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Model-Free Impulse Responses∗

Abstract

This paper introduces methods for computing impulse response functions that do not require specification
and estimation of the unknown dynamic multivariate system itself. The central idea behind these methods
is to estimate flexible local projections at each period of interest rather than extrapolating into increasingly
distant horizons from a given model, as it is usually done in vector autoregressions (VAR). The advantages
of local projections are numerous: (1) they can be estimated by simple regression techniques with standard
regression packages; (2) they are more robust to misspecification; (3) standard error calculation is direct;
and (4) they easily accommodate experimentation with highly non-linear and flexible specifications that
may be impractical in a multivariate context. Therefore, these methods are a natural alternative to
estimating impulse responses from VARs. An application to a simple, closed-economy monetary model
suggests that the output loss and inflation effects of an interest rate shock depend on the stage of the
business cycle.

• Keywords: impulse response function, local projection, vector autoregression, nonlinear.
• JEL Codes: C32, E47, C53.



1 Introduction

In response to the rigid identifying assumptions used in theoretical macroeconomics during the

seventies, Sims (1980) provided what has become the standard in empirical macroeconomic re-

search: vector autoregressions (VARs). Since then, researchers in macroeconomics often compute

dynamic multipliers of interest (such as impulse responses and forecast-error variance decomposi-

tions) by specifying a VAR, even though the VAR per se is, often times, of no particular interest.

However, VAR-based impulse responses are restrictive in a manner seldom recognized. In particu-

lar impulse responses are constrained to have the following properties1 : (1) symmetry, responses

to positive and negative shocks are mirror images of each other; (2) shape invariance, responses

to shocks of different magnitudes are scaled versions of one another; (3) history independence, the

shape of the responses is independent of the local conditional history; and (4) multidimensionality,

responses are nonlinear functions of high-dimensional parameter estimates which complicate the

calculation of standard errors and have the potential of compounding misspecification errors. In

addition, a VAR is a representation of a system of linear, stochastic difference equations that may

not appropriately represent general economic processes whose solutions are nonlinear stochastic

difference equations instead.

Impulse responses (and variance decompositions) are important statistics in their own right and

thus avoiding these constraints is a natural empirical objective. This paper introduces methods

for computing impulse response functions for a vector time series that do not require specification

and estimation of the unknown multivariate dynamic system itself. The central idea behind these

methods is to use local projections (a term to be defined precisely in the next section) for each pe-

riod of interest rather than extrapolating from a given model into increasingly distant horizons, as

it is usually done in a VAR. The advantages of local projections are numerous: they are disarmingly

simple to compute; they are more robust to misspecification; standard error calculation is direct;

1 The following list of properties is mostly in Koop et al., 1996.
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and they easily accommodate experimentation with highly non-linear and flexible specifications.

Since estimation of these local projections can be done equation by equation, impulse response

functions and their standard errors can be easily calculated with available standard regression

packages, thus becoming a natural alternative to estimating impulse responses from VARs.

Although there is now a number of more complex, multivariate econometric models that relax

some of the constraints implicit in VARs, systems of dynamic non-linear equations are often

difficult to estimate and are impractical for computing impulse responses — there are no closed-

form solutions and non-linear forecasts beyond one-period ahead require simulation techniques for

their calculation. Instead, this paper argues in favor of divesting the object of interest from the

primitive econometric specification of a model into methods for calculating the implied time profiles

directly from the data, and therefore, in a manner robust to a wider array of model choices and

specifications. The key insight is that most dynamic multivariate models (such as VARs) represent

global approximations to the ideal data generation process (DGP) and are optimally designed for

one-period ahead forecasting. Meanwhile, impulse responses describe the time profiles of variables

at increasingly distant horizons, suggesting that a sequence of local approximations is preferable

to a global one. Precursors of some of the ideas discussed below are Cox (1961), Tsay (1993), Lin

and Tsay (1996) and Clements and Hendry (1998).

An advantage of calculating impulse responses by local projections is that forecasting accu-

racy increases as the forecast horizon increases relative to a wide class of model misspecification.

Naturally, when the primitive model is correctly specified these projections will be less efficient.

However, Monte Carlo evidence will show that this loss in efficiency is rather small. Another ad-

vantage of the local projection method is that standard errors for impulse responses are calculated

directly from conventional regression output rather than from delta method approximations or

with substantial computational effort (such as Monte Carlo, or bootstrap methods). Monte Carlo

evidence provides support for these claims. The new methods are applied to a simple system

for the output gap, inflation, and the federal funds rate. Such a system has become popular in
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the literature that investigates the performance of monetary policy rules (see Galí, 1992, Fuhrer

and Moore, 1995a, 1995b, and Taylor, 1999). In evaluating such rules, it is crucial to determine

the relative trade-offs between inflation and output embodied by the Phillips curve. Tests of the

null of linearity against the alternative of a threshold effect based on Hansen (2000) reveal that

the responses of these trade-offs to monetary policy shocks depend on whether the economy is

growing above or below potential. In particular, the results suggest that the loss of output due to

an increase in interest rates is much smaller when the economy is below potential, a consideration

of critical importance in designing an optimal policy response.

2 Impulse Responses by Local Projections: Estimation and
Inference

2.1 Estimation

The concept of an impulse response function popularized by Sims’ (1980) seminal paper is often

and almost exclusively associated with linear multivariate Markov models — such as VARs — and

their Wold decomposition. However, impulse responses are statistics that can almost always be

calculated from any data generating process (DGP), even from those that do not have a Wold

decomposition (see Koop et al. 1996; and Potter, 2000). The more general definition of an impulse

response that I adopt in this paper is found in Hamilton (1994) and Koop et al. (1996) and is

given by

∂yt+s
∂δt

¯̄̄̄
δt=di

= E(yt+s|δt = di;Xt−1)− E(yt+s|δt = 0;Xt−1) s = 0, 1, 2, ... (1)

where the operator E(.|.) denotes the best, mean squared error predictor; yt is an n× 1 random

vector; Xt−1 ≡ (yt−1,yt−2, ...)0; 0 is of dimension n×1; and D is an n×n matrix, whose columns

di contain the relevant experimental shocks. It is worth clarifying with an example the meaning

of these experimental shocks, di.

Time provides a natural mechanism for organizing the causal linkages among the variables
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in yt but it is ineffective for identifying its contemporaneous causal relations. To overcome this

deficiency, one common strategy is to assume a Wold-causal order for the elements of yt in the

triangular factorization of the contemporaneous, variance-covariance matrix (say Ω), conditional

on the past. Therefore, if Ω = PP 0, where P is lower-triangular, then experimental shocks can be

obtained by setting D = P−1 and the ith column of D, di, then represents the “structural shock”

to the ith element in yt in the usual parlance of the VAR literature. This type of identification

assumption, while common, is not unique. The issue of identification is an important one but

it is not the object of this paper. Instead, the paper proceeds by taking D as given by the

practitioner’s choice of identification assumptions and therefore subsequent results do not depend

on this choice.2

Instead of calculating impulse responses from a pre-specified, multivariate model, consider

computing the multi-step ahead forecasts required in definition (1) from projections of each yt+s

onto the linear space generated by Xt−1 ≡ (yt−1,yt−2, ...)0. I will use the term “local projections”

to clarify that a different projection is estimated for each horizon s over which the impulse response

is calculated, in contrast to a typical VAR, which is a simple projection of yt onto Xt−1. The term

“local projections” is therefore aptly evocative of nonparametric considerations. Local projections

for yt+s can be easily estimated by the sequence of least squares regressions

yt+s = αs +Bs+11 yt−1 +Bs+12 yt−2 + ...+Bs+1p yt−p + ust+s s = 0, 1, 2, ..., h (2)

where αs is an n× 1 vector of constants, the Bs+1i are matrices of coefficients for each lag i and

horizon s+1 (this timing convention will become clear momentarily). I truncate the projection at

lag p, which can be determined by information criteria for each horizon s individually (in principle,

there is no restriction that requires that all horizons share the same lag truncation). Naturally,

impulse responses can be calculated up to a maximum horizon h that depends on the sample size

2 For statistically-based methods of structural identification the reader is encouraged to consult Granger and
Swanson (1997) and Demiralp and Hoover (2003).
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and available degrees of freedom.

According to definition (1), the impulse responses calculated from (2) are

d∂yt+s
∂δt

¯̄̄̄
¯
δt=di

= bBs1di s = 0, 1, 2, ..., h (3)

with the obvious normalization B01 = I. The parameters B
s
1 are consistently estimated from simple

least squares although, as we will see momentarily, the residuals ust+s will not be white noise in

general. This, however, poses no difficulty. These residuals will have an unknown, moving-average-

type structure involving information dated t, t+ 1, ..., t+ s which by construction is uncorrelated

with the regressors yt−1,yt−2, ...,yt−p. Expression (2) is reminiscent of the “adaptive forecasts” in

Lin and Tsay (1996) or the “dynamic forecasts” in Clements and Hendry (1998) for which proofs

of asymptotic consistency and normality are available in Weiss (1991).

Expression (2) describes a system of n linear equations that can be estimated equation by

equation without loss of generality (since the regressors are common to all equations and there

are no cross-equation restrictions). Therefore, the response of the ith variable at time t+ s to an

experimental shock assigned to the jth variable is simply calculated from the univariate regression

yi,t+s = αsi + b
s+1
i,1(1)y1,t−1 + ...+ b

s+1
i,j(1)yj,t−1 + ...+ b

s+1
i,n(1)yn,t−1+ (4)

bs+1i(2)yt−2 + ...+ b
s+1
i(p)yt−p + u

s
i,t+s s = 0, 1, 2, ..., h

where αsi is the i
th element of the vector of constants αs, bsi,j(k) denotes the (i, j) element of the

matrix Bsk, and b
s
i(k) is the i

th row of the matrix Bsk. The impulse response function thus becomes,

d∂yi,t+s
∂δt

¯̄̄̄
¯
δt=dj

= bbsi,1(1)dj,1 + ...+bbsi,j(1)dj,i + ...+bbsi,n(1)dj,n s = 0, 1, 2, ..., h.

and the corresponding normalization b0i,j(1) = 1.

The local projections described in expressions (2)-(4) are also very useful in calculating the

variance decompositions of the forecast error variances. In fact, these are easily calculated as a
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by-product of the local projection at each horizon s. By definition, the error in forecasting yt, s

periods into the future is given from expression (2) by

yt+s − E(yt+s|Xt−1) = ust+s s = 0, 1, 2, ...

from which the unnormalized mean squared error (MSEu) is

MSEu(E(yt+s|Xt−1)) = E(ust+sus0t+s) s = 0, 1, 2, ..., h

The choice experiment D renormalizes the MSE into

MSE(E(yt+s|Xt−1)) = D−1E(ust+sus0t+s)D0−1 s = 0, 1, 2, ..., h (5)

from which the traditional variance decompositions can be calculated by plugging in the usual

sample-based equivalents. For comparison, in traditional VARs the unnormalized MSE is

MSE(E(yt+s|Xt−1)) = E(u0tu00t ) +Ψ1E(u0tu00t )Ψ01 + ...+ΨsE(u0tu00t )Ψ0s s = 0, 1, 2, ..., h

where the Ψi and E(u0tu
00
t ) are computed from the moving-average representation and the residual

variance-covariance matrix of the estimated VAR. The quality of the variance decompositions will

therefore depend on how well the Ψi are approximated by the VAR, and therefore depend more

heavily on having the correct specification of the DGP, unlike expression (5).

2.2 Inference: Relation to VARs

A VAR specifies that the n×1 vector yt depends linearly onXt−1 ≡ (yt−1,yt−2, ...,yt−p)0, through

the expression

yt = µ+Π
0Xt−1 + vt (6)
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where vt is an i.i.d. vector of disturbances and Π0 ≡ [ Π1 Π2 ... Πp]. The VAR(1) companion

form to this VAR can be expressed by defining3

Wt ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt − µ

yt−1 − µ
...

yt−p+1 − µ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;F ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π1 Π2 ... Πp−1 Πp

I 0 ... 0 0

0 I ... 0 0

...
...

...
...

...

0 0 ... I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;νt ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vt

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

and then realizing that according to (6) and (7),

Wt = FWt−1 + νt (8)

from which s-step ahead forecasts can be easily computed since

Wt+s = νt+s + Fνt+s−1 + ...+ F sνt + F s+1Wt−1

and therefore

yt+s − µ = vt+s + F 11 vt+s−1+...+ F s1vt+ (9)

F s+11 (yt−1 − µ) + ...+ F s+1p (yt−p − µ)

where F si is the i
th upper, n× n block of the matrix F s (i.e., F raised to the power s).

Assuming Wt is covariance-stationary (or in other words, that the eigenvalues of F lie inside

the unit circle) the infinite vector moving-average representation of the original VAR in expression

(6) is

yt = γ + vt + F
1
1 vt−1 + F

2
1 vt−2 + ...+ F

s
1vt−s + ... (10)

3 For a more detailed derivation of some of the expressions that follow the reader should consult Hamilton
(1994), chapter 10.
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and the impulse response function is given by

∆yt+s
∆δt

¯̄̄̄
δt=di

= F s1di

In practice, the coefficients of the impulse response function can be calculated with estimates of

the VAR coefficients Πi i = 1, ..., p and the following recursion (see Hamilton, 1994)

F 11 = Π1 (11)

F 21 = Π1F
1
1 +Π2

...

F s1 = Π1F
s−1
1 +Π2F

s−2
1 + ...+ΠpF

s−p
1

Expressions (9) and (11) are useful in establishing the relationship between VARs and local

projections. Specifically, comparing expression (2), repeated here for convenience,

yt+s = αs +Bs+11 yt−1 +Bs+12 yt−2 + ...+Bs+1p yt−p + ust+s s = 0, 1, 2, ..., h (12)

with expression (9) rearranged,

yt+s = (I − F s1 − ...− F sp )µ+ F s+11 yt−1 + ...+ F s+1p yt−p + (vt+s + F 11 vt+s−1 + ...+ F
s
1vt) (13)

it is obvious that,

αs = (I − F s1 − ...− F sp )µ

Bs+11 = F s+11

ust+s = (vt+s + F
1
1 vt+s−1 + ...+ F

s
1vt) (14)
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Therefore, when the DGP for yt is the VAR in expression (6), the local projections in expression

(2) are equivalent to estimating the coefficients of the impulse response given by the sequence

of regressions (13). The error terms ust+swill have a moving average form given by expression

(14) involving the lags of the intervening residuals vt+s up to time t, but which are otherwise

uncorrelated with the regressors since these are dated t−1, ..., t−p. Proceeding with this compar-

ison and momentarily ignoring the recursions in (11), consider calculating the impulse response

coefficients from the VAR by estimating the following system instead. Let Yt ≡ (yt+1, ...,yt+h),

Vt ≡ (vt+1, ...,vt+h), and Xt ≡ (yt−1,yt−2, ...,yt−p), then stack the VAR-implied expressions (9)

to form the stacked-system

Yt = XtΨ+ VtΦ (15)

where (ignoring the constant terms)

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F 11 F 21 ... Fh1

F 12 F 22 ... Fh2

...
... ...

...

F 1p F 2p ... Fhp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In F 11 ... Fh1

0 In ... Fh−11

...
... ...

...

0 0 ... In

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and given that E(vtv0t) = Ωv, then E(VtV 0t ) = Φ (Ih ⊗ Ωv)Φ0 ≡ Σ.

Maximum likelihood estimation of the system implied by the VAR expressions (9) in expression

(15) could then be accomplished by standard GLS formulas according to,

vec(bΨ) = £(I ⊗X)0Σ−1 (I ⊗X)¤−1 (I ⊗X)0Σ−1vec(Y ) (16)

The usual impulse responses would then be given by rows 1 through n and columns 1 through

(nh) of bΨ and standard errors could be computed directly from the regression output rather than

from delta method approximations or simulation methods based on Monte Carlo or bootstrap
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replication. Further simplification would be achieved due to the special structure of the variance-

covariance matrix Σ, which allows GLS estimation of the system block by block.

This disquisition not only illustrates a new method for computing standard errors from VARs

(which while nice, is subsidiary to the main message of the paper) but it also shows that when

the DGP is given by a VAR and the lag structure is properly specified, local projections give

estimates of the impulse responses equivalent to those in the VAR. However, in general the true

DGP is unknown so the specific structure of Φ will be unknown as well and we cannot use the

GLS estimation strategy in expression (16). This poses no difficulty, however. The structure of

Φ suggests that the error terms ust+s in the expression for the local projections (2) will in general

have some form of moving-average structure, whose order is a function of s, the horizon.

Therefore, a recommended strategy is to estimate linear projections by simple linear regression

methods and to use heteroskedasticity and autocorrelation (HAC) robust standard errors. Thus,

denoting by bΣL the estimated HAC, variance-covariance matrix of the coefficients bBs1 in expression
(2), a 95% confidence interval for each element of the impulse response at time s can be constructed

approximately as 1.96 ±
³
d0ibΣLdi´ . Monte Carlo experiments in section 4 suggest, that even

when the true underlying model is a VAR, there is virtually no loss in efficiency in proceeding

this way. A final note is in order with regard to the practicality of the joint estimation implied

in expression (16): the dimension of the system rapidly increases with the number of variables,

lags, and horizons for which the impulse response is calculated. The practical implication for

the counterpart linear projections based on expression (2) is that, unless the objective is to do

cross-impulse response joint hypothesis tests (this point is discussed in more detailed in the next

subsection), it is computationally more convenient to do block-by-block joint estimation only to

the extent that the variance-covariance matrix of the bBs1 is necessary for formal joint hypothesis
tests. To highlight that the efficiency losses of single equation estimation are minor relative to joint

estimation, the Monte Carlo experiments and empirical application proceed with single equation

estimates.
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2.3 Discussion

It is not difficult to grasp that impulse responses calculated by local projections are more robust to

misspecification than VAR-based estimates: impulse responses characterize the slope or correlation

between yj,t+s and yi,t−1, conditional on the past and on the normalization of the marginal

experiment — the “shock.” While local projections estimate this sample moment directly from the

data, VARs approximate it indirectly from their fit of the conditional model of yt on its past. As a

simple example, suppose the DGP is a VAR(2) incorrectly specified as a VAR(1), then according

to the recursions in (11),

Impulse VAR(1) VAR(2)

F 11 eΠ1 Π1

F 21 eΠ21 Π21 +Π1Π2

F 31 eΠ31 Π31 + 2Π1Π2

...
...

...

(17)

where eΠ1 = Π1 + Π2Γ1Γ−10 and Γj is the jth autocovariance of yt. Thus expression (17) demon-

strates that a misspecified VAR produces biased estimates of the impulse response, the severity

of which will naturally depend on the omitted terms (in this case Π2) and on the persistence of

the system (if the system is stationary, as s→∞, the impulse responses converge to zero so that

the biases disappear in the long-run).

VARs mask another important problem affecting inference and which is highlighted in Sims

and Zha (1999). Traditional, two standard-error bands for impulse responses reported in numerous

empirical studies provide proper inference for point estimates of the impulse response’s individual

coefficients but are otherwise inappropriate for any type of joint hypothesis test. Because impulse

responses are nonlinear functions of estimated coefficients (see expression (11)), it is difficult and

cumbersome to calculate the variance-covariance matrix of the impulse response coefficients that

would be necessary for such tests.
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By contrast, the coefficients of impulse responses estimated by local projections are simply

the coefficients in a standard regression and their variance-covariance matrix can be estimated as

usual (provided a HAC robust estimator is used). Therefore, formal joint inference of coefficients,

tests of coefficient restrictions and even tests of restrictions across impulse responses for different

variables or shocks, is straight-forward. This is a significant advantage. However, in econometrics

flexibility always comes at the price of efficiency and it is no different here, yet Monte Carlo

evidence in the section 4 suggests efficiency losses are rather small. Furthermore, while VAR-

based forecasts account for two sources of uncertainty, namely parameter estimation uncertainty

and uncertainty about the shocks that will intervene in each period; local projections add another

natural source: model specification uncertainty.

2.4 Comparison with other Impulse Response Estimators

A number of recent papers examine ways of estimating impulse responses alternative to VARs

and it is worth comparing them to local projection methods. I consider three papers by Chang

and Sakata (2002), Cochrane and Piazzesi (2002), and Thapar (2002). A common feature of these

methods is that they proceed in two stages: in the first stage a forecast-error series, bvt, is created,
which is then used in a second stage regression involving the original data yt (for simplicity and

without loss of generality, the ensuing discussion is in the univariate context, hence the lower case

notation). Thus, in the first stage Chang and Sakata (2002) use an autoregression, Cochrane and

Piazzesi (2002) forecast errors implied by financial prices, and Thapar (2002) errors in surveys of

forecasts. The second stage regressions are respectively (with constants omitted for simplicity):

Chang and Sakata

yt+s = αsbvt + εt+s (CS)

Cochrane and Piazzesi
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yt+s − yt−1 = αsbvt + εt+s (CP)

Thapar

yt+s −Etyt+s = αsbvt + εt+s (T)

for s = 1, 2, ... These methods are reminiscent of the proposals in Barro (1977, 1978), whose second

stage regression is instead,

yt = α1bvt−1 + ...+ αpbvt−p + εt

and therefore can be seen as a truncated but direct estimate of the infinite moving average rep-

resentation of yt. The appendix shows that except for Thapar’s (2002) and Barro’s (1977, 1978)

proposals, the residuals of the second stage regression have moving average terms involving in-

formation dated t − 1, t − 2, ... (in addition to moving average terms with information dated

t + s, ..., t + 1, which also appear in the local projection method). This observation and the

fact that regressions with generated regressors make it difficult to incorporate the estimation un-

certainty of the first stage, cause these authors to recommend bootstrap methods to compute

appropriate standard errors.

The three methods just reviewed share in common the view that the error series bvt is “funda-
mental” in some sense and for Cochrane and Piazzesi (2002) and Thapar (2002), this becomes a

major selling point: because the forecast-errors are constructed from market-based (rather than

econometrically-based) expectations, all available information is appropriately incorporated and

in addition one can circumvent the issue of identification altogether. However, it is perilous to

disassociate the series of “shocks” from the underlying mechanism that generated them, specially

in a multivariate context. The Wold decomposition theorem (see Brockwell and Davis, 1991) en-

sures that any covariance-stationary process can be expressed as an infinite moving average of the
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forecast errors (i.e., the impulse response form for yt) that are optimal in the mean-square sense.

It does not guarantee however, that these “shocks” are structural in the sense of representing the

residual series that describes the DGP. This correspondence holds true only if the DGP is linear

and the linear forecasts that generate the forecast errors come from a correctly specified model.

The impulse response characterizes the partial derivatives that spell out the relative trade-offs

between different elements in yt over time in the multi-dimensional function that relates yt to its

past. Thus, while small variations in the specification of this multi-dimensional function may do

little to alter the “slopes” that measure such trade-offs, they may well generate residual series that

are relatively uncorrelated with each other. A similar point was raised by Sims (1998) in response

to a paper by Rudebusch (1998).

This argument can be underscored by an additional observation, that while it is perfectly

coherent to think of impulse responses in the context of a non-linear, non-Gaussian model for yt

(such as when the data are transition data4 ), there may not always be a natural series of “shocks”

that can be manufactured for such a model. On the other hand, it is not conceptually difficult to

see that one could obtain the impulse responses by computing the sequence of first-order marginal

effects in models that seek to explain yt+s as a function of information dated t− 1, and beyond,

just as the local projection does in expression (2).

3 Flexible Local Projections

Thus far the main apparent advantages of using local projections to estimate impulse responses

appears circumscribed to robustness to misspecification of the lag-length and ease of computation

of standard errors for joint inference (important attributes in their own right). However, because

these projections are linear, they still restrict impulse responses to be symmetric, shape-invariant,

and history independent. This section proposes generalizations of the local projection method

that can account for these properties while still preserving the simplicity in the estimation and

4 See Lancaster (1990).

14



the ability to compute appropriate standard errors.

In a traditional VAR, investigation of nonlinearities is limited by at least three considerations:

(1) the ability to jointly estimate a nonlinear system of equations; (2) the difficulty in generat-

ing multiple-step ahead forecasts from a multivariate non-linear model (which, at a minimum,

requires simulation methods since there are no closed forms available); and (3) the complication

in computing appropriate standard errors for multiple step-ahead forecasts, and thus the impulse

responses. However, with local projections the capacity to estimate impulse response coefficients

directly from univariate regression output (such as is done in expression 4), basically eliminates

these three drawbacks. Furthermore, since the impulse response coefficients are associated with

the regressors yt−1 in expression (2), exploration of nonlinearities can be made parsimonious by

concentrating on these terms alone.

A non-linear time series process yt can be expressed, under mild assumptions, as a generic

function of past values of a white noise process vt in the form

yt = Φ (vt,vt−1,vt−2, ...)

Assuming Φ(.) is sufficiently well behaved so that it can be expanded in a Taylor series expansion

around some fixed point, say 0 = (0, 0, 0, ...), then the closest equivalent to the Wold representation

in nonlinear time series is the Volterra series expansion (see Priestley, 1988),

yt =
∞X
i=0

Φivt−i +
∞X
i=0

∞X
j=0

Φijvt−ivt−j +
∞X
i=0

∞X
j=0

∞X
k=0

Φijkvt−ivt−jvt−k + ... (18)

which is a polynomial extension of the Wold decomposition in expression (10) with the constant

omitted for simplicity. Therefore, it is natural to extend the local projections in expression (2)

with polynomial terms that can approximate a wide class of smooth nonlinear functions in a

similar way. For simplicity and as an example, consider including up to cubic terms as follows,

15



yt+s = αs +Bs+11 yt−1 +Qs+11 yt−12 + Cs+11 yt−13 + (19)

Bs+12 yt−2 + ...+Bs+1p yt−p + ust+s s = 0, 1, 2, ..., h

where I do not allow for cross-product terms so that yt−12 = (y21,t−1, y22,t−1, ..., y2n,t−1)0, as a matter

of choice and parsimony. It is readily apparent that the impulse response at time s now becomes,

d∂yt+s
∂δt

¯̄̄̄
¯
δt=di

=
n bBs1 (yt−1 + di) + bQs1(yt−1 + di)2 + bCs1(yt−1 + di)3o− (20)

n bBs1yt−1 + bQs1(yt−1)2 + bCs1(yt−1)3o
=

n bBs1di + bQs1(2yt−1di + d2i ) + bCs1(3y2t−1di + 3yt−1d2i + d3i )o
s = 0, 1, 2, ..., h

and with the obvious normalizations, B01 = I, Q01 = 0n, and C01 = 0n. Several elements of this

impulse response deserve comment. First, these nonlinear estimates can be easily calculated by

least squares, equation by equation, with any conventional econometric software. Second, if some

of the terms Qsi and C
s
i are non-zero, the impulse response function will vary according to the sign

and with the size of the experimental shock defined by di. Third, the impulse response depends

on the local history yt−1 at which it is evaluated. In particular, impulse responses comparable to

local-linear or VAR-based impulse responses can be achieved by evaluation at the sample mean,

i.e. yt−1 = yt−1.

From a practical point of view, reporting impulse responses based on non-linear local projection

methods requires some additional care: each horizon estimate is no longer a point but rather

depends on the choice of di and, in this particular case, yt−1. One option is to commit to choices

of di and yt−1 which are deemed relevant for the particular economic experiment of interest.

Alternatively, one could consider reporting the expected value of the impulse response at each

horizon, conditional on the distribution of di and yt−1. Finally, one could report three-dimensional
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plots of the impulse response as a function of yt−1 for a given di of interest, for example. Potter

(2000) contains a detailed and more formal discussion of alternative ways of defining the nonlinear

impulse response.

Finally, notice that inference is still straight-forward. The 95% confidence interval for the cubic

approximation in expression (19) can be calculated by defining the scaling λi ≡ (di, 2yt−1di +

d2i , 3y2t−1di+3yt−1d
2
i +d

3
i )
0, which depends on the local history of when the impulse response

is evaluated through the terms in yt−1. Denoting bΣC the HAC, variance-covariance matrix of the
coefficients bBs1, bQs1, and bCs1 in (19), a 95% confidence interval for the impulse response at time s

is approximately, 1.96±
³
λ0ibΣCλi´ .

Flexible local projections, such as the local-cubic projection in (19), offer several interesting

possibilities. First, notice that there is no obvious multivariate specification of a primitive model

whose implied impulse responses would have the structure given by (20). Second, the impulse

responses are no longer symmetric — the quadratic terms are always positive irrespective of the

sign of the shock. Third, the responses are no longer shape invariant since the quadratic and

cubic terms are not invariant to the size of the shock. Fourth, the responses depend on the local

history at which they are evaluated through the terms yt−1. Finally, these gains do not come at

the cost of estimating wildly more complicated models (as would be necessary if we wanted to

add flexibility to a VAR) — the impulse responses can still be estimated by least squares methods

and, its error bands are easily computed.

Natural extensions to this example would consist in formulating a flexible specification for the

terms yt−1 in expression (2), that is,

yt+s = m
s(yt−1;Xt−2) + ust+s s = 0, 1, 2, ..., h

wherems(.) is a flexible form and may include any parametric, semi-parametric and non-parametric

approximation, such as Hamilton’s (2001) parametric, flexible nonlinear model; flexible discrete-

Fourier forms (see Granger and Hatanaka, 1964); artificial neural networks (see White, 1992);
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wavelets (see Percival and Walden, 2000); or more generically, non-parametric methods (see Pagan

and Ullah, 1999). In addition, since impulse responses can be calculated from univariate model

estimates, the universe of regime-switching and non-linear time series models becomes readily

available. See Granger and Teräsvirta (1993) for a review but to mention a few, these include

Hamilton’s (1989) switching-regimes model; Tong’s (1983) threshold autoregressions (TAR); and

so on. The specific choices will be dictated by the needs of each application, so an extensive review

of the attributes of each alternative falls beyond the scope of this paper. Monte Carlo experiments

in section 4 show some of the benefits of the local-cubic projection example just discussed, while

the application in section 5 shows how to compute impulse responses based on local projections

with a threshold model.

4 Monte Carlo Evidence

This section discusses two main simulations that evaluate the performance of local projections

for impulse response estimation and inference. The first experiment is based on a conventional

VAR that appears in Christiano, Eichenbaum and Evans (1996) and Evans and Marshall (1998),

among others. The experiment illustrates that local projections deliver impulse responses that

are robust to lag length misspecification, consistent, and only mildly inefficient relative to the

responses from the true DGP. The second experiment simulates a SVAR-GARCH (see Jordà and

Salyer, 2003) to show that flexible local projections do a reasonable job at approximating the

inherent nonlinearities of this model.

4.1 Christiano, Eichenbaum and Evans (1996)

This Monte Carlo simulation is based on monthly data from January 1960 to February 2001 (494

observations). First I estimate a VAR of order 12 on the following variables: EM, log of non-

agricultural payroll employment; P , log of personal consumption expenditures deflator (1996 =

100); PCOM, annual growth rate of the index of sensitive materials prices issued by the Conference

Board; FF, federal funds rate; NBRX, ratio of nonborrowed reserves plus extended credit to total
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reserves; and ∆M2, annual growth rate of M2 stock. I then save the coefficient estimates from

this VAR and simulate 500 series of 494 observations using multivariate normal residuals and the

variance-covariance matrix from the estimation stage. To start the simulation, all 500 runs are

initialized with the first 12 observations from the data. Information criteria based on the data

suggest the lag-length to be twelve if using Akaike’s AIC and Hurvich and Tsai’s5 AICc, or two

if using Schwartz’s SIC. These choices are very consistent across the 500 simulated runs.6

The first experiment compares the impulse responses that would result from fitting a VAR

of order two (as SIC would suggest) with local-linear and -cubic projections of order two as

well. Although a reduction from twelve to two lags may appear severe, this is a very mild form

misspecification in practice. The results are displayed graphically in figure 1 rather than reporting

tables of root mean-squared errors, which are less illuminating. Each panel in figure 1 displays

the impulse response of a variable in the VAR due to a shock in the variable FF,7 calculated as

follows: the thick-solid line is the true VAR(12) impulse response with two standard-error bands

displayed in thick-dashed lines (these are based on the Monte Carlo simulations of the true model).

The responses based on a VAR(2) are displayed by the line with squares; the responses from the

local linear approximation are displayed by the dashed line; and the responses from the cubic local

approximation are displayed by the line with circles.

Several results deserve comment. The VAR(2) responses often fall within the two standard-

error bands of the true response and have the same general shape. This supports the observation

that the VAR(2) is only mildly misspecified. However, both the local-linear and -cubic projections

are much more accurate at capturing detailed patterns of the true impulse response over time,

even at medium- and long-horizons. In one case, the departure from the true impulse response

was economically meaningful: the response of the variable P. The response based on the VAR(2)

5 Hurvich and Tsai (1993) is a correction to AIC specifically designed for VARs.

6 Although the true DGP contains 12 lags, the coefficients used in the Monte-Carlo are based on the estimated
VAR and it is plausible that many of these coefficients are not significantly different from zero in practice.

7 Responses to shocks in all the variables are available upon request. For the sake of brevity, the other figures
are not enclosed in the paper. The omitted figures present results that are similar to the ones reported here.
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is statistically different from the true response for the first 17 periods, and suggests that prices

increase in response to an increase in the federal funds rate over 23 out of the 24 periods displayed.

Many researchers have previously encountered this type of counterintuitive result and dubbed it the

“price puzzle.” Sims (1992) suggested this behavior is probably related to unresolved endogeneity

issues and proposes including a materials price index, as it is done here with PCOM . In contrast,

the local-linear projection is virtually within the true two standard error bands throughout the

24 periods depicted, and is strictly negative for the last 7 periods.

The second experiment shows that local projection methods are consistent under true speci-

fication by calculating impulse responses with up to 12 lags. The results are reported in figure

2, also for a shock to FF only. Thus, the thick line is the true impulse response, along with

two standard error bands displayed in thick-dashed lines. The responses based on local linear

projections are displayed with the dashed line and the responses based on local cubic projections

are displayed by the line with circles. Generally speaking, the responses by either approximation

literally lie on top of the true response8 with occasional minor differences that disappeared with

slightly bigger samples, not reported here.

The final set of experiments evaluates the standard error estimates of the impulse response

coefficients (which are commonly used to display error bands around impulse responses). In order

to stack the odds against local projection methods and because in practice we never know the

true multivariate DGP describing the data, I consider standard errors calculated from univariate

projections, equation by equation. Specifically, I generated 500 runs of the original series and then

I fitted a VAR(12) and local-linear and -cubic projections with 12 lags as well. Then I computed

Monte Carlo standard errors for the VAR(12) to give a measure of the true standard errors, and

then calculated Newey-West9 corrected standard errors for the local projections. Table 1 reports

these results for each variable in response to a shock in FF as well.

8 This is also true for the responses to all the remaining shocks that are not reported here but are available
upon request.

9 The Newey-West lag correction is selected to be equal to s, the horizon of the impulse response being considered.
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In section 2 I argued that local projection estimates of impulse responses are less efficient than

VAR-based estimates when the VAR is correctly specified and it is the true model. Table 1 confirms

this statement but also shows that this loss of efficiency is not particularly big. The Newey-West

corrected standard errors based on single equation estimates of the local linear projections are

virtually identical to the Monte Carlo standard errors from the VAR, specially for the variables

EM and P. The biggest discrepancy is for the variable NBRX but this is because the VAR Monte

Carlo standard errors actually decline as the horizon increases (specially after the 14th period).

This anomaly, which is explained in Sims and Zha (1999), is not a feature of the local projection

standard errors, which incorporate the additional uncertainty existing in long-horizon forecasts.

Altogether, these results suggest that the efficiency losses are rather minor, even for a system that

contains as many as six variables and 12 lags and for horizons of 24 periods.

4.2 Impulse Responses for a GARCH-SVAR

The following Monte-Carlo experiment gauges how well local projection estimates approximate

the impulse responses from a nonlinear DGP relative to VAR-based estimates. In Jordà and Salyer

(2003) we propose a multivariate version of the GARCH-M model that we use to determine the

effects of monetary policy uncertainty on the term structure of interest rates. We call this model

the GARCH-SVAR. Here, I experiment with the following specification,

⎡⎢⎢⎢⎢⎢⎢⎣
y1t

y2t

y3t
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√
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ε2t

ε3t

⎤⎥⎥⎥⎥⎥⎥⎦ , εt ∼ N(0, I3) (21)
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p
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and a sample size of 300, replicated 500 times. Notice that the GARCH-SVAR in (21) behaves

like a linear VAR most of the time (in fact, if the shock is to either ε2t or ε3t, it always behaves

like a linear VAR). Only when the shock to ε1t is of considerable magnitude there will be a

revision in the conditional variance, and subsequently, in the conditional mean. Figure 3 displays

the impulse responses from a shock to y1t of unit size. The thick-solid line describes the true

impulse response in the GARCH-SVAR. The solid line is the impulse response when the variance

effects are set to zero (i.e. B = 03). The dashed line with stars is the impulse response from the

linear projection and the dashed line with circles is the response from the local-cubic projections.

Standard-error bands are omitted for clarity but suffice it to say that these are very narrow so

that the impulse responses measured from the GARCH-SVAR with and without variance effects

clearly remain statistically different from each other, except at crossing points or after the 8th

period approximately.

It is important to comment first on the nature of the nonlinearity. When the variance effect

is switched off, the impulse responses are more moderate and identical to those in a typical VAR.

For example, y1 responds by gradually returning to zero after the shock, barely crossing into the

negative region. In contrast, there is an initial undershooting response of y1 when the variance

effect is allowed to kick-in (with similar under- and overshooting responses in y2 and y3), driving

y1 into strongly negative territory after the period of impact before returning to equilibrium after

seven periods, approximately.

The first significant result is that the response without variance effects and the response es-

timated from local-linear projections, are virtually identical. During most of the sample, shocks

remain small so there are no revisions in the conditional variance and the model behaves as if

it were a typical VAR. Thus, to capture the nonlinearity, we can use the local-cubic projection

estimates instead. When the responses estimated with this approximation are evaluated around

the sample mean values of yt, as suggested in section 3, the impulse responses are identical to the

responses calculated with a linear projection and therefore, are not displayed in the figure. Thus,
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to enhance the nonlinearity and to match the true impulse response with variance effects, we

evaluate the local-cubic projection at yt−1 = yt−1+5× (bσ11, bσ22, bσ33)0. This choice of experiment
allows us to match relatively well the more extreme dynamics of the model, as figure 3 shows, and

highlights the possibility (not explored here) of using significance tests on the quadratic and cubic

terms of the local-cubic projections to test for nonlinearities in the responses implied by the data.

5 Application: Inflation-Output Trade-offs

Pioneering work by McCallum (1983) and Taylor (1993) inspired a remarkable amount of research

on the efficacy, optimality, and robustness of interest rate rules for monetary policy. The per-

formance of candidate policy rules is often evaluated in the context of a simple, closed-economy

model that, at a minimum, can be summarized by three fundamental expressions: an IS equation,

a Phillips relation, and the candidate policy rule itself. While models may differ on their degree of

micro-foundation and forward-looking behavior (see Taylor’s (1999) edited volume for examples)

they share the need to reproduce the fundamental dynamic properties of actual economies with

some degree of accuracy.

Consequently, it is natural to investigate these empirical dynamic properties for inflation,

the output gap, and interest rates to provide a benchmark by which to compare the dynamic

properties of competing theoretical models. The specific definitions of the variables I consider is

the following: yt is the percentage gap between real GDP and potential GDP (as measured by

the Congressional Budget Office); πt is quarterly inflation in the GDP, chain-weighted price index

in percent at annual rate; and it is the quarterly average of the federal funds rate in percent at

an annual rate. These variable definitions are those used for the version of the IS and Phillips

relations in Rudebusch and Svensson (1999) and are relatively standard for this literature. The

data for the analysis is quarterly for the sample 1955:I - 2003:I, and is displayed in figure 4.

A good starting point for the analysis is to calculate impulse responses with a VAR, and local-

linear, and -cubic projections. The lag-length is determined by information criteria, allowing for a
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maximum lag-length of eight. Studies with similar variables in Galí (1992) and Fuhrer and Moore

(1995a, b) use four lags for variables analyzed in the levels. Such a selection is confirmed by AICc

and AIC, both of which select a lag-length of three (SIC selected two lags). Figure 5 displays

the impulse responses based on a VAR(3), local-linear and -cubic projections and identified with

a standard Cholesky decomposition10 and the Wold-causal order yt,πt, and it.

The VAR(3) responses are depicted with a dotted line, the short-dashed line and the two

long-dashed lines depict the responses from local linear projections and the corresponding two

standard-error, Newey-West corrected bands calculated as described in section 2. The solid line is

the response from a local cubic projection.11 Each row represents the responses of yt,πt, and it to

orthogonalized shocks, starting with yt,πt, and then it, all measured in percentages. Several results

stand out. Generally speaking, there is broad correspondence among the responses calculated by

the different methods, with a few exceptions. The response of it to a shock in yt calculated by

local-cubic projection suggests a more strict (and statistically significant) tightening stance than

the other methods, and similarly, the response of the output gap yt to its own shock is statistically

different from the linear projection response (albeit with the same general shape). However, this

response corresponds closely to the output responses due to an aggregate supply shock found in

Galí (1992), both with an initial increase of about 0.7% and peaking after four quarters at 1.1%.

Perhaps the most meaningful difference is that, while the VAR response of yt to a shock in

it suggests that the output loss after 12 quarters is approximately 0.3%, both local projection

methods suggest the loss is twice as big, at a statistically (and economically) significant 0.65%.

This difference exists despite the similarity among the time profiles for it calculated by any of

the three methods considered. More generally, the VAR(3) responses have significantly smoother

time profiles than responses from local projections. Further investigation revealed that when the

10 I choose the Cholesly decomposition to identify the structural shocks since I make weak emphasis in the literal
interpretation of the impulse responses and it can be easily replicated. However, this choice is consistent with
traditional orderings in the VAR literature.

11 The dot-dashed line is simply the zero line.
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maximum possible lag length is increased to 12, AIC will select that length as the new optimum

(although AICc and SIC remain at their previous levels). The responses from a VAR(12) lie

almost on top of their local-projection counterparts, with the few exceptions we have already

mentioned.12 As an aside, this finding and the findings in the Monte Carlo experiments of

section 4 suggest that the “price puzzle” is better addressed by specifying relatively long lags in

the price equation rather than relying solely on inclusion of the a series for sensitive commodity

prices, as is now conventional.

Based on this preliminary analysis, we are positioned to investigate further nonlinearities in the

impulse responses. From the vast selection of flexible specifications available, one should select

those that, within a general class, will more easily lend themselves to economic interpretation.

In this case, it seems of considerable importance to determine whether the inflation-output gap

trade-offs that the monetary authority faces vary with the business cycle, or during periods of high

inflation, or when interest rates are close to the zero bound, for example. Although the polynomial

terms in local projection approximate smooth nonlinearities, they are less helpful in detecting the

type of nonlinearity implicit in these examples. Therefore, I tested all the first period local-linear

projections13 for evidence of threshold effects due to yt−1,πt−1, and it−1 using Hansen’s (2000)

test14 . For example, a typical regression is,

zt = ρ0LXt−1 + εLt if wt−1 ≤ δ (22)

zt = ρ0HXt−1 + εHt if wt−1 > δ

were zt is respectively yt,πt, and it and wt−1 can be any of yt−1,πt−1, and it−1. Xt−1 collects lags

1 through p of the variables yt,πt, and it and ρi, i = L,H collects the coefficients and L stands

12 The figure displaying these responses is available upon request.

13 I used the local linear projections for the test for parsimony although the final analysis is based on cubic
projections.

14 The GAUSS routines to perform the test are available directly from Bruce Hansen’s web site. I owe a debt of
gratitude for having this code publicly available.
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for “low” and H stands for “high.” The test is an F-type test that sequentially searches for the

optimal threshold δ and adjusts the corresponding distribution via 1,000 bootstrap replications.

The tests for the nine possible combinations of dependent variables and threshold variables

are summarized in table 2. Only one combination shows a significant departure from the null of

linearity: the response of interest rates with a threshold due to yt−1. Figure 6 displays the value

of Hansen’s test for a range of possible values for the threshold δ. The minimum is achieved for

δ = −0.0766%, and is very close to the canonical value δ = 0%, which also lies above the 95%

critical region. This finding suggests that the responses of interest rates depend on whether the

economy is currently above or below potential.

Further investigation revealed that this two-state, interest rate response is significant for the

response to an interest rate shock only.15 Consequently, I investigate for threshold effects in the

responses to all three variables in the system due to a shock in it, where the threshold effect is

determined by lagged deviations of output from potential. Figure 7 displays these responses as

follows: the solid line depicts responses calculated by cubic local projection and correspond to

those displayed in figure 5. The accompanying long-dashed lines are two standard-error bands,

Newey-West corrected and based on the cubic projection as described in section 3. The dotted line

shows the response when the output gap is negative, and the green-dashed line when the output

gap is positive. I have omitted the responses to shocks in yt and πt since these are identical to

those in figure 5.

Several results deserve comment. When the economy is below potential, there is essentially no

response to the interest rate shock (of size 0.8% on impact) during the first two years and only

a slight decline thereafter (up to 0.2% in year three). By contrast, when the economy is above

potential, the initial output decline peaks four quarters after impact with a loss of approximately

0.5%, returning to zero at the end of the third year. Part of this behavior is explained by the time

profiles of interest rates themselves. In particular, the interest rate response when output is above

15 The figure showing this result is available upon request.
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potential is high (relative to when output is below potential) for the first four quarters but then

declines quickly and remains at a zero level for quarters six and beyond. This more aggressive

monetary policy stance results in an immediate fall in inflation, dropping by 0.5% in quarter three.

However, as interest rates quickly come down to counteract the loss of output, inflation takes off,

increasing by 0.5% in quarter seven.

Notice that, when the responses are allowed to vary according to whether output is above

or below potential, they often fall outside the two standard error bands estimated for the single

regime, local-cubic projection alternative. These differences offer a markedly different picture

regarding the costs of raising interest rates in terms of output loss and inflation. They suggest

that the output loss of controlling inflation when output is below potential is significantly lower

than when output is above potential. It is to be expected that if such considerations where

incorporated in the design of an optimal monetary policy response, they would suggest policy

rules that differ substantially from the recommendations routinely expressed in the literature.

Naturally, such considerations deserve a more detailed investigation than is germane to the focus

of the paper and serve to illustrate the potential benefits of flexible local projections in practice.

6 Conclusion

This paper shows how to calculate impulse response functions for a vector time series without

estimating a specific dynamic, multivariate model. Instead, I propose estimating the sequence of

s least squares regressions,

yt+s = αs +Bs+11 yt−1 +Bs+12 yt−2 + ...+Bs+1p yt−p + ust+s s = 0, 1, 2, ..., h

from which the impulse response at time s is given by

d∂yt+s
∂δt

¯̄̄̄
¯
δt=di

= bBs1di s = 0, 1, 2, ..., h
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and whose standard error can be calculated as the HAC-robust standard error of the regression

coefficient estimates bBs1 with readily available regression routines in most econometrics software
packages. These methods provide a natural alternative to estimating impulse response functions

based on VARs.

The advantages of estimating impulse responses with these local projections include robustness

to misspecification that Monte Carlo evidence shows not come with significant efficiency loses. In

fact, because the variance-covariance matrix of the impulse response coefficients coincides with

the variance-covariance matrix of regression coefficient estimates, joint hypothesis tests can be

performed in a traditional fashion and with little complication. This is a feature seldom explored

in the literature despite the warnings in Sims and Zha (1999) and can probably be explained by

the inherent enormous computational difficulties of existing methods based on VARs.

Additional improvements in inference can be obtained with local projection methods. As

section 2.2 shows, the error terms of the local projections contain moving average terms that are a

function of the forecast errors for the periods intervening between t+s and t, which are unobserved

in principle. However, the sequential nature of the calculations in (2) provides a natural estimate

of this forecast error and suggests that including the error terms bus−1t+s−1 as regressors in the local

projection (2) at time t + s will improve inference. This idea is similar to that in direct multi-

period forecasting (see Bhansali, 2002) where the forecasts byt+s|t−1 are included as regressors
in the prediction regressions for yt+s+1. Preliminary Monte Carlo evidence shows remarkable

reductions in the impulse response standard errors and thus, the formal derivation of these results

is left for a different paper.

The demands of increasingly complex nonlinear economic models whose second (or sometimes

higher) order solutions16 deliver equilibrium conditions in the form of polynomial, stochastic dif-

ference equations require impulse response estimators that can accommodate such nonlinearities.

16 These solutions techniques have been advanced by the pioneering work of Collard and Juillard (2001), Kim et
al. (2003), and Schmitt-Grohé and Uribe (2004).
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While it is a daunting task to do this for a multivariate model, it can be easily accomplished by

local projection methods. The empirical example shows how higher order polynomial terms and

threshold effects can be jointly incorporated and appropriate inference reported — features that

do not have obvious counterpart multivariate specifications.17

There are several useful applications of local projection methods worth remarking. First, local

projections can be used to investigate the dynamic features of non-Gaussian models for which

a multivariate extension is not readily available. Examples of such models include Engle and

Russell’s (1998) autoregressive conditional duration model, Hamilton and Jordà’s (2002) autore-

gressive conditional hazard model, and numerous count-data specifications (see Cameron and

Trivedi, 1998). Here the approach would consist in estimating a sequence of univariate models

where the dependent variable is evaluated at time t+1, t+2, ..., t+s. Similarly, panel data models

offer obvious opportunities for local projections. Relatively short samples in the time dimension

and high-dimensionality make multivariate time-series specifications impractical for panel-data.

However, local projections can deliver estimates of the dynamic impact of treatment effects in an

economical and feasible manner, an issue that is largely ignored in this literature.

7 Appendix

Suppose yt has the following Wold decomposition

yt =
∞X
i=0

ψivt−i

Notice that

yt+s = ψsvt +
s−1X
i=1

ψivt+s−i +
∞X
i=1

ψs+ivt−i

17 Tsay (1998) and Krolzig (1997) expand the threshold model and the Markov-switching model to a multivariate
context respectively but do not account for polynomial terms nor discuss impulse response calculation and inference.
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Comparing this expression with Chang and Sakata’s (2002) second stage regression, repeated here

for convenience

yt+s = αsbvt + εt+s (CS)

it is clear that then that αs = ψs and the error term εt+s collects the moving average terms

εt+s =
s−1X
i=1

ψivt+s−i +
∞X
i=1

ψs+ivt−i

where it seems obvious that the last term in the previous expression could be inverted and one

could avoid the autocorrelation of the residuals for information dated t− 1, ... by including both

lags of yt and lags of bvt instead. Similarly, one can show that the second stage regression in

Cochrane and Piazzesi (2002), reproduced here for convenience

yt+s − yt−1 = αsbvt + εt+s (CP)

can be rewritten as

yt+s − yt−1 = ψsvt +
s−1X
i=1

ψivt+s−i +
∞X
i=1

¡
ψs+i − ψi

¢
vt−i

where the last term also involves information dated t− 1, ... Finally, Thapar’s (2002) second stage

regression

yt+s −Etyt+s = αsbvt + εt+s (T)

can be expressed as

yt+s −Etyt+s = ψsvt +
s−1X
i=1

ψivt+s−i

and therefore does not contain a moving-average component dated t− 1, ...
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Table 1 – Standard Errors for Impulse Responses 
 
 EM P PCOM 
 
 
s 

True-
MC 

Newey-
West 

(Linear) 

Newey-
West 

(Cubic)

True-
MC 

Newey-
West 

(Linear)

Newey-
West 

(Cubic)

True-
MC 

Newey-
West 

(Linear) 

Newey-
West 

(Cubic) 
1 0.000 0.007 0.008 0.000 0.007 0.007 0.000 0.089 0.096
2 0.008 0.011 0.012 0.007 0.010 0.011 0.094 0.146 0.161
3 0.013 0.015 0.016 0.012 0.014 0.015 0.155 0.191 0.212
4 0.018 0.019 0.021 0.015 0.017 0.018 0.202 0.224 0.250
5 0.022 0.023 0.025 0.018 0.020 0.022 0.240 0.255 0.284
6 0.027 0.026 0.030 0.021 0.023 0.025 0.267 0.279 0.311
7 0.031 0.030 0.033 0.025 0.026 0.029 0.296 0.301 0.335
8 0.035 0.033 0.037 0.028 0.029 0.032 0.325 0.322 0.357
9 0.038 0.036 0.040 0.031 0.032 0.035 0.350 0.340 0.376
10 0.041 0.039 0.043 0.035 0.035 0.039 0.361 0.356 0.392
11 0.044 0.042 0.046 0.038 0.038 0.042 0.377 0.371 0.407
12 0.046 0.044 0.048 0.042 0.042 0.045 0.390 0.380 0.416
13 0.048 0.046 0.050 0.046 0.045 0.049 0.402 0.385 0.423
14 0.050 0.048 0.053 0.049 0.048 0.052 0.402 0.389 0.427
15 0.051 0.050 0.055 0.052 0.052 0.056 0.399 0.392 0.430
16 0.053 0.052 0.057 0.055 0.055 0.059 0.393 0.394 0.434
17 0.054 0.054 0.058 0.059 0.058 0.063 0.393 0.396 0.437
18 0.055 0.055 0.060 0.062 0.062 0.066 0.386 0.399 0.441
19 0.057 0.057 0.061 0.066 0.065 0.070 0.381 0.402 0.444
20 0.059 0.058 0.062 0.070 0.068 0.073 0.380 0.405 0.448
21 0.060 0.059 0.064 0.074 0.071 0.076 0.378 0.409 0.453
22 0.061 0.061 0.065 0.078 0.075 0.080 0.377 0.415 0.462
23 0.063 0.062 0.066 0.082 0.078 0.083 0.377 0.423 0.472
24 0.064 0.063 0.068 0.086 0.081 0.086 0.371 0.431 0.484
 
Notes: True-MC refers to the Monte Carlo (500 replications) standard errors for the 
impulse response coefficients due to a shock in FF in a VAR(12) with the variables EM, 
P, PCOM, FF, NBRX, ∆M2. Similarly, Newey-West (linear) refers to standard errors 
calculated from local-linear projections and their Newey-West corrected standard errors, 
while Newey-West (cubic) refers to the local-cubic projections instead.
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Table 1 (contd.) – Standard Errors for Impulse Responses 
 
 
 FF NBRX ∆M2 
 
 
s 

True-
MC 

Newey-
West 

(Linear) 

Newey-
West 

(Cubic) 

True-
MC 

Newey-
West 

(Linear)

Newey-
West 

(Cubic)

True-
MC 

Newey-
West 

(Linear) 

Newey-
West 

(Cubic) 
1 0.000 0.022 0.024 0.0005 0.0005 0.0005 0.014 0.012 0.014
2 0.027 0.036 0.041 0.0007 0.0006 0.0007 0.025 0.023 0.026
3 0.044 0.046 0.052 0.0008 0.0007 0.0008 0.035 0.032 0.035
4 0.054 0.053 0.060 0.0008 0.0008 0.0009 0.044 0.039 0.043
5 0.061 0.058 0.065 0.0009 0.0008 0.0009 0.050 0.045 0.050
6 0.064 0.062 0.069 0.0009 0.0008 0.0009 0.056 0.050 0.056
7 0.067 0.064 0.072 0.0009 0.0008 0.0009 0.061 0.056 0.062
8 0.072 0.066 0.074 0.0009 0.0008 0.0009 0.066 0.060 0.067
9 0.073 0.067 0.075 0.0009 0.0009 0.0010 0.070 0.064 0.072
10 0.074 0.069 0.077 0.0009 0.0009 0.0010 0.074 0.069 0.076
11 0.075 0.072 0.080 0.0009 0.0009 0.0010 0.078 0.073 0.081
12 0.077 0.075 0.083 0.0009 0.0009 0.0010 0.082 0.077 0.085
13 0.079 0.078 0.087 0.0009 0.0009 0.0010 0.084 0.080 0.088
14 0.079 0.080 0.089 0.0009 0.0009 0.0010 0.085 0.082 0.090
15 0.080 0.082 0.090 0.0008 0.0009 0.0010 0.084 0.084 0.092
16 0.080 0.083 0.091 0.0008 0.0009 0.0010 0.085 0.085 0.093
17 0.081 0.084 0.092 0.0008 0.0009 0.0010 0.085 0.086 0.094
18 0.081 0.084 0.093 0.0008 0.0009 0.0010 0.085 0.087 0.095
19 0.079 0.085 0.093 0.0007 0.0009 0.0010 0.084 0.088 0.096
20 0.079 0.086 0.093 0.0007 0.0009 0.0010 0.083 0.088 0.096
21 0.077 0.086 0.094 0.0007 0.0009 0.0010 0.082 0.088 0.096
22 0.077 0.087 0.094 0.0007 0.0009 0.0010 0.081 0.088 0.096
23 0.077 0.087 0.095 0.0006 0.0009 0.0010 0.080 0.088 0.096
24 0.077 0.087 0.095 0.0006 0.0009 0.0010 0.078 0.088 0.096
 
Notes: True-MC refers to the Monte Carlo (500 replications) standard errors for the 
impulse response coefficients due to a shock in FF in a VAR(12) with the variables EM, 
P, PCOM, FF, NBRX, ∆M2. Similarly, Newey-West (linear) refers to standard errors 
calculated from local-linear projections and their Newey-West corrected standard errors, 
while Newey-West (cubic) refers to the local-cubic projections instead. 
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Table 2 – Hansen’s (2000) Test for Threshold Effects – p-values 
 
 Dependent Variable 
Threshold Variable yt πt it 

yt-1 0.852 0.850 0.028 
πt-1 0.954 0.964 0.738 
it-1 0.335 0.349 0.264 

 
Notes: The test is of the null of linearity against the alternative of threshold effects. The 
values reported are p-values of the F-type test calculated from 1,000 bootstrap 
replications. 
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Figure 1 – Impulse Responses to a Shock in FF. Lag Length: 2 
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Evans and Marshall (1998) VAR(12) Monte Carlo Experiment. The thick line is the true impulse response based on a VAR(12). The 
thick-dashed lines are Monte Carlo 2-standard error bands. Three additional impulse responses are compared, based on estimates 
involving two lags only: (1) the response calculated by fitting a VAR(2) instead, depicted by the  line with squares; (2) the response 
calculated with a local-linear projection, depicted by the dashed line; and (3) the response calculated with a local-cubic projection, 
depicted by the line with circles. 500 replications. 
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 Figure 2 – Impulse Responses to a Shock in FF. Lag Length: 12 
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Evans and Marshall (1998) VAR(12) Monte Carlo Experiment. The thick line is the true impulse response based on a VAR(12). The 
thick-dashed lines are Monte Carlo, 2-standard error bands. Two additional impulse responses are compared: (1) the response 
calculated with a local-linear projection with 12 lags, depicted by the dashed line; and (3) the response calculated with a local-cubic 
projection, depicted by line with circles. 500 replications. 
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Figure 3 – Impulse Responses to a Shock in Y1 from a SVAR-GARCH 
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The thick-solid line describes the true impulse response in the VAR-GARCH model. The solid line is the 
impulse response when the variance effects are set to zero (i.e. B = 03). The dashed line with stars is the 
local-linear projection to the impulse response. The dashed line with squares is the local-cubic projection to 
the impulse response.  
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Figure 4 – Time Series Plots of the Output Gap, Inflation, and the Federal Funds 
Rate 
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Notes: All variables in annual percentage rates. Shaded areas indicate NBER-dated recessions. Output gap 
is defined as the percentage difference between real GDP and potential GDP (Congressional Budget 
Office); Inflation is defined as the percentage change in the GDP, chain-weighted price index at annual 
rate; and the federal funds rate is the quarterly average of daily rates, in annual percentage rate. 
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Figure 5 – Impulse Responses Calculated from: a VAR, a Local-Linear and a Local-Cubic Projections 

 
Notes: the dotted line is the VAR(3) response, the short-dashed line is the IRF based on local linear projection, the long-dashed lines are the corresponding 
Newey-West corrected 2 S.E. bands for the linear projection. The solid line is the IRF based on cubic projection. The dark dot-dashed line is the zero line. All 
responses in percentages.
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Figure 6  - Sequential Test for a Threshold in yt-1 for the it Equation  
 
 
 
 

 
 
Notes: Test of the null hypothesis of linearity against the alternative of a threshold. The 
sequential test displayed is based on Hansen (2000) and is obtained from GAUSS code 
available from his website. The threshold is estimated at -0.0765%. The output gap has a 
mean of -0.189% and a standard error of 2.584%. The p-value of the test is 0.028.  
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Figure 7 – Impulse Responses with Threshold Effects. Shock to it 

 

 

 
Notes: the solid line is the IRF from local cubic projection, the long-dashed lines are 2 S.E. 
bands. The dotted line is the IRF when output gap is negative, the small-dashed line is IRF 
when output is positive. The dot-dashed line is the zero line. All responses in percentages. 


