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Abstract

Nonparametric Predictive Inference (NPI) is a general methodology to learn from
data in the absence of prior knowledge and without adding unjustified assumptions.
This paper develops NPI for multinomial data where the total number of possible
categories for the data is known. We present the general upper and lower probabil-
ities and several of their properties. We also comment on differences between this
NPI approach and corresponding inferences based on Walley’s Imprecise Dirichlet
Model.

Key words: Imprecise Dirichlet Model, imprecise probabilities, interval
probability, known number of categories, lower and upper probabilities,
multinomial data, nonparametric predictive inference, probability wheel.

1 Introduction

Many statistical data, e.g. from medicine to social and economics statistics, are
multinomial, i.e. the observations fall into one of several unordered categories.
In this paper we present a powerful approach to learning from multinomial
data with at most K ≥ 3 different categories, where K is explicitly known.
The approach provides us with upper and lower probabilities for (a) future
observation(s), and it appears to be an attractive alternative to Walley’s Im-
precise Dirichlet model [27], which has attracted considerable attention in a
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variety of different applications (see, in particular, the survey by Bernard [4]
and this special issue of International Journal of Approximate Reasoning.)

Our approach relies on the general framework of ‘Nonparametric Predictive
Inference’ (NPI) [3,8], which is based on Hill’s assumption A(n) [21]. By using
the same variation of this assumption as presented in [9], called ‘circular-
A(n)’, our inference is closely related to our approach sketched in [9] where
we explicitly do not assume any knowledge about the number of possible
categories, apart from the information in the available data. A detailed and
extensive presentation of NPI for multinomial data, considering all relevant
aspects and containing detailed proofs and discussions of principles of general
interval probabilistic statistical inference, is in preparation [10]. In the current
paper, we present related results for the practically important case of a known
number of possible categories, which is closer in nature to the traditional
use of multinomial distributions. In comparison to the results without such
knowledge [9], the inferences in this paper are either the same, or have less
imprecision, in the latter case the lower and upper probabilities will be nested
in the logical manner.

In Section 2, we give brief introductions to A(n), circular-A(n), interval prob-
ability and NPI, and to the model underlying our inferences [9,10]. The main
results, NPI-based lower and upper probabilities for the next observation on
the basis of multinomial data with a known number of possible categories, are
presented in Section 3, where we also formulate some general properties of
these inferences. In Section 4 these results are compared to the IDM and nu-
merical examples are used to illustrate particular features of these inferences.
In Section 5 some additional issues are discussed. An explanation of the deriva-
tion of the lower and upper probabilities is provided in an Appendix.

2 Nonparametric Predictive Inference and the underlying model

Hill [21] introduced the assumption A(n) as a basis for predictive inference in
case of real-valued observations. In his setting, suppose we have n observations
ordered as z1 < z2 < . . . < zn, which partition the real-line into n+1 intervals
(zj−1, zj) for j = 1, . . . , n+1, where we use notation z0 = −∞ and zn+1 = ∞.
Hill’s assumption A(n) is that a future observation, represented by a random
quantity Zn+1, falls into any such interval with equal probability, so we have
P (Zn+1 ∈ (zj−1, zj)) = 1

n+1
for j = 1, . . . , n + 1. This assumption implies that

the rank of Zn+1 amongst the n observed data has equal probability to be
any value in {1, . . . , n + 1}. This clearly is a post-data assumption, related to
exchangeability [17], which provides direct posterior predictive probabilities
[18]. Hill [21,22] argued that A(n) is a reasonable basis for inference in the ab-
sence of any further process information beyond the data set, when actually

2



predicting a future random quantity. Augustin and Coolen [3] prove that Non-
parametric Predictive Inference (NPI) based on A(n) has strong consistency
properties in the theory of interval probability [26,29,30]. In Theorem 1 it will
be shown that the predictive lower and upper probabilities presented in this
paper are internally consistent in the same, very strong sense.

In our model, we represent multinomial data as observations on a probability
wheel, and hence as circular data. For such data, A(n) is not suitable, as the
data are not represented on the real-line. A straightforward variation, again
linked to exchangeability of n+1 observations, is the assumption circular-A(n),
denoted by A(n)© [8,9]: Let ordered circular data x1 < x2 < . . . < xn create
n intervals on a circle, denoted by Ij = (xj, xj+1) for j = 1, . . . , n − 1, and
In = (xn, x1). The assumption A(n)© is that a future observation Xn+1 falls into
each of these n intervals with equal (classical) probability, so

P (Xn+1 ∈ Ij) =
1

n
, for j = 1, . . . , n. (1)

Notice that neither the units of the circular data, nor the chosen 0-point on
the circle, are relevant here. Clearly, A(n)© is again a post-data assumption,
related to the appropriate exchangeability assumption for such circular data,
in exactly the same way as A(n) was related to exchangeability of n+ 1 values
on the real-line. Hence, NPI based on A(n)© has the same consistency properties
as shown in [3] for such inference based on A(n).

In this paper, as in [9,10], we use A(n)© combined with an assumed underly-
ing representation of multinomial data as outcomes of spinning a probability
wheel. As we wish not to make further assumptions about the probability
mass 1/n per interval Ij, our predictive inferences are again in the form of
interval probabilities [3,26,29,30], where a lower probability for an event A is
represented by P (A), and the corresponding upper probability by P (A). Ef-
fectively, the lower probability is the maximum lower bound for the classical
probability for A that is consistent with the probabilities as assigned by A(n)©
and in accordance with the probability wheel model, according to De Finetti’s
fundamental theorem of probability [17], and the upper probability is the min-
imum upper bound consistent in this way. From a subjective point of view as
advocated by Walley [26], these can also be interpreted as maximum buying
and minimum selling prices, respectively, for which one judges gambles on the
event A to be desirable.

The predictive lower and upper probabilities presented in Section 3 are based
on an underlying assumed model, ensuring that they not only make sense for
one specific set of data, which they do being F -probability and due to the
fact that they bound the observed relative frequencies (Theorem 1), but are
also consistent if more observations are added to the data. Such considera-
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tions will be discussed in detail in [10], together with the underlying model
and the principles leading to, and detailed justification of, lower and upper
probabilities presented in Section 3 and in [9]. Here, we give a brief summary
of the key aspects of this model and justification:

The model underlying our nonparametric predictive lower and upper proba-
bilities (3) and (4) is based on a probability wheel representation, with each
observation category represented by a single segment of the probability wheel.
The idea of such a probability wheel is as follows (see [19] for use of the
same concept as a reference experiment underlying subjective probability).
An arrow, fixed at the center of a circle, spins around, such that the arrow is
equally likely to stop at any segment of the same size, where a segment is an
area between two lines from the center of the circle to its circumference. In our
model for multinomial data, we assume explicitly that each possible observa-
tion category is represented by only a single segment on the circle. Even more,
we assume that there is no natural (or assumed) ordering of the observation
categories, and therefore also no such ordering of the segments on the circle.
Clearly, if we had perfect knowledge of the sizes of all segments on the proba-
bility wheel, we would have full knowledge of the probability distribution for
future observations from this multinomial setting. In this paper, we assume
that the only information available to us is a finite number of exchangeable
observations, and the fact that there are at most K possible categories, hence
K different segments on the probability wheel. As this probability wheel is
only an abstract model, we have no information about the configuration of
different segments on it. This is important for our nonparametric predictive
inferences based on A(n)© once we consider unions of two or more categories,
and adds to imprecision of our inferences, in the sense that our lower and up-
per probabilities are optimal bounds over all configurations of these K possible
segments on the probability wheel.

When we combine this concept of a probability wheel, with each observation
category represented by a single segment, with the assumption A(n)© , on the
basis of n observations, then we can represent this situation as if the n ob-
servations are represented by n lines, which partition the circle into n equally
sized slices, representing that the next observation is equally likely to fall into
each one of these slices. The assumption that each observation category is rep-
resented by only one segment on the probability wheel, implies that the lines
representing observations in the same category are ‘next to each other’. For
example, if precisely two observations fall into one category, then our current
inferences with regard to the next observation falling into this category, are
based on the current representation with two lines next to each other which
both represent this category, and the other lines, in case of more than 2 ob-
servations, representing different categories. Under the assumption A(n)© , the
probability 1

n
for the line on the probability wheel corresponding to the next

observation to be in between the two lines representing these observations in
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the same category, is the lower probability that the next observation belongs
to that same category as well. For the upper probability, we consider all possi-
ble configurations of segments on the probability wheel, which are consistent
with the observations and their corresponding lines on the wheel. The upper
probability is then the maximum amount of probability, under A(n)© and these
data and configurations, that can be assigned to the segments corresponding
to the event of interest.

Our assumption that each observation category is represented by a single
segment on the probability wheel is crucial to the imprecision in our lower
and upper probabilities, and is essential as without this assumption our model
would lead to vacuous lower and upper probabilities for all non-trivial events.

3 Lower and upper probabilities

In a standard multinomial setting, observations belong to categories, with no
natural relationships or orderings between these categories. We assume that
there is a known number of possible categories, denoted by K, and we restrict
attention to K ≥ 3, as for the binomial situation with K = 2 NPI can be
based on an assumed data representation on a line, as presented by Coolen
[7], which leads to slightly less imprecision than a representation on a circle
as in this paper. We assume that each observation can be assigned to a cate-
gory with certainty. Our inferences in this paper are based on the assumption
that n ≥ 1 observations are available, and the inferences are predictive, fo-
cussing on a single future observation denoted by Yn+1, which is assumed to
be exchangeable with the n observations so far.

We denote the K ≥ 3 possible categories by C1, . . . , CK . Without loss of
generality, we assume that the first k of these, C1, . . . , Ck for 1 ≤ k ≤ K
have already been observed and the last K − k, Ck+1, . . . , CK have not yet
been observed. Let nj be the number of observations in Cj, so nj ≥ 1 for
j ∈ {1, . . . , k} and nj = 0 for j ∈ {k + 1, . . . , K}, and n =

∑k
j=1 nj. The event

of interest in this paper can generally be denoted by

Yn+1 ∈
⋃

j∈J

Cj (2)

with J ⊆ {1, . . . , K}, but except where mentioned explicitly we exclude the
trivial events J = ∅ and J = {1, . . . , K} from our considerations. Let OJ = J∩
{1, . . . , k} denote the index-set for the categories in the event of interest that
have already been observed, and UJ = J ∩ {k + 1, . . . , K} the corresponding
index-set for the categories in the event of interest that have not yet been
observed. Let r be the number of elements of OJ and l the number of elements
of UJ , so 0 ≤ r ≤ k and 0 ≤ l ≤ K − k. This implies that k − r observed
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categories and K − k − l unobserved categories are not included in the event
of interest.

The NPI-based lower and upper probabilities for event (2), based on the n
observations 1 , the assumption A(n)© and our probability wheel model, are

P (Yn+1 ∈
⋃

j∈J

Cj) =
1

n


 ∑

j∈OJ

nj − r + max(2r + l −K, 0)


 (3)

and

P (Yn+1 ∈
⋃

j∈J

Cj) =
1

n


 ∑

j∈OJ

nj − r + min(2r + l, k)


 (4)

For the two trivial events, the NPI-based lower and upper probabilities are
obvious. If J = {1, . . . , K}, the upper probability of event (2) is equal to 1, in
line with (4), and also the lower probability (3) is trivially defined as 1, which
is fully in line with the probability wheel model which underlies our inferences.
Similarly, if J = ∅, the lower probability of event (2) is equal to 0, in line with
(3), and the upper probability (4) is defined as 0. In our discussion below, we
will not explicitly mention these trivial events anymore.

To derive these lower and upper probabilities we consider all possible con-
figurations σ on the probability wheel, apply A(n)© to each of these to obtain
lower and upper predictive probabilities P σ(·) and P σ(·), and then take the
lower and upper envelope with respect to the set Σ of all configurations. In
the Appendix the lower and upper predictive probabilities (3) and (4) are di-
rectly derived by constructing those configurations that minimize P σ(·) and
maximize P σ(·).

We now directly turn to some fundamental properties of our inferences:

Theorem 1:

The lower and upper probabilities (3) and (4) satisfy the following properties:

i) (Conjugacy) For all J ⊆ {1, . . . K}:

P


Yn+1 ∈

⋃

j∈J

Cj


 = 1− P


Yn+1 ∈

⋃

j∈{1,...,K}\J
Cj


 .

1 All probabilities considered here are predictive given the first n observations. So
we do not explicitly mention the dependence on the first n observations in the
notation.
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ii) For all J ⊆ {1, . . . , K}:

P


Yn+1 ∈

⋃

j∈J

Cj


 ≤

∑
j∈J nj

n
≤ P


Yn+1 ∈

⋃

j∈J

Cj


 .

iii) If n varies, and P (n)(·) and P
(n)

(·) are the corresponding lower and upper
probabilities based on n observations, then, for every J ⊆ {1, . . . , K},

lim
n→∞P (n)


Yn+1 ∈

⋃

j∈J

Cj


 = lim

n→∞P
(n)


Yn+1 ∈

⋃

j∈J

Cj


 .

iv) P (·) = [P (·), P (·)] is F -probability in the sense of Weichselberger (2001),
i.e. with p(·) denoting classical probabilities and

M :=
{
p(·)

∣∣∣∣P (Yn+1 ∈
⋃

j∈J

Cj)≤ p(Yn+1 ∈
⋃

j∈J

Cj) (5)

≤P (Yn+1 ∈
⋃

j∈J

Cj), ∀J ⊆ {1, . . . , K}
}

as the so-called structure consisting of all classical probabilities being in
accordance with P (·) and P (·), one obtains

P (Yn+1 ∈
⋃

j∈J

Cj) = min
p(·)∈M

p(Yn+1 ∈
⋃

j∈J

Cj)

and
P (Yn+1 ∈

⋃

j∈J

Cj) = max
p(·)∈M

p(Yn+1 ∈
⋃

j∈J

Cj) .

v) P (·) and P (·) are coherent lower and upper probabilities in the sense of
Walley (1991).

Sketch of proof: i) to iii) can be demonstrated by elementary methods. For
iv) it is helpful to realize that A(n)© based on a certain arbitrary configuration
σ can be formally described by a basic probability assignment mσ(·), leading
to a belief function P σ(·) and a plausibility function P σ(·) with structure Mσ.
Taking the lower and upper envelope over all possible configurations leads to
F -probability [2, Th. 2.3.2] 2 , which is here, by the lower envelope theorem
[26, p.134], equivalent to coherence.

The theorem formulates important properties of internal consistency and ra-
tionality of our model. Property ii) distinguishes our model as a proper gen-
eralization of the näıve predictive learning where simply relative frequencies
are assigned: Our model contains the relative frequencies but also reflects, by

2 This way to derive P (·) and P (·) shows that our inferences are a special case of
generalized basic probability assignments ([2]), see also [16] for a related concept.
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the imprecision, the amount of information on which the inferences are based.
This imprecision vanishes if, and only if, the sample size tends to infinity
(cf. Property iii), so that with full information we eventually learn the true
proportions of the segments on the probability wheel.

Property i) shows that upper and lower probability fit to each other in a com-
plementary way. Far beyond this minimal requirement our inference leads to
F -probability in the interval probability theory of Weichselberger [3,29,30].
This proves that these predictive interval probabilities, based on a particu-
lar data representation, are internally consistent in a very strong sense: The
resulting limits are in complete accordance with the induced set of classical
(‘precise’) probabilities, and so the bounds make use of the available informa-
tion in a perfect manner; they are neither too wide nor do they add unjustified
additional assumptions to our inferences. Additionally, since on finite spaces
the F -probability property coincides with coherence in Walley’s sense [26], our
bounds are also perfectly rational from the behavioral point of view.

If we want to apply our model for predictive decision making or classification,
for instance, we have to go a step further and associate real-valued outcomes
with every category C1, . . . , CK , i.e. we want to consider random quantities
X : {C1, . . . , CK} −→ R. To determine their lower and upper expectation
there are two different ways to proceed:

a) The direct method copies the derivation of P (·) and P (·) from (3) and (4)
by replacing probability with expectation. So, we consider firstly every
configuration σ on the probability wheel separately, calculate the corre-
sponding lower and upper expectation EσX and EσX and then consider
the envelope over all configurations σ ∈ Σ, resulting in

EX := min
σ∈Σ

EσX and EX := max
σ∈Σ

EσX . (6)

b) The indirect method uses the predictive lower and upper probabilities
from (3) and (4) as the fundamental building blocks, from which then
the lower and upper expectations are derived. As a consequence, we first
determine our lower and upper probabilities P (·) and P (·) in accordance
with the model, and then use the corresponding structure M (cf. (5)) to
define lower and upper expectations:

EMX := min
p∈M

EpX and EMX := max
p∈M

EpX . (7)

From general theory (e.g., [26, p.81]) it is well known that in general

EMX ≤ EX and EX ≤ EMX (8)

with strict inequalities being possible, i.e., from the viewpoint of the direct
method, the indirect method could lead to substantial loss of information. It
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is therefore quite a strong internal consistency property (closedness property)
of our model that the inner and the outer methods coincide. Moreover, quite
important from the applied point of view, we can give convenient expressions
to calculate the lower and the upper expectations as simply weighted sums
instead of solutions to linear optimization problems:

Theorem 2:

Consider a random quantity X : {C1, . . . , CK} → R. Then, with the notation
from (6) and (7)

i)

EX = EMX =
∑

J⊆{1,...,K}
m


Yn+1 ∈

⋃

j∈J

Cj


 min

j∈J
X(j)

and

EX = EMX =
∑

J⊆{1,...,K}
m


Yn+1 ∈

⋃

j∈J

Cj


 max

j∈J
X(j),

where m(·) is the Moebius inverse of P (·), i.e. for every J ⊆ {1, . . . , K},

m


Yn+1 ∈

⋃

j∈J

Cj


 =

∑

I⊆J

(−1)|J\I|P

(
Yn+1 ∈

⋃

i∈I

Ci

)
. (9)

ii) Let furthermore x(1) < x(2) < . . . < x(q), q ≤ K, be the distinct values of

the image of X (ordered in increasing magnitude), and define J(i) =
{
j ∈

{1, . . . , K}
∣∣∣X(j) = x(i)

}
and I(i) := ∪i

t=1J(t), i = 1, . . . , q , then

EX = EMX = x(1) +
q∑

i=2

(
x(i) − x(i−1)

)
· P


Yn+1 ∈

⋃

s∈I(i)

Cs




and

EX = EMX = x(1) +
q∑

i=2

(
x(i) − x(i−1)

)
· P


Yn+1 ∈

⋃

s∈I(i)

Cs


 .

Sketch of proof: For the technical handling of the argument to be given
here, it is helpful to identify every configuration σ on the probability wheel
with a permutation of {1, . . . , K}, where (some of) the not yet seen colours,
i.e. some indices, may simply not be visible, so they can be interpreted as
corresponding to segments of size 0 on the probability wheel. Denote the set
of all permutations again by Σ. Then the proof relies on the following lemma:

Lemma 1:
For every increasing sequence S of index sets J(i) ⊆ {1, . . . , K}, J(i) ⊆ J(j),
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i ≤ j, there is a permutation σ0 ∈ Σ such that

P


Yn+1 ∈

⋃

j∈J(i)

Cj


 = P σ0


Yn+1 ∈

⋃

j∈J(i)

Cj


 for all i .

Sketch of proof of Lemma 1: Note that σ0 is required to be the same for
all elements of the sequence, and so the lemma says that for every sequence
there is a ‘favorable configuration’ in which for all elements of the sequence
the upper probability is attained simultaneously. Such a sequence can indeed
be constructed, namely by separating neighboring elements of the sequence as
long as possible: If, without loss of generality,

J(1) = {1}, J(2) = {1, 2}, . . . , J(K) = {1, . . . , K} ,

then the appropriate permutation σ0 is obtained by the following ordering of
the colours on the circle:

{1}, {K}, {2}, {K − 1}, {3}, {K − 2}, etc.,

because then for every element of the sequence S the upper probability, as
long as it is smaller than 1, increases for every j ∈ J(i) by nj + 1 if colour j is
among the categories seen so far and by 1 if not. This exactly coincides with
P (·) for all events corresponding to elements of S.

An immediate consequence of the lemma is that P (·) is two-monotone and P (·)
is two-alternating. Therefore, by applying results on the Choquet integral (e.g.
[5]), the lower and upper expectations EMX and EMX can be determined as
described.

To show the equality on the left hand side, note firstly that, for every config-
uration σ, EσX and EσX arise from optimizing EpX over the corresponding
structure Mσ (see the sketch of proof of Theorem 1), and so

EX = min
σ∈σ

EσX = min
σ∈Σ

min
p∈Mσ

EpX .

Secondly, the vertices (extremal points) of the structureM of an F -probability
with two-monotone lower interval limit P (·) are obtained by considering all
sequences of the form described in Lemma 1 (cf., e.g., [5]). Consequently,
Lemma 1 tells us that E(M) ⊆ ⋃

σ∈Σ
Mσ, which leads to

EMX = min
p∈E(M)

EpX ≥ min
σ

min
p∈Mσ

EpX .

This gives, together with (8), the equivalence of the direct and the indirect
methods.
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4 Comparison with IDM and examples

In this section we compare our NPI-based inferences for multinomial data with
K possible categories to Walley’s Imprecise Dirichlet Model [27], in particular
by focussing on some specific situations. We illustrate our method, also to
appreciate the differences to the IDM 3 , via some numerical examples. The
lower and upper probabilities for the general event (2), according to Walley’s
IDM [27], based on the n observations as described above, are

P IDM(Yn+1 ∈
⋃

j∈J

Cj) =
1

n + s


 ∑

j∈OJ

nj


 (10)

for J 6= {1, . . . , K}, and

P IDM(Yn+1 ∈
⋃

j∈J

Cj) =
1

n + s


 ∑

j∈OJ

nj + s


 (11)

for J 6= ∅, with s a positive constant to be chosen independently of the data.
Walley [27] advocates the use of small values such as s = 1 or s = 2 to
align the resulting inferences with several frequently suggested Bayesian and
classical inferences. Walley [27] states as important advantage of the IDM
that it satisfies a ‘Representation Invariance Principle’ (RIP), stating that
such lower and upper probabilities should not depend on the sample space
in terms of which the event of interest and the data are represented. 4 For
non-singletons, our lower and upper probabilities (3) and (4) do not generally
satisfy the RIP, but as will become obvious from the examples below we do
not see this as a disadvantage of our model.

The discussants to Walley’s paper [27] raised a number of disadvantages for
the IDM, and some of these were also mentioned and shared by Walley. These
disadvantages of the IDM include the following: (1) The IDM lower probabil-
ity for the second observation to be equal to the first, is 1

1+s
. The suggested

small values of s, in particular s = 1 or s = 2, lead to intuitively surprisingly
high values for this lower probability. As discussed below, in our NPI-based
approach, this lower probability is 0. (2) (RIP:) The IDM predictive lower and
upper probabilities depend only on the observed frequency of that category
and the total number of observations. This is not the case for our NPI-based

3 The Imprecise Dirichlet-Multinomial Model [28] gives the same lower and upper
probabilities (10) and (11) for the general event (2) as the IDM, so it does not
provide an alternative solution with regard to the issues mentioned in this paper on
the comparison of our NPI-based method and the IDM.
4 Far beyond this the IDM could in some sense be characterized as the only model
satisfying the RIP [15].
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lower and upper probabilities, we illustrate this explicitly in the examples be-
low. (3) The IDM upper probabilities for events that the next observation is in
an as yet unseen category do not depend on the number of categories seen so
far. This is not the case for our NPI-based upper probability, as illustrated in
Example 2 below. A further important advantage of our NPI-based approach
over the IDM approach appears if one does not know the total number of
possible categories, and wishes to distinguish in the event of interest between
fully defined categories that have not yet been observed, and any new category
occurring at the next observation. Our NPI-based lower and upper probabili-
ties for this situation are presented in [9], where the corresponding inferences
are also compared in detail with the IDM.

We illustrate our lower and upper probabilities (3) and (4) for some special
cases of the general event (2) and available data, also commenting on the
corresponding IDM lower and upper probabilities where useful to highlight
differences and similarities.

It is clearly of interest to consider the NPI-based lower and upper probabilities
for events containing only a single category. Let us begin with the case that
this one category has already been observed, so r = 1, l = 0, and without loss
of generality let us assume that the category of interest is C1, so n1 ≥ 1, then

P (Yn+1 ∈ C1) =
n1 − 1

n
(12)

as we assumed throughout that K ≥ 3 (the same would hold in NPI based on
this probability wheel model for K = 2), and

P (Yn+1 ∈ C1) = min
(

n1 + 1

n
, 1

)
(13)

again as we assumed that K ≥ 3 (with the same added comment as above).
The IDM lower and upper probabilities for this event are n1/(n + s) and
(n1+s)/(n+s), respectively. Note that our lower probability (12) only becomes
positive if n1 > 1, so in this case the NPI-based inference is quite conservative
when compared to the IDM [6].

Secondly, if this one category of interest has not yet been observed, so r =
0, l = 1, and without loss of generality let us assume that the category of
interest is CK , then

P (Yn+1 ∈ CK) = 0 (14)

and

P (Yn+1 ∈ CK) =
1

n
(15)

For this event, the IDM lower and upper probabilities are 0 and s/(n + s),
respectively. We see from (12)-(15) that the RIP actually holds in our approach
for events involving only a single category.
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If all r observed categories in the event of interest have been observed exactly
once, so nj = 1 for all j ∈ OJ , then

P (Yn+1 ∈
⋃

j∈J

Cj) =
1

n
max(2r + l −K, 0) (16)

which exceeds 0 if and only if K − r − l < r. In this latter case, there are
not enough categories available which are not in the event of interest and for
which the corresponding segments in the probability wheel model can be used
to separate all r segments corresponding to observed categories in the event of
interest (see the explanation of the derivation of (3) and (4) in the Appendix).
We illustrate and discuss this lower probability in Example 1. The IDM lower
probability for this event is r/(n+s), which for small values of s is larger than
the NPI-based lower probability (16).

For events containing only categories which have not yet been observed, so
r = 0 and 1 ≤ l ≤ K − k, the upper probability is

P (Yn+1 ∈
⋃

j∈UJ

Cj) =
1

n
min(l, k) (17)

while the corresponding NPI-based lower probability is 0, and the IDM upper
probability for this event is s/(n + s) for all values of l and k. We illustrate
and discuss this upper probability in Example 2.

Example 1.
Suppose that K = 10, n = 20, and k = 5, with n1 = 16 observations in
C1, and nj = 1 for j = 2, . . . , 5 in each of categories C2 to C5. Suppose that
interest is in the events Y21 ∈ ⋃

j∈{2,...,5+l} Cj for l ∈ {0, . . . , 5}, so that the next
observation belongs to any of the categories with a single observation so far or
to any of the first l not yet observed categories. By (16) the lower probability
for this event is 0 for l ≤ 2. However, for l ∈ {3, 4, 5} this lower probability is
positive, namely (l−2)/20. Of course, for l = 5 the event of interest is just the
complementary event to Yn+1 ∈ C1, and this lower probability of 3/20 then also
follows by the conjugacy property from the fact that P (Yn+1 ∈ C1) = 17/20
using (13).

So, in most cases the lower probability for the next observation to belong
to categories which have been observed at most once is 0, but if many such
categories are included in the event of interest, in comparison to the number
of included categories for which the data contain more than one observation,
then this lower probability can become positive in our NPI-based approach.

The IDM gives P IDM(Y21 ∈ ⋃
j∈{2,...,5+l} Cj) = 4

20+s
for all l ∈ {0, . . . , 5}, which

corresponds naturally to the IDM upper probability of (16 + s)/(20 + s) for
the event Yn+1 ∈ C1, yet it may be deemed somewhat surprising that it does
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not at all depend on the value of l. Most noticeably, of course, is the equality
of these IDM lower probabilities for the cases l = 0 and l = 5, so it does
not matter to the IDM whether none or all not yet observed categories are
included in the event of interest.

In this example, one could consider the NPI-based approach to be a bit more
conservative for these events than the IDM approach, as long as small values
of s are used for the latter.

Example 2.
Suppose that interest is in events expressing that Yn+1 does not belong to any
of the categories of the first n observations. The NPI-based lower probability
for any such an event is 0, the upper probability is given by (17). The most
general formulation of this event is Yn+1 ∈ ⋃

j∈{k+1,...,K} Cj, but instead one
may have an explicit interest in a subset of the not yet observed categories,
Yn+1 ∈ ⋃

j∈UC Cj, with l as before the number of elements of UC. Suppose that
K = 40 different categories are possible, and n = 200 observations are avail-
able which belong to k = 5 different categories, C1 to C5. The corresponding
NPI-based upper probability that Y201 belongs to any not yet observed cate-
gory is 5/200, while for the event that it belongs to any specific such category,
so any from C6 to C40, the upper probability is 1/200, and for any pair of
these 35 not yet observed categories the corresponding upper probability is
2/200, and so on up to the upper probability 5/200 for any subset containing
5 or more of these unobserved categories.

If, instead, the first n = 200 observations had been in k = 20 different cat-
egories, C1 to C20, then the corresponding NPI-based upper probability that
Y201 belongs to any not yet observed category is 20/200, while the similar
case with k = 25 categories already observed would lead to the value 15/200
for this upper probability. For subsets consisting of l of the unobserved cate-
gories, the corresponding upper probabilities are l/200 for l ≤ k, and k/200
for l ≥ k. These values reflect both how many different categories have al-
ready been observed, and how many unobserved categories are still available.
The maximum possible value of such an upper probability is attained for the
case where the number k of observed categories is equal to the number of
unobserved categories.

The IDM gives upper probability s/(200+s) for all the events in this example,
as it does not distinguish between such events with different subsets of the
unobserved categories. It also does not take into account k, the number of
observed categories in the 200 observations so far.

Example 3.
Table 1 presents the NPI and IDM (with s = 1) lower and upper probabilities
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for all non-trivial events of interest on Y11, in the case with K = 4 categories
and n = 10 observations, with all categories observed and nj = j observations
in category Cj, for j = 1, . . . , 4.

J P P P IDM P IDM

1 0/10 2/10 1/11 2/11

2 1/10 3/10 2/11 3/11

3 2/10 4/10 3/11 4/11

4 3/10 5/10 4/11 5/11

1,2 1/10 5/10 3/11 4/11

1,3 2/10 6/10 4/11 5/11

1,4 3/10 7/10 5/11 6/11

2,3 3/10 7/10 5/11 6/11

2,4 4/10 8/10 6/11 7/11

3,4 5/10 9/10 7/11 8/11

1,2,3 5/10 7/10 6/11 7/11

1,2,4 6/10 8/10 7/11 8/11

1,3,4 7/10 9/10 8/11 9/11

2,3,4 8/10 10/10 9/11 10/11

Table 1. NPI and IDM lower and upper probabilities (Example 3)

This basic example highlights that for the IDM, imprecision, which is the dif-
ference between corresponding upper and lower probabilities, does not depend
on the event of interest 5 (we again do not consider the trivial events in this
discussion), whereas imprecision does depend on the event in the NPI-based
approach, with imprecision in this example larger in case J has two elements
than for one element (or three of course, by conjugacy which is also illustrated
throughout in Table 1). In most situations in our approach, imprecision is
larger for events involving unions of categories than for events involving single
categories. In this example, the values are pretty similar, with the NPI-based
approach a bit more conservative due to the small chosen value s = 1 in the
IDM. In most situations with observations available in all categories, this will
be the case, as the most noticeable differences between the NPI and IDM ap-
proaches occur in situations as discussed in Examples 1 and 2. Both methods
also have the intuitively logical properties that the lower and upper prob-

5 For this reason a vivid non-Bayesian interpretation of the IDM sees it as contam-
inated relative frequencies [23].
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abilities always bound the corresponding relative frequency of the event of
interest in the data, and that the lower and upper probabilities converge to
this relative frequency if the numbers of observations in the categories become
large. Moreover, the equivalence of the direct and indirect method in assigning
expectations (cf. Theorem 2) can also be shown to hold for the IDM [25].

5 Discussion

In recent years, Walley’s IDM [27] has received increasing attention and gained
popularity for a variety of applications, as is clear from [4] and this special issue
of International Journal of Approximate Reasoning. Although our NPI-based
inferences, as presented here and in [9,10], are close to corresponding IDM
results in situations with lots of data and known categories, they can differ
substantially in other situations as highlighted in the examples in this paper
and in [9]. It is an interesting topic for future research to develop applications
based on our NPI-based method, for example classification, and to compare
their results with corresponding outcomes from the IDM (e.g.[1,24,31]). This
is also necessary to investigate the practical relevance of our proposed method.

Although our NPI approach is naturally presented in terms of a single future
observation, it is conceptually straightforward to extend it to any number of
future observations, via sequential arguments. Any statistical approach must
have consistency properties for updating and conditioning. We discuss these
important features in detail in [3] and [10], where it is emphasized that these
are very different actions. Updating involves learning from more observations,
and adapting inferences to this. This is naturally done in the NPI framework
by taking all new data into account together with the previously available
data, and basing predictive inference on the appropriate A(ñ) or A(ñ)© assump-
tion with ñ the new total number of observations. Conditioning, on the other
hand, typically involves taking specific additional information on the random
quantity of interest, Yn+1, into account. For both these actions, strong consis-
tency results hold for NPI, more details will be presented in [10].

As discussed in Section 4, and in more detail in [9], the RIP does not gener-
ally hold for the NPI-based inferences. Hence, our inferences can depend on
the choice of categories used to represent the data. We believe that this is a
natural feature of statistical inference based on lower and upper probabilities.
We would consider the RIP a reasonably logical principle from the perspective
of classical probability, where a precise probability for such inferences should
be close to the proportion of observations in the categories specified in the
event of interest. However, from the perspective of interval probability the-
ory, it is natural that the difference between corresponding lower and upper
probabilities depends on the amount of information available and the data
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representation. A more detailed data representation allows more detailed in-
ferences, but since it will imply less information on one or more categories, the
price for such more detailed inferences can be greater imprecision. This feature
of our method is similar in nature to the effects of increasing the number of
parameters in a statistical model, which allows the information from the data
to be taken into account in more detail, and hence leads to improved model
fit but tends to cause loss of predictive power. In our inferences, this latter
aspect occurs in the form of possibly more, but never less, predictive impre-
cision in case of a more detailed data representation. Generally speaking, our
NPI-based inferences for multinomial data are minimally imprecise if, for the
event of interest, the data available are only recorded in a binary mode, so
counting how often the event did or did not occur in the past. It is crucial
here to emphasize that, once a data representation has been chosen, the cor-
responding inferences should not be judged from the perspective of actually
knowing more details of the data. In [10] more attention will be paid to this
feature, suggesting a general property relating imprecision in inference to the
level of detail of the data representation (sample space) that is weaker than
the RIP, but also trivially satisfied by any method satifying the RIP.

The IDM has some important advantages over our NPI-based approach. In
particular, as it is a parametric model in the Bayesian framework, it allows
a wider range of inferences than our approach, and it is easily adapted to
enable prior judgements to be formally taken into account. In our NPI-based
method, inference is necessarily restricted to predictive events, but quite many
inferences of practical interest can be naturally formulated in a predictive
manner, see for example [11–14,20].
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Appendix: Derivation of (3) and (4)

For the general event (2) considered, and notation used, in this paper, there
are r + l categories in the event of interest, and K − r − l categories not
in the event of interest. With regard to their representation via segments
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on the probability wheel, as underlies our model and inferences, these latter
categories play an important role with regard to specific configurations for
which, combined with A(n)© , the lower and upper probabilities (3) and (4) are
obtained. The idea is straightforward, and identical in nature to that described
in [9]. Detailed proofs, both for the case with known K and with unknown
number of possible categories [9] will be given in [10].

We first consider the lower probability (3), and separate two cases. First,
if r ≤ K − r − l, so the number of possible categories not in the event of
interest is not less than the number of already observed categories in that
event, then there are sufficient segments possible on the probability wheel to
enable configurations such that no segments corresponding to different already
observed categories are next to each other. Of course, the segments falling in
between lines representing the same category Cj, for j ∈ OJ (there are no such
segments for categories Cj with j ∈ UC), all represent predictive probabilities
1/n for Yn+1 that cannot be moved away from the event of interest, but no
further segments must definitely belong to any categories in

⋃
j∈J Cj. This

clearly leads to

P (Yn+1 ∈
⋃

j∈J

Cj) =
∑

j∈OJ

nj − 1

n
=

1

n

∑

j∈OJ

nj − r. (18)

Secondly, if r > K − r − l then not all previously observed Cj in the event of
interest can be separated by categories not in the event of interest, the best
we can do is to separate as many as possible, so use all K − r − l categories
not in the event of interest to separate as many of the r segments as possible.
This leaves r − (K − r − l) = 2r + l − K segments, each between two lines
representing previous observations in different categories, that cannot be sep-
arated by categories not in the event of interest, and hence the probability
masses 1/n assigned by A(n)© to each of these segments must also be taken into
account, leading to

P (Yn+1 ∈
⋃

j∈J

Cj) =
∑

j∈OJ

nj − 1

n
+

2r + l −K

n
(19)

Clearly, together with the lower probability for the first case above, this gives
the general expression (3) for the lower probability.

Now we consider the upper probability (4). For this upper probability, all
possible categories that have not yet been observed and that are not in the
event of interest play no role, as effectively we can consider them either absent,
or represented by a segment with area 0 on the circle. Hence, we only need to
consider the probability mass that cannot be assigned to the event of interest,
which is due to the k−r already observed categories which are not in the event
of interest. Again we consider two cases. First, if k− r ≤ r+ l, so if k ≤ 2r+ l,
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then there are sufficient categories in the event of interest to ensure that no
two observed categories not in it have to be next to each other. Hence, there
are configurations for which all k segments in between two lines representing
different observations on the probability wheel have at least one of these two
lines belonging to a segment representing a category in the event of interest,
and therefore the probability mass 1/n in each such segment can be assigned
to the event of interest. This leads directly to

P (Yn+1 ∈
⋃

j∈J

Cj) =
∑

j∈OJ

nj − 1

n
+

k

n
. (20)

Secondly, if k − r > r + l, so if k > 2r + l, then some segments between two
neighbouring lines representing observations in different categories cannot be
included in the event of interest, as there are more such segments than there
are categories (either observed or not) in the event of interest. Clearly, there
are k − r − (r + l) = k − 2r − l such segments that cannot be included in the
event of interest, so from the k segments that are still free to be assigned after
all segments uniquely assigned to a single category Cj have been assigned
their probability masses 1/n, we can assign the probability masses 1/n of
k− (k− 2r− l) = 2r + l such segments to the event of interest. Hence, in this
case the upper probability is

P (Yn+1 ∈
⋃

j∈J

Cj) =
∑

j∈OJ

nj − 1

n
+

2r + l

n
. (21)

Clearly, together with the upper probability for the case above, this gives the
general expression (3) for the upper probability.
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