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1 Introduction

Modern quantitative macroeconomics necessarily involves the use of numerical methods in

order to compute the equilibrium behavior of a model economy. As initially introduced

by Magill (1977) and later used by Kydland and Prescott (1982) in their seminal work

on business cycle models, linearization methods have been the preferred solution approach.

Such methods are easy to implement and, as shown by Christiano (1990), do not introduce

significant approximation errors for many settings studied by macroeconomists.

But, as discussed in Judd (2002), linearization methods are not trouble free. Quoting

from that paper: “For example, Tesar (1995) uses the Kydland-Prescott method and found

an example where completing asset markets will make agents worse off. This result violates

general equilibrium theory and can only be attributed to the numerical method used.” (p.2)

More recently, Kim and Kim (2003) have shown that this error in welfare analysis is symp-

tomatic of linearized models and argue in favor of second-order approximation methods;

variations on this theme have been developed by Sims (2000) and Schmitt-Grohe and Uribe

(2004).

In order to study more complicated settings, non-linear methods have also been proposed

that employ either projection techniques (Judd (1992) and McGrattan (1999)) or perturba-

tion techniques (Judd and Guu (1997)). In a recent contribution to understanding these

approaches, Aruoba, Fernandez-Villaverde, and Rubio-Ramirez (2003) examine the accu-

racy of these methods (along with traditional linearization and log-linearization methods)

within the context of a prototypical real business cycle model. Their results replicate Chris-

tiano’s earlier analysis in that, for economies characterized by low risk aversion (i.e. little
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curvature in the utility function) and shocks that do not push the economy far from the

steady-state (i.e. small variance of technology shocks), linearization methods do quite well.

However, linearization methods, not surprisingly, deteriorate quickly in the presence of large

shocks and high risk aversion.

This paper complements and extends the analysis by Aruoba, et al. (2003) in two dimen-

sions. First, we examine discrete state settings so that heteroskedasticity in the technology

shock can be introduced. In particular, we examine a crash state scenario and demonstrate

that linearization methods perform poorly in this environment. We show that, even though

the magnitude of the unconditional variance of the technology shock would lead one to con-

jecture reasonably small approximation errors (as suggested by Christiano and Aruoba et

al.) for linear methods, the volatility of the conditional variances undermines this conjecture.

Recent papers by Barro (2005) and Bloom (2005) have argued forcefully for the presence of

large shocks to uncertainty in the economy and, hence, our analysis motivates the use of

more sophisticated solution methods in such settings.

The second and major contribution of this paper is the introduction of a new algorithm

to solve stochastic dynamic economies; for our analysis we use Hansen’s (1985) real busi-

ness cycle model (again, with the shocks following a discrete-state Markov process). Our

approach involves two parts: first, a one-pass continuous modification of the Upwind Gauss-

Seidel Algorithm (Judd (1998)) is used to solve for the steady-state, and, second, an implicit

iterative scheme is employed to account for the stochastic effects. In the latter iterative

approach, the small numerical magnitudes of the stochastic terms (e.g. cross-state transition

probabilities in the case of discrete-state Markovian processes or variances for continuous
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AR processes) produces relatively fast convergence. We will refer below to our method as

to the RUGS (Recursive Upwind Gauss-Seidel) method. The algorithm has two strengths:

(1) It is computationally fast; and (2) It has high global (i.e. non-local) accuracy. We test

the performance and accuracy of our algorithm in comparison with other popular nonlinear

methods using the analysis by Aruoba et al. as a template.

In particular, we consider the following methods as comparison tests for our algorithm:

1. A modification of the Value Function Iteration Algorithm (VFI) as it is implemented

in Danthine et al. (1989), which is used here mostly to produce a standard time unit

for other more advanced methods.

2. A perturbation method based on the Taylor expansion near the deterministic equilib-

rium point as described in Judd and Jin (2002).

3. A projection method using Chebyshev Polynomials spectral expansion of the sought

policy functions. The projection of the residual is performed by the collocation proce-

dure.

4. Standard linearization and log-linearization approximation methods.

We exclude from the benchmark set the Finite Element Method also considered in Aruoba

et al., 2003 because, as shown there, in the case of smooth policy functions, it does not do

better than the spectral expansion with Chebyshev Polynomials. Another interesting non-

local method we don’t test here is the Pade approximation considered in Judd and Guu

(1997) for a simple deterministic capital growth problem.
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2 The Benchmark Problem

The benchmark problem for the algorithm is a discrete-state version of the familiar real

business cycle model presented in Hansen (1985).

Consider the stochastic optimization problem

max
ct,nt

E0

" ∞X
t=0

βtu (ct, 1− nt)
#

(1)

subject to ct = λtf (kt, nt) + (1− Ω) kt − kt+1

where ct, nt, kt, and λt denote individual consumption, labor hours, capital stock ac-

cumulated and technology of production correspondingly; the functions u (·) and f (·) are

one-period utility and production function; the constants β and Ω represent agents’ discount

factor and the depreciation rate of capital. As in Danthine, Donaldson & Mehra (1989), the

technology shock, λt, assumes the discrete set of values Λ = (λ1, λ2, ...,λm) and follows a

Markov process with the transition probability matrix p.

To apply our numerical algorithm, first rewrite eq. (1) as a Bellman Equation. The

value function V (k,λ) is defined by (with consumption eliminated via the (always binding)

resource constraint):

V (k,λ) = max
k1,n

⎡⎣U (k, k1, n,λ) + β
X
λ
0∈Λ

p
λλ

0V
³
k1,λ

0´⎤⎦ (2)

with U (k, k1, n,λ) = u (λf (k, n) + (1− Ωk − k1, 1− n)).

The associated necessary conditions are (with Ui denoting the partial derivative with
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respect to the ith argument):

U2 (k, k1, n,λ) + β
X
λ
0∈Λ
p
λλ

0V1
³
k1,λ

0´
= 0 (3)

U2 (k, k1, n,λ) = 0 (4)

V1 (k1,λ) = U1 (k, k1, n,λ) (5)

Note that the set of necessary conditions form a complete differential-algebraic system of

equations for the sought value function, V (k,λ), and policy functions k1 (k,λ) and n (k,λ) .

Combining these we have:

U2 (k, k1 (k, λ) , n (k,λ) ,λ)+ (6)

β
X
λ
0∈Λ
p
λλ

0U1
h
k1 (k, λ) , k1

³
k1 (k, λ) , λ

0´
, n
³
k1 (k,λ) ,λ

0´
,λ

0i
= 0

U3 (k, k1 (k,λ) , n (k,λ) ,λ) = 0 (7)

3 The Algorithm

3.1 Solving the Deterministic Problem

Consider first the steady-state system of the economy in which λ = 1; then eqs. (6) , (7)

become:

U2 (k, k1 (k) , n (k)) + βU1 (k1 (k) , k1 (k1 (k)) , n (k1 (k))) = 0 (8)

U3 (k, k1 (k) , n (k)) = 0 (9)
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As is well known, the presence of the nested terms k1 (k1 (k)) , n (k (k1)) in the above equa-

tions implies that, in general, the solution involves functional methods. However, certain

properties of the solution permit the treatment of eqs. (8) , (9) as algebraic and find its

solution by a standard algorithm. This is demonstrated below:

The solution of the system defined by eqs. (8) , (9) which maximizes the right-hand side of

the Bellman equation has the unique stationary point k1 (ks) = ks that satisfies the equations

U2 (ks, ks, ns) + βU1 (ks, ks, ns) = 0 (10)

U3 (ks, ks, ns) = 0 (11)

In equations (10, 11) we introduce the corresponding stationary value of labor ns = n(ks).

The stationary point can be found by applying a standard non-linear equation solution

method to the above equations.

Given this solution, the stability and uniqueness of the steady-state implies the inequal-

ities:

∀k > ks : k1 (k) < k (12)

∀k < ks : k1 (k) > k

Assume that we already have the solution to the system defined by the eqs. (8) , (9) over

the interval [ks, kc]. That is, over this interval, we know the functions k1 (k) = k̃ (k) ;n (k) =

ñ (k); and now we extend the interval to [ks, kr] where kr > kc. The first inequality in eq.(12)

implies that for some interval to the right of kc, i.e. kc < k < kc + δ, the value of the sought
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function lies to the left of kc; therefore the nested functions k1 (k1 (k)) , n (k1 (k)) of such

k ∈ [kc, kc + δ] may be calculated using the known functions k̃ (k) , ñ (k). Then, for this

interval, the system of eqs. (8) , (9) takes the form:

U2 (k, k1 (k) , n (k)) + βU1

³
k1 (k) , k̃1 (k1 (k)) , ñ (k1 (k))

´
= 0 (13)

U3 (k, k1 (k) , n (k)) = 0

Note, critically, that this system of equations does not involve nested functions so it can be

treated as an algebraic equation and solved by an appropriate standard numerical method.

Obtaining in this way the solution over the interval [kc, kc + δ], it is possible to extend

the solution interval to the right; recursive repetition of the procedure can be done until the

desired boundary, kr, is reached. Thus choosing the right point of initial interval infinitely

close to the stationary point , we can then step by step extend the solution to the endpoint .

Clearly, the second inequality in eq. (12) allows us to apply the same procedure to the left

of ks. This procedure generates the solution over the entire interval [kl, kr].

This algorithm allows one to solve the deterministic growth problem using a fast one-pass

algorithm. Note that the described procedure employs the proper ordering of values of the

state variable, k, and starts from the absorbing state ks; hence by the classification of (Judd,

1998), it can be treated as a continuous modification of the Upwind Gauss-Seidel Algorithm.

3.2 Extending to Stochastic Settings

The procedure described above cannot be trivially generalized to the stochastic problem

defined by eq. (2), because
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1. The stochastic problem has multiple stationary points, depending on the current value

of technological factor.

2. The inequalities in eq.(12) may simultaneously have opposite signs for different values

of λ.

These properties significantly complicate and slow down the algorithm when extended in

a straightforward manner to the general problem. Consequently, we will use a modification

of a simple iterative scheme that employs the one-pass algorithm described above. As it is

demonstrated below, this scheme converges quickly to the desired accuracy, so the time of

calculation does not grow considerably.

Since the conditional probabilities in any state i sum to unity, rewrite eqs. (6) , (7)as:

U2 [k, k1 (k,λ) , n (k,λ) ,λ] + βU1
h
k1 (k,λ) , k

(λ,λ) (k) , n(λ,λ) (k) ,λ
i
=

β
X
λ
0∈Λ
p
λλ

0

µ
U1

h
k1 (k,λ) , k

(λ,λ) (k) , n(λ,λ) (k) ,λ
i
− U1

∙
k1 (k,λ) , k

³
λ,λ

0´
(k) , n

³
λ,λ

0´
(k) ,λ

0
¸¶

(14)

U3 [k, k1 (k,λ) , n (k,λ) ,λ] = 0 (15)

where the following notation is used for expositional purposes:

k

³
λ,λ

0´
= k1

³
k1 (k, λ) , λ

0´
;n

³
λ,λ

0´
= n

³
k1 (k, λ) , λ

0´
(16)

Note that the left hand side of the first equation in eq. (14) is simply the deterministic case

described in the section above. Hence, we will find the solution to the stochastic setting by
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an implicit iterative method which solves the two equations in eqs. (14) , (15). This solution

is, of course, the solution to the original problem given in eq. (2). The iterative method can

be summarized as:

LHS
³
km+1, nm+1, k

(λ,λ)
m+1 , n

(λ,λ)
m+1 ,λ

´
= RHS (km, nm, ...) (17)

where km = k
(m)
1 (k,λ) , nm = n

(m) (k,λ) represent the mth iteration of the policy functions

and LHS and RHS refer to eqs. (14) , (15). The system of equations described above is

heterogeneous modification of the deterministic problem described in the previous section

and, consequently, can be solved using the one-pass method described there. Also, since

the right-hand side of eq. (14) contains the sum of addends proportion to p
λλ

0 with zero

diagonal terms, we expect fast convergence for this scheme since the non-diagonal elements

are typically small given the high persistence typically assumed for the technology shock.

Thus the complete scheme of the numeric solution of the stochastic growth problem

consists of the following steps:

1. For each value of λi, solve the correspondent deterministic problem (defined by eqs.(10) ,

and (11)) in order to obtain a set of initial values [(ks, ns)1 , .. (ks, ns)m] . Use these as

the initial values in the one-pass algorithm.

2. Repeat the iterations defined by eq. (17) until the desired accuracy is reached.

Each of these steps requires an application of the above one-pass algorithm.

In addition to the expected speed of convergence, the other advantage of this scheme is

that equations (17) are always solved separately, for each value of λ, so the time of compu-
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tation grows only linearly with the number of discrete states considered. The cost of this

speedup is the necessity to use iterative process with some number of steps. This iterative

process may also diverge under some circumstances and for some initial guesses and that

may sometimes narrow the applicability region of the method.

4 Comparison of Algorithms

In this section we compare the performance of the proposed algorithm (RUGS) with the

performance of the four numerical methods (linearization, projection, perturbation, and

value function iteration (VFI)) mentioned in the introduction. The brief description of these

methods is presented in the next section.

Each computational method is used to solve the basic problem given in eq. (1); for

all simulations we hold constant the first order autocorrelation and unconditional standard

deviation of the technology shock. Specifically, we assume that Corr (λt,λt−1) = 0.95 and

σε = 0.007. These are standard values used in the literature. For the linear, log-linear,

and perturbation methods, we assume that the technology shock follows a continuous AR(1)

process. For the RUGS, VFI, and Projection method, we assume that λ follows a discrete

state Markov process. We examine two settings: a two-state process in which the conditional

second moments of λt are constant and a five state process with a low probability crash state.

This latter setting introduces significant variation in the conditional standard deviation of

λt. Consequently, the role of non-linearities in the policy rules should be highlighted in this

setting.

For the two-state process, the transition probability matrix and possible realizations are
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given by:

p =

⎛⎜⎜⎝ 0.97 0.03

0.03 0.97

⎞⎟⎟⎠ ,Λ = (0.98, 1.02) (18)

For the five-state process, the transition probability matrix and possible realizations are

given by:

p =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− 2∆1 ∆1/2 ∆1/2 ∆1 0

∆1 1− 2∆1 −∆2 − δ1 ∆2 ∆1 δ1

∆1 ∆2 1− 2∆1 −∆2 − δ2 ∆1 δ2

∆1 ∆1/2 ∆1/2 1− 2∆1 0

0 1/2 1/2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(19)

Λ = (1− δλ, 1, 1, 1 + δλ, 1−∆λ)

∆1 = 0.017,∆2 = 0.2, δ1 = 0.005, δ2 = 0.01, δλ = 0.027,∆λ = 0.35

As mentioned above, these representations have the same unconditional moments for λt.

The production function is assumed to be Cobb-Douglas

f (kt, nt) = k
α
t h

1−α
t (20)
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Utility takes the functional form:

U (ct, 1− ht) =
³
cθ (1− h)1−θ

´1−τ − 1
1− τ

(21)

For all simulations, the following parameter values were used:

Parameter β Ω α τ θ ρ σ

Value 0.96 0.1 0.36 2; 8 0.344 0.95 0.007

These again are common values and produce steady-state values for the capital output

ratio and time spent in work activity consistent with U.S. data. The models were solved

under the assumption of low (τ = 2) and high (τ = 8) values of relative risk aversion.

For each of the methods, we compare accuracy and speed of convergence. For accuracy,

we follow Aruoba et al. (2004) and define accuracy in terms of the Euler equation residual.

Using the relationship c = [uc (c, 1− n)]
1

θ(1−τ)−1 , the Euler equation (EE) error is given by:

EE (k,λ) = 1−
⎡⎣−βPλ

0∈Λ pλλ0U1
h
k1 (k,λ) , k1

³
k1 (k,λ) ,λ

0´
, n
³
k1 (k,λ) ,λ

0´
, λ

0i
U2 (k, k1 (k,λ) , n (k,λ) ,λ)

⎤⎦
1

θ(1−τ)−1

(22)

We examine the Maximal and Average Euler Equation Error. Maximal EE error is

defined by:

maxEE = max
k∈[kl,kr ],λ∈Λ

EE (k,λ) (23)
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where the interval [kl, kr] equals to the solution interval or, for linear and perturbation

methods, it equals to the narrower interval of attraction (for the definition see Appendix).

The average EE error is defined as average of absolute value of EE (k,λ) over a time series

sample generated using the tested policy functions. We take the length of sample of 30000

to avoid the dependence on a specific realization.

4.1 Speed of convergence

We turn first to an analysis of the speed of the algorithms. (We do not report these for the

linear and log-linear procedures since these are virtually instantaneous.) Table 1 presents

the results (time is measured in seconds) for the remaining procedures. (We only report these

for the case where relative risk aversion is equal to 2; the results for the high risk aversion

economies were virtually identical.) Note that in the five state economy, we compare only

the projection and RUGS methods since the perturbation approach is not appropriate (it

assumes the technology shock is homoskedastic) and the value function method is too time

consuming.

Table 1: Speed of Convergence

Method Time (n = 2) Time (n = 5))

Perturbation (5th order polynomial) 82 na

Value Function Iteration 77 na

Projection 17 199

RUGS 4.1 25

Hence, we see that the RUGS approach is faster than all methods due to the one-pass

aspect of the procedure; moreover, this relative superior performance becomes greater in
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higher dimensional settings.

4.2 Error

The maximal and average Euler equation errors for each procedure are given in Tables 2

and 3. Note that the figures given are the negative of the actual (logarithmic) values.

These numbers represent the percentage cost in term of steady-state consumption due to the

approximation. A value of 2, for example, implies a mistake of $1 for every $100 spent while

a value of 4 implies a $1 mistake for every $10,000 spent.

Table 2: Euler Equation Errors in the Low Risk Aversion Economy (τ = 2)

n = 2 n = 5

Max EE Average EE Max EE Average EE

Linear 1.7 3.9 na na

Log-linear 1.9 3.2 na na

Perturbation 2.2 9.3 na na

Value Function Iteration 2.2 3.2 na na

Projection 7.1 7.8 6.7 7.4

RUGS 6.6 6.7 6.9 7.5
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Table 3: Euler Equation Errors in the Low Risk Aversion Economy (τ = 8)

n = 2 n = 5

Max EE Average EE Max EE Average EE

Linear 1.7 4.0 na na

Log-linear 1.9 3.2 na na

Perturbation 2.8 9.0 na na

Value Function Iteration 2.2 3.1 na na

Projection 7.6 8.3 6.7 7.9

RUGS 6.5 6.6 6.9 7.5

It is clear from the numbers reported in both Tables that the projection method and

RUGS are roughly the same but significantly more accurate than the other procedures.

As a final comparison, the policy rules for investment generated by the procedures are

plotted as a function of capital (with the technology shock held constant at the steady-state

(or unconditional mean) value of unity). Note that the linear and log-linear procedures are

relatively accurate in the homoskedastic environment but this accuracy deteriorates when

the technology shock is assumed to have a crash state.

5 Brief Description of Numerical Procedures

We briefly discuss the principles and methods used for the other numerical procedures used

for the comparison to the proposed RUGSmethod. For more details, see the noted references;

also, the reader is referred to Aruoba, et al. where a nice summary of these procedures is

also presented.
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5.1 Projection method (spectral collocation with Chebyshev Polynomials)

References: Judd (1996), Judd (1998), Boyd (1989).

This method uses the representation of the sought policy functions as a spectral series of

Chebyshev Polynomials with finite number of terms (in other words, we project the sought

functions on the finite set of orthogonal Chebyshev Polynomials of the 1st kind):

k1 (k, λ) =
MX
i=0

κi (λ)Ti (z (k)) (24)

n (k, λ) =
MX
i=0

νi (λ)Ti (z (k))

With z (k) defined as:

z (k) = 2

∙
k − (kmax − kmin) /2

kmax − kmin

¸
(25)

The linear transformation in eq.(25) makes the transition to the Chebyshev Polynomial

domain [−1, 1] . The use of eqs.(24) , (25) into the Euler equations eqs. (6) , (7) results in

approximate relations of the type:

F

Ã
MX
i=0

κi (λ)Ti (z (k)) ,
MX
i=0

νi (λ) Ti (z (k)) , z,λ

!
= 0 (26)

with the sought coefficients κi (λ) , νi (λ). The simplest procedure projecting the left-hand

side of eq.(25) to a finite basis is the collocation procedure, when eq.(25) is assumed to be

exact at some finite set of points z = z1, ..., zM+1 (that choice corresponds to the projection

basis of Dirac-delta functions). The usual choice of (M + 1) zeros of Chebyshev Polyno-
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mial TM+1 (z) as collocation points provides the smallest (in certain sense) deviation of the

function F from zero between the points. So, finally, the set of equations for the sought

coefficients has the form:

F

Ã
MX
i=0

κi (λ)Ti (zj) ,
MX
i=0

νi (λ)Ti (zj) , zj,λ

!
= 0; j = (1, ...,M + 1) (27)

where zj = cos
h
π 2j−1
2(M+1)

i
; j = (1, ...,M + 1).

The solution of eq.(27) using numerical methods for nonlinear algebraic equations yields the

required result.

Note finally, that the above collocation procedure with Chebyshev Polynomials produces

the coefficients κi (λ) , νi (λ), which numerically coincides with those obtained by the projec-

tion on the set of Chebyshev Polynomials themselves (Galerkin scheme) within the error of

approximation.

5.1.1 Perturbation Methods

References: Judd & Guu (1997); Judd & Jin (2002)

This method exploits an ordinary Taylor series expansion of the sought functions near

the deterministic steady-state point:

k1 (k,λ) = ks +
MX
i=1

iX
j=0

aij (k − ks)j (λ− 1)i−j (28)

n (k,λ) = ns +
MX
i=1

iX
j=0

bij (k − ks)j (λ− 1)i−j

where ks, ns denote the steady-state values.
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The Taylor expansion of eqs. (6) , (7) using substitution eq.(28) leads to recurrent equa-

tions for the series coefficients
³
aij, b

i
j

´
, j = 0, ..., i, given

³
alj, b

l
j

´
, l = 1, ..., i − 1 . As

shown in (Judd & Jin, 2002), the equations for i ≥ 2 are linear and under certain additional

conditions have a unique solution. The equations for i = 1 correspond to a linear approxi-

mation and, in our case, are quadratic in a11. We choose the solution which corresponds to

the contracting mapping
¯̄
a11
¯̄
< 1 and, thereby, implies that we are on the stable arm of the

saddle path.

5.1.2 Value Function Iteration

References: Judd (1998), Danthine, Donaldson, & Mehra (1989)

The algorithm uses the explicit iterative scheme:

Vn+1 (k,λ) = max
k,n

⎡⎣U (k, k1, n,λ) + β
X
λ
0∈Λ
p
λλ

0Vn
³
k1,λ

0´⎤⎦ (29)

In implementing this procedure, we follow (Danthine, Donaldson & Mehra, 1989). The

solution is obtained at a discrete uniform grid of k. Specifically, we set the examine the

interval k ∈ [0.5, 1.5] with intervals of 0.0025 implying 401 grid points. To accelerate the

numerical maximization of right-hand side in eq.(29), we can decrease the dimensionality of

the problem from 2 to1 by tabulating the function n (k, k1,λ) on the two-dimensional grid

k × k1 using the numerical solution of the Euler equation

U3 (k, k1, n,λ) = 0 (30)
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Then this function is substituted into eq.(29). The maximization of

U (k, k1, n (k, k1,λ) ,λ) + β
X
λ
0∈Λ
p
λλ

0Vn
³
k1,λ

0´

for each discrete value of k is performed by choosing the maximal element from the array

produced by evaluating the expression for all values of k1. The iterative process defined in

eq.(29) is performed until the desired accuracy is achieved.

5.1.3 Linear Approximation

We describe here the linearization procedure, because it slightly different from the typical

procedure. We use the first order terms of series (28):

k1 (k,λ) = ks + a
1
1 (k − ks) + a10 (λ− 1) , (31)

n (k,λ) = ns + b
1
1 (k − ks) + b10 (λ− 1)

to produce the linear approximation and the following formula for the log-linear approx-

imation:

lnk1 (k,λ) = lnks + a
1
1 (ln k − ln ks) +

a10
ks
lnλ, (32)

lnn (k,λ) = lnns +
ks
ns
b11 (ln k − lnks) +

b10
ns
lnλ
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For that purpose we consider the continuous shock modification of system (6) and (7). To

make this transition we should replace the sum over discrete states in the expectation operator

of the first equation by the integral:

U2 (k, k1 (k, λ) , n (k,λ) ,λ)+ (33)

β

Z ∞

−∞
φ
³
λ,λ

0´
U1
h
k1 (k,λ) , k1

³
k1 (k,λ) ,λ

0´
, n
³
k1 (k, λ) , λ

0´
,λ

0i
dλ

0
= 0

with the conditional probability density function φ
³
λ,λ

0´
. Assuming that the shocks

follow AR(1) process with normally distributed residuals:

λt+1 = 1− ρ+ ρλt + εt+1, εt˜N (0,σ) , (34)

we obtain the specific form of function φ:

φ
³
λ,λ

0´
=

1√
2πσ

exp

⎡⎣−
³
λ
0 − ρλ+ ρ− 1

´
2σ2

⎤⎦ (35)

The equations for a10,1 and b
1
0,1 may be then derived by the differentiation of (33) and (7)

w.r.t. k and λ at the steady-state point (k,λ) = (ks, 1) with subsequent proceeding to the

limit σ→ 0 (that corresponds to the precision bounds of linear approximation):
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(U22 + βU11)a
1
1 +U23b

1
1 + βU12

¡
a11
¢2
+ βU13a

1
1b
1
1 +U12 = 0, (36)

U23a
1
1 +U33b

1
1 +U13 = 0,

£
U22 + βU11 + βU12

¡
a11 + ρ

¢
+ βU13b

1
1

¤
a10 + (U23 + βρU13) b

1
0 + U24 + βρU14 = 0,(37)

U23a
1
0 +U33b

1
0 + U34 = 0,

where indices denote partial derivatives of function U (k, k1, n,λ) in the same way as

above. The system is quadratic in a11. We should pick up the solution with
¯̄
a11
¯̄
< 1

corresponding to the contracting mapping. The chosen numeric values of parameters ρ = 0.95

and σ = 0.007 lead to the same statistical properties of time series generated (unconditional

correlation between two subsequent shocks λt,λt+1 and standard deviation E (λt − 1)2) as

those in our discrete state models.

5.1.4 Notes on Programming

All algorithms and procedures were programmed using Mathematica 5.0 ; all programs are

available from the authors.

RUGS As described earlier, the basic one-pass algorithm of RUGS method requires the

numerical solution of an algebraic system, depending on the continuous parameter k. The

corresponding numerical algorithm available in Mathematica 5 is the Newton algorithm used

21



in the IDA method of the NDSolve function. More detail description of the method can be

found in Hindmarsh et. al (2004) and Brenan, Campbell & Petzold (1996).

For our application it is important that the NDSolve function employs an adaptive

scheme, i.e. the numeric step of the solution is variable and depends on the required ac-

curacy. The solution itself is returned in the form of a piecewise-polynomial interpolating

function of (given by the InterpolatingFunction object in Mathematica). Note that these

features imply that it is not necessary to create a discrete grid for the capital stock.

Projection The numeric solution of nonlinear equation eq.(27) is performed using the

FindRoot function in Mathematica; this uses the Newton algorithm.

Perturbation The method requires the sequential calculation of partial derivatives so that

a programming language with the capability of symbolic calculations is highly useful. Hence

the usage of Mathematica is critical for this method.

Value Function Iteration The Value Function Iteration algorithm does not require any

unique properties of Mathematica.
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Figure 1:  Comparison of Labor Policy Rule ( 81 == τλ ,  for all economies) 
(lin #1 = linear, lin #2 = log-linear, green = projection, blue = RUGS) 

 
 

                       
A:  Homoskedastic Technology Shock 

 
 
 
 

                        
 

B:  Heteroskedastic Technology Shock 
 


