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Abstract

A central question in game theory and artificial intelligence is how a rational agent
should behave in a complex environment, given that it cannot perform unbounded
computations. We study strategic aspects of this question by formulating a sim-
ple model of a game with additional costs (computational or otherwise) for each
strategy. First we connect this to zero-sum games, proving a counter-intuitive gen-
eralization of the classic min-max theorem to zero-sum games with the addition
of strategy costs. We then show that potential games with strategy costs remain
potential games. Both zero-sum and potential games with strategy costs maintain
a very appealing property: simple learning dynamics converge to equilibrium.

1 The Approach and Basic Model

How should an intelligent agent play a complicated game like chess, given that it does not have
unlimited time to think? This question reflects one fundamental aspect of “bounded rationality,” a
term coined by Herbert Simon [1]. However, bounded rationality has proven to be a slippery concept
to formalize (prior work has focused largely on finite automata playing simple repeated games such
as prisoner’s dilemma, e.g. [2, 3, 4, 5]). This paper focuses on thestrategicaspects of decision-
making in complex multi-agent environments, i.e., on how a player should choose among strategies
of varying complexity, given that its opponents are making similar decisions. Our model applies to
general strategic games and allows for a variety of complexities that arise in real-world applications.
For this reason, it is applicable to one-shot games, to extensive games, and to repeated games, and
it generalizes existing models such as repeated games played by finite automata.

To easily see that bounded rationality can drastically affect the outcome of a game, consider the
following factoring game. Player 1 chooses ann-bit number and sends it to Player 2, who attempts
to find its prime factorization. If Player 2 is correct, he is paid 1 by Player 1, otherwise he pays 1
to Player 1. Ignoring complexity costs, the game is a trivial win for Player 2. However, for largen,
the game should is essentially a win for Player 1, who can easily output a large random number that
Player 2 cannot factor (under appropriate complexity assumptions).

In general, the outcome of a game (even a zero-sum game like chess) with bounded rationality is
not so clear. To concretely model such games, we consider a set ofavailablestrategies along with
strategy costs. Consider an example of two players preparing to play a computerized chess game
for $100K prize. Suppose the players simultaneously choose among two available options: to use
a $10K program A or an advanced program B, which costs $50K. We refer to the row chooser as
white and to the column chooser as black, with the corresponding advantages reflected by the win



probabilities of white described in Table 1a. For example, when both players use program A, white
wins 55% of the time and black wins 45% of the time (we ignore draws). The players naturally want
to choose strategies to maximize theirexpected netpayoffs, i.e., their expected payoff minus their
cost. Each cell in Table 1b contains a pair of payoffs in units of thousands of dollars; the first is
white’s net expected payoff and the second is black’s.

a) A B
A 55% 13%
B 93% 51%

b) A (-10) B (-50)
A (-10) 45, 35 3, 37
B (-50) 43,-3 1,-1

Figure 1: a) Table of first-player winning probabilities based on program choices. b) Table of
expected net earnings in thousands of dollars. The unique equilibrium is (A,B) which strongly
favors the second player.

A surprising property is evident in the above game. Everything about the game seems to favor white.
Yet due to the (symmetric) costs, at the unique Nash equilibrium (A,B) of Table 1b, black wins 87%
of the time and nets $34K more than white. In fact, it is a dominant strategy for white to play A and
for black to play B. To see this, note that playing B increases white’s probability of winning by 38%,
independent of what black chooses. Since the pot is $100K, this is worth $38K in expectation, but B
costs $40K more than A. On the other hand, black enjoys a 42% increase in probability of winning
due to B, independent of what white does, and hence is willing to pay the extra $40K.

Before formulating the general model, we comment on some important aspects of the chess example.
First, traditional game theory states that chess can be solved in “only” two rounds of elimination of
dominated strategies [10], and the outcome with optimal play should always be the same: either a
win for white or a win for black. This theoretical prediction fails in practice: in top play, the outcome
is very nondeterministic with white winning roughly twice as often as black. The game is too large
and complex to be solved by brute force.

Second, we have been able to analyze the above chess program selection example exactly because we
formulated as a game with a small number of available strategies per player. Another formulation
that would fit into our model would be to includeall strategies of chess, with some reasonable
computational costs. However, it is beyond our means to analyze such a large game.

Third, in the example above we used monetary software cost to illustrate a type of strategy cost. But
the same analysis could accommodate many other types of costs that can be measured numerically
and subtracted from the payoffs, such as time or effort involved in the development or execution of a
strategy, and other resource costs. Additional examples in this paper include the number of states in
a finite automaton, the number of gates in a circuit, and the number of turns on a commuter’s route.
Our analysis is limited, however, to cost functions that depend only on the strategy of the player and
not the strategy chosen by its opponent. For example, if our players above were renting computers
A or B and paying for the time of actual usage, then the cost of using A would depend on the choice
of computer made by the opponent.

Generalizing the example above, we consider a normal form game with the addition of strategy
costs, a player-dependent cost for playing each available strategy. Our main results regard two
important classes of games: constant-sum and potential games. Potential games with strategy costs
remain potential games. While two-person constant-sum games are no longer constant, we give a
basic structural description of optimal play in these games. Lastly, we show that known learning
dynamics converge in both classes of games.

2 Definition of strategy costs

We first define anN -person normal-form gameG = (N, S, p) consisting of finite sets of (available)
pure strategiesS = (S1, . . . , SN ) for theN players, and a payoff functionp : S1 × . . . × SN →
RN . Players simultaneously choose strategiessi ∈ Si after which playeri is rewarded with
pi(s1, . . . , sN ). A randomized ormixed strategyσi for player i is a probability distribution over
its pure strategiesSi,

σi ∈ ∆i =
{

x ∈ R|Si| :
∑

xj = 1, xj ≥ 0
}

.



We extendp to ∆1 × . . . × ∆N in the natural way, i.e.,pi(σ1, . . . , σN ) = E[pi(s1, . . . , sN )]
where eachsi is drawn fromσi, independently. Denote bys−i = (s1, s2, . . . , si−1, si+1, . . . , sN )
and similarly forσ−i. A best responseby playeri to σ−i is σi ∈ ∆i such thatpi(σi, σ−i) =
maxσ′i∈∆i

pi(σ′i, σ−i). A (mixed strategy)Nash equilibriumof G is a vector of strategies
(σ1, . . . , σN ) ∈ ∆1 × . . .×∆N such that eachσi is a best response toσ−i.

We now defineG−c, the gameG with strategy costsc = (c1, . . . , cN ), whereci : Si → R. It is
simply anN -person normal-form gameG−c = (N, S, p−c) with the same sets of pure strategies as
G, but with a new payoff functionp−c : S1 × . . .× SN → RN where,

p−c
i (s1, . . . , sN ) = pi(s1, . . . , sN )− ci(si), for i = 1, . . . , N.

We similarly extendci to ∆i in the natural way.

3 Two-person constant-sum games with strategy costs

Recall that a game is constant-sum (k-sum for short) if at every combination of individual strate-
gies, the players’ payoffs sum to some constant k. Two-personk-sum games have some important
properties, not shared by general sum games, which result in more effective game-theoretic analysis.

In particular, everyk-sum game has a uniquevaluev ∈ R. A mixed strategy for player 1 is called
optimal if it guarantees payoff≥ v against any strategy of player 2. A mixed strategy for player 2 is
optimal if it guarantees≥ k − v against any strategy of player 1. The termoptimal is used because
optimal strategies guarantee as much as possible (v + k − v = k) and playing anything that is not
optimal can result in a lesser payoff, if the opponent responds appropriately. (This fact is easily il-
lustrated in the game rock-paper-scissors – randomizing uniformly among the strategies guarantees
each player 50% of the pot, while playing anything other than uniformly random enables the oppo-
nent to win strictly more often.) The existence of optimal strategies for both players follows from the
min-max theorem. An easy corollary is that the Nash equilibria of ak-sum game areexchangeable:
they are simply the cross-product of the sets of optimal mixed strategies for both players. Lastly, it
is well-known that equilibria in two-personk-sum games can belearnedin repeated play by simple
dynamics that are guaranteed to converge [17].

With the addition of strategy costs, ak-sum game is no longerk-sum and hence it is not clear, at first,
what optimal strategies there are, if any. (Many examples of general-sum games do not have optimal
strategies.) We show the following generalization of the above properties for zero-sum games with
strategies costs.

Theorem 1. Let G be a finite two-personk-sum game andG−c be the game with strategy costs
c = (c1, c2).

1. There is a valuev ∈ R for G−c and nonempty sets OPT1 and OPT2 of optimal mixed
strategies for the two players. OPT1 is the set of strategies that guarantee player 1 payoff
≥ v − c2(σ2), against any strategyσ2 is chosen by player 2. Similarly, OPT2 is the set of
strategies that guarantee player 2 payoff≥ k − v − c1(σ1) against anyσ1.

2. The Nash equilibria ofG−c are exchangeable: the set of Nash equilibria is OPT1×OPT2.

3. The set of net payoffs possible at equilibrium is an axis-parallel rectangle inR2.

For zero-sum games, the term optimal strategy was natural: the players could guaranteev andk−v,
respectively, and this is all that there was to share. Moreover, it is easy to see that only pairs of
optimal strategies can have the Nash equilibria property, being best responses to each other.

In the case of zero-sum games with strategy costs, the optimal structure is somewhat counter-
intuitive. First, it is strange that the amount guaranteed by either player depends on the cost of
the other player’s action, when in reality each player pays the cost of its own action. Second, it is
not even clear why we call these optimal strategies. To get a feel for this latter issue, notice that
the sum of the net payoffs to the two players is alwaysk − c1(σ1) − c2(σ2), which is exactly the
total of what optimal strategies guarantee,v− c2(σ2) + k− v− c1(σ1). Hence, if both players play
what we call optimal strategies, then neither player can improve and they are at Nash equilibrium.
On the other hand, suppose player 1 selects a strategyσ1 that does not guarantee him payoff at least



v − c2(σ2). This means that there is some responseσ2 by player 2 for which player 1’s payoff is
< v − c2(σ2) and hence player 2’s payoff is> k − v − c1(σ1). Thus player 2’s best response toσ1

must give player 2 payoff> k − v − c1(σ1) and leave player 1 with< v − c2(σ2).

The proof of the theorem (though the above is an argument for why part 2 follows from part 1)
is based on the following simple observation. Consider thek-sum gameH = (N,S, q) with the
following payoffs:

q1(s1, s2) = p1(s1, s2)− c1(s1) + c2(s2) = p−c
1 (s1, s2) + c2(s2)

q2(s1, s2) = p2(s1, s2)− c2(s1) + c1(s1) = p−c
2 (s1, s2) + c1(s1)

That is to say, Player 1 pays its strategy cost to Player 2 and vice versa. It is easy to verify that,

∀σ1, σ
′
1 ∈ ∆1, σ2 ∈ ∆2 q1(σ1, σ2)− q1(σ′1, σ2) = p−c

1 (σ1, σ2)− p−c
1 (σ′1, σ2) (1)

This means that the relative advantage in switching strategies in gamesG−c andH are the same.
In particular,σ1 is a best response toσ2 in G−c if and only if it is in H. A similar equality holds
for player 2’s payoffs. Note that these conditions imply that the gamesG−c andH arestrategically
equivalentin the sense defined by Moulin and Vial [16].

Proof of Theorem 1.Let v be the value of the gameH. For any strategyσ1 that guarantees player
1 payoff≥ v in H, σ1 guarantees player 1≥ v − c2(σ2) in G−c. This follows from the definition
of H. Similarly, any strategyσ2 that guarantees player 2 payoff≥ k − v in H will guarantee
≥ k−v− c1(σ1) in G−c. Thus the sets OPT1 and OPT2 are non-empty. Sincev− c2(σ2)+k−v−
c1(σ1) = k − c1(σ1)− c2(σ2) is the sum of the payoffs inG−c, nothing greater can be guaranteed
by either player.

Since the best responses ofG−c andH are the same, the Nash equilibria of the two games are the
same. Since H is ak-sum game, its Nash equilibria are exchangeable, and thus we have part 2. (This
holds for any game that is strategically equivalent tok-sum.)

Finally, the optimal mixed strategies OPT1, OPT2 of anyk-sum game are convex sets. If we look at
the achievable costs of the mixed strategies in OPTi, by the definition of the cost of a mixed strategy,
this will be a convex subset ofR, i.e., an interval. By parts 1 and 2, the set of achievable net payoffs
at equilibria ofG−c are therefore the cross-product of intervals.

To illustrate Theorem 1 graphically, Figure 2 gives a4 × 4 example with costs of 1, 2, 3, and
4, respectively. It illustrates a situation with multiple optimal strategies. Notice that player 1 is
completely indifferent between its optimal choices A and B, and player 2 is completely indifferent
between C and D. Thus the only question is how kind they would like to be to their opponent. The
(A,C) equilibrium is perhaps most natural as it is yields the highest payoffs for both parties.

Note that the proof of the above theorem actually shows that zero-sum games with costs share
additional appealing properties of zero-sum games. For example, computing optimal strategies is
a polynomial time-computation in ann × n game, as it amounts to computing the equilibria ofH.
We next show that they also have appealing learning properties. (They do not share all properties of
zero-sum games.1)

3.1 Learning in repeated two-personk-sum games with strategy costs

Another desirable property ofk-sum games is that, in repeated play, natural learning dynamics
converge to the set of Nash equilibria. Before we state the analogous conditions fork-sum games
with costs, we briefly give a few definitions. Arepeated gameis one in which players chooses a
sequence of strategies vectorss1, s2, . . ., where eachst = (st

1, . . . , s
t
N ) is a strategy vector of some

fixed stage gameG = (N,S, p). Under perfect monitoring, when selecting an action in any period

1One property that is violated by the chess example is the “advantage of an advantage” property. Say Player
1 has the advantageover Player 2 in a square game ifp1(s1, s2) ≥ p2(s2, s1) for all strategiess1, s2. At
equilibrium of ak-sum game, a player with the advantage must have a payoff at least as large as its opponent.
This is no longer the case after incorporating strategy costs, as seen in the chess example, where Player 1 has
the advantage (even including strategy costs), yet his equilibrium payoff is smaller than 2’s.



a) A B C D
A 6, 4 5, 5 3, 7 2, 8
B 7, 3 6, 4 4, 6 3, 7
C 7.5, 2.5 6.5, 3.5 4.5, 5.5 3.5, 6.5
D 8.5, 1.5 7, 3 5.5, 4.5 4.5, 5.5

b) A (-1) B (-2) C (-3) D (-4)
A (-1) 5, 3 4, 3 2, 4 1, 4
B (-2) 5, 2 4, 2 2, 3 1, 3
C (-3) 4.5, 1.5 3.5, 1.5 1.5, 2.5 0.5, 2.5
D (-4) 4.5, 0.5 3, 1 1.5, 1.5 0.5, 1.5
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Figure 2: a) Payoffs in 10-sum gameG. b) Expected net earnings inG−c. OPT1 is any mixture of
A and B, and OPT2 is any mixture of C and D. Each player’s choice of equilibrium strategy affects
only the opponent’s net payoff. c) A graphical display of the payoff pairs. The shaded region shows
the rectangular set of payoffs achievable at mixed strategy Nash equilibria.

the players know all the previous selected actions.As we shall discuss, it is possible to learn to play
without perfect monitoring as well.

Perhaps the most intuitive dynamics are best-response: at each stage, each player selects a best
response to the opponent’s previous stage play. Unfortunately, these naive dynamics fails to converge
to equilibrium in very simple examples. Thefictitious playdynamics prescribe, at staget, selecting
any strategy that is a best response to the empirical distribution of opponent’s play during the first
t − 1 stages. It has been shown that fictitious play converges to equilibrium (of the stage gameG)
in k-sum games [17].

However, fictitious play requires perfect monitoring. One can learn to play a two-personk-sum
game with no knowledge of the payoff table or anything about the other players actions. Using
experimentation, the only observations required by each player are its own payoffs in each period
(in addition to the number of available actions). So-calledbandit algorithms[7] must manage the
exploration-exploitation tradeoff. The proof of their convergence follows from the fact that they are
no-regretalgorithms. (No-regret algorithms date back to Hannan in the 1950’s [12], but his required
perfect monitoring). Theregretof a playeri at stageT is defined to be,

regret ofi atT =
1
T

max
si∈Si

T∑
t=1

(
pi(si, s

t
−i)− pi(st

i, s
t
−i)

)
,

that is, how much better in hindsight playeri could have done on the firstT stages had it used
one fixed strategy the whole time (and had the opponents not changed their strategies). Note that
regret can be positive or negative. A no-regret algorithm is one in which each player’s asymptotic
regret converges to(−∞, 0], i.e., is guaranteed to approach 0 or less. It is well-known that no-
regret condition in two-personk-sum games implies convergence to equilibrium (see, e.g., [13]).



In particular, the pair of mixed strategies which are the empirical distributions of play over time
approaches the set of Nash equilibrium of the stage game.

Inverse-polynomial rates of convergence (that are polynomial also in the size of the game) can be
given for such algorithms. Hence no-regret algorithms provide arguably reasonable ways to play
a k-sum game of moderate size. Note that in general-sum games, no such dynamics are known.
Fortunately, the same algorithm that works for learning ink-sum games seem to work for learning
in such games with strategy costs.
Theorem 2. Fictitious play converges to the set of Nash equilibria of the stage game in a two-person
k-sum game with strategy costs, as do no-regret learning dynamics.

Proof. The proof again follows from equation (1) regarding the gameH. Fictitious play dynamics
are defined only in terms of best response play. SinceG−c andH share the same best responses,
fictitious play dynamics are identical for the two games. Since they share the same equilibria and
fictitious play converges to equilibria inH, it must converge inG−c as well.

For no-regret algorithms, equation (1) again implies that for any play sequence, the regret of each
playeri with respect to gameG−c is the same as its regret with respect to the gameH. Hence, no
regret inG−c implies no regret inH. Since no-regret algorithms converge to the set of equilibria in
k-sum games, they converge to the set of equilibria inH and therefore inG−c as well.

4 Potential games with strategic costs

Let us begin with an example of apotential game, called arouting game[18]. There is a fixed
directed graph withn nodes andm edges. Commutersi = 1, 2, . . . , N each decide on a routeπi, to
take from their homesi to their workti, wheresi andti are nodes in the graph. For each edge,uv,
let nuv be the number of commuters whose pathπi contains edgeuv. Let fuv : Z → R be a non-
negative monotonically increasing congestion function. Playeri’s payoff is−∑

uv∈πi
fuv(nuv),

i.e., the negative sum of the congestions on the edges in its path.

An N -person normal form gameG is said to be a potential game [15] if there is some potential
functionΦ : S1 × . . . SN → R such that changing a single player’s action changes its payoff by the
change in the potential function. That is, there exists a single functionΦ, such that for all playersi
and all pure strategy vectorss, s′ ∈ S1 × . . .× SN that differ only in theith coordinate,

pi(s)− pi(s′) = Φ(s)− Φ(s′). (2)

Potential games have appealing learning properties: simple better-reply dynamics converge to pure-
strategy Nash equilibria, as do the more sophisticated fictitious-play dynamics described earlier
[15]. In our example, this means that if players change their individual paths so as to selfishly
reduce the sum of congestions on their path, this will eventually lead to an equilibrium where no
one can improve. (This is easy to see becauseΦ keeps increasing.) The absence of similar learning
properties for general games presents a frustrating hole in learning and game theory.

It is clear that the theoretically clean commuting example above misses some realistic considera-
tions. One issue regarding complexity is that most commuters would not be willing to take a very
complicated route just to save a short amount of time. To model this, we consider potential games
with strategy costs. In our example, this would be a cost associated with every path. For example,
suppose the graph represented streets in a given city. We consider a natural strategy complexity cost
associated with a routeπ, sayλ(#turns(π))2, where there is a parameterλ ∈ R and#turns(π) is
defined as the number of times that a commuter has to turn on a route. (To be more precise, say each
edge in the graph is annotated with a street name, and a turn is defined to be a pair of consecutive
edges in the graph with different street names.) Hence, a best response for playeri would minimize:

min
π from si to ti

(total congestion ofπ) + λ(#turns(π))2.

While adding strategy costs to potential games allows for much more flexibility in model design, one
might worry that appealing properties of potential games, such as having pure strategy equilibria and
easy learning dynamics, no longer hold. This is not the case. We show that strategic costs fit easily
into the potential game framework:



Theorem 3. For any potential gameG and any cost functionsc, G−c is also a potential game.

Proof. Let Φ be a potential function forG. It is straightforward to verify that theG−c admits the
following potential functionΦ′:

Φ′(s1, . . . , sN ) = Φ(s1, . . . , sN )− c1(s1)− . . .− cN (sN ).

5 Additional remarks

Part of the reason that the notion of bounded rationality is so difficult to formalize is that understand-
ing enormous games like chess is a daunting proposition. That is why we have narrowed it down to
choosing among a small number of available programs.

A game theorist might begin by examining thecompletepayoff table of Figure 1a, which is pro-
hibitively large. Instead of considering only the choices of programs A and B, each player considers
all possible chess strategies. In that sense, our payoff table in 1a would be viewed as a reduction of
the “real” normal form game. A computer scientist, on the other hand, may consider it reasonable
to begin with the existing strategies that one has access to. Regardless of how you view the process,
it is clear that for practical purposes players in real life do simplify and analyze “smaller” sets of
strategies. Even if the players consider the option of engineering new chess-playing software, this
can be viewed as a third strategy in the game, with its own cost and expected payoffs.

Again, when considering small number of available strategies, like the two programs above, it may
still be difficult to assess the expected payoffs that result when (possibly randomized) strategies play
against each other. An additional assumption made throughout the paper is that the players share the
same assessments about these expected payoffs. Like other common-knowledge assumptions made
in game theory, it would be desirable to weaken this assumption. In the special families of games
studied in this paper, and perhaps in additional cases, learning algorithms may be employed to reach
equilibrium without knowledge of payoffs.

5.1 Finite automata playing repeated games

There has been a large body of interesting work on repeated games played by finite automata (see
[14] for a survey). Much of this work is on achieving cooperation in the classic prisoner’s dilemma
game (e.g., [2, 3, 4, 5]). Many of these models can be incorporated into the general model outlined
in this paper.

For example, to view the Abreu and Rubinstein model [6] as such, consider the normal form of an
infinitely repeated game with discounting, but restricted to strategies that can be described by finite
automata (the payoffs in every cell of the payoff table are the discounted sums of the infinite streams
of payoffs obtained in the repeated game). Let the cost of a strategy be an increasing function of the
number of states it employs.

For Neyman’s model [3], consider the normal form of a finitely repeated game with a known number
of repetitions. You may consider strategies in this normal form to be only ones with a bounded
number of states, as required by Neyman, and assign zero cost to all strategies. Alternatively, you
may allow all strategies but assign zero cost to ones that employ number of states below Neyman’s
bounds, and an infinite cost to strategies that employ a number of states that exceeds Neyman’s
bounds.

The structure of equilibria proven in Theorem 1 applies to all the above models when dealing with
repeatedk-sum games, as in [2].

6 Future work

There are very interesting questions to answer about bounded rationality in truly large games that
we did not touch upon. For example, consider the factoring game from the introduction. A pure
strategy for Player 1 would be outputting a singlen-bit number. A pure strategy for Player 2 would
be any factoring program, described by a circuit that takes as input ann-bit number and attempts
to output a representation of its prime factorization. The complexity of such a strategy would be an



increasing function of the number of gates in the circuit. It would be interesting to make connections
between asymptotic algorithm complexity and games.

Another direction regards an elegant line of work on learning to play correlated equilibria by re-
peated play [11]. It would be natural to consider how strategy costs affect correlated equilibria.
Finally, it would also be interesting to see how strategy costs affect the so-called “price of anarchy”
[19] in congestion games.
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