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Abstract. Typical problems in the analysis of data sets like time-series or images
crucially rely on the extraction of primitive features based on segmentation. Varia-
tional approaches are a popular and convenient framework in which such problems
can be studied. We focus on Potts models as simple nontrivial instances. The dis-
cussion proceeds along two data sets from brain mapping and functional genomics.

1 Introduction

The purpose of the present note is twofold: We want to give an elementary
introduction to variational approaches to the analysis of one- and multi-
dimensional data, and further to illustrate by way of simple data sets and
statistical models what we mean by parsimonious statistics.

We will briefly discuss a particularly simple parsimonious approach to the
statistical analysis of real-world data sets from life-sciences. Frequently, there
is little or no ground truth, and the stochastic mechanism generating (noisy)
data is essentially unknown. The only way to associate data to some hidden
real event is to verify or falsify rough and basic criteria which characterize
the event in question. Such criteria frequently are based on primitive signal
features. In images these may be boundaries between regions of different
intensity or texture, in time series they may be morphological features like
modes or ‘ups and downs’, domains of monotony, or plateaus where the signal
is constant. We start the discussion with two one-dimensional data sets, one
from brain mapping and one from functional genomics. We expect that in
these examples the observation period can be partitioned into intervals where
the underlying signal can reasonably be represented by a constant. This is a
primitive morphological feature, and the resulting step functions allow sound
biological interpretations.

To extract piecewise constant ‘regressions’ from data, we adopt the sim-
plest variational approach based on the Potts model. It is well known to
physicists as the straightforward generalization of the Ising model for binary
spins to multiple states. For a detailed discussion see Winkler (2003).
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2 Two Data Sets from Life Sciences

In order to introduce and illustrate the concept, we present two sets of data.
The first one consists of time series from functional magnetic resonance imag-
ing (fMRI) of the human brain, and the second one of melting or fractionation
curves for spots on a cDNA microchip.

Example 1 (fMRI Brain Data: Identification of Response Regions). The final
aim is to identify regions of increased activity in the human brain in response
to outer stimuli. Typically such stimuli are boxcar shaped as indicated in
Fig. 1. They may represent ‘light or sound on and off’, i.e. visual or acoustic
stimuli, or tactile ones like finger tipping on a desk. Functional magnetic res-
onance imaging (fMRI) exploits the BOLD effect which basically is a change
of paramagnetic properties caused by an increase of blood flow in response to
the demand of activated neurons for more oxygen. The degradation mecha-

Fig. 1. A box car shaped signal representing ‘on-
off’ stimuli in fMRI brain mapping.

nism along the path ‘(complex) eye - (highly complex) brain - (complicated)
measuring device’ is only partially known. Moreover, measurement is indi-
rect, since the recorded BOLD effect is a physiological quantity related to
increase of blood flow and not a direct function of cortical activation. Hence
a parsimonious approach based on significant plateaus should be appropriate.

Example 2 (Fractionation Curves from Gene Expression). The aim of this
experiment is to explore the structure of unknown genes. To this end, single
stranded sections of known cDNA are put on spots of microchips, which
typically consist of about 20.000 spots. Each section is a finite sequence of four
nucleic acids, which are coded by the letters A(denin), C(ytosin), G(uanin),
and T(hymin). If further nucleic acids are added then they tend to bind to
the known nucleic acids where T binds to A, and G binds to C.
Hence sections of single stranded unknown cDNA tend to pair with DNA of
similar sequence. The binding energy is maximal for perfect matches like

A C T A C A G T A C C C A
T G A T G T C A T G G G T

and such a perfect match means high stability. With perfect match the
unknown sequence could be identified perfectly. A main problem is cross-
hybridisation, which means that DNA sections pair with DNA of similar -
but not precisely equal - sequence, for example
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A C T A C A G T A C C C A
T G A T T T C A T G A G T

Perfect match and mismatch are illustrated in Figure 2. A new and innova-
tive experiment provides data which hopefully will allow to identify mismatch
dissociation at low stringency. It is called ‘Specificity Assessment From Frac-

Fig. 2. Specific and unspecific hybridization

tionation Experiments’ or in short-hand notation ‘SAFE’, see Drobyshev et
al.(2003). It is plausible that ‘the melting temperature’ of double stranded
DNA depends on length and contents of specific sequences. It is also plausible
that increasing temperature has similar effects as increasing washing strin-
gencies with formamide solutions. Both decrease the binding energies and
thus cross-hybridisation. This is the basis for the measurement of specific
and cross-hybridisation. In the experiment, the chips are washed repeatedly
(29 times) with formamide solutions of increasing concentration, and fraction-
ation curves like in Fig. 3 are recorded. The aim of the statistical analysis is

Fig. 3. Typical fractionation curves of single spots: lousy, fairly good, intermediate.
(Data from Drobyshev et al. (2003))

to identify locations and heights of abrupt decreases, since they indicate that
a certain type of cross-hybridizing cDNA was washed away.

In view of such data, one may doubt about too ‘specific’ methods or too
detailed models for their analysis, and in fact we do so. A way out of this
misery is to try a parsimonious approach as indicated above, see Davies
(1995). There are attempts like in Davies and Kovac (2001), who adopt the
taut string algorithm and its relatives for certain types of data. We tried a
parsimonious variational approach called the Potts Model for our data.



4 Winkler and al.

3 The Potts Model: Rigorous Results

The relevant features in Example 1 are successions of high and low plateaus,
and in Example 2 the positions of rapid decreases and their height. Therefore
we try to fit piecewise constant functions to our data.

The Potts functional is defined by

x = (x1, . . . , xn) 7−→ Pγ,y(x) = γ|J(x)|+
n∑

k=1

(
xk − yk

)2
, (1)

where y = (y1, . . . , yn) denotes real (fixed) data, and J(x) is the set of time
points k where xk 6= xk+1, k = 1, . . . , n− 1. |J(x)| denotes the cardinality of
J(x). The second term rates fidelity of the signal x to data y, and the first
one penalizes undesired properties of x. Thus the functional is a penalized
likelihood function.

A minute of contemplation reveals that there are three elementary con-
cepts combined in this model:

(i) A notion of a ‘jump’ or ‘break’: In the Potts model such a jump is present,
where the values of the signal x in two subsequent time points differ from
each other.

(ii) A notion of smoothness: this concerns the behaviour of the signal between
two subsequent jumps. It is a consequence of (i) that in the Potts model
a signal is constant there.

(iii) A notion of fidelity to data, i.e. some measure of distance between data
y and the signal x.

Note that(ii) is a rather strict notion of smoothness: the signal on a discrete
interval is ‘smooth’ only if it is constant. The first term penalizes the number
of jumps irrespective of their size and the parameter γ > 0 controls the degree
of smoothness.

Given data y, a ‘filter output’ Tγ(y) is defined as a signal which minimizes
Pγ,y. In general, it is not unique, but fortunately the following result from
the forthcoming thesis Kempe (2003) guarantees uniqueness almost surely:

Theorem 1. Suppose that the law of data y admits a Lebesgue density. Then
for almost all y the functional Pγ,y in (1) has one and only one minimizer.

If the hypotheses hold a filter is defined uniquely for almost all y by the signal

Tγ(y) = argmin
x

Pγ,y(x).

We are going now to report essential properties of the filter. It is crucial that
the range of hyperparameters γ can be partitioned into intervals, on which
the estimate does not change as shown in Kempe (2003). Dependence on
hyperparameters is illustrated in Fig. 4.
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Theorem 2. For almost all data y the following is true: There are an integer
k and hyperparameters ∞ = γ0 > γ1 > · · · > γk > γk+1 = 0 such that Tγ(y)
is unique for all γ ∈ (γj+1, γj). Moreover, it is the same time-series for all
γ ∈ (γj+1, γj). Tγ(y) is a constant signal for each γ > γ1, and Tγ(y) = y for
γ < γk. The number of jumps of Tγ(y) on the intervals (γj+1, γj) increases in
j. For each 0 < i ≤ k, the functional Pγi,y has precisely the two minimizers
belonging to the γ-intervals adjacent to γi.

γr
γ1

r
γ2

r
γ3

r
γk

r
0 data constant

Fig. 4. Intervals on which estimates do not change.

Significant simulations can only be carried out with an exact algorithm
for the computation of the minimizer. This rules out stochastic algorithms
like simulated annealing. For one dimension, an algorithm based on ideas
from dynamic programming was presented in Winkler and Liebscher (2002).

Theorem 3. There is an algorithm to compute a minimizer of Pγ,y in time
complexity O(n3) for all γ ∈ R simultaneously.

The filter has some more pleasant properties. In particular, the iteration
of the filter stops after one step More precisely, a repeated application returns
the same signal as a single one, or in other words the filter is idempotent in
the sense that Tγ ◦ Tγ = Tγ . This implies that Tγ is a morphological filter in
the sense of Serra (1982, 1988), see Winkler and Liebscher (2002):

Theorem 4. The Potts filter is idempotent.

The filter has continuity or consistency properties like the following one:

Theorem 5 (V. Liebscher, O. Wittich, unpublished). Let γ ∈ R and
y∞ ∈ Rn. Suppose that Tγ(y∞) is unique. If y∞ is degraded by random noise
εn according to Y n = y∞+εn, and noise εn tends to zero in probability, then
Tγ(Y n) tends to Tγ(y∞) in probability.

We are not interested in a ‘restoration’ but in feature extraction. This is
reflected by the theorem since we recover Tγ(y∞) - and not y∞ - in the limit.

4 Back to Data

Scanning the filter outputs Tγ(y) along the hyperparameter γ in view of
Theorem 2, is illustrated in the Figures 5 and 6 for the brain and gene data.
Visual inspection of the plots reveals clearly what the desired outputs of the
method are. On the other hand, we did not yet find an overall satisfying un-
supervised method for the identification of an appropriate hyperparameter γ.
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Fig. 5. Some steps of a scan through Tγ(y) along decreasing hyperparameters γ for
fMRI brain data. Dots indicate data y. Upper right is desired. (Data from D. Auer)

This problem is crucial for such and many similar approaches. For example,
there is a host of model selection criteria like the classical ones from Akaike
(1974) and Schwarz (1978). Cavanaugh (1997) develops exact criteria which
can be adapted to our case, see Kempe (2003). Unfortunately, estimators
based on these methods basically return data, as shown in Fig. 7. Therefore
we watched out for a criterion which is stable under changes of the hyperpa-
rameter γ and of data y. Our first naive idea was to choose Tγ∗(y) with γ∗

from the longest interval of γ-values according to Theorem 2. For the brain
data, this simple method outruled the classical criteria. Its results for brain
data are contrasted to the classical criteria in Fig. 7.

Fig. 6. Scanning Tγ(y) along decreas-
ing hyperparameters γ for gene data;
steps 1, 2, 3, 4, 7, and 11. Dots indi-
cate data y. Third frame desired, cf.
stimulus in Fig. 1.
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Fig. 7. Stimulus, data, Tγ(y) for hyperparameter from Akaike’s and Schwarz’ infor-
mation criterion and longest interval criterion: brain data. The latter gives a decent
estimate whereas the former basically return data.

For the gene data, we have the additional restriction that the ‘true’ signal
should be decreasing. Therefore, we modified our strategy to choose γ from
the leftmost γ-interval on which Tγ(y) decreases. Fig. 8 displays some of these
estimates.

Fig. 8. Estimate for leftmost γ-interval with decreasing Tγ(y): gene data.

We obtained partial results about such ‘estimators’ of intervals, but a
satisfying rigorous justification is still missing. This is work in progress.

5 Summary and Outlook

The Potts functional discussed above is a simple instance of a family of similar
functionals. There are modified and more complicated penalties, or other data
terms, for example with the sum of squares replaced by absolute deviations.
The functionals may live on signals with discrete or continuous time.

For example, the Blake-Zisserman functional

x 7−→ BZ(x) =
n−1∑
k=1

min{(xk+1 − xk)2/µ2, ν}+
n∑

k=1

(
xk − yk

)2

considers a deviation δ = |xi+1−xi| as jump if δ > ν1/2µ. Between subsequent
jumps it returns a signal which is smooth in the L2-sense. A comprehensive
treatment is Blake and Zisserman (1987). This functional was constructed as
a discrete approximation of the Mumford-Shah functional

Eµ,ν,g(fS) := ν|S|+
n+1∑
k=1

∫
Jk(S)

(
fk(x)− g(x)

)2 +
1
µ2

|f ′k(x)|2 dx, (2)
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where time varies over a continuous time interval and the functions f are
combined of pieces from functions in Sobolev spaces; it was introduced in
Mumford and Shah (1989). A discussion of such functionals in the spirit of
the above considerations is work in progress.
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software package Ants In Fields developed by Friedrich (2003a) in cooper-
ation with the University of Heidelberg. The CD-ROM is attached to Winkler
(2003). For a free download see Friedrich (2003b). We are also indebted to J.
Beckers, A. Drobyshev, and D. Auer for providing data and introducing us
to their subjects.
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