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Abstract

We consider an environment where potential buyers of an indi-
visible good have liquidity constraints, in that they cannot pay more
than their ‘budget’ regardless of their valuation. A buyer’s valuation
for the good as well as her budget are her private information. We
derive constrained-efficient and revenue maximizing auctions for this
setting. In general, the optimal auction requires ‘pooling’ both at the
top and in the middle despite the maintained assumption of a mono-
tone hazard rate. Further, the auctioneer will never find it desirable
to subsidize bidders with low budgets.
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1 Introduction

Auction theory revolves around the design and analysis of auctions when a

seller with goods for sale is confronted with buyers whose willingness to pay

he knows little about. A standard assumption in this literature has been to

conflate a buyer’s willingness to pay with her ability to pay- an unpalatable

assumption in a variety of situations.1 For instance, in government auctions

(privatization, license sales etc.), the sale price may well exceed a buyers’

liquid assets, and she may need to rely on an imperfect (i.e. costly) capi-

tal market to raise funds. These frictions limit her ability to pay, but not

her valuation (how much she would pay if she had the money). In some

sense, these financial constraints are more palpable than valuations, which

are relatively amorphous. There has been some applied and empirical work

suggesting that these considerations play a role both in the design of, and

bidder behavior in, real world auctions. However, there has been a small

amount of theoretical work investigating the (optimal) design of auctions

when bidders are liquidity constrained.2

In this paper, we are agnostic about the source of this liquidity constraint-

an interested reader should refer to Che and Gale [8] for a discussion on

possible sources of these constraints. Here we assume that there is a ‘hard

budget constraint’, in the sense that no buyer can pay more than her budget

regardless of her valuation. Assumptions of a similar flavor have been made

in the monetary search literature, see for example, Galenianos and Kircher

[11] and the references therein. The key difference is that in their models

agents choose their monetary holdings a priori, whereas here they are given

exogenously.

We derive the revenue maximizing and constrained efficient auctions in

this setting, when both valuations and budgets are bidders’ private informa-

tion. We implicitly disallow mechanisms that require bidders to ‘prove’ their

budgets by posting a bond equal to their budget up front.3

1Not every potential buyer of a David painting who values it at a million dollars has
access to a million dollars to make the bid.

2There has been more progress analyzing various ‘standard’ auction formats when
bidders are financially constrained.

3This prevents bidders from overstating their budgets since they would not have the
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For a seller, budget constraints mean that low budget bidders cannot

put competitive pressure on high budget bidders. For this reason it has

been suggested the seller should subsidize some bidders to foster competi-

tion. We give three examples. In the FCC spectrum auctions, Ayres and

Cramton [3] argued that subsidizing women and minority bidders actually

increased revenues since it induced other bidders to bid more aggressively.4

In a procurement context, Rothkopf et al [22] find that subsidizing inefficient

competitors can be desirable. Zheng [24] studies a stylized setting where

liquidity constrained bidders may be able to get additional funds from the

market at some cost. He considers a specific auction format, and shows that

if the auctioneer in this setting has access to cheaper funds, he may wish to

subsidize some bidders.

A subsidy is not the only instrument for encouraging competition nor is

it necessarily the best. For this reason an analysis of the optimal auction

will be useful. It may suggest other instruments that are more effective. Our

main finding is that if the seller were running an optimal auction, he would

never find it it beneficial to subsidize bidders. Rather he should favor budget

constrained bidders with a higher probability of winning.

Subsidizing bidders has two effects. The positive effect has been de-

scribed. However, to preserve incentive compatibility, one may be forced to

offer a subsidy to other bidders, thus diluting the positive effect. Our analysis

shows that the negative effect dominates.

The technical contribution of this paper is to the literature on mechanism

design when agents’ types are multidimensional. In general, mechanism de-

sign when agents’ types are multidimensional is known to be hard (see for ex-

ample Rochet and Choné [20]). Solved cases, in the sense of mechanisms that

have simple descriptions, are rare. Intuitively, this is because when types are

multidimensional, there are ‘too many’ incentive compatibility constraints.

Further, several of these papers use the structure of the problem they con-

sider to ‘reduce’ the type of the agent to a single dimension, something we

are unable to do here. Armstrong [2], Wilson [23] and Manelli and Vincent

cash to post a larger bond. In practice however, posting a bond equal to one’s budget
may be expensive, and regardless, our methods apply to this case as well.

4Their argument was based on the assumption that minority bidders would typically
assign lower valuations to the asset than large bidders.
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[17] are examples of the difficulties encountered in this class of problems, and

Rochet and Stole [21] survey solved cases. Malakhov and Vohra [16], use a

discrete types approach and the tools of linear programming to solve some

other cases (see Iyengar and Kumar [13] for the continuous version).

Budget constraints render the associated incentive compatibility con-

straints non-differentiable, despite the standard assumption of quasi-linear

utility. Therefore the Kuhn-Tucker-Karush first order conditions have no

bite in this setting. We skirt this difficulty by considering a model of discrete

types, i.e there are only a finite (if large) number of possible valuations and

budgets.5 This makes the problem of optimal design amenable to the use of

tools from linear programming, which is less involved than its continuum of

types counterpart. In our opinion, the arguments used are significantly more

transparent, and the intuition cleaner and easier to grasp.

1.1 Related Literature

The literature on auctions with budget constraints can be divided into two

groups. The first analyzes the impact of budget constraints on standard

auction forms. Che and Gale [8] consider the revenue ranking of standard

auction formats (first price, second price and all pay) under financial con-

straints. Benoit and Krishna [4] look into the effects of budget constraints in

multi-good auctions, and they compare sequential to simultaneous auctions.

Brusco and Lopomo [7] study strategic demand reduction in simultaneous

ascending auctions and show that inefficiencies can emerge even if the proba-

bility of bidders having budget constraints is arbitrarily small. Several other

works too numerous to enumerate here study the effects of financial con-

straints in a variety of settings.

The second group considers the problem of designing an ‘optimal’ auc-

tion. Maskin [18] proposed the ‘constrained efficient’ auction, i.e. the auction

that maximized efficiency when bidders had common knowledge budget con-

straints. Laffont and Robert [14] proposed a revenue maximizing auction for

this setting, with the added restriction that all bidders had the same budget

constraint. Both of the aforementioned papers imposed Bayesian incentive

5Readers with long memories will recall that the ‘original’ optimal auction paper by
Harris and Raviv [12] also assumed discrete types.
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compatibility. Malakhov and Vohra [15] design the dominant strategy rev-

enue maximizing auction when there are 2 bidders, only one of whom is

liquidity constrained. None of these papers considers the problem of design

when both budget and valuation are private information. Che and Gale

[9] compute the revenue maximizing pricing scheme when there is a single

buyer whose budget constraint and valuation are both his private informa-

tion.6 Borgs et al [6] study a multi-unit auction and design an auction that

maximizes worst case revenue when the number of bidders is large. Nisan

et al [10] show in a closely related setting that no dominant strategy in-

centive compatible auction can be Pareto-efficient when bidders are budget

constrained.

1.2 Discussion of Main Results

In this section we describe the main qualitative features of the revenue max-

imizing auction subject to budget constraints.7 In particular, we draw a

contrast with the features of the classic optimal auction of Myerson [19].

First, some notation. Denote a generic type by t, and a profile of types, one

for each agent, by tn. An auction must specify how the good is allotted at

each profile tn, and each agent’s payment at this profile. Given this allotment

rule, let a(t) be an agent’s interim probability of being allocated the good

when he reports type t.

When bidders are not budget constrained, the type of an agent is just her

valuation v, and Myerson [19] applies. Suppose Myerson’s regularity condi-

tion on the distribution of valuations, the monotone hazard rate condition,

is met. In this case we know that at each realized profile of types, the opti-

mal allocation rule allots to the highest valuation subject to it being above

a reserve v, where the reserve is the lowest type with a non-negative ‘virtual

valuation’. Assuming 2 bidders and valuations to be uniform in [0, 1], the

resulting interim allocation probabilities are as graphed in Figure 1.

Now suppose all bidders have the same (common knowledge) budget con-

straint. The type of an agent is still just her valuation. Laffont and Robert

6Their definition of a financial constraint is more general than ours, at the expense of
tractability.

7The constrained efficient auction shares many of the same properties.
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Figure 1: Optimal Allocation Rule

showed that the revenue maximizing auction will ‘pool’ some types at the

top. In other words, all types above some v̄ will be treated as if they had

valuation exactly v̄, and the budget constraint will bind for precisely these

types. Laffont and Robert argued that the allocation rule will allot the good

to the highest valuation subject to this ‘pooling’, and subject to it being

higher than an appropriately chosen reserve v. Further, this reserve will be

lower than the one in Myerson. The resulting interim allocation probabilities

are as graphed in Figure 2. The constrained efficient auction according to

Maskin is similar except there is no reserve v.

A consequence of our analysis is that the claims of Laffont and Robert,

and Maskin are not quite correct.8 A condition on the distribution of valu-

ations in addition to the monotone hazard rate is needed. Specifically, the

density function of valuations must be decreasing. If this condition fails, our

analysis shows that there can be pooling in the middle as displayed in Figure

3.

Finally, suppose bidders have one of 2 budgets bH > bL. Here, the type of

a bidder is 2 dimensional- his valuation, and his budget. As in Laffont and

Robert, there will be pooling at the top, however there will be two cutoffs,

8Appendix A provides counter-examples.
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Figure 2: Common Knowledge Common Budget, Decreasing Density

Figure 3: Optimal Allocation Rule: Pooling in the middle
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Figure 4: Optimal Allocation Rule

v̄H ≥ v̄L, such that all high budget bidders with valuation at least v̄H will be

pooled and all low budget bidders with valuation at least v̄L will be pooled.

A bidder with valuation v < v̄L will get the same allocation whether he is of

a high budget or low budget type. Finally, the auction will require ‘ironing’

in the middle, around the cutoff v̄L. High budget bidders whose valuations

are slightly higher than v̄L will be treated as if they had a lower valuation.

The resulting interim allocation probabilities are graphed in Figure 4.9

The last of these properties merits attention. The worry with budget

constrained bidders is that bidders with ‘low’ budgets are unable to com-

pete, effectively reducing competition in the auction, and thus revenue. This

property says that the optimal auction compensates for this by shading down

the valuations of high budget bidders. Surprisingly, this property is present

in the constrained efficient auction, where it is clearly inefficient.

The method of analysis yields another insight regarding the design of

auctions in such settings. Where prior work suggested there may be gains

to subsidizing low budget bidders (see Section 1.1 above) our analysis shows

that the auctioneer would decline to subsidize bidders if he was running

the optimal auction. Thus, arguments in favor of subsidies depend on the

9The constrained efficient auction is structurally similar to the above auction, except
that there is no reserve price.
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analysis of specific (i.e. sub-optimal) auction mechanisms.

1.3 Organization of this paper

In Section 2 we describe the model. In Section 3 we examine the special

case when all bidders have the same common knowledge budget constraint.

This helps build intuition for the more involved private information case. In

Section 4 we examine the case when bidders’ budgets are private information.

In Section 5 we discuss the (im)-possibility of profitably subsidizing bidders

as well as the implementation of this auction, and concludes.

2 A Discrete Formulation

There are N risk neutral bidders interested in a single indivisible good. Each

has a private valuation for the good v in V = {ε, 2ε, . . . , mε}. For notational

convenience we take ε = 1. Further, each bidder has a privately known budget

constraint b in B = {b1, b2, . . . , bk}, wlog b1 < b2 < . . . < bk. The type of a

bidder is a 2-tuple consisting of his valuation and his budget t = (v, b); and

the space of types is T = V × B. An agent of type t = (v, b) who is given

the good with probability a and asked to make a payment p derives utility:

u(a, p|(v, b)) =

{
va− p if p ≤ b,

−∞ if p > b.

In other words an agent has a standard quasi-linear utility up to his bud-

get constraint, but cannot pay more than his budget constraint under any

circumstances.

We assume that bidders’ types are i.i.d. draws from a commonly known

distribution π over T . We require that π satisfy a generalization of the mono-

tone hazard rate condition. Define fb(v) = π(v|b) > 0, i.e. the probability

a bidder has valuation v conditional on her budget being b. Further, define

Fb(v) =
∑v

1 fb(v). We require that:

(v, b) ≥ (v′, b′) ⇒ 1− Fb(v)

fb(v)
≥ 1− Fb′(v

′)
fb′(v′)
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For notational simplicity only we assume that the valuation and budget com-

ponents of a bidder’s type are independent, and that all budgets are equally

likely:10

P
(
t = (v, b)

)
= π(t) =

1

k
f(v). (1)

By the Revelation Principle, we confine ourselves without loss of generality

to direct revelation mechanisms. The seller must specify an allocation rule

and a payment rule. The former determines how the good is to be allocated

as a function of the profile of reported types and the latter the payments

each agent must make as a function of the reported types. We denote the

implied interim expected allocation and payment for a bidder of type t as

a(t) and p(t) respectively.

To ensure participation of all agents we require that:

∀t ∈ T, t = (v, b) : va(t)− p(t) ≥ 0. (2)

The budget constraint and individual rationality require that no type’s pay-

ments exceed their budget:

∀t ∈ T, t = (v, b) : p(t) ≤ b. (3)

To ensure that agents truthfully report their types we require that Bayesian

incentive compatibility hold. However, due to the budget constraint, the

incentive constraints will only require that a type t = (v, b) has no incentive

to misreport as types t′ such that p(t′) ≤ b. We can write this as:

∀t, t′ ∈ T, t = (v, b) : va(t)− p(t) ≥ χ{p(t′) ≤ b} va(t′)− p(t′), (4)

where χ is the characteristic function. Note that the presence of this

characteristic function renders the incentive compatibility constraints non-

differentiable, and thus the standard KTK first order conditions do not apply.

A key prior result we use in this paper is from Border [5]. Border provides

a set of linear inequalities that given the distribution over types, characterize

the space of feasible interim allocation probabilities. In other words, they

10It will be clear from the proofs that these assumptions are not necessary.
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characterize which interim allocation probabilities can be achieved by some

feasible allocation rule. These inequalities simplify our problem significantly,

since we now search over the (lower dimensional) space of interim allocation

probabilities, rather than concerning ourselves with the allocation rule profile

by profile. The Border inequalities state that a set of interim allocation

probabilities {a(t)}t∈T is feasible if and only if the a(t)’s are non-negative:

∀t ∈ T : a(t) ≥ 0, (5)

and:

∀T ′ ⊆ T :
∑

t∈T ′
π(t)a(t) ≤ 1− ( ∑

t6∈T ′ π(t)
)N

N
. (6)

The left hand side of (6) is the expected probability the good is allocated to

an agent with a type in T ′, which must be less than the probability that at

least one agent has a type in T ′.
Therefore, the problem of finding the revenue maximizing auction can be

written as:

max
{a(t),p(t)}t∈T

∑
t

π(t)p(t) (RevOpt)

Subject to: (2-6).

Similarly, the problem of finding the constrained efficient auction can be

written as:

max
{a(t),p(t)}t∈T

∑
t

π(t)va(t) (ConsEff)

Subject to: (2-6).

To orient the reader, we give an overview of the approach taken. First, by

using a discrete type space, we are able to formulate the problem of finding

the revenue maximizing auction as a linear program. At a high level, it has

11



the following form:

Z = max cx

s.t. Cx ≤ d

Ax ≤ b

x ≥ 0

The first set of constraints, Cx ≤ d, corresponding to (2 - 4), are ‘compli-

cated’. The second set, Ax ≤ b, correspond to (6). We show that this set is

‘easy’ in the sense that A is an upper triangular matrix. Let

Z(λ) = max cx + λ(d− Cx)

s.t. Ax ≤ b

x ≥ 0

For each λ ≥ 0, Z(λ) is easy to compute because A is upper triangular. By

the duality theorem of linear programming,

Z = min
λ≥0

Z(λ).

Thus our task reduces to identifying the non-negative λ that minimizes Z(λ).

Now, Z(λ) is a piecewise linear function of λ with a finite number of break-

points. We find an indirect way to enumerate the breakpoints without ex-

plicitly listing them. In this way we compute the value Z.

In the auction context, the coefficients of the x variables in the function

cx + λ(d− Ax) have an interpretation as ‘virtual values’.

3 The Common Knowledge Budget Case

In this section, we analyze the case where all bidders have the same, com-

monly known budget. This helps us build intuition and familiarity with the

proof methods used subsequently to analyze the general case. We examine

the case of revenue maximization.

Since all bidders have the same budget constraint b, a bidder’s type is

12



just her valuation. Further, we can drop the characteristic function in the IC

constraints since, by individual rationality, all types must have a payment of

at most b. Given these simplifications, problem(RevOpt) becomes:

max
{a(v),p(v)}v∈V

∑
f(v)p(v) (RevOptCK)

s.t. p(v) ≤ b ∀v
va(v)− p(v) ≥ va(v′)− p(v′) ∀v, v′

va(v)− p(v) ≥ 0 ∀v
∑

v∈V ′
f(v)a(v) ≤ 1− ( ∑

v 6∈V ′ f(v)
)N

N
∀V ′ ⊆ V

a(v) ≥ 0 ∀v

First, add a ‘dummy’ type 0 to the space of types, and define a(0) = p(0) = 0.

We can subsume the IR constraint, by requiring IC over the extended type

space V ′ = V
⋃{0}. Standard arguments imply that an allocation rule a(·)

can be part of an incentive compatible mechanism if and only if a(v) is non-

decreasing in v. Further, the payment rule that maximizes revenue associated

with this allocation rule is:

p(v) = va(v)−
v−1∑
1

a(v′). (7)

Substituting (7) back into (RevOptCK), we can rewrite it as:

max
{a(v)}v∈V

∑
f(v)ν(v)a(v) (OPT)

s.t. va(v)−
v−1∑

v′=1

a(v′) ≤ b ∀v (8)

∑

v∈V ′
f(v)a(v) ≤ 1− ( ∑

v 6∈V ′ f(v)
)N

N
∀V ′ ⊆ V (9)

a(v)− a(v + 1) ≤ 0 ∀v
a(v) ≥ 0 ∀v

13



where ν(v) = v − 1−F (v)
f(v)

is type v’s ‘virtual valuation’, as in Myerson [19].

Monotonicity of the allocation rule makes many of the constraints in (9)

redundant.

Lemma 1 If a(·) is monotonic, it is feasible if and only if, ∀v ∈ V :

m∑
v

f(v′)a(v′) ≤ 1− FN(v − 1)

N
(10)

Proof: See Appendix B. ¤

For convenience we set cv = 1−F N (v−1)
N

.

The utility of the Border formulation follows from this simplification. The

constraint matrix in (10) is upper triangular, which makes determining the

structure of an optimal solution easy. In addition, a straightforward calcu-

lation shows that if a(t) is the efficient allocation then all of the inequalities

in (10) bind.

By inspection, a(v + 1) > a(v) ⇒ p(v + 1) > p(v); a(v + 1) = a(v) ⇒
p(v + 1) = p(v). Therefore, if the budget constraint (8) binds for some

valuation v̄, it must bind for all valuations v > v̄. If the budget constraint

does not bind in the optimal solution, the solution must be the same as

Myerson’s. Hence we assume the budget constraint binds in the optimal

solution. We summarize this in the following observation.

Observation 1 If a∗ is an optimal solution to (RevOptCK), the budget

constraint must bind for some types {v̄, v̄ + 1, . . . ,m}. Further,

a∗(v) = a∗(v̄) ∀v ≥ v̄.

Suppose the lowest type for which the budget constraint binds in the opti-

mal solution a∗ is v̄. Substituting into program (OPT); and dropping the

redundant Border constraints by Lemma 1, we conclude that a∗ must be a

14



solution to problem (RevOptCK):

max
{a(v)}v∈V

( v̄−1∑
1

f(v)ν(v)a(v)

)
+ (1− F (v̄ − 1))v̄a(v̄)

s.t. −
v̄−1∑
1

a(v′) + v̄a(v̄) = b

v̄−1∑
v

f(v′)a(v′) + (1− F (v̄ − 1))a(v̄) ≤ cv 1 ≤ v ≤ v̄

a(v)− a(v + 1) ≤ 0 ∀v
a(v) ≥ 0 ∀v

Denote the dual variable for the budget constraint by η, the dual variable for

the Border constraint corresponding to type v by βv and the dual variable

for the monotonicity constraint corresponding to type v by µv. The dual

program is:11

min
η,{βv}v̄

1 ,{µv}v̄−1
1

bη +
v̄∑
1

cvβv (DOPT)

v̄η + (1− F (v̄ − 1))
v̄∑
1

βv − µv̄−1 ≥ (1− F (v̄ − 1))v̄ (a(v̄))

−η + f(v)
v∑
1

βv′ + µv − µv−1 ≥ f(v)ν(v) ∀v ≤ v̄ − 1 (a(v))

βv, µv ≥ 0

Let v be the lowest valuation for which a∗(v) > 0. Complementary slackness

11The primal variables associated with each dual constraint is displayed in brackets next
to the constraint.
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implies that:

v̄η + (1− F (v̄ − 1))
v̄∑
1

βv − µv̄−1 = (1− F (v̄ − 1))v̄ (11)

−η + f(v)
v∑
1

βv′ + µv − µv−1 = f(v)ν(v) ∀v ≤ v ≤ v̄ − 1 (12)

Re-writing (11-12) yields:

v̄∑
1

βv − µv̄−1

1− F (v̄ − 1)
= v̄ − v̄

η

1− F (v̄ − 1)
,

v∑
1

βv′ +
µv

f(v)
− µv−1

f(v)
= ν(v) +

η

f(v)
: ∀v ≤ v ≤ v̄ − 1

Intuitively, these equations tell us that the ‘correct’ virtual valuation of a

type v is ν(v) + η
f(v)

, where ν(v) is the Myersonian virtual valuation, and
η

f(v)
corrects for the budget constraint: allocating to lower types reduces the

payment of the high types, and hence ‘relaxes’ the budget constraint. As

in Myerson, we require that the adjusted virtual valuation ν(v) + η
f(v)

be

increasing in v. A sufficient condition for this is that f(v) is decreasing and

satisfies the monotone hazard rate condition. By analogy with Myerson, the

lowest type that will be allotted is the lowest type (v) whose adjusted virtual

valuation is non-negative. Finally, the optimal allocation rule will be efficient

between types v̄ − 1 and v.

Proposition 1 Suppose f(v) is decreasing in v, and f(·) satisfies the mono-

tone hazard rate condition, i.e. 1−F (v)
f(v)

is decreasing in v. Then the solution

of (RevOptCK) can be described as follows: there will exist two cutoffs v̄ and

v. No valuation less than v will be allotted. All types v̄ and above will receive

the same interim allocation probability, and the budget constraint will bind

for exactly those types. The allocation rule will be efficient between types v̄−1

and v. Finally, v is the lowest type such that

ν(v) +
η

f(v)
≥ 0,
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where

η =
(1− F (v̄ − 1))(1− F (v̄ − 2))

v̄f(v̄ − 1) + (1− F (v̄ − 1))
.

If the sufficient conditions are not met, the optimal solution may require

pooling in the middle.

Proof: The proof proceeds by constructing dual variables that complement

the primal solution described in the statement of the proposition.

Since a∗(v) = 0 for v < v and f(v) > 0 for all v, the corresponding Border

constraints (9) do not bind at optimality. Therefore βv = 0 for all v < v.

Further 0 = a∗(v − 1) < a∗(v) by definition of v, and so, by complementary

slackness, µv−1 = 0. Similarly, since v̄ is the lowest type for which the budget

constraint binds, a∗(v̄) > a∗(v̄ − 1), implying that µv̄−1 = 0.

Subtracting the dual constraints corresponding to types v̄ and v̄ − 1 and

using the fact that µv−1 = 0, we have:12

βv̄ +
µv̄−2

f(v̄ − 1)
= v̄ − v̄

η

1− F (v̄ − 1)
− ν(v̄ − 1)− η

f(v̄ − 1)
(13)

Subtracting the dual constraints corresponding to v and v−1, where v +1 ≤
v ≤ v̄ − 1, we have:

βv +
µv

f(v)
− µv−1

f(v)
− µv−1

f(v − 1)
+

µv−2

f(v − 1)
= ν(v) +

η

f(v)
(14)

−ν(v − 1)− η

f(v − 1)

Finally, the dual constraint corresponding to type v reduces to:

βv +
µv

f(v)
= ν(v) +

η

f(v)
(15)

It suffices to identify a non-negative solution to the system (13-15) such that

βv = 0 for all v < v and µv−1 = 0.

12This step is where the upper triangular constraint matrix is helpful.
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Consider the following solution.

βv̄ = 0 (16)

βv = ν(v)− ν(v − 1) + η
( 1

f(v)
− 1

f(v − 1)

)
v + 1 ≤ v ≤ v̄ − 1 (17)

µv−1 = 0 v + 1 ≤ v ≤ v̄ − 1 (18)

η =
(1− F (v̄ − 1))(1− F (v̄ − 2))

v̄f(v̄ − 1) + (1− F (v̄ − 1))
(19)

Direct computation verifies that the given solution satisfies (13-15). In fact

it is the unique solution to (13-15) with all µ’s equal to zero. All variables

are non-negative. In particular, βv for v + 1 ≤ v ≤ v̄ − 1 is positive. This is

because f(·) satisfies the monotone hazard rate and decreasing density con-

ditions, for any v, ν(v)−ν(v−1)+η
(

1
f(v)

− 1
f(v−1)

)
> 0. Furthermore, it com-

plements the primal solution described in the statement of the proposition.

This concludes the case where our regularity condition on the distribution of

types (monotone hazard rate, decreasing density) are met.

Now suppose our sufficient condition is violated, i.e. ν(v) − ν(v − 1) +

η
(

1
f(v)

− 1
f(v−1)

)
< 0 for some v. The dual solution identified above will be

infeasible since βv < 0. More generally, there can be no dual solution that

satisfies (13-15) with all µv = 0. Hence, there must be at least one v between

v and v̄−1 such that µv > 0. This implies, by complementary slackness, that

the corresponding primal constraint, a(v)− a(v +1) ≤ 0 binds at optimality,

implying pooling. ¤

In fact one can further restrict the set of optimal dual solutions.

Lemma 2 In any solution to the primal problem (OPT), at most one of the

Border constraint (9) corresponding to type v, and the monotonicity con-

straint corresponding to type v − 1 can bind. Further, by complementary

slackness:

∀v : βvµv−1 = 0 (20)

Proof: See Appendix B. ¤

The solution to the system of equations (13- 15), (20) constitutes the optimal

dual solution. It is easily seen that this solution is unique- therefore even in
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the case where ironing is required, there is a unique solution. Further the µ’s

in the solution are the ‘ironing’ multipliers a la Myerson.

We are also in a position to describe the constrained efficient auction for

this setting. The proof is very similar to that of Proposition 1, and therefore

omitted.

Proposition 2 Suppose f(v) is decreasing in v. Then the constrained effi-

cient auction in this settin can be described as follows: there will exist a cutoff

v̄. All types v̄ and above will receive the same interim allocation probability,

and the budget constraint will bind for exactly those types. The allocation

rule will be efficient for types below v̄− 1. If the sufficient conditions are not

met, the optimal solution may require pooling in the middle.

4 The General Case

Recall the original program (RevOpt). We deal with the case where a bid-

der’s valuation and budget are determined independently, and all budgets

are equally likely, i.e. for any type t = (v, b),

π(v, b) =
1

k
f(v).

max
k∑

j=1

m∑
v=1

1

k
f(v)p(v, bj) (RevOpt)

s.t.va(v, b)− p(v, b) ≥ 0

va(v, b)− p(v, b) ≥ χ{p(v′, b′) ≤ b}[va(v′, b′)− p(v′, b′)]

p(v, b) ≤ b

∑

t∈T ′
π(t)a(t) ≤ 1− (

∑
t 6∈T ′ π(t))N

N

a(t) ≥ 0

The incentive compatibility constraints can be separated into 3 types:
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1. Misreport of value only:

va(v, b)− p(v, b) ≥ va(v′, b)− p(v′, b). (21)

2. Misreport of budget only:

va(v, b)− p(v, b) ≥ χ{p(v, b′) ≤ b}[va(v, b′)− p(v, b′)]. (22)

3. Misreport of both:

va(v, b)− p(v, b) ≥ χ{p(v′, b′) ≤ b}[va(v′, b′)− p(v′, b′)]. (23)

Standard arguments imply that the IC constraints corresponding to a mis-

report of value, (21), can be satisfied by some pricing rule if and only if

v ≥ v′ implies that a(v, b) ≥ a(v′, b). Incentive compatibility and individual

rationality imply

p(v, b) ≤ va(v, b)−
v−1∑
1

a(v′, b).

The difficulty stems from the IC constraints relating to misreport of budget,

(22) and (23). In particular, we need (further) constraints on the allocation

rule such that there exists an incentive compatible pricing rule. The follow-

ing lemmata identify the space of interim allocations such that each type’s

payment is the maximum possible, i.e.

p(v, b) = va(v, b)−
v−1∑
1

a(v′, b). (24)

Lemma 3 For any budget b, individual rationality can be satisfied if and only

if:

p(v, b) = b ⇒ a(v′, b) = a(v, b) ∀v′ ≥ v. (25)

Proof: It is easy to see that for any v, b:

a(v + 1, b) ≥ a(v, b) ⇒ p(v + 1, b) ≥ p(v, b).
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Further, by observation, (24) implies that:

a(v + 1, b) > a(v, b) ⇒ p(v + 1, b) > p(v, b),

a(v + 1, b) = a(v, b) ⇒ p(v + 1, b) = p(v, b).

Equation (25) follows. ¤
Lemma 4 Fix an allocation rule a such that a is incentive compatible and

individually rational with pricing rule (24). Fix two budgets b′ > b. Let vb be

the largest v such that p(vb, b
′) ≤ b. Then

a(v, b′) = a(v, b) ∀v ≤ vb.

Further, a(vb + 1, b′) > a(m, b).

Proof: By assumption, p(v, b′) ≤ b for any v ≤ vb. By individual rational-

ity, p(v, b) ≤ b for any v. Therefore the incentive compatibility constraints

(22) corresponding to type (v, b) misreporting as (v, b′) and type (v, b′) mis-

reporting as (v, b) for any v ≤ vb imply that:

va(v, b)− p(v, b) = va(v, b′)− p(v, b′) ∀v ≤ vb

⇒
v−1∑
1

a(v′, b) =
v−1∑
1

a(v′, b′) ∀v ≤ vb

⇒ a(v, b) = a(v, b′) ∀v ≤ vb − 1

To see that a(vb, b) = a(vb, b
′), first consider the IC constraint corresponding

to type (vb + 1, b) misreporting as type (vb, b
′). By assumption p(vb, b

′) ≤ b,

therefore we can drop the characteristic function and write the IC constraint

as:

(vb + 1)a(vb + 1, b)− p(vb + 1, b) ≥ (vb + 1)a(vb, b
′)− p(vb, b

′)

⇒
vb∑
1

a(v, b) ≥
vb∑
1

a(v, b′)

⇒ a(vb, b) ≥ a(vb, b
′).
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The last inequality follows since
∑vb−1

1 a(v, b) =
∑vb−1

1 a(v, b′). Similarly one

can show that a(vb, b) ≤ a(vb, b
′).

Finally, we need to show that a(vb + 1, b′) > a(m, b). By assumption,

p(vb + 1, b′) > b ≥ p(m, b)

⇒ (vb + 1)a(vb + 1, b′)−
vb∑
1

a(v, b′) > ma(m, b′)−
m−1∑

1

a(v, b)

⇒ (vb + 1)a(vb + 1, b′) > ma(m, b′)−
m−1∑
vb+1

a(v, b)

> (vb + 1)a(m, b),

where the last inequality follows from the fact that for any v, a(v + 1, b) ≥
a(v, b). ¤

Lemma 3 shows that for each bi there is a cutoff v̄i ∈ V , the lowest

valuation such that p(v̄i, bi) = bi, and a(v, bi) = a(v̄i, bi) for all v ≥ v̄i.

Lemma 4 shows that for each bi there exists a cutoff vi, the highest valuation

such that p(vi, bi+1) ≤ bi; and that a(v, bi) = a(v, bi+1) for all v ≤ vi. We

summarize this in the following definition:

Definition 1 Given an allocation rule a that is incentive compatible and

individually rational with pricing rule (24), define cutoffs:

v̄i = arg min{v : p(v, bi) = bi} ∀i ≤ k,

vi = arg max{v : p(v, bi+1) ≤ bi} ∀i ≤ k − 1.

Note that it must be the case that vi < v̄i+1.

Further, define :

V̄ = {v̄1, v̄2, . . . , v̄k},
V = {v1, v2, . . . vk−1}.

Lemmas 3 and 4 imply:
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Figure 5

Observation 2 An allocation rule a : T → [0, 1] is consistent with cutoffs

V̄ = {v̄1, v̄2, . . . , v̄k} and V = {v1, v2, . . . vk−1}, where vi ≤ v̄i+1 for all i, and

pricing rule (24), incentive compatible and individually rational if and only

if:

a(v, b) ≤ a(v + 1, b) ∀v, b (26)

a(v̄i − 1, bi) < a(v̄i, bi) ∀i (27)

p(v̄i, bi) = bi ∀i (28)

a(v, bi) = a(v̄i, bi) ∀i, ∀v ≥ v̄i (29)

a(v, bi) = a(v, bi+1) ∀i,∀v ≤ vi (30)

p(vi + 1, bi + 1) > bi ∀i (31)

a(vi + 1, bi + 1) > a(m, bi) ∀i (32)

Figure 5 depicts an incentive compatible, individually rational allocation

rule for a type space with 10 possible valuations and 4 possible budgets.
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Given a collection of cut-offs we describe how to find an allocation rule

consistent with those cutoffs that maximizes revenue. By Observation 2

we can drop the individual rationality, budget, and incentive compatibility

constraints in (RevOpt) and substitute instead (26-32). Therefore, we have:

max
a

k∑
i=1

m∑
v=1

f(v)

k
ν(v)a(v, bi) (REVOPT)

Subject to: (26-32), (5),(6).

To ensure a well defined program the strict inequalities in (27) and (32)

have to be relaxed to a weak inequality. If for a given set of cutoffs, the

optimal solution to (REVOPT) binds at inequality (27) or (32), we know

that the set of cutoffs being considered cannot be feasible. Hence we can

restrict attention to cut-offs where (the weak version of) the inequalities do

not bind at optimality.

Recall that by Border [5] we know:

Proposition 3 (Border) Let a : T → [0, 1] be the interim probability of

allocation for a type space T . For each α ∈ [0, 1], set

Eα = {t : a(t) ≥ α}.

Then a is feasible if and only if:

∑
t∈Eα

a(t)f(t) ≤ 1− ( ∑
T−Eα

f(t)
)N

N
. (33)

Therefore, having fixed the cutoffs V , by (26) and (32), most of the Border

constraints are rendered redundant. In particular consider type (v, bi); v ≤ v̄i.

Then, by Observation 2, E(v,bi), the set of all types t such that a(t) ≥ a(v, bi)

is:

E(v,bi) =
k⋃

j=i+1

{(v′, bj) : v′ ≥ min(v, vi + 1, . . . , vj−1 + 1)}
⋃
{(v′, bi) : v′ ≥ v}.
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It follows from Proposition 3 that the relevant Border constraints to be

considered are:

∑
t∈E(v,bi)

a(t)f(t) ≤
1− ( ∑

T−E(v,bi)
f(t)

)N

N
. ∀i, v ≤ v̄i (34)

The next lemma further restricts the configurations of cutoffs in a revenue

maximizing rule.

Lemma 5 Let a∗ solve (REVOPT). Then the cutoffs V̄ , V as defined in Def-

inition 1 must satisfy:

vi ≥ v̄i − 1, ∀i ≤ k − 1.

A complete proof of Lemma 5 is in Appendix B.2. Here we give a sketch.

Suppose instead that in some profit maximizing allocation rule a; for some

i, vi < v̄i−1. We outline how to construct a rule a′ with cutoff v′i = vi+1 that

achieves weakly more revenue. Since vi < v̄i−1, a(vi+1, bi+1) > a(v, bi) for all

v. Consider decreasing a(vi +1, bi+1) by δ and increasing each a(v, bi), v ≥ v̄i

by δ′. If δf(vi + 1) = δ′(1− F (vi)), we will maintain feasibility with respect

to the Border conditions. Pick δ such that a(vi + 1, bi) = a(vi + 1, bi+1)− δ.

This modified allocation rule corresponds to the cutoff v′i = vi + 1. The net

change in revenue is (v̄i − ν(vi + 1))δ
f(vi+1)

k
, which is clearly non-negative.

However this simple procedure will violate the budget constraints. Appendix

B.2 shows that there exists a similar revenue increasing construction such

that the resulting rule is feasible in the optimization program (REVOPT).

With this added restriction on cutoffs; the set of incentive compatible and

individually rational rules are summarized in Observation 3. Since vi ≥ v̄i−1,

(31) and (32) are satisfied automatically; vi ≡ arg min{v : a(v + 1, bi+1) >

a(v̄i, bi)}.
Lemma 5 further implies that the budget constraint corresponding to

budget bi can bind in an optimal solution only if the budget constraints

corresponding to each bj < bi bind. Therefore, in any optimal solution, there

must be a largest budget bi such that the budget constraints corresponding

to b ≤ bi bind, and the budget constraints corresponding to b > bi are slack.
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For notational simplicity we assume that in the optimal solution, all budget

constraints bind.

Observation 3 An allocation rule a : T → [0, 1], consistent with the cutoffs

V̄ = {v̄1 ≤ v̄2 ≤ . . . ≤ v̄k} and pricing rule (24) is incentive compatible and

individually rational if and only if there exist, x : V → [0, 1] and y : V̄ → [0, 1]

such that:

a(v, bi) = y(v̄i) ∀i ≤ k, v ≥ v̄i, (35)

a(v, bj) = x(v) ∀i ≤ k, v̄i−1 ≤ v ≤ v̄i − 1, j ≥ i, (36)

v̄iy(v̄i)−
v̄i−1∑

1

x(v) = bi, ∀i ≤ k, (37)

x(v) ≤ x(v + 1) ∀v, (38)

x(v̄i − 1) < y(v̄i) ∀i ≤ k, (39)

y(v̄i) ≤ x(v̄i) ∀i < k. (40)

Figure 6 displays an incentive compatible, individually rational allocation

rule whose cutoffs satisfy Lemma 5.

Substituting (35) and (36) into (34), the Border constraints to be consid-

ered are:

v̄i−1∑

v′=v

k − i + 1

k
f(v′)x(v′) +

k∑
j=i+1

v̄j−1∑
v̄j−1

k − j + 1

k
f(v′)x(v′) +

k∑
j=i

(1− F (v̄j − 1)

k
y(v̄j)

≤ cv ∀i ≤ k, v̄i−1 + 1 ≤ v ≤ v̄i, (41)

k∑
j=i+1

(1− F (v̄j − 1)

k
y(v̄j) +

k∑
j=i+1

v̄j−1∑
v̄j−1

k − j + 1

k
f(v)x(v)

≤ 1− (1− k−i
k

(1− F (v̄i − 1)))N

N
∀i ≤ k. (42)

26



Figure 6

where the c’s are the right hand side of the appropriate Border inequality

(34), i.e.

cv =
1− (1− k−i

k
(1− F (v̄i − 1))− 1

k
(1− F (v − 1)))N

N
(v̄i−1 + 1) ≤ v ≤ v̄i.

Making the appropriate substitutions, (REVOPT) becomes:

max
x,y

k∑
j=1

v̄j−1∑
v̄j−1

k − j + 1

k
f(v)ν(v)x(v) +

∑k
i=1 v̄i(1− F (v̄i − 1))y(v̄i)

k

(REVOPT2)

Subject to: (5), (37-42).

As before, we conjecture an optimal solution and verify optimality with

a suitably chosen dual solution. Hence we flip to the dual and examine its

properties.

Let ηi be the dual variable associated with the budget constraint (37).

Since we assume constraint (39) does not bind at optimality, the correspond-
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ing dual variable will be 0, and therefore is dropped. Let µv be the dual

variable associated with the monotonicity constraint (38), and µ̄v̄i
the dual

variable associated with the constraint (40). Denote by βv the dual variable

associated with (41), and β̄v̄i
, the dual variable associated with (42). The

dual program is:

min
η,µ,β

k∑
i=1

biηi +

v̄k∑
v=1

cvβv +
k∑

i=1

c̄v̄i
β̄v̄i

(DOPT2)

−
k∑

j=i

ηj +
k − i + 1

k
f(v)(

v∑
1

βv +
i−1∑
j=1

β̄v̄j
) ≥ k − i + 1

k
f(v)ν(v), (43)

+µv − µv−1 ∀i ≤ k, (v̄i−1 + 1) ≤ v ≤ (v̄i − 1)

−
k∑

j=i+1

ηj +
k − i

k
f(v)(

v̄i∑
1

βv +
i∑

j=1

β̄v̄j
) ≥ k − i

k
f(v̄i)ν(v̄i), (44)

+µv̄i
− µ̄v̄i

∀i ≤ k

v̄iηi +
(1− F (v̄i − 1))

k
((

v̄i−1∑
1

βv +
i∑

j=1

β̄v̄j
) ≥ (1− F (v̄i − 1))

k
v̄i, (45)

+µ̄v̄i
∀i ≤ k

η, β, µ ≥ 0,

Here, (43) is the dual inequality corresponding to primal variable x(v) where

(v̄i−1 + 1) ≤ v ≤ (v̄i − 1) , (44) the dual inequality corresponding to x(v̄i)

and (45) the dual inequality corresponding to y(v̄i). Fix an optimal primal

solution(x∗, y∗) and let v be the lowest valuation which gets allotted in that

solution. Therefore any type (v, b) where v ≥ v gets allotted. It is easy to see

that v ≤ v̄1. Complementary slackness implies that the inequalities (43) bind

for all v ≥ v, as do (44, 45) for all i. Rewriting (43-45) as in the common
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knowledge case:

(
v∑
1

βv +
i−1∑
j=1

β̄v̄j
) +

k(µv − µv−1)

(k − i + 1)f(v)
= ν(v) +

k
∑k

j=i ηj

(k − i + 1)f(v)
, (46)

(

v̄i∑
1

βv +
i∑

j=1

β̄v̄j
) +

k(µv̄i
− µ̄v̄i

)

(k − i)f(v̄i)
= ν(v̄i) +

k
∑k

j=i+1 ηj

(k − i)f(v̄i)
, (47)

(

v̄i−1∑
1

βv +
i∑

j=1

β̄v̄j
) +

kµ̄v̄i

(1− F (v̄i − 1))
= v̄i − kv̄iηi

(1− F (v̄i − 1))
(48)

Subtracting the equation (46) corresponding to v− 1 from the equation cor-

responding to v for v̄i−1 + 2 ≤ v ≤ v̄i − 1, we have:

βv+
k(µv − µv−1)

(k − i + 1)f(v)
− k(µv−1 − µv−2)

(k − i + 1)f(v − 1)
= ν(v)−ν(v−1)+

k
∑k

j=i ηj

k − i + 1
(

1

f(v)
− 1

f(v − 1)
).

(49)

Subtracting the equation (47) corresponding to v̄i from equation (46) corre-

sponding to v̄i + 1, we have:

βv̄i+1+
k(µv̄i+1 − µv̄i

)

(k − i+)f(v̄i + 1)
−k(µv̄i

− µ̄v̄i
)

(k − i)f(v̄i)
= ν(v̄i+1)−ν(v̄i)+

k
∑k

j=i ηj

k − i
(

1

f(v̄i + 1)
− 1

f(v̄i)
).

Similarly, subtracting the equation (48) corresponding to v̄i from (47) corre-

sponding to v̄i we have:

βv̄i
+

k(µv̄i
− µ̄v̄i

)

(k − i)f(v̄i)
− kµ̄v̄i

(1− F (v̄i − 1))
= ν(v̄i)−v̄i+

k
∑k

j=i+1 ηj

(k − i)f(v̄i)
+

kv̄iηi

(1− F (v̄i − 1))
(50)

Finally, subtracting (46) corresponding to v̄i − 1 from (48) corresponding to

v̄i, we have:

β̄v̄i
+

kµ̄v̄i

(1− F (v̄i − 1))
− kµv̄i−2

(k − i)f(v̄i − 1)
= v̄i−ν(v̄i−1)− kv̄iηi

(1− F (v̄i − 1))
− k

∑k
j=i ηj

(k − i + 1)f(v̄i − 1)
(51)
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If the optimal solution a∗ is strictly monotone, the inequalities (38-40) do

not bind. Complementary slackness implies all the µ’s are 0. As in the

common knowledge budget case we set β̄v̄i
= 0 for all i since this will satisfy

complementary slackness. Therefore, from (51), we have that:

ηk =
1

k

(1− F (v̄k − 1))(1− F (v̄k − 2))

v̄kf(v̄k − 1) + (1− F (v̄k − 1))
,

ηi =
1

k

(1− F (v̄i − 1))(1− F (v̄i − 2))

(k − i + 1)v̄if(v̄i − 1) + (1− F (v̄i − 1))
− (1− F (v̄i − 1))

∑k
i+1 ηj

(k − i + 1)v̄if(v̄i − 1) + (1− F (v̄i − 1))

It is easily verified that the η’s as specified are non-negative and therefore

dual feasible. Further, one can show that i ≤ j ⇒ ηi ≥ ηj, in other words, as

one would suspect, smaller budgets have larger shadow prices. Substituting

into (49) we have, ∀v : v̄i−1 < v < v̄i,

βv = ν(v)− ν(v − 1) +
k

∑k
j=i ηj

k − i + 1
(

1

f(v)
− 1

f(v − 1)
).

Note that βv for all v such that v̄i−1 < v < v̄i will be positive if f is decreasing.

Finally, substituting the η’s into (50), we have:

βv̄i
= ν(v̄i)− ν(v̄i − 1) +

k
∑k

i+1 ηj

(k − i)f(v̄i)
− k

∑k
i ηj

(k − i + 1)f(v̄i − 1)
.

Observe that βv̄i
can be negative. The adjusted virtual value of valuation v̄i

is ν(v̄i) +
k

∑k
i+1 ηj

(k−i)f(v̄i)
which may be larger than the adjusted virtual valuation

of ν(v̄i− 1) +
k

∑k
i ηj

(k−i+1)f(v̄i−1)
even if f is decreasing and satisfies the monotone

hazard rate. This is because allocating to valuation v̄i − 1 also ‘relaxes’ the

budget constraint corresponding to bi (in addition to the budget constraints

for larger budgets), which allocating to v̄i does not.

In this instance, therefore, the allocation rule for the revenue maximizing

rule will require ironing. As described in the introduction, for each budget

bi there will be an additional cutoff vi. Types (v, b) where v̄i ≤ v ≤ vi and

b > bi will be pooled with the types (v, bi), v ≥ v̄i (i.e. the types for whom

the budget constraint binds). The allocation rule will be efficient between vi
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and v̄i+1.

Finally, the lowest valuation to be allotted will be v0, which is the lowest

valuation whose adjusted virtual valuation is non-negative. To summarize:

Proposition 4 Suppose f(v) is decreasing in v, and 1−F (v)
f(v)

is increasing

in v. Then, there is an optimal solution a∗(v, b) to (RevOpt) that can be

described as follows: there will exist cutoffs v̄1 ≤ v1 ≤ v̄2 ≤ . . . vk−1 ≤ v̄k and

v0. No valuation less than v0 will be allotted. The allocation rule will satisfy

(35-40). The allocation will be efficient between each vi and v̄i+1. Further,

for all b > bi and v̄i ≤ v ≤ vi, a∗(v, b) = y(v̄i). If the sufficient conditions are

not met, the optimal solution may require additional pooling in the middle.

Proof: As before, our proof proceeds by constructing a dual solution that

complements the primal solution described in the statement of the proposi-

tion. Since a∗(v, b) = 0 for all v < v0, the corresponding Border constraints

must be slack, and therefore βv = 0 for all v < v0. Since x∗(vi + 1) > y∗(v̄i),

µv = 0.

The βv for vi + 2 ≤ v ≤ v̄i+1 − 1 is as specified in (49), with the corre-

sponding µ’s set to 0. By Lemma 2, βv for v̄i ≤ v ≤ vi is 0 since, by the

statement of the proposition, a∗(v, b) = y(v̄i) for all b > bi. The relevant µ’s

can be calculated from the relevant equations.

Instead of computing these µ’s, we can instead suppose that the types

which have been ironed, {(v, bi) for v ≥ v̄i}
⋃ {(v, bj) for j > i, v̄i ≤ v ≤ vi},

all correspond to one ‘artificial’ type, ti. The probability of ti is

π(ti) =
(k − i)

k
(F (vi)− F (v̄i − 1)) +

1

k
(1− F (v̄i − 1)).

Further, its adjusted virtual valuation is:

ν(ti) = v̄i − (k − i)(vi − v̄i + 1)(1− F (vi))

kπ(ti)
+

(vi − v̄i + 1)
∑k

j=i+1 ηj

π(ti)
− v̄iηi

π(ti)

Since the budget constraint for budget bi binds at v̄i, analogous to the proof

31



of Proposition 1, β̄v̄i
is 0, and therefore we can solve for ηi from:

ν(ti)− ν(v̄i − 1)− k
∑k

j=i ηj

(k − i + 1)f(v̄i − 1)
= 0. (52)

Note that the adjusted virtual valuation of v̄i − 1 can be written as:

ν(v̄i − 1) +
k

∑k
j=i+1 ηj

(k − i + 1)f(v̄i − 1)
+

kηi

(k − i + 1)f(v̄i − 1)
.

To see that the ηi that solves (52) is positive, we need to show that:

ν(v̄i − 1) +
k

∑k
j=i+1 ηj

(k − i + 1)f(v̄i − 1)
< v̄i − (k − i)(1− F (vi))

kπ(ti)
+

(vi − v̄i + 1)
∑k

j=i+1 ηj

π(ti)

(53)

=
1

π(ti)

(
v̄i

(1− F (v̄i − 1))

k
+

vi∑
v=v̄i

(
(k − i)f(v)

k
ν(v) +

k∑
j=i+1

λj)
)

However,

ν(v̄i − 1) +
k

∑k
j=i+1 ηj

(k − i + 1)f(v̄i − 1)
< v̄i,

since
∑k

j=i+1 ηj is appropriately small (see Proposition 6). Further,

ν(v̄i − 1) +
k

∑k
j=i+1 ηj

(k − i + 1)f(v̄i − 1)
< ν(v) +

k
∑k

j=i+1 ηj

(k − i)f(v)
,

v̄i ≤ v ≤ vi, follows from the monotone hazard rate and decreasing density

conditions. (53) follows since the right hand side of (53) is a weighted average

of the right hand side of the latter two inequalities.

Further, we have that:

βvi+1 = ν(vi + 1) +
k

∑k
j=i+1 ηj

(k − i)f(vi + 1)
− ν(ti). (54)

To ensure that βvi+1 ≥ 0 it suffices by inequality (52) that cutoffs v̄i and vi
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satisfy:

ν(vi + 1) +
k

∑k
j=i+1 ηj

(k − i)f(vi + 1)
≥ ν(v̄i − 1) +

k
∑k

i ηj

(k − i + 1)f(v̄i − 1)
.

Finally, note that v0 will be the lowest valuation such that ν(v) +
∑k

1 ηj

f(v)
≥ 0;

and

βv0
= ν(v) +

∑k
1 ηj

f(v)
.

The partial solution identified above, with all other dual variables set to

0, is an optimal dual solution. Since βv > 0 for all vi + 1 ≤ v ≤ v̄i+1 − 1,

by complementary slackness, the corresponding Border constraints (9) bind.

This concludes the case where our regularity condition on the distribution of

types (monotone hazard rate, decreasing density) are met. If the monotone

hazard rate or decreasing density assumptions are not satisfied then the dual

solution identified may be infeasible, and therefore additional pooling will be

required due to Lemma 2. ¤

We can also describe the constrained efficient auction for this setting. The

proof is similar, and omitted.

Proposition 5 Suppose f(v) is decreasing in v. Then the solution of

(RevOpt) can be described as follows: there will exist cutoffs v̄1 ≤ v1 ≤
v̄2 ≤ . . . vk−1 ≤ v̄k and v0 = 0. The allocation rule will satisfy (35-40).The

allocation will be efficient between each vi and v̄i+1. Further, for all b > bi

and v̄i ≤ v ≤ vi, a(v, b) = y(v̄i). If the sufficient conditions are not met, the

optimal solution may require additional pooling in the middle.

5 Subsidies

Since budget constrained bidders are unable to effectively compete in the

auction, this will depress auction revenues. To get around this problem, prior

work has examined various kinds of subsidies (lump sum transfer, discounts)

and their effect in a particular auction setting.
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In our setting, there is only one possible (incentive compatible) means

of subsidy- a lump sum transfer from the auctioneer to the agents. This is

because, given an allocation rule, incentive compatibility determines prices

up to a constant:

p(v, b) = va(v, b)−
v−1∑
1

a(v′, b) + c.

Let us consider a subsidy via lump sum payment of some amount ε. This

costs the auctioneer ε per agent. The effect of this subsidy is to relax the

budget constraints by ε. Therefore the gain in revenue is (at most) ε
∑

i ηi.
13

We show below that
∑

i ηi ≤ 1 , and thus ε
∑

i ηi ≤ ε. As a result, if the

auctioneer were running the optimal auction, he should not offer subsidies.

This result remains true even when bidders’ budgets are common knowledge.

Proposition 6 For all i,

k∑
i

ηj ≤ (k − i + 1)

k
(1− F (v̄i − 1)). (55)

Proof: We prove by induction on i. For i = k, we know that

ηk =
1

k

(1− F (v̄k − 1))(1− F (v̄k − 2))

v̄kf(v̄k − 1) + (1− F (v̄k − 1))

=
(1− F (v̄k − 1))

k

(1− F (v̄k − 2))

(v̄k − 1)f(v̄k − 1) + (1− F (v̄k − 2))

≤ (1− F (v̄k − 1))

k
.

For the induction hypothesis, assume that

k∑
i+1

ηj ≤ (k − i)

k
(1− F (v̄i+1 − 1)).

Therefore we are left to show (55).

13Recall that ηi is the shadow price of the budget constraint.
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Recall from the proof of Proposition 4 that at optimality, ηi, the dual

variable corresponding to the budget constraint corresponding to bi, solves

ν(ti)− ν(v̄i − 1)− k
∑k

j=i ηj

(k − i + 1)f(v̄i − 1)
= 0,

where

ν(ti) = v̄i − (vi − v̄i + 1)

π(ti)

(
k − i

k
(1− F (vi))−

k∑
i+1

ηj

)
− v̄i

π(ti)
ηi,

and,

π(ti) =
1

k
(1− F (v̄i − 1)) +

k − 1

k
(F (vi)− F (v̄i − 1)).

By the induction hypothesis,

ν(ti) ≥ v̄i − v̄i

π(ti)
ηi,

and therefore

v̄i − ν(v̄i − 1) ≥ v̄i

π(ti)
ηi +

k
∑k

j=i ηj

(k − i + 1)f(v̄i − 1)

⇒ 1− F (v̄i − 2)

f(v̄i − 1)
≥ v̄i

π(ti)
ηi +

k
∑k

j=i ηj

(k − i + 1)f(v̄i − 1)
.

Rearranging terms, we have

k − i + 1

k

(1− F (v̄i − 2))π(ti) + v̄if(v̄i − 1)
∑k

i+1 ηj

k−i+1
k

v̄if(v̄i − 1) + π(ti)
≥

k∑
i

ηj. (56)

Once again, by the induction hypothesis,

k∑
i+1

ηj ≤ k − i

k
(1− F (vi)) =

k − i + 1

k

(
1− F (v̄i − 1)

)− π(ti). (57)
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Substituting (57) into (56),

k∑
i

ηj ≤
(

k − i + 1

k

)(1− F (v̄i − 2))π(ti) + v̄if(v̄i − 1)

(
k−i+1

k

(
1− F (v̄i − 1)

)− π(ti)

)

k−i+1
k

v̄if(v̄i − 1) + π(ti)

≡ φ(v̄i, π(ti)).

Observation 4 in Appendix B shows that φ(·) is decreasing in its second

argument. Given v̄i, the lowest possible value for π(ti) is 1
k
(1 − F (v̄i − 1)),

at which the left hand side of the bound will be maximized. Therefore,

substituting π(ti) = 1
k
(1− F (v̄i − 1)),

k∑
i

ηj ≤ k − i + 1

k

(1− F (v̄i − 2))(1− F (v̄i − 1)) + (k − i)v̄if(v̄i − 1)(1− F (v̄i − 1))

(k − i + 1)v̄if(v̄i − 1) + (1− F (v̄i − 1))

≤ k − i + 1

k
(1− F (v̄i − 1))

¤

How then does the optimal auction encourage competition? Recall that

for each i, types {(v, bi) for v ≥ v̄i}
⋃ {(v, bj) for j > i, v̄i ≤ v ≤ vi} are

pooled. The pooling serves to allot the good to disadvantaged bidder types

(v, bi), v ≥ v̄i even in profiles where there are bidders with higher valuations

and budgets present. Intuitively, favoring bidders in this way is better than

lump-sum transfers because there are more degrees of freedom: a lump-sum

transfer must be given to a bidder regardless of his type in order to maintain

incentive compatibility.

Further, it should be clear that the revenue achieved by the optimal

auction cannot be matched by a simple auction with subsidies provided via

lump sum transfers and discounts studied in the literature. The optimal

auction can be implemented as an all pay auction with a modified rule to

select the winner. In a standard all pay auction, the highest bidder wins the

good, subject to this bid being larger than the reserve price. Here, there will

be thresholds, i.e. the highest bidder may need to out-bid the next highest

bidder by a margin in order to win the good outright. In the event that she
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does not, the auctioneer selects the winner randomly.
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A Counterexamples

A.1 Laffont and Robert’s Solution

In this section, we examine the classical formulation, with a continuum of

types. We show by counterexample that the Laffont and Robert solution is

not optimal for all distributions that meet the monotone hazard rate condi-

tion.

Suppose that, as in the original Laffont and Robert paper (herein LR), we

have valuations belonging to the continuum, say interval [0, 1]; distributed

with density f(v), F (v) =
∫ v

0
f(v)dv. Their virtual valuation is defined as

ν(v) = v − 1−F (v)
f(v)

.

Further, suppose we have (as per their solution) 2 cutoffs, v1,v2. The

allocation rule does not allot types below v1; and pools all types above v2.

This will make the allocation rule:

a(v) =





1−F N (v2)
N(1−F (v2))

v ≥ v2

FN−1(v) v ∈ [v1, v2]

0 o.w.

(58)

At the optimal solution, the budget constraint must bind for all types v2

and above, 14

v2a(v2)−
∫ v2

v1

a(v)dv = b. (59)

Choose v1 and v2 to solve:

max
v1,v2

a(v2)(1− F (v2))v2 +

∫ v2

v1

ν(v)f(v)a(v)dv

s.t. v2a(v2)−
∫ v2

v1

a(v)dv = b

14If not, the solution of the overall program would be the same as Myerson’s solution
[19].
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The first order conditions for optimality imply

f(v1)ν(v1) +
(1− F (v2))

2

(1− F (v2)) + v2f(v2)
= 0. (60)

Therefore v1 and v2 are the solutions to (60) and the budget equation (59).

Further note that this is the L-R solution. We are now in a position to state

without proof the ‘correct’ version of Laffont-Robert’s theorem.

Theorem 1 Suppose the distribution on types is such that the density is

decreasing. Further, suppose that the monotone hazard rate condition is met.

The allocation described by (58), where v1, v2 jointly satisfy (59) and (60),

and the associated pricing rule

p(v) = v.a(v)−
∫ v

v

a(v)dv,

constitute the expected revenue maximizing mechanism.

A proof of this theorem requires taking the dual of an infinite dimensional

linear program (see for example Anderson and Nash [1]), and defining the

appropriate measure on the dual space. We can now use the intuition gleaned

from Section 3 to identify a flaw in the L-R solution in the event that densities

are not decreasing. Pick a v3 ∈ (v1, v2); and ‘iron’ some small interval of types

[v3, v3 + ε]. The new allotment rule is therefore:

a′(v) =





1−F N (v2)
N(1−F (v2))

v ≥ v2

F N (v3+ε)−F N (v3)
N(F (v3+ε)−F (v3))

v ∈ [v3, v3 + ε]

FN−1(v) v ∈ [v1, v3)
⋃

(v3 + ε, v2]

0 o.w.

(61)

By Lemma 6 (see Appendix A.3), if f(v) is increasing in the interval; then

gε ≡ ε
FN(v3 + ε)− FN(v3)

N(F (v3 + ε)− F (v3))
−

∫ v3+ε

v3

FN−1(v)dv > 0.

Let us assume that f(v) is increasing in the range [0, 1]. As a result, the
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budget constraint is now slack. We can now potentially improve on the

revenue by ‘un-pooling’ v2 to v2 + δ.

First, δ solves the implicit equation:

δ
FN(v2 + ε)− FN(v2)

N(F (v2 + ε)− F (v2))
−

∫ v2+δ

v2

FN−1(v)dv = gε. (62)

The change in revenue from ironing types [v3, v3 + ε] is:

∆(v3, ε) ≡
∫ v3+ε

v3

ν(v)f(v)

[
FN(v3 + ε)− FN(v3)

N(F (v3 + ε)− F (v3))
− FN−1(v)

]
dv.

Similarly, the change in revenue from ‘un-pooling’ [v2, v2 + δ] is:

∆(v2, ε) ≡ −
∫ v2+δ

v2

ν(v)f(v)

[
FN(v2 + δ)− FN(v2)

N(F (v2 + δ)− F (v2))
− FN−1(v)

]
dv.

Therefore the total change in revenue is:

∆ = ∆(v3, ε) + ∆(v2, ε)

Since ν(·) and f(·) are both increasing; ∆(v2, ε) ≥ 0 ≥ ∆(v3, ε). Potentially,

∆ ≥ 0 for some suitable parameter choices. In other words, our perturbation

of the L-R solution can increase expected revenue, therefore the L-R solution

is not optimal. We flesh out a numerical example below.

A.1.1 An Example

There are 2 bidders, i.e. N = 2. Both have valuations in the interval

[0, 1] which are drawn i.i.d. with density f(v) = 2v; F (v) = v2. Both

have a common budget constraint b = 0.5. The ‘virtual value’ of a bidder

of valuation v, ν(v) = 3v2−1
2v

, which is increasing on the interval [0, 1]. If

there was no budget constraint, the optimal auction would be a second price

auction with reserve price v0 = 1√
3
, i.e. ν(v0) = 0.

Recall that the L-R solution would require us to compute v1 and v2 which
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jointly solve (59) and (60). Making appropriate substitutions, v1 and v2 solve:

v2

2
+

v3
2

6
+

v3
1

3
= 0.5

3v2
1 +

(1− v2
2)

2

1 + v2
2

= 1

Solving, we get v1 = 0.5415 and v2 = .7523. Therefore; v1 < v0 < v2. For

the perturbation we outlined above, select v3 = 1√
3
(= v0); and ε = 10−4.

Our functional forms lend themselves to easy analytic calculation. It can be

shown that:

gε =
ε3

6
δ = ε

∆(v3, ε) = −(3v2
3 + 1)ε3

6
− v3ε

4

2
+ ε5

∆(v2, ε) = +
(3v2

2 + 1)ε3

6
+

v2ε
4

2
− ε5

Substituting we see that net change in revenue

∆ ≈ (v2
2 − v2

3)ε
3

2
> 0

where the final inequality follows from the fact that v2 > v3.

A.2 Maskin

Recall that Maskin [18] considered the same environment as Laffont and

Robert, the only difference being he was interested in specifying the con-

strained efficient auction for this setting. Analogous to our analysis for Laf-

font and Robert, we can state the correct version of Maskin’s main theorem:

Theorem 2 Suppose the distribution on types is such that the density is

42



decreasing. The allocation described by (58), where v1 = 0 and v2 satisfies

(59), and the associated pricing rule

p(v) = v.a(v)−
∫ v

v

a(v)dv,

constitute the expected revenue maximizing mechanism.

A.2.1 A Counter-example

There are 2 bidders, i.e. N = 2. Both have valuations in the interval [0, 1]

which are drawn i.i.d. with density f(v) = 2v; F (v) = v2. Both have a

common budget constraint b = 0.5. The Maskin solution would require us

to pick a cutoff v̄ to solve:
v̄

2
+

v̄3

6
= 0.5,

i.e. v̄ = 0.8177. Let us now pick ε ¿ 1, and iron [0, ε]. It can be shown

that the budget constraint for type v̄ is relaxed by ε3

6
. Therefore we can now

have the efficient allocation for types [v̄, v̄ + ε) and still satisfy the budget

constraint. Further, one can show the expected loss of efficiency from ironing

the interval [0, ε] is O(ε5), while the gain in efficiency from unpooling the

types [v̄, v̄ + ε) is roughly 1
3
v2

1ε
3.

A.3 Ironing

Let f(.) be the density function for some distribution on <, and let F (.) be

the associated cumulative distibution function.

Lemma 6 If f(.) is (strictly) increasing on some interval [v1, v2], then for

any N > 1, we have:

(v2 − v1)
FN(v2)− FN(v1)

N(F (v2)− F (v1))
>

∫ v2

v1

FN−1(v)dv
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Proof: Rewriting, we have to show that

∫ v2

v1
f(v)F n−1(v)dv∫ v2

v1
f(v)dv

>

∫ v2

v1
F n−1(v)dv∫ v2

v1
dv

This is true if and only if

∫ v2

v1

dv

∫ v2

v1

f(v)F n−1(v)dv >

∫ v2

v1

F n−1(v)dv

∫ v2

v1

f(v)dv

Note that both sides are equal (to zero) at v2 = v1. Therefore we have the

desired inequality if the derivative w.r.t v2 of the left hand side is greater

than the right hand side. Differentiating both sides w.r.t. v2 and rearranging

we have that this is true if and only if:

FN−1(v2)
[
f(v2)(v2 − v1)−

∫ v2

v1

f(v)dv
]
+

∫ v2

v1

(f(v)− f(v2))F
N−1(v)dv > 0

The inequality now follows by observing that f(v) is increasing in v, therefore

∫ v2

v1

(f(v)− f(v2))F
N−1(v)dv > FN−1(v2)

∫ v2

v1

(f(v)− f(v2))dv

¤

B Miscellaneous Proofs

B.1 Border Inequalities

The proofs of Lemmas 1 and 2 follow (almost trivially) from Proposition 3.2

of Border [5]. We reproduce it here (adapted to our notation):

Proposition 7 (Border) Let a : T → [0, 1] be the interim probability of

allocation for a type space T . For each α ∈ [0, 1], set

Eα = {t : a(t) ≥ α}.
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Then a is feasible if and only if:

∑
Eα

a(t)f(t) ≤ 1− ( ∑
T−Eα

f(t)
)N

N
.

Lemma 1 follows since if a is monotonic, then the sets Eα must be sets

of the form {v, v + 1, . . . ,m}.
Lemma 2 follows from Lemma 1; and the fact that if for some v, a(v) =

a(v−1) = α′; then Eα′ = {v−1, v, . . . , m}. Further Eα ⊆ {v+1, v+2, . . . , m}
if α > α′ while Eα ⊇ {v − 2, v − 1, . . . m} if α < α′. Thus the inequality

corresponding to the set of types {v, v + 1, . . . , m} can also be dropped by

Proposition 7. Equation (20) follows.

B.2 Cutoffs

This section provides a proof of Lemma 5. The Lemma states that in any

solution to (REVOPT), the cutoffs as defined in Definition 1 are such that

vi ≥ v̄i − 1 ∀i ≤ k − 1. (63)

As the intuition outlined in the main body points out, this result is not

surprising- if this condition is violated for some i, roughly speaking, decrease

the allocation of types (vi + 1, bi+1) (and types pooled with it); and increase

the allocation of types {(v̄i, bi), . . . , (m, bi)}. This will clearly increase revenue

since the virtual valuation of the latter is v̄i > ν(v̄i) ≥ ν(vi) which is the

virtual valuation of the former. The trouble is that this simple change can

violate the budget constraints.

Below we show how to perturb allocation rules not satisfying (63). The

construction relies critically on the assumption that the distribution over

types is such that valuation and budget are independent- the assumption

that all budgets are equally likely is however only for notational convenience.

Proof: Suppose not, i.e. suppose that allocation rule a solves (REVOPT),

with cutoffs V̄ and V such that vi < v̄i − 1 for some i.

To this end, let j ≡ max{i : vi < v̄i−1}. Therefore vi ≥ v̄i−1 for all i > j.

We show how to construct an allocation rule a′ is feasible in (REVOPT) that
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achieves weakly more revenue, such that v′i ≥ v̄′i − 1 for all i > j − 1.

For ease of notation assume that vj−1 ≤ vi and define v̂ ≡ vj+1. Consider

the following perturbation of a∗:

1. Reduce the allocation of all types (v̂, bj+1), . . . , (v̂, bk) by ε each.

2. Reduce the allocation of all types in {(v, b) : v > v̂ , b ≥ bj+1} by

ε/(v̂ + 1) each.

3. Increase the allocation of type (v̂, bj) by (k − j)ε.

4. Increase the allocation of types in {(v, bj) : v > v̂} by (k − j)ε/(v̂ + 1).

Firstly note that this perturbation is revenue neutral. Next we show that

the resulting allocation is feasible in the optimization program. Feasibility

with respect to the Border constraints is clear by construction. Next note

that the payment of type (v, b), v > v̂, b > bj+1 changes by

−v
ε

v̂ + 1
+

v−1∑

v̂+1

ε

v̂ + 1
+ ε = 0.

Similarly the payment of type (v, bj), v > v̂ changes by

v
(k − j)ε

v̂ + 1
−

v−1∑

v̂+1

(k − j)ε

v̂ + 1
+ (k − j)ε = 0.

Therefore the budget constraints for all types are still satisfied. Further, the

payment of type (v̂ + 1, bj+1),

p′(v̂ + 1, bj+1) = p(v̂ + 1, bj+1) (By Construction)

> bj (By definition of v̂)

≥ p′(m, bj) (By budget constraint)

Finally, set ε such that

a(v̂, bj+1)− ε = a(v̂, bj) + (k − j)ε,

.
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Let us assume that a′(v̂, bj) ≤ a′(v̂ + 1, bj). We show that a′ is incentive

compatible and individually rational. By Observation 2 it is enough to show

that a′ satisfies (26- 31) (with v′i = vi + 1).

Recall that a would have satisfied (26- 31). Verifying that (27- 31) are

satisfied with the new cutoff is straightforward. Inequality (26), i.e. that

a′(v, b) ≥ a′(v−1, b) for all v, b, for b < bj follows from the fact that a(v, b) ≥
a(v − 1, b). For b = bj, it follows from our assumption that a′(v̂, bj) ≤
a′(v̂, bj). For b > bj we are done if a′(v̂, b) ≥ a′(v̂ − 1, b). But note that

a′(v̂, b) = a′(v̂, bj) ≥ a′(v̂ − 1, bj) = a′(v̂ − 1, b) ( here the first equality

follows from our choice of ε, the second by construction, and the third since

a(v̂ − 1, b) = a′(v̂ − 1, b) for any b).

Now suppose instead that a′(v̂, bj) > a′(v̂ +1, bj). In this case our pertur-

bation of a proceeds in two steps: the first step is the same as before with ε

such that

a(v̂, bj) + (k − j)ε = a(v̂ + 1, bj) + (k − j)
ε

v̂ + 1
.

Call the resulting allocation rule a′′. Clearly, this perturbation will be rev-

enue neutral; and will satisfy (27- 30) with the same cutoffs as a. Further

a′′(v̂, bj+1) > a′′(v̂, bj) = a′′(v̂ + 1, bj). Next consider the following perturba-

tion of a′′ :

1. Reduce the allocation of all types (v̂, bj+1), . . . , (v̂, bk) by ε each.

2. Reduce the allocation of all types in {(v, b) : v > v̂ , b ≥ bj+1} by

ε/(v̂ + 1) each.

3. Increase the allocation of type (v̂, bj) and (v̂ + 1, bj) by (k − j)ε′.

4. Increase the allocation of types in {(v, bj) : v > v̂} by (k − j)ε/(v̂ + 1).

Pick ε, ε′ to jointly solve:

ε′(f(v̂) + f(v̂)) = (k − j)εf(v̂)

a′′(v̂, bj+1)− ε = a′′(v̂, bj) + (k − j)ε′

Denote the resulting allocation rule a′. By construction, a′ feasible with

respect to the Border conditions and (weakly) revenue increasing. Further,

given the decreasing density assumption; as long as a′(v̂+1, bj) ≤ a′(v̂+2, bj),
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a′ will satisfy (26- 31) with cutoff v′j = vj + 1. If a′(v̂ + 1, bj) > a′(v̂ + 2, bj),

this second perturbation will have to be analogously modified- it should be

clear how this can be done.

Note that this construction will increase vj, and (weakly) decrease v̄j.

Therefore it can be continued until vj ≥ v̄j − 1, and therefore vi ≥ v̄i − 1 for

all i > j − 1. ¤

B.3 Subsidies

This section proves a technical result needed in the proof of Proposition 6

Observation 4 The function

φ(π) =
(1− F (v − 2))π + vf(v − 1)(k−i+1

k
(1− F (v − 1))− π)

k−i+1
k

vf(v − 1) + π

is decreasing in π.

Proof: We are done if we can show that φ′(π) ≤ 0. Writing φ(π) = N(π)
D(π)

with N(·), D(·) appropriately defined,

φ′(π) =
N ′(π)D(π)−D′(π)N(π)

D2(π)
.

Therefore we are done if we can show that N ′(π)D(π) − D′(π)N(π) < 0.

Note that

D′(π) = 1,

N ′(π) = (1− F (v − 2))− vf(v − 1).
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Therefore

N ′(π)D(π)−D′(π)N(π)

=((1− F (v − 2))− vf(v − 1))

(
k − i + 1

k
vf(v − 1) + π

)

−
(

(1− F (v − 2))π + vf(v − 1)

(
k − i + 1

k
(1− F (v − 1))− π

))

=((1− F (v − 2))− vf(v − 1))

(
k − i + 1

k
vf(v − 1)

)
− k − i + 1

k
vf(v − 1)(1− F (v − 1))

=(−(v − 1)f(v − 1))
(k − i + 1

k
vf(v − 1)

)

≤0.

¤
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