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Strategic Manipulation of Empirical Tests∗

Wojciech Olszewski† and Alvaro Sandroni‡

May 10, 2006

Abstract

Theories can be produced by individuals seeking a good reputation of knowl-

edge. Hence, a significant question is how to test theories anticipating that they

might have been produced by (potentially uninformed) experts who prefer their

theories not to be rejected.

If a theory that predicts exactly like the data generating process is not

rejected with high probability then the test is said to not reject the truth. On

the other hand, if a false expert, with no knowledge over the data generating

process, can strategically select theories that will not be rejected then the test

can be ignorantly passed. These tests have limited use because they cannot

feasibly dismiss completely uninformed experts.

Many tests proposed in the literature (e.g., calibration tests) can be ig-

norantly passed. Dekel and Feinberg (2006) introduced a class of tests that

seemingly have some power of dismissing uninformed experts. We show that

some tests from their class can also be ignorantly passed. One of those tests,

however, does not reject the truth and cannot be ignorantly passed. Thus, this

empirical test can dismiss false experts.
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19104 and Department of Managerial Economics and Decision Sciences, Kellogg School of Manage-
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We also show that a false reputation of knowledge can be strategically sus-

tained for an arbitrary, but given, number of periods, no matted which test is

used (provided that it does not reject the truth). However, false experts can be

discredited, even with bounded data sets, if the domain of permissible theories

is mildly restricted.

1. Introduction

Economists have long realized that the production and the transmission of knowledge

play a central role in economic activity (see Hayek (1945)). Knowledge, however, is

often structured as a theory which must be tested. A theory can be rejected if it makes

a deterministic prediction that is not observed in the data. Still, in economics and

several other disciplines, theories regularly make probabilistic forecasts that attach

strictly positive probability to all outcomes. This leads to the basic question of how

to test probabilistic theories. If a blunt contradiction between the theory and the

data is impossible then the standard procedure is to employ large data sets so that

any theory must attribute small probability to some events which, if observed, induce

a rejection of the theory. A matter of interest is precisely which low probability

events should be regarded as sufficiently incompatible with the theory to validate its

rejection.

Assume that the problem at hand requires an understanding of a stochastic process

which generates an outcome that can either be 0 or 1. Before any data is observed,

a potential expert named Bob delivers a theory, defined as a mapping that takes

as an input any finite string of outcomes and returns as an output a probability of

1. There is a well-known correspondence between theories and probability measures

P over the space of infinite sequences of outcomes. So, henceforth, a theory is a

probability measure P . Bob may be an informed expert who truthfully reveals the

data generating process. However, Bob may also be a false expert who knows nothing

about the data generating process.

A tester named Alice tests Bob’s theory P by selecting an event AP (i.e., a set of

outcome sequences). Alice regards the event AP as consistent with the theory P and
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its complement Ac
P as inconsistent with it. Assume that the acceptance set AP has

high probability according to P , i.e.,

P (AP ) ≥ 1− ε. (1.1)

Then, if Bob’s theory coincides with the data generating process, it will not be rejected

with probability 1− ε. When equation (1.1) is satisfied we say that Alice’s test does

not reject the truth with probability 1− ε.

A vast effort has been dedicated to supply results that take the form of equation

(1.1). The significance of these results (such as the law of large numbers, the law of

iterated logarithmic, the central limit theorem) is that they relate the unobservable

concept of a theory P with a potentially observable event AP . So, each of these

findings can be used to define an empirical test that does not reject the truth.

An essential feature of a test is the possibility of theory rejection. If it is certain

that a theory will not be rejected then the purpose of the test is far from clear. As

long as Ac
P is a non-empty set, theory rejection is (seemingly) viable because outcome

sequences in Ac
P may be realized. However, even if the rejection set A

c
P is non-empty

Bob might still be able to strategically produce theories in a way that essentially

removes the possibility of rejection.

This might be accomplished without any knowledge of the data generating process.

Assume that Bob, before any data is observed, uses a random device ζ to select his

theory P . At first, Alice cannot tell whether the theory she received was revealed

truthfully by an informed expert or was selected at random by an ignorant expert.

This must be determined by the data. However, assume that for any sequence of out-

comes Bob’s theory P will not be rejected with arbitrarily high probability, according

to Bob’s randomization device ζ. It follows that, no matter which data is realized,

Alice will not reject Bob’s theory (unless Bob had an unlucky draw from ζ which is,

by definition, near impossible). If such a device ζ can be constructed, we say that the

test can be ignorantly passed. On the other hand, if for every random generator of

theories ζ there exists at least one sequence of outcomes such that, if realized, leads

to theory rejection (with high probability according to ζ) then we say that the test
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cannot be manipulated. A test that does not reject the truth with high probability

and cannot be manipulated is called an effective test.

As aforementioned, a test that is not effective has limited purpose if Bob produces

theories strategically. Alice has no reason to run a test that delivers the same verdict

to both polar cases of an expert who knows the data generating process and a false

expert who knows nothing about it. However, a test that is effective has hitherto

not been proven to exist.1 The inexistence of an effective test would impose a con-

ceptual limit on the capability of empirical analysis. Theorems in probability can be

demonstrated and subsequently used to construct statistical tests that do not reject

the truth, but the value of any test is doubtful if it can be ignorantly passed. Hence,

a fundamental question is whether an effective test exists.

The calibration test requires the empirical frequency of 1 to be close to p in the

periods that 1 was forecasted with probability close to p. Foster and Vohra (1998)

show that the calibration test can be ignorantly passed with probability one. So, it is

possible to produce forecasts that in the future will prove to be calibrated, no matter

which data sequence is eventually realized.

The Foster and Vohra (1998) result has been extended and several other tests have

been suggested (see, for example, Lehrer (2001)).2 Still, these tests can be ignorantly

passed with probability one. However, the literature has not yet explored all possible

tests.

Natural candidates for effective tests are associated with small acceptance sets.

By definition, the acceptance set of a category test is a first category set, i.e., a

countable union of nowhere dense sets. Such sets are considered small in topology. A

1The only exception is a test suggested by Dekel and Feinberg (2006), but this test is based on

the continuum hypothesis and, hence, it is not proven to exist with standard axioms.

2We also refer the reader to Cahn (2005), Foster and Young (2003), Fudenberg and Levine (1995,

1999a, 1999b), Hart (2005), Hart and Mas-Colell (2000, 2001), Lehrer and Solan (2003), Rustichini

(1999), Kalai, Lehrer and Smorodinsky (1999), Sandroni, Smorodinsky and Vohra (2003), and Vovk

and Shafer (2004) for related work.
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classic result shows the existence of category tests that do not reject the truth with

probability one. Dekel and Feinberg (2006) show that any theory fails with probability

one any category test, unless the data generating process belongs to a first category

set (that includes the announced theory). So, Bob’s prospects of passing any category

test may seem negligible, but they are not. We show that some category tests can be

ignorantly passed.

A theory is said falsifiable if, for every finite history, there is a finite continuation

history that the theory assigns probability zero to it. The falsifiability test rejects out

of hand (i.e., on all paths) any non-falsifiable theory. A falsifiable theory is rejected

if and only if it assigns zero probability to the observed (finite) data. We show that

the falsifiability test is a category test. Moreover, we show that the falsifiability test

can be ignorantly passed with arbitrarily high probability.

Bob, if uninformed, does not know the likelihood that any given falsifiable theory

will be falsified. In addition, no matter which theory he announces, it will be rejected

with probability one for all actual data generating processes, except for a few of them

(i.e., a first category set). However, Bob can generate falsifiable theories at random

so that, for any data, the realized theory will not be falsified, with arbitrarily high

probability. By themselves, the falsifiability criteria are powerless to turn out an

effective test.

Empirical tests can be classified into two kinds: acceptance tests and rejection

tests. An acceptance test accepts a theory in finite time when the data is judged

consistent enough with it. Rejection may occur at infinity. A rejection test rejects a

theory in finite time when the data is judged inconsistent enough with it. Acceptance

may occur at infinity. A test that is both an acceptance and rejection test must stop

at some finite time (that depends upon the announced theory) and either reject or

accept the theory.

We show that any acceptance test that does not reject the truth with high prob-

ability can be ignorantly passed with high probability. Hence, consider an arbitrary

definition of which set of finite data is consistent with any given theory. Assume that,

with high probability, the test will not regard a theory that predicts exactly like the
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data generating process as inconsistent with the data. Then, with no knowledge over

the data, it is possible to produce theories that will prove to be consistent with the

data.

In contrast, we construct a rejection test, called the global category test, that does

not reject the truth with arbitrarily high probability and that cannot be manipulated.

Hence, an effective empirical test does exist. This result reduces the conceptual bound

that would otherwise (if an effective test did not exist) be imposed on the purpose

of testing probabilistic theories. For any given theory, we can identify a set of finite

data, deemed as inconsistent with it, which allows for the possibility of rejecting false

theories, even if they are strategically produced.

The global category test discredits uninformed experts in a strong sense. Given

any random generator of theories ζ, let the revelation set consists of the paths on which

ζ fails the test with probability one. We show that for every ζ, the revelation set of

the global category test is not only non-empty (which makes rejection of false experts

feasible), but also large enough to have full measure for all probability measures, save

a first category set of them.

The critical difference between the global category test and the tests proposed in

the literature (e.g., calibration tests) is that the latter cannot dismiss false experts, but

the former can. This distinction is enhanced by the finding that an uniformed expert,

if tested by the global category test, experiences inevitable failure on a topologically

large set of paths. So, the dismissal of an uninformed expert is both feasible and

plausible.

Our results imply an asymmetry between acceptance and rejection tests: No ac-

ceptance test is effective, but some rejection tests are effective. This asymmetry

merits some emphasis (although it departs from our main subject) because it gives

formal support to a guiding principle: theories must be accepted until revealed to be

in conflict with the data rather than rejected until shown to be in agreement with it.

We now turn to the question of how long it takes to discredit false experts. We say

that rejection can be delayed form periods if theories can be strategically generated at

random so that, for any sequence of outcomes, the realized theory will not be rejected
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before period m with high probability, according to the randomization device. We

show that for any period m, and for any test that does not reject the truth with high

probability, rejection can be delayed for m periods. Thus, Bob may not be able to

eternally sustain a false reputation of being knowledgeable, but Bob can maintain a

false reputation within an arbitrarily long time horizon. It follows that, with bounded

data sets, it might be unfeasible for Alice to obtain any significant information on

whether Bob is a knowledgeable expert.

The fact that false experts can delay rejection poses a severe difficulty for the

empirical testing of probabilistic theories. This difficulty seems unavoidable unless

we relax the assumption that the test does not reject the truth. Thus, we allow tests

to reject some theories out of hand (i.e., on all data sets and, therefore, independently

of the data). This is not a desiderata, but it is a necessary recourse.

We construct an empirical test that rejects out hand the theories that frequently

forecast 1 and 0 with probability near 0.5. The test requires the empirical frequency

of each outcome to be high in the periods that they were forecasted with probability

appreciably greater than 0.5. This test is related, but not identical, to tests used for

meteorological forecasts and also to calibration tests. We show that this test does not

reject, with high probability, any allowed theory.

Moreover, Bob, if uninformed, cannot assure himself a long rejection delay of his

theories. Thus, a rejection of strategically produced theories is feasible with bounded

data sets if we impose mild restrictions on the class of permitted theories.

The paper is organized as follows: In section 2 we introduce our main concepts,

show some examples of empirical tests, and demonstrate that acceptance tests are not

effective. In section 3, we show that the falsifiability test can be ignorantly passed. In

section 4, the global category test is presented and its properties are demonstrated.

In section 5, we show that if the truth is not rejected then rejection can be arbitrarily

delayed. In section 6, we construct a test such that a false expert cannot ensure a long

reputation of knowledge. Section 7 concludes the paper. Proofs are in the appendix.
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2. Empirical Tests

Each period one outcome, 0 or 1, is observed.3 Let Ω = {0, 1}∞ be the set of all

paths, i.e., infinite histories. A finite history sm ∈ {0, 1}m, m ≥ t, is a extension of

st ∈ {0, 1}t if the first t outcomes of sm coincide with st. Analogously, a path s ∈ Ω

extends st if s = (st, ...). In the opposite direction, let sm | t be the first t outcomes
of a finite history sm ∈ {0, 1}m, m ≥ t. Analogously, s | t = st for any path s that

extends st ∈ {0, 1}t. A cylinder with base on st is the set C(st) ⊂ {0, 1}∞ of all

infinite extensions of st. We endow Ω with the topology that comprises of unions

of cylinders with finite base. Let =t be the algebra that consists of all finite unions

of cylinders with base on {0, 1}t. Denote by N the set of natural numbers. Let = is
the σ-algebra generated by the algebra =0 ≡

S
t∈N

=t, i.e., = is the smallest σ−algebra

which contains =0.
Let ∆(Ω) the set of all probability measures on (Ω,=). We endow ∆(Ω) with the

weak*-topology and with the σ−algebra of Borel sets, (i.e., the smallest σ−algebra
which contains all open sets in weak*-topology).4 Let∆∆(Ω) be the set of probability

measures on ∆(Ω).

Let f be a function

f :
[
t≥0
{0, 1}t −→ [0, 1]

that maps finite histories into next period’s forecasts, i.e., a probability of 1 next

period.5 It is well known that f defines a probability measure P ∈ ∆(Ω) on the

space of paths. To simplify the language, a probability measure in ∆(Ω) is also called

a theory. That is, a theory is identified with it’s predictions. Before any data is

3It is immediate to extend the results to the case where there are finitely many possible outcomes

in each period.
4The weak*-topology consists of all unions of finite intersections of sets of the form©

Q ∈ ∆(Ω) :
¯̄
EPh−EQh

¯̄
< ε

ª
,

where P ∈ ∆(Ω), ε > 0, and h is a real-valued and continuous function on Ω. We refer the reader

to Rudin (1973), Chapter 3, for this definition and for basic results regarding the weak*-topology.
5By convention, {0, 1}0 = {∅}.
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observed, Bob announces his theory P ∈ ∆(Ω). A tester, named Alice, tests Bob’s

theory empirically.6

Definition 1. A test is a function T : Ω×∆(Ω)→ {0, 1}.

A test is an arbitrary function that takes as an input a theory and a path and

returns, as an output, either 0 or 1. When the test returns a 1, the test does not

reject the theory based on the path. When a 0 is returned, the theory is rejected.

A test divides paths into those (AP ) ≡ {s ∈ Ω| T (s, P ) = 1} where the theory
P is not rejected and those (AP )

c where the theory is rejected. The set AP is called

the acceptance set. The set (AP )
c is called the rejection set. We consider only tests

T such that the acceptance sets AP are =−measurable. Fix ε ∈ [0, 1].

Definition 2. A test T does not reject the truth with probability 1 − ε if for any

P ∈ ∆(Ω)

P {s ∈ Ω | T (s, P ) = 1} > 1− ε.

A test does not reject the truth if the actual data generating process is not rejected

with high probability. A theory that fails such a test can be (with high confidence)

reliably viewed as false.

Many results in probability and statistics take the form

P (AP ) = 1 or, more generally, P (AP ) > 1− ε.

These results (such as the law of large numbers, the law of iterated logarithms,

the central limit theorem) relate the unobservable concept of a probability measure

P ∈ ∆(Ω) with a (potentially) observable set of paths AP ∈ =.7 A successful result
6It might be worth emphasizing that even though Alice tests Bob’s theory using a string of

outcomes, we do not make distributional assumptions such as an independent, identically distributed

process. These are strong and difficult to validate assumptions. If, before any data was observed,

Alice knew that the actual process belongs to a small set such as independent, identically distributed

processes then she could infer the actual process from the data, with no need for an informed expert.
7Some of these findings were initially demonstrated within a class of theories, but martingale

techniques allow these distributional assumptions to be relaxed.
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showing that a well defined event occurs almost surely (or with high probability) can

be used to construct a test that does not reject the truth. Over several decades, many

empirical tests have been developed. Below we show a few well-known examples of

them.

2.1. Classic examples of tests

Given a theory P ∈ ∆(Ω), path s ∈ Ω, and st = s | t, let

fP0 (s) ≡ P (C(1)) and fPt (s) ≡
P (C(st, 1))

P (C(st))

be forecasts made along s.8 Denote by It(s) the t−th coordinate of s. The test

T (s, P ) = 1 if and only if lim
n→∞

1

n

nX
t=1

[fPt−1(s)− It(s)] = 0,

requires the average forecast of 1 to match the empirical frequency of 1. Lehrer

(2001) considered tests that require the match between average forecasts and empirical

frequencies to occur on several subsequences such as even periods, odd periods, etc.

The calibration test of Foster and Vohra (1998) requires the empirical frequency of 1

to be near p ∈ [0, 1] in the periods that 1 was forecasted with probability close to p.
An example of a well-known test (not based on matching empirical frequencies)

is the likelihood test: Let a : ∆(Ω) −→ ∆(Ω) be any function such that P a ≡ a(P )

and P are singular (P⊥P a).9 The likelihood test T is defined by

T (s, P ) = 1 if and only if lim
n→∞

P a(C(sn))

P (C(sn))
= 0, sn = s | n.

The likelihood test requires the theory P to outperform an alternative theory P a

in the sense that, on the observed path s, the likelihood of P a becomes arbitrarily

smaller than the likelihood of P.

A proof that the calibration and likelihood tests do not reject the truth with

probability one can be found in Dawid (1982, 1985).

8If P (C(st)) = 0 then fPt (s) is arbitrarily defined.
9P and P a are singular if there is a set A ∈ = such that P (A) = 1 and P a(A) = 0.
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2.2. Passing tests without knowledge

Consider the uninteresting test such that the acceptance set of a theory P̄ is the

entire space of paths Ω. This test does not reject P̄ on any path. Hence, Bob can

pass this test by simply announcing P̄ . No knowledge over the data generating process

is required. More generally, Bob may be able to pass other tests (on all paths) by

selecting theories at random.

Definition 3. A test T can be ignorantly passed with probability 1−ε if there exists
a random generator of theories ζT ∈ ∆∆(Ω) such that for every path s ∈ Ω

ζT {P ∈ ∆(Ω) | T (s, P ) = 1} > 1− ε.10

The random generator ζT may depend on the test T , but not on any knowledge

of the actual data generating process. If a test can be ignorantly passed then for

any given path s ∈ Ω, the acceptance set AP contains s, with ζT−probability 1− ε.

Hence, Bob can randomly select theories such that, with probability 1− ε (according

to Bob’s randomization device), will not be rejected, no matter which path is realized.

A test that can be ignorantly passed delivers the same verdict to experts who

knows the data generating process and to experts who knows nothing about it. Thus,

a test that can be ignorantly passed cannot determine whether an expert has relevant

knowledge (i.e., knowledge the tester does not have).

Assume that for every random generator of theories ζ ∈ ∆∆(Ω) there exists at

least one path s such that, with probability greater than ε, the realized theory is

rejected on s. Then, by definition, the test cannot be passed with probability 1− ε.

A single path in which rejection may occur suffices as evidence that the test cannot

be passed. However, a stronger property may be demanded. The tester may be

interested in paths such that an uninformed expert fails the test with near certainty

(as opposed to positive probability).

10This definition requires a measurability provision on the sets {P ∈ ∆(Ω) | T (s, P ) = 1}. How-
ever, in this paper, either we consider concrete examples of tests and random generators of theories,

for which there is no measurability issue or, for general tests, we limit ourselves to random generators

of theories with finite support, which automatically resolves the issue of measurability.
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Definition 4. Fix a test T . Given a random generator of theories ζ ∈ ∆∆(Ω) and

ε ≥ 0, let Rε
ζ ⊆ Ω be the set of all paths s ∈ Ω such that

ζ {P ∈ ∆(Ω) | T (s, P )) = 0} ≥ 1− ε.

The set Rε
ζ is called the revelation set, where the random generator of theories ζ

fails to manipulate the test with probability 1− ε.

Definition 5. A test T cannot be ε−manipulated, ε ≥ 0, if for every random gener-
ator of theories ζ ∈ ∆∆(Ω), the revelation set Rε

ζ is not empty.
11

Theory rejection is feasible if the test that cannot be manipulated. No matter

which random generator of theories is used, there exists at least of a path that induces,

with probability 1− ε, the rejection of the realized theory.

The calibration tests of Foster and Vohra (1998) and Lehrer (2001) are such that

for every theory P ∈ ∆(Ω) the rejection set (AP )
c is not empty. So, for any given

theory, there are paths in which the theory is rejected. So, it may seem that the-

ory rejection is viable, but this feasibility is effectively removed because calibration

tests can be ignorantly passed. An actual prospect of theory rejection requires a

demonstration that the revelation sets are not empty.

Definition 6. A test is ε-effective, ε ≥ 0, if it does not reject the truth with proba-
bility 1− ε and cannot be ε−manipulated.

2.3. Acceptance and Rejection Tests

In general, a test may reject and accept theories at infinity. Hence, some structure

is needed to preserve the interpretation of a test as a mechanism of relating the

unobservable concept of a theory with potentially observable data.

Definition 7. Acceptance tests are such that, for all theories P ∈ ∆(Ω), the accep-

tance set AP is a union of cylinders with base on a finite history. Rejection tests are

such that, for all theories P ∈ ∆(Ω), the rejection set (AP )
c is a union of cylinders

with base on a finite history.
11If a test cannot be 0−manipulated then we simply say that it cannot be manipulated.
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An acceptance test stops, at some finite time, when the observed data is deemed

consistent enough with the announced theory. A rejection test stops, at some finite

time, when the data is regarded as inconsistent enough with the announced theory.

A finite test is both a rejection and an acceptance test.

Proposition 1. Fix ε ∈ [0, 1] and δ ∈ (0, 1 − ε]. Let T be an acceptance test that

does not reject the truth with probability 1− ε. Then, the test T can be ignorantly

passed with probability 1− ε− δ.

Assume that Alice’s test does not reject the truth and accepts Bob’s theory only if

the data supports the theory (i.e., the observed history belongs to the acceptance set).

Then, an uninformed expert can produce theories at random such that, no matter

which path is observed, the realized theory will be supported by the data, with high

probability. Thus, no relevant knowledge is necessary to produce theories that will,

in the future, prove to be supported by the data.12

The widespread practice of supplying theories that account for the facts is vulner-

able to the usual reproach centered at the existence of alternative theories that also

explain the data. Let us say that a theory P is consistent with the data st ∈ {0, 1}t if
C(st) is contained in the acceptance set of a test T . Given st, it is straightforward to

find multiple theories consistent with it. Proposition 1 shows that, without knowing

the data, Bob can fabricate theories that are consistent with it. This result makes

the standard critique salient.

By proposition 1, the use of acceptance tests are fairly limited. No acceptance

test is effective. We now explore rejection tests.

12Proposition 1 is a surprising result. Assume that Alice writes a long sentence of zeros and ones.

Bob simulataneously selects a probability measure over all possible sentences. Alice extracts a set A

of finite sentences that has high probability according to Bob’s choice. She agrees to accept that Bob

has some relevant signal if her sentence belongs to A (in this illustration, Alice combines the roles

of Nature and tester). Bob knows which set A Alice extracts from any given theory, but he knows

nothing about what Alice has written. He can (almost) assure himself that her sentence belongs to

his extracted set A.
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Definition 8. A test T2 is harder than a test T1 if

{s ∈ Ω| T2(s, P ) = 1} ⊆ {s ∈ Ω| T1(s, P ) = 1}.

If T2 is harder than T1 then rejection by T1 implies rejection by T2.

Proposition 2. Fix δ ∈ (0, 1]. Let T1 be any test that does not reject the truth with
probability 1− ε. There exists a rejection test T2 that is harder than the test T1 and

does not reject the truth with probability 1− ε− δ.

Proposition 2 shows that given any test T1 there exists a rejection test T2 that

does not reject the truth with almost equally high probability as T1 does, and the

rejection sets of T2 contain those of T1. Thus, if T1 has non-empty revelation sets then

T2 is a rejection test with non-empty revelation sets. We refer to T2 as the rejection

test associated with the test T1.

2.4. Intuition of Proposition 1 and Proof of Proposition 2

Consider the following game zero-sum game between Nature and Bob. Nature chooses

a probability measure P ∈ ∆(Ω). Bob chooses a random generator of theories ζ ∈
∆∆(Ω). Bob’s payoff is EζEPT, where EP and Eζ are the expectation operators

associated with P and ζ, respectively.

By assumption, the test T does not reject the truth with probability 1−ε. There-

fore, for every strategy P of Nature, there is a strategy ζP for Bob (that assigns

probability one to P ) such that Bob’s payoff

EζPEPT = P {s ∈ Ω | T (s, P ) = 1}

is greater than 1 − ε. Hence, if the conditions of Fan’s MinMax are satisfied then

there is a strategy ζT for Bob that ensures Bob a payoff arbitrarily close to 1− ε, no

matter which strategy Nature chooses. In particular, Nature could use Ps, selecting

a single path s with certainty. Therefore, for all s ∈ {0, 1}∞,

EζTEPsT = ζT {P ∈ ∆(Ω) | T (s, P ) = 1} ≥ 1− ε− δ.
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Fan’s MinMax theorem requires the payoff of one of the players to be lower semi-

continuous and the strategy space of that player to be compact. As is well-known,

∆(Ω) is compact in the weak*-topology. The lower semi-continuous of Bob’s payoff

follows from the openness of the acceptance sets. It is here that the assumption of an

acceptance test is used. In the case of a rejection test, Bob’s payoff function is upper

semi-continuous.

Proposition 2 is a direct corollary of the following well-known result: for any given

probability measure P ∈ ∆(Ω) and δ > 0, any set A ∈ = can be enlarged to an open
set U ⊃ A such that P (U) < P (A)+δ (see Ulam’s Theorem, 7.1.4 in Dudley (1989)).

3. Category Tests

Category tests can de defined as follows: Given a set A, let Ā be the closure of A.

A set A is called nowhere dense when the interior of its closure, Ā, is empty. A

first category set is a countable union of nowhere dense sets. A first category set is

(topologically) small. The complement of a first category set is (topologically) large.13

Category tests are such that, for any theory P ∈ ∆(Ω), the acceptance set AP is

a first category set. Proposition 3 below shows the existence of category tests that

do not reject the truth.

Proposition 3. Fix δ ∈ (0, 1]. Given any probability measure P ∈ ∆(Ω), there is a

closed set DP ∈ = with empty interior such that

P (DP ) ≥ 1− δ.

In particular, there exists a first category set D/
P such that P (D

/
P ) = 1. Propo-

sition 3 is classic result (see Oxtoby (1980), Theorem 16.5 and Dekel and Feinberg

(2006)). It shows that any theory makes at least one sharp prediction: a path in a

topologically small set will be realized.

13There are others definitions of small sets that we have not examined (see Anderson and Zame

(2001) and Stinchcombe (2001)).
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Proposition 4. Dekel and Feinberg (2006). Given any first category set A ∈ =, the
set of probability measures that assign positive probability to A,

{P ∈ ∆(Ω) | P (A) > 0}

is a a first category subset of ∆(Ω).

By proposition 4, any theory will be rejected by a category test for all data gener-

ating processes except for a topologically small set of them. A sufficiently close match

between the announced theory and the data generating process seems to be a prereq-

uisite to pass a category test. So, one may conjecture that, apart from extraordinary

coincidence, a completely uninformed expert find it impossible to pass a category

test. However, this does not necessarily hold. We show an example of a category test

that can be ignorantly passed with arbitrarily high probability. Topologically large

rejection sets may not deliver feasible rejection of false experts.

3.1. Falsifiability

Category tests are defined by topological concepts. A more intuitive way of under-

standing these tests is to relate them to the celebrated concepts of Popper (1958).

Popper is interested in a demarcation criteria that would differentiate scientific ideas

from non-scientific ideas (and, hence, would give meaning to the term scientific). He

proposes that scientific theories are those that can be falsified (i.e., rejected by the

data).

Falsifiability is a central concept in near all scientific disciplines. Here, falsifiability

must be understood as the possibility of conclusive empirical rejection. This is not

the same as the canonical principle in statistics that the observation of events that

were ex-ante deemed unlikely (by the theory) may suffice for it’s rejection.

Definition 9. A theory P ∈ ∆(Ω) is falsifiable if, for every finite history st ∈ {0, 1}t,
there is an extension sm of st such that

P (C(sm)) = 0. (3.1)
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So, a theory is falsifiable if, after any finite history, there is a finite sequence of

outcomes that bluntly contradicts it.

Let z ⊂ ∆(Ω) be the set of falsifiable theories. Given P ∈ z, let
¡
AP

¢c
be the

union of all cylinders C ∈ =0 such P (C) = 0, and let AP be the complement of
¡
AP

¢c
,

i.e., the paths that do not bluntly contradict a falsifiable theory P.

The falsifiability test rejects non-falsifiable theories out of hand (i.e., on all paths).

Any falsifiable theory bluntly contradicted by the data is also rejected. Formally, the

falsifiability test T is defined by

T (s, P ) = 1 if s ∈ ĀP and P ∈ z;

T (s, P ) = 0 otherwise.

Proposition 5. Fix ε ∈ (0, 1]. The falsifiability test is a category test. Moreover,
the falsifiability test can be ignorantly passed with probability 1− ε.

By proposition 5, it is possible to produce falsifiable theories at random such that,

with arbitrarily high probability, the realized theory will not be falsified, regardless

of which data is eventually observed.

By definition, falsifiability means the possibility of empirical rejection. In itself,

this possibility is rendered immaterial because the falsifiability test can be ignorantly

passed. The falsifiability criteria are too weak to produce an effective test.

Propositions 4 and 5 show an interesting contrast. Any theory is rejected by the

falsifiability test, unless data generating processes belongs to a first category set (that

depends on the announced theory). However, Bob, without any knowledge over the

actual process, can ignorantly pass the falsifiability test.

Dekel and Feinberg (2006) show that if the continuum hypothesis holds true then

there exists a category test that does not reject the truth and cannot be manipu-

lated. This result is an important achievement, but it does not show the existence

of an effective test because it relies on the continuum hypothesis. It leaves open

the possibility that, like the continuum hypothesis, the existence of their test is an

undecidable question with standard axioms.
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3.2. Intuition of Proposition 5

It is straightforward to show that the falsifiability test is a category test. The ac-

ceptance set of a non-falsifiable theory is empty and, hence, of first category. The

rejection set of a falsifiable theory is open (as unions of cylinders with finite base)

and, by definition, dense. Hence, the acceptance set of a falsifiable theory is closed

and nowhere dense.

The intuition that the falsifiability test can be ignorantly passed is as follows:

Consider an increasing sequence of natural numbers Zt, t ∈ N , and a sequence of

independent random variables such that each variable is uniformly distributed over

the finite set Xt ≡ {0, 1}(Zt+1−Zt). Given x = (xt, xt ∈ Xt), let P x be a falsifiable

theory that is rejected if and only if, for some t ∈ N , xt occurs between periods Zt

and Zt+1. Now assume that Zt grows sufficiently fast (and Z1 is sufficiently large) so

that the chances that xt, t ∈ N, be realized (at least) once is small. Let the falsifiable

theory P x be selected if x is selected. Fix any path s = (y1, ..., yt, ...), yt ∈ Xt. The

selected theory P x will be falsified on s if and only if xt = yt for some t ∈ N. By

construction, this is an unlikely event.

4. An Effective Test

In this section, we construct a test that does not reject the truth and cannot be

manipulated. Let s1, s2, ... be a countable dense subset of Ω. Fix k ∈ N. For every

path si, there exists a period t ∈ N such that the cylinder Ck
P (s

i
t) with base on the

finite history sit satisfies

P (Ck
P (s

i
t)− {si}) ≤

1

2k+i
. (4.1)

Indeed, the sequence of sets Ck
P (s

i
t)−{si} is descending (as t goes to infinity), and

its intersection is empty. So, P (Ck
P (s

i
t)− {si}) goes to zero as t goes to infinity.

Let t(i, k, P ) be the smallest natural number such that (4.1) is satisfied. We define

Ai
k(P ) ≡ Ω− Ck

P (s
i
t) as the complement of C

k
P (s

i
t), where t = t(i, k, P ). Let

Ak(P ) ≡
∞\
i=1

Ai
k(P ) and ÂP ≡

∞[
k=1

Ak(P ) ∪
∞[
i=1

{si}.
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Each set Ak(P ) is an intersection of closed sets and, hence, it is closed. By

construction, each set Ak(P ) has an empty interior, and hence, ÂP is a first category

set.

The global category test T̂ is such that ÂP is the acceptance set of P ∈ ∆(Ω).

That is,
T̂ (s, P ) = 1 if s ∈ ÂP ;

T̂ (s, P ) = 0 if s /∈ ÂP .

Let R̂0ζ be the revelation set where the random generator of theories ζ ∈ ∆∆(Ω)

fails to manipulate the global category test with probability one.

Proposition 6. The global category test T̂ does not reject the truth with probability

one and it cannot be manipulated. Moreover, given any random generator of theories

ζ ∈ ∆∆(Ω), the revelation set R̂0ζ is such that P (R̂0ζ) = 1 for every probability

measure P ∈ ∆(Ω), except for, at most, a first category set of them.

The global category test controls the type I error of rejecting an informed expert

and the type II error of accepting an uniformed expert. The informed expert passes

the global category test with probability one. The uninformed expert can employ any

random generator of theories ζ, but failure is inevitable on the paths of the revelation

set R̂0ζ . This set is large enough so that all probability measures, except for a first

category set, assign probability one to it.

The tests proposed in the literature are strikingly different from the global category

test. In contrast to the preceding tests, the global category test can discredit an

uniformed expert. Moreover, it is not only feasible to reject an uninformed expert. It

is also plausible given that, no matter how Bob randomizes, rejection is near certain

outside a first category set of data generating processes.

Given ε > 0, let T̂ ε be a rejection test, associated with the global category test T̂ ,

that does not reject the truth with probability 1−ε. Corollary 1, below, is immediate
from propositions 2 and 6.
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Corollary 1. The rejection test T̂ ε does not reject the truth with probability 1− ε

and it cannot be manipulated. The revelation sets of T̂ ε contain the revelation sets of

the global category test and, hence, also have full measure for all probability measures

P ∈ ∆(Ω), except for, at most, a first category set of them.

Corollary 1 shows the existence of an effective rejection test T̂ ε. Hence, for any

given theory P , the test T̂ ε demarcates the rejection set of P as the set of finite

histories of outcomes that must be regarded as sufficiently inconsistent with the theory

P to validate it’s rejection. So, if an outcome sequence in the rejection set of the theory

P is observed then P must be rejected. This result delivers an empirical test that

takes into account that theories might be strategically produced. If Alice adopts the

test T̂ ε then false experts can be discredited.

In addition, corollary 1, in conjunction with proposition 1, shows a basic asym-

metry between acceptance and rejection tests. Every acceptance test that does not

reject the truth can be ignorantly passed, but there exists a rejection test that does

not reject the truth and cannot be manipulated. So, propositions 1, 2, and 6, com-

bined, deliver a formal support to the maxim that testable theories must be accepted

until proven inconsistent with the data rather than rejected until proven consistent

with the data.

Proposition 6 removes the conceptual bound that would be imposed on the sig-

nificance of empirical testing of theories if an effective test did not exist. An effective

test has a clear purpose. It does not reject a theory that coincides with the data gen-

erating process and it may, for some realizations of the data, reject the false theories

of an uninformed expert. Thus, a rejection verdict from an effective test is feasible

and the rejected theories are, almost surely, false.

4.1. Intuition of Proposition 6

The proof that the global category test does not reject the truth follows from the fact

that, for any k ∈ N , the rejection set of a theory P is contained in the union i = 1, ...

of all cylinders Ck
P (s

i
t) (minus the paths s

i). By (4.1), the probability of this union is
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less than 2−k. Given that this holds for any k ∈ N, the probability of any rejection

set is zero.

The intuition for the proof that the global category test cannot be manipulated

is follows: Each acceptance set ÂP is a first category set that has P−full measure.
So, once Bob proposes a theory, he passes the test if the observed path belongs to

a topologically small acceptance set and is rejected on a topologically large rejection

set. This creates a difficulty for an uninformed expert. By itself, this difficulty is not

unsurpassable as demonstrated by proposition 5. The main idea is that, in a global

category test, all acceptance sets (for different theories P ) are constructed around

the same paths {si}. Acceptance sets of different theories are sufficiently close to
each other so that, for any random generator of theories ζ, the union of ζ−almost all
acceptance sets is a first category set of paths. By definition, failure is unavoidable

outside this union. So, by proposition 4, except for a topologically small set, this

union has probability zero for all probability measures.

5. Delaying Rejection

A natural concern with proposition 6 is that the revelation sets R̂0ζ might not contain

any cylinders with finite base. However, it follows from the proof of proposition 6 that

for every ε > 0 and ζ ∈ ∆∆(Ω), the revelation set R̂ε
ζ, where ζ fails to manipulate

the global category test with probability 1 − ε, contains an open and dense set (by

proposition 4, this set has probability one for all probability measures, except for,

at most, a first category set of them). If a path on this set is realized then, with

probability 1 − ε, in some finite time, the global category test fails an uninformed

expert. This result, however, does not determine the exact periods that an uninformed

expert fails.

Definition 10. A test T rejects a theory P ∈ ∆(Ω) on a finite history st ∈ {0, 1}t

(denoted T (st, P ) = 0) if T (s, P ) = 0 for all paths s that extend st.

So, a test rejects a theory on a finite history st if it rejects the theory on all paths

s such that the first t outcomes of s are st.

21



Definition 11. Rejection by a test T can be delayed by m periods with probability

1− ε if there exists a random generator of theories ζT,m ∈ ∆∆(Ω) such that for every

path sm ∈ {0, 1}m,

ζT,m {P ∈ ∆(Ω) | T (sm, P ) = 1} ≥ 1− ε.

Rejection by a test T can be arbitrarily delayed with probability 1− ε if it can be

delayed by m periods, with probability 1− ε, for every m ∈ N .

If rejection can be arbitrarily delayed then Bob can first choose an arbitrary period

m and then randomly select theories such that, with high probability (according to

Bob’s randomization), will not be rejected before period m, no matter which path is

realized.

Proposition 7. Fix ε ∈ [0, 1] and δ ∈ (0, 1 − ε]. Let T be an arbitrary test that

does not reject the truth with probability 1 − ε. Then, rejection by the test T can

arbitrarily delayed with probability 1− ε− δ.

Proposition 7 shows that Bob can maintain a false reputation of being a knowl-

edgeable expert for an arbitrarily long time horizon. This result holds because any test

can be approximated by finite tests (a corollary of proposition 2) and, by proposition

1, any finite test that does not reject the truth can be ignorantly passed.

There is an interesting contrast between propositions 6 and 7. Assume that Alice

tests Bob with the rejection test associated with the global category test and Bob

is not knowledgeable. By proposition 7, Bob can use random generator of theories

ζ̂m to delay rejection for m periods. A limit, ζ̂ , of (a subsequence) of these random

generators of theories exists (because ∆∆(Ω) is compact in the weak*-topology). By

propositions 2 and 6, ζ̂ does not delay rejection indefinitely, with strictly positive

probability. Moreover, since Alice uses a rejection test, given any δ > 0, ζ̂ does

not delay rejection for m periods, with probability δ, if m is sufficiently large. So,

a change from ζ̂m to ζ̂ (that becomes arbitrarily small as m increases) triggers an

abrupt transformation: rejection delay, that was formerly assured with arbitrarily
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high probability, is no longer assured even with small probability. Therefore, to delay

rejection for m periods (m large) Bob must choose the random generator of theories

in a very precise way.

6. Rejecting Theories Out of Hand

Proposition 7 shows that the class of permissible theories must be restricted. This

does follow from a need to simplify the analysis, but rather because in the absence

of such restrictions a completely ignorant expert can delay rejection for arbitrarily

many periods, on all future realizations of the data. This difficulty is hard to overcome

unless we relax the main assumption of proposition 7: that test that does not reject

the truth.14 So, we allow the test to reject some theories out of hand (i.e., on all paths).

This is clearly not a desiderata because potentially correct theories are rejected by

definition. Even so, the test may remain powerless to reject a false expert with

bounded data sets.

Definition 12. A test T does not reject an informed expert with probability 1 − ε

if for every theory P ∈ ∆(Ω) there exists a theory P̃ ∈ ∆(Ω) such that

P
n
s ∈ Ω | T (s, P̃ ) = 1

o
> 1− ε.

The test T does not reject an informed expert if Bob, knowing that the data

generating process is P , can announce a theory P̃ that passes the test. Clearly, if a

test that does not reject the truth then it does not reject an informed expert, but the

converse is not necessarily true.

The falsifiability test rejects the truth, but does not reject an informed expert

with arbitrarily high probability. Fix δ > 0. Assume that an informed expert knows

that the data generating process is a non-falsifiable theory P . Let DP be a closed set

with empty interior such that P (DP ) ≥ 1− δ (see proposition 3 for the existence of

DP ). Let P̃ denote P conditional on DP . That is,

P̃ (B) =
P (B ∩DP )

P (DP )
for all B ∈ =.

14An alternative, not taken in this paper, is to impose complexity bounds on Bob’s strategies.
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By lemma 2 (in the appendix), P̃ is a falsifiable theory and, by definition, any

set DP̃ that has full P̃−measure, has P−probability greater than 1 − δ. So, with

arbitrarily high probability, an informed expert can pass the falsifiability test by

announcing P̃ .

Consider any dense set Λ ⊆ ∆(Ω) of probability measures in the topology induced

by the sup-norm.15 Let T be any test that does not reject the truth with probability

1− ε. Let T 0 be the test that coincides with T on Λ, but rejects out of hand theories

outside Λ. That is, T 0(s, P ) = T (s, P ) if P ∈ Λ and T 0(s, P ) = 0 if P ∈ (Λ)c . Then,
T 0 does not reject an informed expert with probability 1−ε−δ for every δ ∈ (0, 1−ε].
Propositions 1 and 7 still hold if the assumption that the test does not reject the

truth with probability 1− ε is replaced by the weaker assumption that the test does

not reject an informed expert with probability 1−ε (the proofs in the appendix make
this weaker assumption). Hence, an uniformed expert can still, with high probability,

arbitrarily delay rejection by the test T 0 (that rejects out of hand all theories outside

Λ). In particular, rejection can be arbitrarily delayed if T 0 rejects out of hand finitely

many theories.

We now consider a smaller set of permissible theories. Meteorological forecasts

are usually evaluated by how low their Brier Score is (see Brier (1950)).16 A low Brier

Score is not possible if the forecasts are often close to 0.5. Given δ > 0 and m ∈ N ,

let Λm,δ ⊆ ∆(Ω) be the set of theories P such that for all s ∈ Ω

1

m

mX
t=1

(fPt−1(s)− 0.5)2 > δ.

15The sup-norm is such that given two theories P and P /,°°°P − P /
°°° = sup

A∈=

¯̄̄
P (A)− P /(A)

¯̄̄
.

16The Brier Score of a theory P at period m is

1

m

mX
t=1

[fPt−1(s)− It(s)]
2.
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The set Λm,δ excludes theories that forecast 1 and 0 with near equal odds, suffi-

ciently often, until period m.

Fix δ > 0 and b ∈ (0, 0.5). Given any theory P, let P̄ be the theory such that:

for every s ∈ Ω and t ∈ N, f P̄t (s) =

1
2
+ b if fPt (s) ∈ (12 +

δ
2
, 1];

1
2
− b if fPt (s) ∈ [0, 12 −

δ
2
);

1
2

otherwise.

That is, given a theory P , the theory P̄ forecast 1 with probability: 1
2
+ b when

the P forecast (of 1) is high; 1
2
when the P forecast is intermediate; and 1

2
− b when

the P forecast is low.

Let β ≡ (δ, m, b, K), where K ∈ N. Let T β be the test

T β(s, P ) =
1 if P̄ (C(sm)) ≥ K(0.5)m, sm = s | m;
0 otherwise.

The test T β is akin, but not identical, to a calibration test. Define a success

when the observed outcome was forecasted with probability greater than 0.5(1 + δ).

Define a failure when the observed outcome was forecasted with probability smaller

than 0.5(1− δ). The test T β requires the frequency of success to be greater than the

frequency of failure (by a factor that depends on b, m, and K).17

The test T β rejects (or not) any theory at period m. So, by definition, T β cannot

be ε−manipulated if and only if rejection by T β cannot be delayed, with probability

ε, by m periods.

Proposition 8. For any ε > 0, δ > 0 and K ∈ N, there exist b > 0 and m̄ ∈ N such

that if m ≥ m̄ then T β does not reject any theory P ∈ Λm,δ with probability 1 − ε.

Moreover, if Kε > 1 then rejection by the test T β cannot be delayed, with probability

ε, by m periods.

17See Seidenfeld (1985) for a decomposition of the Brier Score into a calibration test related to

Tβ and a refinement term that is maximized when the empirical frequency of 1 is 0.5.
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By proposition 8, the test T β cannot be manipulated even with limited data. So,

feasible rejection by T β cannot be arbitrarily delayed. Moreover, it is improbable that

T β rejects a theory that coincides with the data generating process, provided that it

belongs to the domain of permissible theories.

We now show a formal sense in which the restricted set of allowed theories Λm,δ

can be considered a large set.18

Proposition 9. The set Λm,δ is an open subset of ∆(Ω) for any δ > 0 and m ∈ N .

If δ ∈ (0, 0.25) then given any theory P ∈ ∆(Ω) and a neighborhood U of P , there

exist m̂ ∈ N and a theory Q such that Q ∈ U ∩ Λm,δ for every m ≥ m̂.19

So, by proposition 9, Λm,δ is an open set and, any open set intersects Λm,δ if m is

large enough.

We hope that these results provide the groundwork for future advances on the

capability of empirical tests with bounded data sets. However, our results leave

open several relevant issues. Among them is the matter of the minimum size of

the data required to make the test non-manipulable, how plausible is the dismissal

of an uninformed expert, which tests minimize the need for restrictions on the set

of permissible theories and which class of theories should be rejected out of hand.

Answers to these questions are beyond the scope of this paper.

6.1. Intuition of Proposition 8

The proof that T β does not reject any theory P ∈ Λm,δ with high probability is a

straightforward application of the law of large numbers. An outcome tend to occur

more often when it is correctly forecasted with high probability than when it is cor-

rectly forecasted with low probability. The proof that T β cannot be ε−manipulated
18The set Λm,δ is not topologically large in the sense that its complement is a first category set. We

can show that any set with similar properties to those of Λm,δ is not large in this sense. Proposition

9 asserts that Λm,δ is topologically large in a slightly weaker sense.
19The theory Q makes the same forecasts as P for several periods and subsequently forecast 1

with high probability.
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(when Kε > 1) is also simple. At period m, there are 2m possible histories. A theory

P is rejected unless P̄ assigns sufficiently high probability to the observed history. So,

rejection occurs in all paths, except for, at most, 2m/K of them. Hence, the following

analogy matches Bob’s problem well: Bob faces an urn with many balls. Nature picks

a ball with unknown odds. Before the chosen ball is revealed, Bob selects, perhaps at

random, a small fraction of all possible balls. Then, no matter how Bob randomizes,

Bob cannot be near certain that the ball chosen by Nature belongs to his selected set.

It is remarkable that, to be properly formalized into a non-manipulable test, such

easy and compelling intuition requires a sizeable set of theories rejected out of hand.

7. Conclusion

If an empirical examiner plans to set aside false theories then it must be feasible to

reject theories produced by false experts who have no relevant knowledge. Empirical

tests with this property are non-manipulable tests. If a rejection is to be a reliable

signal that the theory makes incorrect predictions then a theory that forecasts exactly

like the data generating process must be rejected with low probability. Empirical tests

with this property do not reject the truth.

There is a conflict between these two properties. Empirical tests put forward in

the literature do not reject the truth, but can be manipulated. Extensive classes of

empirical tests, like acceptance tests, can also be manipulated if they do not reject

the truth. One test, the global category test, does not reject the truth and cannot

be manipulated. However, any test that does not reject the truth is susceptible to

strategic manipulation for arbitrary long periods of time.

An option is to reject some theories out of hand. With this proviso, some tests,

akin to those used in practice, do not reject allowed theories (with high probability)

and cannot be manipulated. We hope that this result will motivate future advances

in the subject matter of strategic manipulation of empirical tests under (perhaps

unavoidably) restrictions on the class of permissible theories.
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8. Proofs

To prove proposition 1 we need to introduce some terminology and auxiliary lemmas.

Let X be a metric space. Recall that a function f : X → R is lower semi-continuous

at an x ∈ X if for every sequence (xn)∞n=1 converging to x:

∀ε>0 ∃N ∀n≥N f(xn) > f(x)− ε.

The function f is lower semi-continuous if it is lower semi-continuous at every x ∈ X.20

Lemma 1. Let U ⊂ X be an open set where X is a compact metric space. Equip X

with the σ−algebra of Borel subsets. Let ∆(X) be the set of all probability measures
on X. Equip ∆(X) with the weak*-topology. The function F : ∆(X)→ [0, 1] defined

by

F (P ) = P (U)

is lower semi-continuous.

Proof: Take a probability measure P ∈ ∆(X); we will show that the function F

is lower semi-continuous at P . To this end take a sequence Pn →n P and an ε > 0;

consider a closed set A ⊂ U such that

P (A) > P (U)− ε/2,

and a continuous function g : Ω→ [0, 1] such that

∀s∈A g(s) = 1 and ∀s/∈U g(s) = 0;

such a set A exists as every open set in a metric space can be represented as the union

of an ascending sequence of closed sets, and such a function g exists by the Urysohn

Lemma (see, for example, Engelking (1989), Theorem 1.5.11).

20See Engelking (1989), Problem 1.7.14 for these definitions and some basic results regarding lower

semi-continuous functions.
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By the definition of weak∗-topology, there exists an N such that for every n ≥ N¯̄
EPng −EPg

¯̄
< ε/2.

Thus, if n ≥ N , then

F (Pn) = Pn(U) ≥ EPng ≥ EPg− ε/2 ≥ P (A)− ε/2 > P (U)− ε/2− ε/2 = F (P )− ε.

¥

Theorem (Fan (1953) Let X be a compact and Hausdorff, linear space and Y a

linear space (not necessarily topologized).21 Let f be a real-valued function on X×Y

such that for every y ∈ Y , f(x, y) is lower semi-continuous on X. If f is convex on

X and concave on Y , then

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y).

Proof of the Proposition 1: We prove proposition 1 under a weaker assumption

that the test T does not reject an informed expert with probability 1− ε. Let X be

∆(Ω). Let Y be the subset of ∆(∆(Ω)) of all random generator of theories with finite

support. So, an element ζ of Y can be described by a finite sequence of probability

measures {P1, ..., Pn} and positive weights {π1, ..., πn} that add to one (i.e., ζ selects
Pi with probability πi, i = 1, ..., n). Let the function f : X × Y → R defined by

f(P, ζ) ≡ EζEPT =
nX
i=1

πi

Z
T (s, Pi)dP (s). (8.1)

We now check that the assumptions of Fan’s theorem are satisfied. Since T is an

acceptance test, the set

UQ = {s ∈ Ω : T (s,Q) = 1}

is open for every Q ∈ ∆(Ω). Therefore, by lemma 1,

P (UQ) =

Z
T (s,Q)dP (s)

21Fan does not assume that X and Y are linear spaces. We, however, apply his theorem only to

linear spaces.
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is a lower semi-continuous function of P . Thus, for every ζ ∈ Y , the function f(P, ζ) is

lower semi-continuous onX as a weighted average of lower semi-continuous functions.

By definition, f is linear on X and Y , and so it is convex on X and concave on Y .

By the Riesz and Banach-Alaoglu Theorems, X is a compact space in weak∗-topology;

it is a metric space, and so Hausdorff, (see for example Rudin (1973), Theorem 3.17).

Thus, by Fan’s Theorem,

min
P∈∆(Ω)

sup
ζ∈∆(∆(Ω))

EζEPT = sup
ζ∈∆(∆(Ω))

min
P∈∆(Ω)

EζEPT .

Notice that the left-hand side of this equality exceeds 1− ε, as the test T is assumed

not to reject an informed expert with probability 1−ε; indeed, for a given P ∈ ∆(Ω),

take ζ such that ζ({P̃}) = 1. Therefore the right-hand side exceeds 1−ε, which yield
the existence of a random generator of theories ζ ∈ ∆(∆(Ω)) such that

EζEPT > 1− ε− δ

for every P ∈ ∆(Ω). Taking, for any given s ∈ Ω, the probability measure P such

that P ({s}) = 1, we obtain

ζ({Q ∈ ∆(Ω) : T (s,Q) = 1}) > 1− ε− δ.

¥

Lemma 2. If a theory P ∈ ∆(Ω) is falsifiable then ĀP ∈ = is a closed, full measure
set with empty interior. If there exists a closed set Ā ∈ = with empty interior such
that P (Ā) = 1 then P is falsifiable.

Proof : Suppose first that P is falsifiable. The set (AP )
c is open as a union of

open sets (cylinders). By definition of falsifiability and the topology in Ω, the set

(AP )
c is dense. Finally, since the set of all cylinders is countable, and (AP )

c is a

union of cylinders C such that P (C) = 0, (AP )
c is a set of measure 0. Therefore, its

complement AP is a closed, full measure set with empty interior.

Suppose now that there exists a closed set A with empty interior such that P (A) =

1. Since the complement A
c
of A is a dense set, A

c∩C(st) 6= ∅ for every finite history
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st ∈ {0, 1}t, and since A
c
is an open set, so is A

c ∩ C(st). Therefore there exists a

cylinder C ⊂ A
c ∩ C(st). Since C ⊂ C(st), C = C(sm) for some extension sm of

history st, and since C ⊂ A
c
, P (C) ≤ P (A

c
) = 0.¥

Proof of Proposition 5: Let T be the falsifiability test. It is immediate from

lemma 2 that T is a category test. We now show that T can be ignorantly passed

with probability 1− ε, ε > 0. Without loss of generality assume that ε ∈ (0, 0.5). Let
r > 0 be small enough so that X

t∈N
rt < ε.

Let {Mt, t ∈ N} be a sequence natural numbers such that
1

2Mt
< rt.

Let P̂ ∈ ∆(Ω) be the probability measure such that both 1 and 0 have equal odds

in all periods. It will be convenient to denote by Xt the set {0, 1}Mt and by X the

Cartesian product
Y
t∈N

Xt of sets Xt. It is also convenient to consider a sequence of

independent random variables X̃t, t ∈ N , uniformly distributed on the set Xt. Let

X̃ be the random variable
Y
t∈N

X̃t, distributed on the set X = Ω, such that X̃ = x if

and only if X̃t = xt for all t ∈ N ; thus, P̂ is the probability distribution of X̃.

Let

Zt ≡
tX

j=1

Mj.

Given an x ∈ X, x = (x1, ...., xt, ...), xt ∈ Xt, let

Cx ≡ C(x1) ∪
[
t∈N

[
zt∈{0,1}Zt

C(zt, xt+1)

be the union of the cylinder with base on x1 ∈ X1 and the cylinders with base on finite

histories of the form (zt, xt+1), t ∈ N, where zt is an arbitrary element of {0, 1}Zt.
Given that x1 a sequence ofM1 outcomes and xt+1 is a sequence ofMt+1 outcomes,

it follows that

P̂ (
[

zt∈{0,1}Zt
C(zt, xt+1)) =

1

2Mt+1
and P̂ (C(x1)) =

1

2M1
;
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hence,

P̂ (Cx) ≤
X
t∈N

1

2Mt
< ε < 1. (8.2)

Let (Cx)
c be the complement of Cx, x ∈ X, and let P̂ x be the conditional proba-

bility of P̂ on (Cx)
c , x ∈ X. That is,

P̂ x(A) =
P̂ (A ∩ (Cx)

c)

P̂ ((Cx)
c)

for all A ∈ =.

Step 1: We now show that P̂ x is falsifiable.

Indeed, the set (Cx)
c is closed (the complement of an open set) and has P̂ x full

measure. For any cylinder C(st), st ∈ {0, 1}t, take a Zm ≥ t and an extension

zm ∈ {0, 1}Zm of st. Then, by definition, C(zm, xm+1) ⊂ Cx and C(zm, xm+1) ⊂
C(st). Hence, the set C(st) ∩ Cx is non-empty. This means that (Cx)

c contains

no cylinder, or, in other words, it has empty interior. By lemma 2, P̂ x is falsifiable.

Step 2: Let C(sn), sn ∈ {0, 1}n, be a cylinder not contained in Cx.We show that

P̂ (C(sn) ∩ (Cx)
c) > 0.

Let P̂sn denote P̂ conditional on sn. By Bayes’ rule,

P̂ (C(sn) ∩ (Cx)
c) = P̂sn((Cx)

c)P̂ ((Cx)
c).

By (8.2),

P̂ ((Cx)
c) > 0.

Let Ĉx be the finite union of all cylinders in Cx with base on a history of length

smaller or equal to n. So, Ĉx is a finite union of cylinders C (rm) ⊂ Cx, where

m ≤ n. The history sn cannot be an extension of any of the histories {(zt, xt+1) |
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zt ∈ {0, 1}Zt, t ∈ N} or x1. Otherwise, C(sn) ⊂ Cx. Thus, C (rm) ∩ C(sn) = ∅ if

C (rm) ⊂ Cx and m ≤ n. So,

P̂sn

³
Ĉx

´
= 0.

Let C̄x be the union of all cylinders in Cx with base on a history of length strictly

greater than n. So, if k = 0, 1, ... is the smallest number such that n < Zk+1, then

C̄x is the union of the sets C(zt, xt+1), t ≥ k and zt ∈ {0, 1}Zt (and the set C(x1) if
k = 0). Suppose first that that k = 0. Then, P̂sn assigns probability either 0.5

Z1−n or

0 to the cylinder C(x1) (depending on whether x1 is an extension of sn). Moreover,

P̂sn assigns probability
1

2Mt+1
to the union of C(zt, xt+1), zt ∈ {0, 1}Zt. Hence,

P̂sn(C̄x) ≤ 0.5 +
X
t>1

1

2Mt
< 0.5 + ε < 1. (8.3)

By analogous argument, (8.3) holds with
X
t>k

replacing
X
t>1

for k > 0. Obviously,

Cx = Ĉx ∪ C̄x, and so

P̂sn(Cx) ≤ P̂sn(Ĉx) + P̂sn(C̄x) < 1.

Thus,

P̂sn((Cx)
c) > 0.

Step 3: We show that Cx is the union of all cylinders C ∈ =0 such that P̂ x(C) = 0.

Let C ∈ =0 be an arbitrary cylinder. If P̂ x(C) = 0 then P̂ (C ∩ (Cx)
c) = 0.

By Step 2, C is contained in Cx. On the other hand, if C is contained in Cx then

C ∩ (Cx)
c = ∅. Hence, P̂ x(C) = 0.

It follows from Steps 1 and 3 that

T (s, P̂ x) =
0 if s ∈ Cx;

1 if s /∈ Cx.
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Fix a path s ∈ Ω. Let s be (s̄1, ...., s̄t., ...) where s̄t ∈ Xt. So, s̄1 are the first M1

outcomes of s and s̄t+1 are the Mt+1 outcomes that follow the first Zt outcomes of s.

By definition, s ∈ Cx if and only if s̄t = xt for some t ∈ N. Hence,n
x ∈ X | T (s, P̂ x) = 0

o
= {x ∈ X | xt = s̄t for some t ∈ N} . (8.4)

Moreover,

P̂
n
X̃t = st for some t ∈ N

o
≤
X
t∈N

P̂
n
X̃t = s̄t

o
=
X
t∈N

1

2Mt
≤
X
t∈N

rt < ε. (8.5)

Let ζ ∈ ∆(∆(Ω)) be such that P̂ x is selected whenever X̃ = x. It follows from

(8.4) and (8.5) that

ζ
n
P̂ x ∈ ∆(Ω) | T (s, P̂ x) = 0

o
< ε.

¥

Proof of Proposition 6: Since

Ω− ÂP ⊂ Ω−
Ã
Ak(P ) ∪

∞[
i=1

{si}
!
⊂

∞[
i=1

£
Ck
P (s

i
t)− {si}

¤
,

for all k ∈ N ,

P (Ω− ÂP ) ≤
∞X
i=1

P (Ck
P (s

i
t)− {si}) ≤

∞X
i=1

1

2k+i
=
1

2k
,

also for all k ∈ N , which yields that P (ÂP ) = 1.22 Thus, the global category test does

not reject the truth with probability one. It remains to show that the test cannot be

22Notice that our construction proves Proposition 3. Since P (ÂP ) = 1 and

ÂP =
∞[
k=1

Ak(P ) ∪
∞[
i=1

{si},

for every δ ∈ (0, 1) there must exist an m such that

P

Ã
m[
k=1

Ak(P ) ∪
m[
i=1

{si}
!
≥ 1− δ,

and by construction,
m[
k=1

Ak(P ) ∪
m[
i=1

{si}

is a closed set with empty interior.
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manipulated. Suppose we are given a ζ ∈ ∆∆(Ω). We first show that there exist a

subset Â of Ω, which is a countable union of closed sets with empty interior, and a

Borel set B ⊂ ∆(Ω) such that:

ζ (B) = 1, (8.6)

∀P∈B ÂP ⊂ Â. (8.7)

We show later (in corollary 2, following this proof) that for every s the set {P ∈
∆(Ω) : s ∈ ÂP} is Borel. Since

B ⊂ {P ∈ ∆(Ω) : s ∈ ÂP}

for every s ∈ Ω− Â, we will obtain that

∀s∈Ω−Â ζ
³
{P ∈ ∆(Ω) : s ∈ ÂP}

´
= 0.

This means that Ω− Â ⊂ R0ζ , and so the complement of R
0
ζ is a first category set. To

complete the proof one has to apply proposition 4.

We will now construct sets Â and B with properties (8.6)-(8.7). Consider the sets

Bi
k(m) ≡ {P ∈ ∆(Ω) : t(i, k, P ) > m} ;

lemma 3, following this proof, shows that the sets Bi
k(m) are open, and so Borel.

Since this sequence of sets is descending (with respect to m, for given k and i) and

its intersection is empty, for every l = 1, 2, ... there exists an m such that

ζ(Bi
k(m)) ≤

1

2k+i+l
;

denote by mi
k(l) any such m.

Let now

Ai
k(l) ≡ Ω− C(sim) for m = mi

k(l),

Ak(l) ≡
∞\
i=1

Ai
k(l),
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and

Â(l) ≡
∞[
k=1

Ak(l) ∪
∞[
i=1

{si}.

The set A(l) is a countable union of closed sets with empty interior by an argument

analogous to that used in the case of the sets ÂP , and thus so is

Â ≡
∞[
l=1

Â(l).

To show that (8.6)-(8.7) are satisfied, notice that, by the definition of Bi
k(m) for

m = mi
k(l), if P /∈ Bi

k(m), then C(sim) ⊂ Ck
P (s

i
t) for t = t(i, k, P ); therefore

if P ∈ ∆(Ω)−
∞[
i=1

Bi
k(m

i
k(l)), then Ak(P ) ⊂ Ak(l),

which in turn yields that

if P ∈ ∆(Ω)−
∞[
k=1

∞[
i=1

Bi
k(m

i
k(l)), then ÂP ⊂ Â(l).

Thus,

B ≡
∞[
l=1

"
∆(Ω)−

∞[
k=1

∞[
i=1

Bi
k(m

i
k(l))

#
⊂ {P ∈ ∆(Ω) : ÂP ⊂ Â}.

It remains to show that ζ (B) = 1; however

ζ

Ã
∆(Ω)−

∞[
k=1

∞[
i=1

Bi
k(m

i
k(l))

!
≥ 1−

∞X
k=1

∞X
i=1

ζ
¡
Bi
k(m

i
k(l))

¢
≥

≥ 1−
∞X
k=1

∞X
i=1

1

2k+i+l
= 1− 1

2l

for every l ∈ N .¥

Lemma 3. For every t ∈ N , the set

Bi
k(t) ≡ {P ∈ ∆(Ω) : t(i, k, P ) > t}

is open.
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Proof: Let P ∈ Bi
k(t). By definition, t(i, k, P ) > t, which means that

P (C(sit)− {si}) >
1

2k+i
.

Further, there exists an m > t such that

P (C(sit)− C(sim)) >
1

2k+i
; (8.8)

indeed, the sequence sets C(sit)− C(sim) is ascending (as m goes to infinity), and its

union is equal to C(sit)− {si}.
Note that each cylinder is an open and closed subset of Ω, and so is C(sit)−C(sim).

Thus, the function f : Ω→ R given by:

f(s) = 1 for every s ∈ C(sit)− C(sim)

f(s) = 0 for every s /∈ C(sit)− C(sim)

is continuous.

Let

δ ≡ P (C(sit)− C(sim))−
1

2k+i
, (8.9)

and let the set N(P ) stands for all measures Q ∈ ∆(Ω) such that¯̄̄̄Z
fdQ−

Z
fdP

¯̄̄̄
< δ.

This last inequality means that¯̄
Q(C(sit)− C(sim))− P (C(sit)− C(sim))

¯̄
< δ;

by (8.8) and (8.9),

Q(C(sit)− {si}) ≥ Q(C(sit)− C(sim)) > 1/2
k+i,

which implies that Q ∈ Bk
i (t).

That is, the set N(P ), which is an open neighborhood of P in weak∗-topology, is

contained in Bi
k(t).¥
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Corollary 2. For every s ∈ Ω, the set {P ∈ ∆(Ω) : s ∈ ÂP} is Borel.

Proof: If s = si for some i ∈ N , then {P ∈ ∆(Ω) : s ∈ ÂP} = ∆(Ω) by

definition. Suppose therefore that s 6= si for any i ∈ N . It suffices to show that the

sets {P ∈ ∆(Ω) : s ∈ Ck
P (s

i
t), t = t(i, k, P )} are Borel, as

{P ∈ ∆(Ω) : s ∈ ÂP} = ∆(Ω)−
" ∞\
k=1

Ã∞[
i=1

©
P ∈ ∆(Ω) : s ∈ Ck

P (s
i
t)
ª!#

.

Take m = 0, 1, ... such that s ∈ Ck
P (s

i
m)−Ck

P (s
i
m+1); since s 6= si and Ck

P (s
i
0) = ∆(Ω),

such m is unique. Observe now that

{P ∈ ∆(Ω) : s ∈ Ck
P (s

i
t), t = t(i, k, P )} = ∆(Ω)− {P ∈ ∆(Ω) : t(i, k, P ) > m},

and so the set {P ∈ ∆(Ω) : s ∈ Ck
P (s

i
t), t = t(i, k, P )} is closed by lemma 3.

Proof of Proposition 7: We prove proposition 7 under a weaker assumption

that the test T does not reject an informed expert with probability 1− ε. Notice first

that proposition 2 also applies (by a similar argument) to tests that do not reject an

informed expert with probability 1− ε. That is, there exists a rejection test T δ that

is harder then T and does not reject an informed expert with probability 1− ε− δ/2.

By construction, the rejection sets (AP )
c (of the test T δ) are a countable union of

disjoint cylinders Ci
P , i ∈ N, with base on finite histories. Let T δ,m be the test such

that the rejection sets (Am
P )

c are the finite union of all cylinders Ci
P with base on a

history on {0, 1}m. By definition, T δ is harder than T δ,m . So, T δ,m does not reject an

informed expert with probability 1− ε− δ/2. Moreover, T δ,m is a finite test. Hence,

by proposition 1, there exists ζT,m such that for every history s ∈ {0, 1}∞

ζT,m
©
P ∈ ∆(Ω) | T δ,m (s, P ) = 0

ª
≤ ε+ δ.

Let sm be any finite history on {0, 1}m such that T (sm, P ) = 0. Given that T δ

is harder than T it follows that T δ(sm, P ) = 0. By definition, C(sm) ⊆ (AP )
c and,

therefore, C(sm) ⊆ (Am
P )

c . So, T (sm, P ) = 0 implies that T δ,m (sm, P ) = 0. Thus,

{P ∈ ∆(Ω) | T (sm, P ) = 0} ⊆
©
P ∈ ∆(Ω) | T δ,m (sm, P ) = 0

ª
.
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So, for every sm ∈ {0, 1}m, ζT,m {P ∈ ∆(Ω) | T (sm, P ) = 0} ≤ ε+ δ.¥

Proof of Proposition 8. Fix ε > 0, δ > 0 and K ∈ N . We first show that

there exist b > 0 and m̄ ∈ N such that if m ≥ m̄ then T β does not reject any theory

P ∈ Λm,δ with probability 1− ε.

Step 1: For every δ > 0, there exists b > 0 such thatµ
1

2
+ b

¶( 12+ δ
4)
·
µ
1

2
− b

¶( 12− δ
4)

>
1

2
. (8.10)

Indeed, notice that at b = 0 the left-hand side is equal to the right-hand side and

the derivative of the right-hand side (at b = 0) is equal to δ/2 > 0.

Fix such a b > 0.

Step 2: Consider the Bernoulli scheme with the probability of success equal to
1
2
+ δ

2
. By the law of large numbers, there exists an n ∈ N such that for every n ≥ n

the success rate exceeds 1
2
+ δ

4
with probability 1− ε (or higher). By step 1, we can

additionally assume that

⎛⎝¡12 + b
¢( 12+ δ

4) ·
¡
1
2
− b
¢( 12− δ

4)

1
2

⎞⎠n

≥ K. (8.11)

Given any P ∈ Λm,δ and s ∈ Ω, denote by nm(P, s) the number of periods t ≤ m

such that

fPt−1(s) ∈ [0,
1

2
− δ

2
) or fPt−1(s) ∈ (

1

2
+

δ

2
, 1].

There exists m̄ ∈ N such that if m ≥ m̄ then for any P ∈ Λm,δ and s ∈ Ω that

number nm(P, s) must exceed n.

Indeed, if fPt−1(s) ∈ [12 −
δ
2
, 1
2
+ δ

2
] for all but (at most) n of the periods t ≤ m,

then
1

m

mX
t=1

(fPt−1(s)− 0.5)2 ≤
1

m

"
n(0.5)2 + (m− n)

µ
δ

2

¶2#
;
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since the right-hand side of this inequality cannot exceed δ for sufficiently large m,

we obtain a contradiction with P ∈ Λm,δ.23

Let now bnm(P, s) denote the number of periods t ≤ m that satisfy the following

condition: fPt−1(s) ∈ [0, 12 −
δ
2
) and It(s) = 0 or fPt−1(s) ∈ (12 +

δ
2
, 1] and It(s) = 1. By

construction, for any m ≥ m̄ and P ∈ Λm,δ the set

B(m,P ) =

½
s ∈ Ω :

bnm(P, s)
nm(P, s)

>
1

2
+

δ

4

¾
has P−probability 1− ε (or larger). Thus, if sm = s | m and s ∈ B(m,P ) then

P̄ (C(sm)) ≥
µ
1

2
+ b

¶( 12+ δ
4)n
·
µ
1

2
− b

¶( 12− δ
4)n
·
µ
1

2

¶m−n
=

=

⎛⎝¡12 + b
¢( 12+ δ

4) ·
¡
1
2
− b
¢( 12− δ

4)

1
2

⎞⎠n

·
µ
1

2

¶m

,

where n = nm(P, s). By 8.11, if m ≥ m̄ then nm(P, s) ≥ n and, by construction,

B(m,P ) has P−probability 1− ε (or larger). So, if m ≥ m̄ then P̄ (C(sm)) exceeds

K(0.5)m with P−probability 1− ε (or larger).

We now show that if Kε > 1 then rejection by the test T β cannot be delayed,

with probability ε. Let I ≡ {1, ..., 2m}. Denote by F ≡
§
2m

K

¨
the largest integer no

larger than 2m

K
. Let Z be the set of all z ∈ IF such that no two coordinates of z are

equal. By Zi, i ∈ I, denote the subset of Z that consists all elements z ∈ Z such that

one (and only one) coordinate of z is equal to i. Let xz ∈ [0, 1], z ∈ Z.

Step 1: We shall show first that ifX
z∈Zi

xz ≥ ε, (8.12)

for all i ∈ I, then X
z∈Z

xz ≥ Kε. (8.13)

23We assume here that δ < 4, but if δ ≥ 4, then Λm,δ = ∅.
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Indeed, any z ∈ Z belongs to a set Zi if (and only if) i is one of the coordinates

of z; so, it belongs to exactly F such sets. Thus,

F
X
z∈Z

xz =
X
i∈I

X
z∈Zi

xz ≥ 2mε.

Step 2: A theory P passes the test T β only on the histories sm to which P̄ assigns

probability greater than K
2m
. For each P , there are at most F histories sm with this

property. Let T 0 be any test easier than T such that each theory P passes T 0 on

exactly F histories sm.

Identify I with the set of all possible histories sm. Given a z ∈ Z, let Λz stand for

the set of all probability measures that pass T 0 on all histories sm from the range of

z. Given z 6= z0, Λz ∩ Λz0 = ∅ because no theory can pass T 0 on the ranges of z and
z0 simultaneously (together they contain more than F histories sm). Fix ζ ∈ ∆∆(Ω).

Let xz ≡ ζ(Λz). Assume, to the contrary, that ζ can delay rejection of T 0 bym periods

with probability ε. Then, by definition, (8.12) is satisfied and, by Step 1, so is (8.13).

It is, however, a contradiction because

1 ≥
X

ζ(Λz) ≥ Kε > 1.

¥

Proof of Proposition 9: (i) Take any probability measure P ∈ Λm,δ. For any

s ∈ Ω and t ≤ m define functions gs,t, hs,t : Ω→ R by

gs,t(r) = 1 if rt−1 = st−1 and gs,t(r) = 0 otherwise,

hs,t(r) = 1 if rt = st and hs,t(r) = 0 otherwise.

By taking ε small enough, we guarantee that if

∀s∈Ω
¯̄
EPgs,t −EQgs,t

¯̄
< ε,

then the measure assigned by P and Q to the cylinder C(st−1) are as close as we

wish; by taking ε small enough, we also guarantee that if

∀s∈Ω
¯̄
EPhs,t −EQhs,t

¯̄
< ε,
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then the measure assigned by P and Q to the cylinder C(st) are as close as we wish.

Thus if a probability measure Q satisfies the two inequalities for any s ∈ Ω and t ≤ m,

then fPt−1(s) and fQt−1(s) are as close as we wish, which (by definition) implies that

Q ∈ Λm,δ, as so does P .

(ii) Take any P ∈ ∆(Ω), continuous functions h1, ..., hl : Ω→ R, and positive real

numbers ε1, ..., εl. It follows from the continuity of h1, ..., hl and the compactness of

Ω that there exists a (large enough) k ∈ N such that

rk = sk =⇒ ∀i=1,...,l |hi(r)− hi(s)| < εi.

Thus, if two probability measures P and Q have the property that

∀s∈Ω P (C(sk)) = Q((sk)), (8.14)

then

∀i=1,...,l
¯̄
EPhi −EQhi

¯̄
< εi.

Take a probability measure Q satisfying (8.14) with the following property: for

any s ∈ Ω and t > k

fQk (t) = q for some q ∈ (δ, 1], (8.15)

where ¡
δ − 0.5

¢2
= δ.

By (8.15), Q ∈ Λm,δ whenever m is sufficiently large, and by (8.14), Q belongs to

the neighborhood of the probability measure P determined by h1, ..., hl : Ω→ R and

ε1, ..., εl.¥
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