∂h(ηn)/∂η).

The proposed boosting procedure is likelihood based ridge boosting based on one

step of Fisher scoring (for likelihood based boosting see also Tutz and Binder, 2004).

The parameter/variable set to be refitted in one iteration now includes the intercept.

Let again V
(j)
m denote subsets of indices of parameters to be considered for refitting in

the mth step. Then V
(j)
m = {m1, . . . ,ml} ⊂ {0, 1, . . . , p}, where 0 denotes the intercept.

The general algorithm, including a selection step, is given in the following. In order

to keep the presentation simple the matrix form µ = h(η) is used where µ and η denote

vectors in which observations are collected.

15



Algorithm: GenBoostR

Step 1: Initialization

Fit model µi = h(β0) by iterative Fisher scoring obtaining β̂(0) = (β̂0, 0, . . . , 0), η̂(0) =

Xβ̂(0)

Step 2: Iteration

For m = 1, 2, . . .

(a) Estimation

Estimation for candidate sets V
(j)
m corresponds to fitting of the model

µ = h(η̂(m−1) + X
V

(j)
m

βR

V
(j)
m

)

where η̂(m−1) = Xβ̂(m−1) and XT

V
(j)
m

= (x
im

(j)
1

, . . . , x
im

(j)
l

) contains only compo-

nents from V
(j)
m .

One step of Fisher scoring is given by

β̂R

V
(j)
m

= F−1

p,V
(j)
m

s
p,V

(j)
m

where s
p,V

(j)
m

= X
V

(j)
m

W (η̂(m−1))D−1(η(m−1))(y − µ(m−1)) (without −λPβ = 0),

F
p,V

(j)
m

= XT

V
(j)
m

W (η̂(m−1))XV
(j)
m

, with η̂T
(m−1) = (η̂1,(m−1), . . . , η̂n,(m−1)), yT =

(y1, . . . , yn), µT
(m−1) = (µ1,(m−1), . . . , µn,(m−1)).

(b) Selection

For candidate sets V
(j)
m , j = 1, . . . , s, the set Vm is selected that improves the fit

maximally.

(c) Update

One sets

β̂R
(m) =

 β̂R
Vm,j j ∈ Vm

0 j /∈ Vm,

β̂(m) = β̂(m+1) + β̂R
(m),

η̂(m) = Xβ̂(m) = Xβ̂(m+1) + Xβ̂R
(m),

µ̂(m) = h(Xβ̂(m)) where h is applied componentwise.
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Within a generalized linear model framework it is natural to use in the selection step

(b) the improvement in deviance. With Dev(η̂) denoting the deviance given predictor

values η̂ one selects in the mth step Vm such that Dev(η(j)) is minimal, where Dev(η(j))

uses predictor value η̂(j) = η̂m−1 + X
V

(j)
m

β̂R

V
(j)
m

.

Also stopping criteria should be based on the deviance. One option is deviance based

cross-validation, an alternative choice is the AIC criterion

AIC = Dev(η̂(m)) + 2dfm

or the Bayesian information criterion

BIC = Dev(η̂(m)) + log n · dfm

where dfm represents the effective degrees of freedom which are given by the trace of the

hat matrix (see Hastie and Tibshirani, 1990). In the case of generalized linear models

the hat matrix is not as straightforward as in the simple linear model. The following

proposition gives an approximate hat matrix (for proof see Appendix).

Proposition 3. An approximate hat matrix for which µ̂(m) ≈ Hmy is given by

Hm =
m∑

j=0

Mj

j−1∏
i=0

(I −M0)

where Mm = Σ1/2
m W

1/2
m XVm(XT

Vm
WmXVm + λI)−1XVmW

1/2
m Σ−1/2

m , Wm = W (η̂(m−1)),

Dm = D(η̂(m−1))

The approximate hat matrix yields the AIC criterion AIC = Dev(η̂(m)) + 2tr(Hm).

5 Empirical comparison

For the investigation of the properties of boosted ridge regression we use simulated data.

This allows us the modify systematically the structure of the data fed into the algorithms

and to observe how the results change.

We generate a covariate matrix X by drawing n observations from a p-dimensional

multivariate normal distribution with variance 1 and correlation between two covariates

17



(i.e. columns of X) xj and xk being ρ
|j−k|
b . The true predictor η (and thereby the

corresponding expected value of the response E(y|x) = µ = h(η), where h is the identity

for a continuous response and h(η) = exp(η)/(1+exp(η)) for binary responses) is formed

by

η = Xβtrue (3)

where the true parameter vector βtrue = cstn · (β1, . . . , βp)T is determined by

βj ∼ N(5, 1) for j ∈ Vinfo, βj = 0 otherwise

with Vinfo ⊂ {1, . . . , 10} being the set (of size 5) of the randomly drawn indices of the

informative covariates. The constant cstn is chosen such that the signal-to-noise ratio for

the final response y, drawn from a normal distribution N(µ, 1) or a binomial distribution

B(µ, 1),is equal to 1. The signal-to-noise-ratio is determined by

signal-to-noise ratio =
∑n

i=1(µi − µ̄)2∑n
i=1 V ar(yi)

where µ̄ = 1
n

∑n
i=1 µi. For the examples presented here we used fixed sample size n = 100

for the training data and a new sample of size nnew = 1000 for the evaluation of prediction

performance.

The following comparisons of performance and identification of influential covariates

of (Gen)BoostR and (Gen)PartBoostR with other procedures have been done within the

statistical environment R 2.1.0 (R Development Core Team, 2004). We used intercept-

only (generalized) linear models, the (generalized) Lasso (package “lasso2” 1.2-0 —

LARS as used in Section 3.1 is only available for continuous response data) and the

“elastic net” procedure (Zou and Hastie, 2005) (package “elastic net” 1.02) for compar-

ison. We evaluate performance for optimal values of the tuning parameters as well as

for parameters chosen by tenfold cross-validation.

For the Lasso only one parameter (the upper bound on the L1-norm of the parameter

vector) has to be chosen. We use a line search, which has to be augmented in some

examples because for certain values no solution exists. Zou and Hastie (2005) also note

this as a downside of the classical Lasso. The elastic net procedure has two tuning
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p = 100, ρb = 0.3: p = 100, ρb = 0.7:
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p = 200, ρb = 0.3: p = 50, ρb = 0.7:
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Figure 4: Mean squared error for continuous response data with varying number of predictors p

and correlation ρb for the linear model including only an intercept term, elastic net, the Lasso

BoostR and PartBoostR with tuning parameters selected for optimal performance or by cross-

validation (CV).

parameters, the number of steps k and the penalty λ. We chose both by evaluating

a grid of steps 1, . . . ,min(p, n) and penalties (0, 0.01, 0.1, 1, 10, 100) (as suggested by

Zou and Hastie, 2005). For each of BoostR and PartBoostR we used a fixed penalty

parameter λ. This parameter has been chosen in advance such that the number of steps

chosen by cross-validation typically is in between 50 and 200.

19



5.1 Metric response

5.1.1 Prediction performance

The boxplots in Figure 4 show the mean squared error for continuous response data gen-

erated from (3) with a varying number of predictors and amount of correlation between

the covariates for 50 repetitions per example. In Figure 4 elastic net, the Lasso, boosted

ridge regression and componentwise boosted ridge regression (with an intercept-only lin-

ear model as a baseline) are compared for the optimal choice of tuning parameters (in

the left part of the panels) as well for the cross-validation based estimates (in the right

part).

When comparing the optimal performance of boosted ridge regression with the com-

ponentwise approach, it is seen that the latter distinctly dominates the former for a large

number of predictors (with only few of them being informative) (bottom left vs. top left

panel) and/or small correlations (top left vs. top right panel). A similar difference in

performance is also found when comparing boosted ridge regression to the Lasso and to

the elastic net procedure. This highlights the similarity of the componentwise approach

to the Lasso-type procedures (as illustrated in Section 3.1). When the close connection of

BoostR and simple ridge regression is taken into consideration this replicates the results

of Tibshirani (1996) who also found that in sparse scenarios the Lasso performs well and

ridge regression performs poor. Consistently the performance difference for a smaller

number of covariates and high correlation (bottom right panel) is less pronounced.

For optimal parameters no large differences between the performance of the compo-

nentwise approach, the Lasso and of elastic net are seen. Elastic net seems to have a

slightly better performance for examples with higher correlation among the predictors,

but this is to be expected because elastic net was specifically developed for such high-

correlation scenarios (see Zou and Hastie, 2005). The decrease in performance incurred

by selecting the number of steps/Lasso constraint by cross-validation instead of using

the optimal values is similar for componentwise boosted ridge regression and the Lasso.

For the elastic net procedure the performance decrease is larger to such an extent that
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the performance benefit over the former procedures (with optimal parameters) is lost.

This might result from the very small range of the number of steps where good perfor-

mance can be achieved (due to the small overall number of steps used by elastic net). In

contrast boosting procedures change very slowly in the course of the iterative process,

which makes selection of appropriate shrinkage more stable (compare Figure 3).

5.1.2 Identification of influential variables

While prediction performance is an important criterion for comparison of algorithms the

variables included into the final model are also of interest. The final model should be

as parsimonious as possible, but all relevant variables should be included. For example

one of the objectives for the development of the elastic net procedure was to retain all

important variables for the final model even when they are highly correlated (while the

Lasso includes only some of a group of correlated variables; see Zou and Hastie, 2005).

The criteria by which the performance of a procedures in the identification of influ-

ential variables can be judged are the hit rate (i.e. the proportion of correctly identified

influential variables)

hit rate =
1∑p

j=0 I(βtrue,j 6= 0)

p∑
j=1

I(βtrue,j 6= 0) · I(β̂j 6= 0)

and the false alarm rate (i.e. the proportion of non-influential variables dubbed influen-

tial)

false alarm rate =
1∑p

j=0 I(βtrue,j = 0)

p∑
j=1

I(βtrue,j = 0) · I(β̂j 6= 0)

where βtrue,j , j = 1, . . . , p are the elements of the true parameter vector, β̂j are the cor-

responding estimates used by the final model and I(expression) is an indicator function

that takes the value 1 if “expression” is true and 0 otherwise.

Figure 5 shows the hit rates and false alarm rates for componentwise boosted ridge

regression (circles), elastic net (squares) and the Lasso (triangle) for the data underlying

Figure 4. While the Lasso has only one parameter which is selected for optimal predic-

tion performance, the componentwise approach and elastic net have two parameters, a
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penalty parameter and the number of steps. For evaluation of prediction performance

we used a fixed penalty for the componentwise approach and the optimal penalty (with

respect to prediction performance) for the elastic net procedure. For the investigation of

their properties with respect to identification of influential variables we vary the penalty

parameters (the number of steps still being chosen for optimal performance), thus re-

sulting in a sequence of fits. Plotting the hit rates and false alarm rates of these fits

leads to the pseudo-ROC-curves shown in Figure 5. We call them “pseudo” curves since

they are not necessarily monotone!

It is seen that for a large number of covariates and a medium level of correlation

(bottom left panel) the componentwise approach comes close to dominating the other

procedures. While for a smaller number of variables and medium level of correlation

(top left panel) higher hit rates can be achieved by using the elastic net procedure the

componentwise approach still is the only procedure which allows for a trade-off of hit

rate and false alarm rate (and therefore selection of small false alarm rates) by variation

of the penalty parameter. In this case for the elastic net the false alarm rate hardly

changes.

For the examples with high correlations between covariates (right panels) there is a

clear advantage for the elastic net procedure. With penalty parameters going toward

zero elastic net comes close to a Lasso solution (as it should, based on its theory). This

is also where the elastic net pseudo-ROC curve (for small penalties) and the curve of

the componentwise approach (for large penalties) coincide. The differences seen between

elastic net/componentwise solutions with small/large penalties and the Lasso solution

might result from the different type of tuning parameter (number of steps vs. constraint

on the parameter vector).

5.2 Binary response

In order to evaluate generalized boosted ridge regression and generalized component-

wise boosted ridge regression for the non-metric response case we compare them to a

generalized variant of the Lasso, which is obtained by using iteratively re-weighted least
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p = 100, ρb = 0.3: p = 100, ρb = 0.7:
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p = 200, ρb = 0.3: p = 50, ρb = 0.7:
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Figure 5: Pseudo-ROC curves for the identification of influential and non-influential covariates

with metric response data for PartBoostR (circles) and elastic net (squares) with varying penalty

parameters (and the optimal number of steps) and for the Lasso (triangle). Arrows indicate

increasing penalty parameters. The numbers give the mean squared error of prediction for the

respective estimates.

squares with a pseudo-response where weighted least-squares estimation is replaced by

a weighted Lasso estimate (see documentation of the “lasso2” package Lokhorst, 1999).

The Lasso constraint parameter and the number of steps for (componentwise) boosted

ridge regression are determined by cross-validation and we compare the resulting per-
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Table 1: Mean deviance (of prediction) for binary response data with varying number of pre-

dictors p and correlation ρb for a generalized linear model including only an intercept term

(base), generalized Lasso (with optimal constraint and constraint selected by cross-validation),

generalized boosted ridge regression (GenBoostR) and generalized componentwise boosted ridge

regression (GenPartBoostR) (with optimal number of steps and number of steps selected by AIC,

BIC or cross-validation (cv)). The best result obtainable by data selected tuning parameters is

marked in boldface for each example.

p ρb base Lasso GenBoostR GenPartBoostR

opt cv opt AIC cv opt AIC BIC cv

10 0 1.397 0.875 0.896 0.885 0.900 0.896 0.873 0.904 (4) 0.899 0.893

0.3 1.400 0.873 0.887 0.874 0.897 0.886 0.871 0.894 (2) 0.900 0.886

0.7 1.390 0.845 0.856 0.834 0.849 0.844 0.844 0.858 (0) 0.858 0.854

50 0 1.398 0.935 0.963 1.098 1.371 1.143 0.931 1.058 (7) 0.953 0.969

0.3 1.391 0.931 0.998 1.035 1.318 1.068 0.921 1.093 (6) 0.936 0.985

0.7 1.395 0.888 0.910 0.924 1.034 0.937 0.883 1.051 (11) 0.891 0.905

100 0 1.395 1.019 1.042 1.241 1.281 1.265 1.014 1.296 (11) 1.029 1.064

0.3 1.394 0.991 1.011 1.159 1.234 1.187 0.981 1.256 (14) 0.991 1.014

0.7 1.395 0.925 0.962 0.996 1.052 1.057 0.918 1.209 (16) 0.936 0.986

200 0 1.395 1.075 1.110 1.307 1.350 1.330 1.071 1.332 (1) 1.095 1.119

0.3 1.396 1.010 1.049 1.261 1.327 1.283 1.002 1.232 (4) 1.013 1.051

0.7 1.402 0.950 0.972 1.113 1.164 1.141 0.944 1.278 (12) 0.963 0.976

formance to that obtained with optimal parameter values. For the binary response

examples given in the following the AIC and the BIC (see Section 4) is available as an

additional criterion for (componentwise) boosted ridge regression.

Table 1 gives the mean deviance for binary response data generated from (3) with

n = 100 and a varying number of variables and correlation for 20 repetitions per example.

When using the AIC as a stopping criterion in several instances (number indicated in

parentheses) no minimum within the range of 500 boosting steps could be found and
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so effectively the maximum number is used. It is seen that for a small number of

variables and high correlation between covariates (p = 10, ρb = 0.7)(generalized) ridge

regression and componentwise boosted ridge regression perform similar, for all other

examples the componentwise approach is ahead. This parallels the findings from the

continuous response examples. While it seems that there is a slight advantage of the

componentwise approach over the Lasso, their performance (with optimal parameters

as well as with parameters selected by cross-validation) is very similar. Selection of

the number of boosting steps by AIC seems to work well only for a small number of

variables, as can be seen e.g. when comparing to the cross-validation results for the

componentwise approach. For a larger number of covariates the use of AIC for the

selection of the number of boosting steps seems to be less efficient. In contrast BIC

seems to perform quite well for a moderate to large number of covariates while being

suboptimal for a smaller number of predictors.

Table 2 shows the hit rates/false alarm rates obtained from the the componentwise

approach and from the Lasso when using optimal parameters (number of boosting steps

for GenPartBoostR and the constraint on the parameter vector for the Lasso) as well as

for parameters chosen by cross-validation and BIC (for the componentwise approach).

It is seen that with optimal parameters application of the componentwise approach can

result in smaller false alarm rates compared to the Lasso while maintaining a competitive

hit rate. This is similar to the continuous response examples and therefore the trade-

off between hit rate and false alarm by selection of the penalty parameter seems to be

feasible. Using BIC as a criterion for the selection of the number of boosting steps the

combination of hit rate and false alarm rate obtained with componentwise boosted ridge

regression even dominates the Lasso results in several instances (printed in boldface).

6 Application

We illustrate the application of (componentwise) boosted ridge regression with real data.

The data are from 344 admissions at a psychiatric hospital with a specific diagnosis
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Table 2: Hit rates/false alarm rates for identification of influential covariates with binary response

data. Combinations of hit rate and false alarm rate obtained by cross-validation that dominate

all other procedures for an example are printed in boldface.

p ρb Lasso GenPartBoostR

opt cv opt BIC cv

10 0 1/0.650 1/0.660 1/0.620 0.99/0.350 1/0.640

0.3 0.98/0.560 0.98/0.530 0.98/0.520 0.96/0.310 0.98/0.510

0.7 0.91/0.540 0.89/0.400 0.92/0.530 0.87/0.350 0.88/0.410

50 0 0.99/0.287 1/0.290 0.99/0.250 0.99/0.156 1/0.260

0.3 0.97/0.226 0.98/0.223 0.97/0.191 0.98/0.144 0.98/0.203

0.7 0.87/0.158 0.85/0.131 0.87/0.133 0.86/0.108 0.86/0.124

100 0 0.94/0.161 0.93/0.174 0.94/0.136 0.93/0.125 0.92/0.175

0.3 0.93/0.153 0.95/0.131 0.96/0.121 0.94/0.109 0.95/0.134

0.7 0.79/0.109 0.77/0.098 0.81/0.089 0.80/0.090 0.76/0.102

200 0 0.89/0.088 0.90/0.097 0.89/0.067 0.88/0.085 0.89/0.088

0.3 0.95/0.096 0.94/0.096 0.95/0.073 0.95/0.079 0.93/0.089

0.7 0.85/0.062 0.84/0.071 0.83/0.053 0.86/0.070 0.85/0.068

within a timeframe of eight years. The (binary) response variable to be investigated is

whether treatment is aborted by the patient against physicians’ advice (about 55% for

this diagnosis). There are five metric and 16 categorical variables from routine docu-

mentation at admission available for prediction. This encompasses socio-demographic

variables (age, sex, education, employment, etc.) as well as clinical information (level

of functioning, suicidal behavior, medical history, etc.). After re-coding each categorical

variable into several 0/1-variables for easier inclusion into a linear model there is a total

of 101 predictors. The clinic’s interest is not primarily exact prediction but identifica-

tion of informative variables that allow for an early intervention to prevent patients with

high risk from aborting treatment. Nevertheless we divide the data into 270 admissions
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from the first six year interval for model building and the 74 admissions of the last two

years for model validation. The baseline prediction error on the latter data using an

intercept-only model is 0.446.

In a first step we apply componentwise boosted ridge regression and the Lasso with

the full set of 101 predictors. From the physicians’ view one variable is of special interest

and should be incorporated in the analysis. This is the secondary diagnosis assigned to

the patient (taking either the value “none” or one of six diagnosis groups). For the

Lasso we can either include the predictors coding for the secondary diagnosis without

restriction or impose the same bound used for the other variables. We use the latter

option, although this leads to estimates for only two of the secondary diagnosis groups,

because the other predictors are excluded. With componentwise boosted ridge regression

there is the option of making the secondary diagnosis predictors mandatory members of

the candidate sets V
(j)
m , i.e. there will be estimates for them in any case. For a further

reduction of the complexity we use a special structure for the penalty matrix P with

larger penalty for the mandatory elements of the candidate sets. This option of using

a customized penalization structure is another distinct feature of the componentwise

approach in comparison to the Lasso.

Table 3 shows the number of variables with non-zero parameter estimates, the ap-

proximate degrees of freedom and the prediction error on the test data for the models

resulting from componentwise boosted ridge regression with varying penalty parameter

(with BIC) and the Lasso (with cross-validation). Note that the reason why the Lasso

uses less variables compared to the componentwise approach is the use of the manda-

tory parameters with the latter. It is seen that the performance of the componentwise

approach is slightly superior to the Lasso. What is more interesting is that with varying

penalty parameter the number of variables used for optimal performance also varies.

This feature of the componentwise approach — using the penalty parameter to control

the hit rate/false alarm rate (and thereby the number of variables in the model) while

maintaining performance — has already been illustrated in Section 5, but it is assuring

that it can also be found with real data. It should be noted that the number of vari-
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Table 3: Number of variables with non-zero estimates, approximate degrees of freedom and

prediction error on the test set for the binary response example with 101 predictors using com-

ponentwise boosted ridge regression with various penalty parameters penalty and the Lasso. The

number of boosting steps is selected by BIC and the Lasso bound is selected by cross-validation.

penalty number of degrees of prediction

variables freedom error

the Lasso - 13 - 0.392

PartBoostR 500 15 3.545 0.378

1000 15 3.124 0.392

2000 18 3.363 0.392

5000 19 3.292 0.378

10000 19 3.292 0.378

ables is not proportional to model complexity (represented by the approximate degrees

of freedom). It seems that while the degrees of freedom approximately stay the same

they are allocated to the covariates in a different way.

We already showed the coefficient build-up for a metric response example in Sec-

tion 3.1. To obtain illustrative data for the binary response example we examine the

predictors selected by the componentwise approach in the analysis above, combine sev-

eral of those into new variables and add additional variables based on subject matter

considerations. The variables used in the following are age, number of previous admis-

sions (“noupto”), cumulative length of stay (“losupto”) and the 0/1-variables indicating

a previous ambulatory treatment (“prevamb”), no second diagnosis (“nosec”), second

diagnosis “personality disorder” (“persdis”), somatic problems (“somprobl”), homeless-

ness (“homeless”) and joblessness (“jobless”). In contrast to the previous example with

respect to the second diagnosis only the two most important group variables are used to

keep the coefficient build-up graphs simple. Those two variables (“nosec” and “persdis”)

again are mandatory members of the response set, but this time no penalty is applied to
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Figure 6: Coefficient build-up for example data (boosted ridge regression: upper left; componen-

twise boosted ridge regression: upper right; the Lasso: bottom panel).

their estimates. This illustrates the effect of augmenting an unpenalized model with few

mandatory variables with optional predictors. The top right panel of Figure 6 shows the

coefficient build-up in the course of the boosting steps for componentwise boosted ridge

regression contrasted with boosted ridge regression (top left) and the Lasso (bottom

panel). The arrows indicate the number of steps chosen by AIC (for (componentwise)

boosted ridge regression) and 10-fold cross-validation (for the Lasso; repeated for 10

times). It can be seen that while for the optional predictors the componentwise ap-

proach results in a build-up scheme similar to the Lasso, the mandatory components
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introduce a very different structure. One interesting feature is the slow decrease of the

estimate for “persdis” beginning with boosting step 8. This indicates some overshooting

of the initial estimate that is corrected when additional predictors are included.

7 Concluding remarks

We investigated the use of boosting for the fitting of linear models. The first estimate

we considered was the boosted ridge estimator. Although the boosted ridge estimator

yields shrinkage that differs from the simple ridge estimator in practice the performance

does not differ strongly. Strongly improved estimates are obtained for partial boosting,

in particular for small correlation between covariates. The performance of BoostPartR

turns out to be similar to that of stagewise regression procedures which may be seen

as competitors, in particular for large numbers of covariates. In empirical comparisons

it is seen that the componentwise approach is competitive to the Lasso and the elastic

net procedures in terms of prediction performance as well as with respect to the identi-

fication of influential covariates. The elastic net procedure (not surprisingly) performs

best in situations with highly correlated predictors. For examples with less correlation

componentwise boosted ridge regression is competitive not only in terms of prediction

performance but also with respect to covariate identification. This seems to hold not

only for the continuous response case but also for binary responses. An additional fea-

ture of the componentwise approach is that the trade-off between hit rate/false alarm

rate can be controlled over a broad range by selecting the penalty parameter. Especially

in situations where a small false alarm rate is wanted (e.g. for obtaining parsimonious

models) this is a distinct advantage over the other procedures.

Appendix

Proof (Proposition 1). One obtains

cov(µ̂m) = σ2U(In − (In − D̃)m+1)2UT
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immediately from µ̂(m) = Hmy.

The bias is obtained from

b = E(µ− µm) = (In −Hm)µ

= (In − (In − (In − UD̃UT)m+1))µ

= (In − UD̃UT)m+1µ = U(In − D̃)m+1UTµ

Therefore one obtains the squared bias

bTb = µT U(In − D̃)m+1UT U(In − D̃)m+1UT µ

= µT U (In − D̃)2(m+1) UT µ

= µT U Diag((1− d̃2
1)

2m+2, . . . , (1− d̃2
p)

2m+2) UT µ

and therefore

trace cov(Hmy) = trace(σ2 U(In − (In − D̃)m+1)2 UT)

= trace(σ2
p∑

j=1

uj (1− (1− d̃2
j )

m+1)2 uT
j )

=
r∑

j=1

σ2(1− (1−
d2

j

d2
j + λ

)m+1)2

yielding

MSE(BoostR(m)) =
1
n

(trace cov(Hmy) + bTb)

=
1
n

(
r∑

j=1

σ2(1− (1− d̃2
j )

m+1)2

+ µT U Diag((1− d̃2
1)

2m+2, . . . , (1− d̃2
p)

2m+2) UT µ)

Proof (Proposition 2). The MSE of boosted ridge (λ > 0) is given by

MSE(BoostRλ(m)) =
1
n

p∑
j=1

{σ2(1− (1− d̃2
j )

m+1)2 + cj(1− d̃2
j )

2m+2)}

where d̃2
j = d2

j/(d2
j + λ), and cj = µT uju

T
j µ = ‖µT uj‖ depends only on the underlying

model.
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The MSE of the least squares estimate is given by MSE(ML) = r
nσ2.

Since d̃2
j = cj = 0 for j > r and 0 < d̃2

j ≤ 1 for j ≤ r (a) follows immediately. In

addition one obtains MSE(BoostRλ(m)) ≤ MSE(ML) if
r∑

j=1

(1− (1− d̃2
j )

m+1)2 +
cj

σ2
(1− d̃2

j )
2m+2 ≤ r,

which is equivalent to
r∑

j=1

{
(1− d̃2

j )
2m+2(

cj

σ2
+ 1) + 1− 2(1− d̃2

j )
m+1

}
≤ r,

and
r∑

j=1

2(1− d̃2
j )

m+1 − (1− d̃2
j )

2(m+1)(
cj

σ2
+ 1) ≥ 0.

It is enough to find λ, m such that
r∑

j=1

2(1− d̃2
j )

m+1
(
2− (1− d̃2

j )
m+1(

cj

σ2
+ 1)

)
≥ 0

Since λ > 0 one can choose m so large that (1 − d̃2
j )

m+1 becomes arbitrarily small.

Therefore (b) holds.

Proof (Proposition 3). In the mth iteration (after Vm has been selected) the update is

given by

β̂R
Vm

= F−1
p,Vm

sp,Vm

= (XT
Vm

WmXVm + λIp)−1XVmWmD−1
m (y − µ̂(m−1))

where Wm = W (η̂(m−1)), Dm = D(η̂(m−1)) are evaluated at η̂(m−1).

One has

η̂(m) − η̂(m−1) = Xβ̂(m−1) + XVm β̂Vm −Xβ̂(m−1) = XVm β̂Vm

= XVm(XT
Vm

WmXVm + λIp)−1XVmWmD−1
m (y − µ̂(m−1)).

By using Taylor approximation of first order h(η̂) ≈ h(η) + (∂h(η)/∂ηT )(η̂ − η) one

obtains

µ̂(m) ≈ µ̂(m−1) + Dm(η̂(m) − η̂(m−1)) = µ̂(m−1) + DmXVm β̂R
Vm

= µ̂(m−1) + DmXVm(XT
Vm

WmXVm + λIp)−1XT
Vm

WmD−1
m (y − µ̂(m−1)).
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and therefore

D−1
m (µ̂(m) − µ̂(m−1)) ≈ XVm(XT

Vm
WmXVm + λIp)−1XVmWmD−1

m (y − µ̂(m−1)).

Multiplication with W
1/2
m and using W

1/2
m D−1

m = Σ−1/2
m = diag(σ(m−1),1, . . . , σ(m−1),n)

yields

Σ−1/2
m (µ̂(m) − µ̂(m−1)) ≈ H̃mΣ−1/2

m (y − µ̂(m−2)).

where H̃m = W 1/2XVm(XT
Vm

WmXVm+λIp)−1XVmW 1/2. Defining Mm = Σ1/2
m H̃mΣ−1/2

m

yields the approximation

µ̂(m) ≈ µ̂(m−1) + Mm(y − µ̂(m−1))

= µ̂(m−1) + Mm(y − µ̂(m−2))− (µ̂(m−1) − µ̂(m−2))

≈ µ̂(m−1) + Mm((y − µ̂(m−2))−Mm−1(y − µ̂(m−2)))

= µ̂(m−1) + Mm(In −Mm−1)(y − µ̂(m−2)).

With starting value µ̂(0) = M0y one obtains

µ̂(1) ≈ µ̂(0) + M1(y − µ̂(0)) = M0y + M1(In −M0)y

and more general

µ̂(m) ≈ Hmy

where

Hm =
m∑

j=0

Mj

j−1∏
i=0

(In −M0).
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