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Abstract
The main result of this paper characterises the continuity from below of monotone
functionals on the space Cb of bounded continuous functions on an arbitrary Pol-
ish space as lower semicontinuity in the mixed topology. In this particular situation,
the mixed topology coincides with the Mackey topology for the dual pair (Cb, ca),
where ca denotes the space of all countably additive signed Borel measures of finite
variation. Hence lower semicontinuity in the mixed topology is for convex monotone
maps Cb → R equivalent to a dual representation in terms of countably additive
measures. Such representations are of fundamental importance in finance, e.g. in the
context of risk measures and superhedging problems. Based on the main result, reg-
ularity properties of capacities and dual representations of Choquet integrals in terms
of countably additive measures for 2-alternating capacities are studied. Moreover, a
well-known characterisation of star-shaped risk measures on L∞ is transferred to risk
measures on Cb. In a second step, the paper provides a characterisation of equicon-
tinuity in the mixed topology for families of convex monotone maps. As a conse-
quence, for every convex monotone map on Cb taking values in a locally convex
vector lattice, continuity in the mixed topology is equivalent to continuity on norm-
bounded sets.

Keywords Risk measure · Monotone functional · Choquet integral · Continuity from
below · Lower semicontinuity · Mixed topology · Mackey topology · Star-shaped
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1 Introduction

In this paper, we study continuity properties for monotone maps Cb → R, where
Cb = Cb(�) denotes the space of all bounded continuous functions on a Polish
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space � with values in R. Monotone functionals Cb → R appear in many
applications. Special instances of such maps, in the context of finance and actuarial
science, are

– risk measures or nonlinear expectations; cf. Denis et al. [11], Föllmer and
Schied [15, Chap. 4] and Peng [22, Chap. 1].

– superhedging functionals; cf. Cheridito et al. [7] and Cheridito et al. [8].
– robust expected utilities or loss functions; cf. Delbaen [9, 10].
– Choquet integrals, e.g. in the context of insurance premia; cf. Wang et al. [25].

In order to obtain dual representations of convex monotone functionals in terms
of countably additive measures, additional continuity properties are usually required.
The two most prominent continuity properties in this context are continuity from
above and continuity from below; cf. Föllmer and Schied [15, Lemma 4.21 and The-
orem 4.22]. For convex monotone functionals, continuity from below is usually a
weaker requirement than continuity from above; see for instance Cheridito et al. [8].

In the field of mathematical finance, these continuity properties have been studied
in many contexts in the past decades. For risk measures, continuity from above is (up
to a different sign convention) related to the Lebesgue property, whereas continuity
from below is closely tied to the Fatou property. The Lebesgue and Fatou properties
refer to sequential continuity and lower semicontinuity, respectively, for uniformly
bounded pointwise convergent sequences of measurable functions, and Fatou closed-
ness is a fundamental ingredient in no-arbitrage theory; see e.g. Burzoni and Mag-
gis [5] and Herdegen and Khan [18]. Fixing a reference measure and working on
L∞, it is well known that continuity from below of convex risk measures is equiva-
lent to a dual representation in terms of countably additive measures; cf. Föllmer and
Schied [15, Theorem 4.33]. If the risk measure is also law-invariant, continuity from
below is automatically satisfied if the underlying probability space is assumed to be
atomless; cf. Jouini et al. [19].

On the other hand, monetary risk measures are closely linked to nonlinear ex-
pectations and the topic of model uncertainty in finance. In this context, risk mea-
sures which are not dominated by a single probability measure that deems events to
be negligible or not play a crucial role. An example for such a risk measure is the
G-expectation; cf. Denis et al. [11] and Peng [22, Chap. 2]. However, on the space
Bb of bounded measurable functions without a reference probability, continuity from
below alone is not sufficient to guarantee a dual representation of convex monotone
functionals in terms of countably additive measures, despite the fact that it implies
sequential lower semicontinuity of such functionals in the weak topology σ(Bb, ca)
of the dual pair (Bb, ca). In Denk et al. [12, Example 3.6], an example is given for a
coherent risk measure which is continuous from below on Bb, but does not have a sin-
gle countably additive minorant. On the other hand, continuity from above of a risk
measure on the space of bounded measurable functions already implies the existence
of a dominating reference measure; see e.g. Denk et al. [12, Remark 3.3].

One way out of this dilemma is to restrict attention to continuous claims. For the
space Cb of bounded continuous functions as an underlying function space, it is well
known that continuity from above, for a convex monotone functional Cb → R, is
sufficient but not necessary for a dual representation in terms of countably additive
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measures; see e.g. Cheridito et al. [8]. However, the question whether such a rep-
resentation is equivalent to the weaker notion of continuity from below on general
Polish state spaces has remained unanswered for almost a decade, as discussed in the
introduction of Delbaen [10]. In a series of papers, this question has been answered
positively by Delbaen [9, 10], and as a consequence, convex monotone functionals on
Cb which are continuous from below are lower semicontinuous in the Mackey topol-
ogy μ(Cb, ca) of the dual pair (Cb, ca), where ca denotes the space of countably ad-
ditive signed Borel measures with finite variation. From a mathematical perspective,
this is a remarkable result, since the Mackey topology μ(Cb, ca) is not metrisable and
continuity from below is a requirement for sequences, so that nonmetrisability poses
a major problem. Therefore in [9, 10], another path is chosen and the proofs there
rely on compactification methods; more precisely, they use the fact that every Polish
space can be embedded as a Gδ into a compact metric space.

Theorem 2.2 in the present paper generalises the main result of Delbaen [9] by
showing that for any monotone functional Cb → R, continuity from below is equiv-
alent to lower semicontinuity in the mixed topology. The latter is a classical gen-
eral concept in analysis, cf. Wiweger [27], and coincides with the Mackey topology
μ(Cb, ca) in this particular setting. Moreover, Theorem 2.2 shows that for mono-
tone functionals Cb → R, upper or lower semicontinuity in the mixed topology are
equivalent to sequential upper or lower semicontinuity in the mixed topology, respec-
tively, despite the fact that the mixed topology is not metrisable. Since the Mackey
topology μ(Cb, ca) is the finest topology leading to the dual space ca of countably
additive signed Borel measures with finite variation, it is a natural choice for duality
theory on Cb. In particular, Theorem 2.2 implies that every convex monotone func-
tional on Cb admits a dual representation in terms of countably additive measures;
cf. Corollary 2.5. However, using the explicit representation of a local base at the
origin for the mixed topology allows us to further characterise continuity from below
in terms of proximity on compact sets also for nonconvex monotone functionals; see
Theorem 2.2.

In Corollary 2.6, we turn our focus to capacities and Choquet integrals. In a first
step, we characterise the regularity of general capacities, defined on open sets, in
terms of continuity from below of the Choquet integral on the set Lb of all bounded
lower semicontinuous functions � → R and of the capacity along sequences of open
sets. In a second step, we characterise 2-alternating capacities, for which the related
Choquet integral admits a dual representation in terms of countably additive measures
on Lb, in terms of continuity from below along sequences of open sets and regularity
of the capacity, partially extending the results in Adamski [1].

Corollary 2.7 extends a well-known characterisation of star-shaped risk measures
on L∞, discussed in Castagnoli et al. [6], to general risk measures on the space
Cb. While the proof follows closely that in [6], Corollary 2.5 allows the transition
from L∞ to Cb.

Another question we address in this paper is a characterisation of continuity of
convex monotone maps in the mixed topology. Continuity in the mixed topology
is of fundamental importance in many situations in robust finance. In the context of
superhedging, it has been studied in Cheridito et al. [7]. In the context of dynamic risk
measures and semigroups related to stochastic processes under model uncertainty, it
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appears in Blessing et al. [3], Goldys et al. [17] and with a different language, it is also
used in the analysis of large deviation principles based on max-stable risk measures;
cf. Kupper and Zapata [21]. Building on Theorem 2.2, we discuss the equicontinuity
of families of convex monotone maps in the mixed topology in Theorem 2.8. There,
a characterisation of equicontinuity in terms of continuity from above and uniform
equicontinuity on supremum-norm-bounded sets is given.

From a mathematical perspective, the mixed topology has two striking features.
On the one hand, unless � is compact, it has no neighborhood of zero which is
bounded with respect to the supremum norm. On the other hand, it has the intrin-
sic property that for linear operators taking values in an arbitrary locally convex
space, continuity is equivalent to continuity on supremum-norm-bounded sets. Corol-
lary 2.11, which is a consequence of Theorem 2.8, extends this intrinsic property by
showing that for convex monotone maps taking values in a locally convex vector lat-
tice, μ(Cb, ca)-continuity is equivalent to μ(Cb, ca)-continuity on supremum-norm-
bounded sets. A particular instance of a locally convex vector lattice is Cb itself, en-
dowed with the mixed topology, which in a financial context corresponds for example
to the case of conditional risk measures or conditional nonlinear expectations.

The rest of the paper is organised as follows. In Sect. 2, we state the main results
and their corollaries. Section 3 contains all proofs. In Appendix A, we prove an aux-
iliary result for capacities and Choquet integrals, and in Appendix B, we prove an
auxiliary result on locally convex vector lattices.

2 Main results

Throughout, let � be a Polish space and Cb = Cb(�) the space of all bounded
continuous functions � → R. We consider the local base

V2 := {{g ∈ Cb : ‖g‖∞ < r} : r > 0
}

at 0 ∈ Cb for the topology induced by the supremum norm ‖ · ‖∞, and the local base

V1 :=
{{

g ∈ Cb : sup
x∈C

|g(x)| < r
}

: r > 0, C ⊆ � compact

}

at 0 ∈ Cb for the vector topology of uniform convergence on compacts. Let V denote
the system consisting of all sets

⋃

n∈N

n∑

k=1

(V 1
k ∩ kV 2) with (V 1

k )k∈N ⊆ V1 and V 2 ∈ V2, (2.1)

where kV 2 := {kg : g ∈ V 2} for all k ∈ N and

n∑

k=1

Vk :=
{ n∑

k=1

gk : g1 ∈ V1, . . . , gn ∈ Vn

}
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for n ∈ N and nonempty subsets V1, . . . , Vn of Cb. Then V is a local base at 0 ∈ Cb

for a Hausdorff locally convex topology β, which is known as the mixed topology. We
refer to Wiweger [27] for a detailed discussion on the mixed topology in a more gen-
eral setting. Clearly, the mixed topology β is finer than the weak topology σ(Cb, ca)
of the dual pair (Cb, ca), where ca denotes the space of all countably additive signed
Borel measures of finite variation. A well-known fact, which we do not make use of,
is that the mixed topology β coincides with the Mackey topology of the dual pair
(Cb, ca). Moreover, β belongs to the class of strict topologies; cf. Wheeler [26]. We
also refer to Fremlin et al. [16] and Sentilles [24] for additional fine properties of
mixed or strict topologies.

We say that a functional U : Cb → R is monotone if U(f ) ≤ U(g) for all
f, g ∈ Cb with f ≤ g, where for functions � → R, the relation ≤ and all other
order-related objects refer to the pointwise order.

For a sequence (fn)n∈N ⊆ Cb and a function f : � → R, we write fn ↗ f

as n → ∞ if fn ≤ fn+1 for all n ∈ N and f (x) = limn→∞ fn(x) for all x ∈ �.
Analogously, we write fn ↘ f as n → ∞ if fn ≥ fn+1 for all n ∈ N and
f (x) = limn→∞ fn(x) for all x ∈ �.

Definition 2.1 a) We say that a monotone functional U : Cb → R is continuous from
below if U(f ) = limn→∞ U(fn) for all sequences (fn)n∈N ⊆ Cb and f ∈ Cb with
fn ↗ f as n → ∞.

b) We say that a monotone functional U : Cb → R is continuous from above if
U(f ) = limn→∞ U(fn) for all sequences (fn)n∈N ⊆ Cb and f ∈ Cb with fn ↘ f

as n → ∞.

Theorem 2.2 Let U : Cb → R be monotone. Then the following are equivalent:
(i) U is continuous from below.
(ii) U is lower semicontinuous in the mixed topology β.
(iii) U is sequentially lower semicontinuous in the mixed topology β.
(iv) For all f ∈ Cb, ε > 0 and r ≥ 0, there exist δ > 0 and a compact C ⊆ �

such that

U(f ) ≤ U(f + e) + ε

for all e ∈ Cb with ‖e‖∞ ≤ r and supx∈C |e(x)| ≤ δ.

For an arbitrary function U : Cb → R, its conjugate function U : Cb → R is given
by U(f ) := −U(−f ) for all f ∈ Cb. Then we obtain the following corollary.

Corollary 2.3 Let U : Cb → R be monotone. Then the following are equivalent:
(i) U is continuous from above.
(ii) U is upper semicontinuous in the mixed topology β.
(iii) U is sequentially upper semicontinuous in the mixed topology β.
(iv) For all f ∈ Cb, ε > 0 and r ≥ 0, there exist δ > 0 and a compact C ⊆ �

such that

U(f + e) ≤ U(f ) + ε

for all e ∈ Cb with ‖e‖∞ ≤ r and supx∈C |e(x)| ≤ δ.
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A combination of Theorem 2.2 and Corollary 2.3 leads to the following character-
isation of continuity in the mixed topology for monotone functionals.

Corollary 2.4 Let U : Cb → R be monotone. Then the following are equivalent:
(i) U is continuous from above and below.
(ii) U is continuous in the mixed topology β.
(iii) U is sequentially continuous in the mixed topology β.
(iv) For all f ∈ Cb, ε > 0 and r ≥ 0, there exist δ > 0 and a compact C ⊆ �

such that

|U(f + e) − U(f )| ≤ ε

for all e ∈ Cb with ‖e‖∞ ≤ r and supx∈C |e(x)| ≤ δ.

As a direct consequence of Theorem 2.2, we obtain the main result in Delbaen [9].
We denote by ca+ the set of all positive elements of ca, i.e., the set of all finite Borel
measures.

Corollary 2.5 Let U : Cb → R be convex and monotone. Then the following are
equivalent:

(i) U is continuous from below.
(ii) U is lower semicontinuous in the mixed topology β.
(iii) U is lower semicontinuous in the weak topology σ(Cb, ca).
(iv) There exist a nonempty set M ⊆ ca+ and a function α : M → R such that

U(f ) = sup
μ∈M

( ∫

�

f dμ − α(μ)

)
for all f ∈ Cb. (2.2)

We apply Corollary 2.5 to the case of Choquet integrals. In the sequel, let O de-
note the family of all open subsets of �, i.e., the topology on �, and Lb the set of
all bounded lower semicontinuous functions � → R. A capacity (on O) is a map
c : O → [0,∞) with

c(∅) = 0 and c(B1) ≤ c(B2) for all B1, B2 ∈ O with B1 ⊆ B2.

For a capacity c : O → [0,∞), we define the Choquet integral with respect to c as

∫

�

f dc :=
∫ ∞

0
c({f > s}) ds +

∫ 0

−∞
(
c({f > s}) − c(�)

)
ds for all f ∈ Lb.

By definition, the Choquet integral is positively homogeneous, i.e.,
∫

�

(λf ) dc = λ

∫

�

f dc for all f ∈ Lb and λ > 0,

and constant additive, i.e.,
∫

�

(f + m) dc =
∫

�

f dc + mc(�) for all f ∈ Lb and m ∈ R.
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A well-known fact is that the Choquet integral is subadditive, i.e.,
∫

�

(f1 + f2) dc ≤
∫

�

f1 dc +
∫

�

f2 dc for all f1, f2 ∈ Lb,

if and only if the capacity c is 2-alternating, i.e.,

c(B1 ∪ B2) + c(B1 ∩ B2) ≤ c(B1) + c(B2) for all B1, B2 ∈ O.

For the reader’s convenience, we provide a proof of this statement in Appendix A.
Another consequence of Theorem 2.2 and Corollary 2.5 is the following result

concerning the regularity of general capacities and dual representations of Choquet
integrals in terms of countably additive measures for 2-alternating capacities. We
point out that the equivalence between (i) and (ii) is a standard result from Choquet
theory and can be found for example in the textbook by König [20, Exercise 11.18].
The equivalence between (iii) and (iv) has been discussed in a more general setting in
Adamski [1]. The main novelty is the implication (ii) ⇒ (iii), which is a consequence
of Theorem 2.2 and together with Corollary 2.5 facilitates the proof of the remaining
equivalences. For the reader’s convenience, we provide a self-contained proof of all
equivalences.

Corollary 2.6 Let c : O → [0,∞) be a capacity. Then the following are equivalent:
(i) For every sequence (Bn)n∈N ⊆ O with Bn ⊆ Bn+1 for all n ∈ N,

c

( ⋃

n∈N
Bn

)
= lim

n→∞ c(Bn).

(ii) The Choquet integral is continuous from below on Lb, i.e.,
∫

�

f dc = lim
n→∞

∫

�

fn dc

for all f ∈ Lb and any sequence (fn)n∈N ⊆ Lb with fn ↗ f as n → ∞.
(iii) The capacity c is regular, i.e., for all B ∈ O,

c(B) = sup
C�B

inf
A∈O
A⊇C

c(A), (2.3)

where we write C � B for C ⊆ B ⊆ � with C compact.
If c is 2-alternating, the statements (i)–(iii) are equivalent to the following state-

ment:
(iv) There exists a nonempty set M ⊆ ca+ with μ(�) = c(�) for all μ ∈ M and

∫

�

f dc = sup
μ∈M

∫

�

f dμ for all f ∈ Lb.

We now present an application of Corollary 2.5 for star-shaped risk measures
on Cb. In the following, we say that a monotone functional R : Cb → R is a risk
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measure if R(0) = 0 and R(f + m) = R(f ) + m for all f ∈ Cb and all constants
m ∈ R. We say that a risk measure R : Cb → R is star-shaped if

R(λf ) ≤ λR(f ) for all f ∈ Cb and λ ∈ [0, 1].
For a detailed discussion on risk measures, we refer to Föllmer and Schied [15,
Chap. 4], and for a survey on star-shaped risk measures to Castagnoli et al. [6]. The
following corollary is a variant of [6, Proposition 5] in our setting. The proof heav-
ily uses the insights obtained in the proof of [6, Theorem 2]. We point out that [6,
Proposition 5] covers only the case of dominated risk measures, i.e., risk measures
on L∞, which is discussed in detail in [15, Sect. 4.3], whereas we consider general
risk measures restricted to the space of bounded continuous functions.

Corollary 2.7 Let R : Cb → R. Then the following are equivalent:
(i) The map R is a star-shaped risk measure.
(ii) There exist a nonempty set I and a family (αi)i∈I of functions ca1+ → [0,∞]

with infμ∈ca1+ αi(μ) = 0 for all i ∈ I and

R(f ) = min
i∈I

sup
μ∈ca1+

( ∫

�

f dμ − αi(μ)

)
for all f ∈ Cb.

We conclude this section with various characterisations of continuity in the mixed
topology for convex monotone maps. We start with the following theorem which is
our second main result. Recall V from (2.1).

Theorem 2.8 Let I be a nonempty index set and (Ui)i∈I a family of convex and
monotone maps Cb → R with

sup
i∈I

(
Ui(r) − Ui(0)

)
< ∞ for all constants r ≥ 0. (2.4)

Then the following are equivalent:
(i) For every sequence (fn)n∈N ⊆ Cb with fn ↘ 0 as n → ∞,

lim
n→∞ sup

i∈I

(
Ui(fn) − Ui(0)

) = 0.

(ii) For every r ≥ 0 and every ε > 0, there exists some V ∈ V with

sup
‖f ‖∞≤r

sup
i∈I

|Ui(f + e) − Ui(f )| < ε for all e ∈ V.

(iii) For every r ≥ 0 and every ε > 0, there exist a compact C ⊆ � and a constant
M ≥ 0 such that

sup
i∈I

|Ui(f1) − Ui(f2)| ≤ M sup
x∈C

|f1(x) − f2(x)| + ε

for all f1, f2 ∈ Cb with max{‖f1‖∞, ‖f2‖∞} ≤ r .
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Theorem 2.8 leads to the following characterisation for continuity in the mixed
topology of convex and monotone maps on Cb taking values in a locally convex vector
lattice (L, τ), i.e., a vector lattice L together with a locally convex topology τ on L

which is generated by a family of lattice seminorms. Recall that for a vector lattice L,
a seminorm p : L → [0,∞) is called a lattice seminorm if p(u) ≤ p(v) for all
u, v ∈ L with |u| ≤ |v|. We refer to Schaefer and Wolff [23, Sect. V.7] for a detailed
study of locally convex vector lattices. For the reader’s convenience, we provide an
auxiliary result on locally convex vector lattices in Appendix B.

Corollary 2.9 Let (L, τ) be a locally convex vector lattice and U : Cb → L convex
and monotone. Then the following are equivalent:

(i) U is β–τ -continuous.
(ii) For every nonnegative τ -continuous linear functional λ : L → R and every

sequence (fn)n∈N ⊆ Cb with fn ↘ 0 as n → ∞,

lim
n→∞ λ

(
U(fn)

) = λ
(
U(0)

)
.

(iii) For every nonnegative τ -continuous linear functional λ : L → R, the map

Cb → R, f �→ λ
(
U(f )

)

is sequentially upper semicontinuous in the mixed topology β.
(iv) For every τ -continuous lattice seminorm p : L → [0,∞), every constant

r ≥ 0 and all ε > 0, there exists some V ∈ V with

sup
‖f ‖∞≤r

p
(
U(f + e) − U(f )

)
< ε for all e ∈ V.

(v) For every τ -continuous lattice seminorm p : L → [0,∞), every constant
r ≥ 0 and all ε > 0, there exist a compact C ⊆ � and a constant M ≥ 0 such
that

p
(
U(f1) − U(f2)

) ≤ M sup
x∈C

|f1(x) − f2(x)| + ε

for all f1, f2 ∈ Cb with max{‖f1‖∞, ‖f2‖∞} ≤ r .

Choosing L = R with the (usual) topology induced by the absolute value | · |, we
obtain the following corollary.

Corollary 2.10 Let U : Cb → R be convex and monotone. Then the following are
equivalent:

(i) U is continuous from above.
(ii) U is sequentially upper semicontinuous in the mixed topology β.
(iii) U is continuous in the mixed topology β.
(iv) For every r ≥ 0 and every ε > 0, there exist some V ∈ V with

sup
‖f ‖∞≤r

|U(f + e) − U(f )| < ε for all e ∈ V.
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(v) For every r ≥ 0 and every ε > 0, there exist a compact C ⊆ � and a constant
M ≥ 0 such that

|U(f1) − U(f2)| ≤ M sup
x∈C

|f1(x) − f2(x)| + ε

for all f1, f2 ∈ Cb with max{‖f1‖∞, ‖f2‖∞} ≤ r .

Now let �0 be another Polish space, Cb(�0) the space of all bounded continuous
functions �0 → R and β0 the mixed topology on Cb(�0). To avoid confusion, we
write Cb(�) instead of Cb in the following corollary.

Corollary 2.11 Let U : Cb(�) → Cb(�0) be convex and monotone. Then the follow-
ing are equivalent:

(i) U is β-β0-continuous.
(ii) For every ω ∈ �0 and every sequence (fn)n∈N ⊆ Cb(�) with fn ↘ 0 as

n → ∞,

lim
n→∞

(
U(fn)

)
(ω) = (

U(0)
)
(ω).

(iii) For every compact K ⊆ �0, every constant r ≥ 0 and all ε > 0, there exist a
compact C ⊆ � and a constant M ≥ 0 such that

sup
ω∈K

∣∣(U(f1)
)
(ω) − (

U(f2)
)
(ω)

∣∣ ≤ M sup
x∈C

|f1(x) − f2(x)| + ε

for all f1, f2 ∈ Cb(�) with max{‖f1‖∞, ‖f2‖∞} ≤ r .

3 Proofs

Before turning our focus on the proof of Theorem 2.2, we collect some well-known
facts on the connection between pointwise monotone convergence, uniform con-
vergence on compacts together with uniform boundedness, and convergence in the
mixed topology for sequences in Cb.

Remark 3.1 a) Let (fn)n∈N ⊆ Cb with fn ↗ f ∈ Cb as n → ∞. Since fn ↗ f as
n → ∞, it follows that (fn − f )n∈N is uniformly bounded, i.e.,

sup
n∈N

‖fn − f ‖∞ < ∞, (3.1)

and by Dini’s lemma, (fn − f )n∈N converges uniformly on compacts to 0 ∈ Cb, i.e.,
for all compacts C ⊆ �,

sup
x∈C

|fn(x) − f (x)| −→ 0 as n → ∞. (3.2)
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b) Let (fn)n∈N ⊆ Cb and f ∈ Cb with (3.1) and (3.2). Moreover, let V ∈ V . Then
there exist (V 1

k )k∈N ⊆ V1 and V 2 ∈ V2 such that

V =
⋃

n∈N

n∑

k=1

(V 1
k ∩ kV 2).

By (3.1), there exists some k ∈ N with fn − f ∈ kV 2 for all n ∈ N. Moreover,
by (3.2), there exists some n0 ∈ N such that fn − f ∈ V 1

k for all n ∈ N with n ≥ n0.
Hence fn − f ∈ V 1

k ∩ kV 2 ⊆ V for all n ∈ N with n ≥ n0. This shows that fn → f

in the mixed topology β as n → ∞.

Proof of Theorem 2.2 Let d : � × � → [0,∞) be a metric consistent with the topol-
ogy on � such that (�, d) is a complete separable metric space. Moreover, let
(xi)i∈N ⊆ � be a sequence such that D := {xi : i ∈ N} is dense in �.

1) We start with the proof of the implication (i) ⇒ (ii). To that end, assume that
U is continuous from below. We show that U is lower semicontinuous in the mixed
topology β, i.e., for all f ∈ Cb and ε > 0, there exists some V ∈ V such that

U(f ) ≤ U(f + e) + ε for all e ∈ V.

In order to do so, fix f ∈ Cb and ε > 0. Since U is continuous from below, there
exists some δ > 0 such that

U(f ) ≤ U(f − δ) + ε

2
.

In a first step, we adapt the main idea from the proof of Ulam’s theorem, cf. Dud-
ley [13, proof of Theorem 7.1.4], to our setting and recursively construct families of
finite sets Dm

k ⊆ D and continuous functions ϕm
k : � → [0, 1] which are indexed by

k,m ∈ N with k ≤ m and satisfy the following three properties:

Dm
k ⊆ Dm+1

k ⊆
m⋂

j=k

⋃

x∈D
j
k

B

(
x,

1

j

)
=: Bm

k for all k,m ∈ N with k ≤ m; (3.3)

ϕm
k (x) = 0 for all k,m ∈ N with k ≤ m and x ∈ � \ Bm

k ; (3.4)

U(f − δ) ≤ U

(
f − δ − m(m + 1)

2
+

m∑

k=1

kϕm
k

)
+ ε

2
for all m ∈ N. (3.5)

In order to simplify notation, let ℓ(0) := 1 and set

fm := f − δ − m(m + 1)

2
, ϕm−1

m := 1, Bm−1
m := � for all m ∈ N.

Now let m ∈ N and define

ψ
ℓ,m
k (x) := (

1 − m dist(x, {x1, . . . , xℓ} ∩ Bm−1
k )

) ∨ 0
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for all x ∈ �, k ∈ {1, . . . , m} and ℓ ∈ N. Since Bm−1
k is open, ϕm−1

k ≥ 0 and
ϕm

k (x) = 0 for all x ∈ � \ Bm−1
k for all k ∈ {1, . . . , m}, it follows that

ϕm−1
k ψ

ℓ,m
k ↗ ϕm−1

k as ℓ → ∞

for all k ∈ {1, . . . , m}. Using the continuity from below of U , there exists ℓ(m) ∈ N

with ℓ(m) ≥ ℓ(m − 1) and

U

(
fm +

m∑

k=1

kϕm−1
k

)
≤ U

(
fm +

m∑

k=1

kϕm−1
k ψ

ℓ(m),m
k

)
+ ε

2
2−m,

and we define

ϕm
k := ϕm−1

k ψ
ℓ(m),m
k , Dm

k := {x1, . . . , xℓ(m)} ∩ Bm−1
k . (3.6)

We now verify that the sequence constructed in this way satisfies the properties
(3.3)–(3.5). By definition, Dm

k ⊆ Bm−1
k and since

Bm
k = Bm−1

k ∩
( ⋃

x∈Dm
k

B
(
x,

1

m

))
,

it follows that Dm
k ⊆ Bm

k for all m ∈ N. Since ℓ(m) ≤ ℓ(m + 1) and Bm
k ⊆ Bm−1

k ,
we find that

Dm
k = Dm

k ∩ Bm
k = {x1, . . . , xℓ(m)} ∩ Bm

k ⊆ {x1, . . . , xℓ(m+1)} ∩ Bm
k = Dm+1

k

for all m ∈ N. By (3.6),

ψ
ℓ(m),m
k (x) = (

1 − m dist(x,Dm
k )

) ∨ 0

for all x ∈ �, k ∈ {1, . . . , m} and m ∈ N. Hence

ϕm
k (x) =

m∏

j=k

ψ
ℓ(j),j
k (x) = 0 for all x ∈ � \ Bm

k , k ∈ {1, . . . , m} and m ∈ N.

Moreover, setting f0 := f − δ and using the fact that ϕm−1
m = 1, it follows that

U

(
fm−1 +

m−1∑

k=1

kϕm−1
k

)
= U

(
fm +

m∑

k=1

kϕm−1
k

)
≤ U

(
fm +

m∑

k=1

kϕm
k

)
+ ε

2
2−m

for all m ∈ N. Inductively, we obtain that

U(f − δ) ≤ U

(
f − δ − m(m + 1)

2
+

m∑

k=1

kϕm
k

)
+ ε

2
for all m ∈ N.
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We have therefore verified (3.3)–(3.5) and now define

Ck :=
∞⋂

j=k

⋃

x∈D
j
k

B

(
x,

1

j

)
for all k ∈ N,

where for x ∈ � and r > 0, B(x, r) := {y ∈ � : d(x, y) ≤ r}. Then Ck is a
closed and totally bounded subset of a complete metric space and hence compact for
all k ∈ N. For x ∈ � and r > 0, let B(x, r) := {y ∈ � : d(x, y) < r}, and observe
that

∞⋂

m=k

Bm
k =

∞⋂

m=k

m⋂

j=k

⋃

x∈D
j
k

B

(
x,

1

j

)
=

∞⋂

j=k

⋃

x∈D
j
k

B

(
x,

1

j

)
⊆ Ck for all k ∈ N

so that by (3.3), Dm
k ⊆ Ck for all k,m ∈ N with k ≤ m.

Using the sequence (Ck)k∈N of compacts, we define

V 1
k :=

{
e ∈ Cb : sup

x∈Ck

|e(x)| < 2−kδ
}

for all k ∈ N

and V 2 := {g ∈ Cb(�) : ‖g‖∞ < 1}. Then

V :=
⋃

n∈N

n∑

k=1

(V 1
k ∩ kV 2)

is a neighborhood of 0 ∈ Cb in the mixed topology. We show that

U(f ) ≤ U(f + e) + ε for all e ∈ V.

To that end, let e ∈ V , i.e., there exist n ∈ N and ek ∈ V 1
k ∩ kV 2 for k ∈ {1, . . . , n}

such that e = ∑n
k=1 ek . Let δk := supx∈Ck

|ek(x)|. Since ek ∈ V 1
k , it follows that

δk < 2−kδ for all k ∈ {1, . . . , n}. As C1, . . . , Cn are compact, there exists some
m ∈ N with m ≥ n such that

|ek(y) − ek(x)| < 2−kδ − δk

for all k ∈ {1, . . . , n}, x ∈ Ck and y ∈ � with d(x, y) < 1
m

. Since Dm
k ⊆ Ck for all

k ∈ {1, . . . , n}, this implies that

|ek(y)| ≤ 2−kδ for all k ∈ {1, . . . , n} and y ∈
⋃

x∈Dm
k

B

(
x,

1

m

)
.

Hence by (3.4), it follows that

−k + kϕm
k ≤ −k + (k + ek)ϕ

m
k + 2−kδ ≤ ek + 2−kδ for all k ∈ {1, . . . , n},
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where the first step uses the fact that |ekϕ
m
k | ≤ 2−kδ and the last that k + ek ≥ 0 for

all k ∈ {1, . . . , n}. On the other hand, −k + kϕm
k ≤ 0 for all k ∈ {n + 1, . . . , m}.

Therefore,

f − δ − m(m + 1)

2
+

m∑

k=1

kϕm
k ≤ f − δ +

n∑

k=1

(ek + 2−kδ) ≤ f +
n∑

k=1

ek = f + e.

Using (3.5), it follows that

U(f ) ≤ U(f − δ) + ε

2
≤ U

(
f − δ − m(m + 1)

2
+

m∑

k=1

kϕm
k

)
+ ε ≤ U(f + e) + ε.

This proves that U is lower semicontinuous with respect to the mixed topology β.
2) Next, we prove that (ii) implies (iv). To that end, let f ∈ Cb and ε > 0. Then

there exist (V 1
k )k∈N ⊆ V1 and V 2 ∈ V2 such that

U(f ) ≤ U(f + e) + ε

for all e ∈ V := ⋃
n∈N

∑n
k=1(V

1
k ∩ kV 2). Let r ≥ 0. Then there exists some n ∈ N

such that

{g ∈ Cb : ‖g‖∞ ≤ r} ⊆ nV 2.

Moreover, there exist δ > 0 and a compact C ⊆ � such that
{
g ∈ Cb : sup

x∈C

|g(x)| ≤ δ
}

⊆ V 1
n .

Hence for every e ∈ Cb with ‖e‖∞ ≤ r and supx∈C |e(x)| ≤ δ, it follows that e ∈ V

and therefore U(f ) ≤ U(f + e) + ε.
3) Clearly, (ii) implies (iii) so that it remains to prove the implications (iii) ⇒ (i)

and (iv) ⇒ (i). To that end, let (fn)n∈N ⊆ Cb with fn ↗ f ∈ Cb as n → ∞. Then
due to the monotonicity of U ,

lim
n→∞ U(fn) = sup

n∈N
U(fn) ≤ U(f ).

Since fn ↗ f as n → ∞, it follows by Remark 3.1 a) that the sequence (fn −f )n∈N
is uniformly bounded and converges uniformly on compacts to 0 ∈ Cb. Moreover, by
Remark 3.1 b), it follows that fn → f as n → ∞ in the mixed topology β. Hence if
U satisfies (iii) or (iv), it follows that

U(f ) ≤ lim inf
n→∞ U(fn) = lim

n→∞ U(fn).

The proof is complete. �

Proof of Corollary 2.5 The equivalence of (i) and (ii) follows from Theorem 2.2.
By standard duality theory in locally convex Hausdorff spaces, cf. Ekeland and
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Temam [14, Proposition 3.1], (ii) is equivalent to the fact that U admits a dual
representation of the form

U(f ) = sup
μ∈M

(
μf − α(μ)

)
for all f ∈ Cb

with a set M of β-continuous linear functionals on Cb and a function α : M → R.
Let μ ∈ M and f ∈ Cb with f ≥ 0. Since U is monotone, it follows that

1

λ

(
μ(−λf ) − α(μ)

) ≤ U(−λf )

λ
≤ U(0)

λ
for all λ > 0.

Hence

0 = lim
λ→∞ −U(0) + α(μ)

λ
≤ μf,

which shows that every linear functional in M is positive. The remaining equiva-
lences and in particular the dual representation (2.2) now follow from the fact that
by Theorem 2.2 and the Daniell–Stone theorem, cf. Bogachev [4, Theorem 7.8.1], a
positive linear functional μ : Cb → R is continuous in the mixed topology β if and
only if it belongs to ca+. �

Proof of Corollary 2.6 1) We first prove the implication (i) ⇒ (ii). To that end, let
(fn)n∈N ⊆ Lb and f ∈ Lb with fn ↗ f as n → ∞. Then for all s ∈ R,

lim
n→∞ c({fn > s}) = c({f > s}).

Using the monotone convergence theorem, it follows that

lim
n→∞

∫

�

fn dc = lim
n→∞

( ∫ ∞

0
c({fn > s}) ds +

∫ 0

−∞
(
c({fn > s}) − c(�)

)
ds

)

=
∫ ∞

0
c({f > s}) ds +

∫ 0

−∞
(
c({f > s}) − c(�)

)
ds

=
∫

�

f dc. (3.7)

2) For the implication (ii) ⇒ (iii), first observe that

c(B) ≥ sup
C�B

inf
A∈O
A⊇C

c(A) for all B ∈ O.

In order to show the converse inequality, let B ∈ O and ε > 0. In a first step, we
consider the case B = �. Then by Theorem 2.2, there exist δ > 0 and a compact set
C ⊆ � such that

∫

�

1 dc ≤
∫

�

g dc + ε
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for all g ∈ Cb with ‖g‖∞ ≤ 1 and supx∈C |g(x) − 1| ≤ δ. Now let A ∈ O with
A ⊇ C. Since A is open, there exists some m ∈ N such that g : � → R given by

g(x) := sup
y∈C

(
1 − md(x, y)

) ∨ 0 for all x ∈ �

satisfies g(x) = 0 for x ∈ � \ A. Since 0 ≤ g ≤ 1 and g(x) = 1 for all x ∈ C, it
follows that

c(�) =
∫

�

1 dc ≤
∫

�

g dc + ε ≤
∫

�

1A dc + ε = c(A) + ε.

We have therefore shown that

c(�) ≤ inf
A∈O
A⊇C

c(A) + ε

Taking the supremum over all C � � and letting ε → 0 yields (2.3).
For general B ∈ O, the statement now follows from the fact that B, endowed with

the subspace topology

OB := {A ∩ B : A ∈ O} = {A ∈ O : A ⊆ B} ⊆ O,

is again a Polish space, together with the observation that a subset of B is compact in
the subspace topology OB if and only if it is compact in the original topology O.

3) To prove that (iii) implies (i), let (Bn)n∈N ⊆ O with Bn ⊆ Bn+1 for all n ∈ N

and ε > 0. Then there exists some compact C ⊆ ⋃
n∈N Bn =: B with

c(B) ≤ inf
A∈O
A⊇C

c(A) + ε.

Since C is compact, C ⊆ B = ⋃
n∈N Bn and Bn is open with Bn ⊆ Bn+1 for all

n ∈ N, there exists some n0 ∈ N such that C ⊆ Bn0 . Hence

inf
A∈O
A⊇C

c(A) ≤ c(Bn0),

and it follows that

sup
n∈N

c(Bn) ≤ c(B) ≤ sup
n∈N

c(Bn) + ε = lim
n→∞ c(Bn) + ε.

Letting ε → 0, it follows that c(B) = limn→∞ c(Bn).
4) Now we assume that the capacity c is 2-alternating. In order to prove that (iv)

implies (i), let (Bn)n∈N ⊆ O with Bn ⊆ Bn+1 for all n ∈ N. Then

c

( ⋃

n∈N
Bn

)
= sup

μ∈M
μ

( ⋃

n∈N
Bn

)

= sup
μ∈M

sup
n∈N

μ(Bn) = sup
n∈N

sup
μ∈M

μ(Bn) = lim
n→∞ c(Bn).
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5) In the last step, we prove that (ii) implies (iv). By Corollary 2.5, there exist a
set M ⊆ ca+ and a function α : M → R such that

∫

�

f dc = sup
μ∈M

( ∫

�

f dμ − α(μ)

)
for all f ∈ Cb.

Since the Choquet integral is positively homogeneous, it follows that

∫

�

f dμ − α(μ)

λ
= 1

λ

( ∫

�

λf dμ − α(μ)

)
≤ 1

λ

∫

�

λf dc =
∫

�

f dc

for all f ∈ Cb, μ ∈ M and λ > 0. Letting λ → ∞, it follows that

sup
μ∈M

∫

�

f dμ ≤
∫

�

f dc for all f ∈ Cb.

On the other hand,

−α(μ) =
∫

�

0 dμ − α(μ) ≤
∫

�

0 dc = 0 for all μ ∈ M.

Hence for all f ∈ Cb,

sup
μ∈M

∫

�

f dμ ≤
∫

�

f dc = sup
μ∈M

( ∫

�

f dμ − α(μ)

)
≤ sup

μ∈M

∫

�

f dμ.

In particular,

μ(�) =
∫

�

1 dμ ≤
∫

�

1 dc = c(�) for all μ ∈ M.

Since the Choquet integral is constant additive, it follows that

0 = c(�) +
∫

�

(−1) dc ≥ c(�) +
∫

�

(−1) dμ = c(�) − μ(�)

for all μ ∈ M. We have therefore shown that μ(�) = c(�) for all μ ∈ M. Defining
for f ∈ Lb, x ∈ � and n ∈ N the quantity fn(x) := infy∈�(f (y) + nd(x, y)) with
a metric d consistent with the topology on �, there exists for all f ∈ Lb a sequence
(fn)n∈N ⊆ Cb with fn ↗ f as n → ∞, and so

∫

�

f dc = sup
n∈N

∫

�

fn dc

= sup
n∈N

sup
μ∈M

∫

�

fn dμ = sup
μ∈M

sup
n∈N

∫

�

fn dμ = sup
μ∈M

∫

�

f dμ,

where the first equality uses (3.7) and the last the monotone convergence theorem.
�
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Proof of Corollary 2.7 First assume that (ii) is satisfied, i.e., there exist a set I �= ∅ and
a family (αi)i∈I of functions ca1+ → [0,∞] with infμ∈ca1+ αi(μ) = 0 for all i ∈ I

and

R(f ) = min
i∈I

sup
μ∈ca1+

( ∫
f dμ − αi(μ)

)
for all f ∈ Cb.

Then one readily verifies that R is monotone with R(f + m) = R(f ) + m for all
f ∈ Cb and m ∈ R. Since infμ∈ca1+ αi(μ) = 0 for all i ∈ I , it follows that

R(0) = min
i∈I

sup
μ∈ca1+

( − αi(μ)
) = min

i∈I

(
− inf

μ∈ca1+
αi(μ)

)
= 0.

We have therefore shown that R is a risk measure. To prove that R is star-shaped, let
f ∈ Cb and λ ∈ [0, 1]. Then

R(λf ) = min
i∈I

sup
μ∈ca1+

( ∫

�

λf dμ − αi(μ)

)

≤ min
i∈I

(
λ sup

μ∈ca1+

( ∫

�

f dμ − αi(μ)
))

= λR(f ).

To prove the converse implication (i) ⇒ (ii), assume that R is a star-shaped risk
measure. Following the proof of Castagnoli et al. [6, Theorem 2], we define

Aϕ := {
f ∈ Cb : ∃λ ∈ [0, 1] with f ≤ λ

(
ϕ − R(ϕ)

)}
for all ϕ ∈ Cb.

Then for all ϕ ∈ Cb, the set Aϕ is convex with g ∈ Aϕ for all g ∈ Cb with g ≤ f

for some f ∈ Aϕ , and 0 ∈ Aϕ , m /∈ Aϕ for all m ∈ (0,∞). Indeed, for the
latter, assume towards a contradiction that there exist m ∈ (0,∞) and λ ∈ (0, 1]
with m ≤ λ(ϕ − R(ϕ)). Then ϕ ≥ m

λ
+ R(ϕ), which contradicts the fact that R is

a risk measure. Hence by Föllmer and Schied [15, Proposition 4.7], the functional
Rϕ : Cb → R given by

Rϕ(f ) := inf{m ∈ R : f − m ∈ Aϕ} for all f ∈ Cb

defines a convex risk measure on Cb. Let f ∈ Cb and m ∈ R with
m > infϕ∈Cb

Rϕ(f ). Then there exists some ϕ ∈ Cb with m > Rϕ(f ), and so

f − m ≤ λ
(
ϕ − R(ϕ)

)
for some λ ∈ [0, 1].

Since R is a star-shaped risk measure, it follows that

R(f ) − m = R(f − m) ≤ R
(
λ
(
ϕ − R(ϕ)

)) ≤ λR
(
ϕ − R(ϕ)

) = 0.

Hence R(f ) ≤ infϕ∈Cb
Rϕ(f ) for all f ∈ Cb. Moreover, for all ϕ ∈ Cb and m ∈ R

with m < R(ϕ), it follows that ϕ − m > ϕ − R(ϕ) so that Rϕ(ϕ) = R(ϕ) by the
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definition of Aϕ . Indeed, if ϕ − R(ϕ) ≤ 0, it follows that R(ϕ) = supx∈� ϕ(x). In
this case, the inequality m < R(ϕ) implies that there exists some x ∈ � with

ϕ(x) − m > 0 ≥ λ
(
ϕ(x) − R(ϕ)

)
for all λ ∈ [0, 1].

We have therefore shown that

R(f ) = min
ϕ∈Cb

Rϕ(f ) for all f ∈ Cb.

In view of Corollary 2.5 and [15, Theorem 4.16], it remains to prove that
Rϕ : Cb → R is continuous from below for all ϕ ∈ Cb. To that end, let ϕ ∈ Cb,
(fn)n∈N ⊆ Cb with fn ↗ f ∈ Cb as n → ∞, and (mn)n∈N ⊆ R with
mn > supk∈N Rϕ(fk) for all n ∈ N and limn→∞ mn = supk∈N Rϕ(fk). Then there
exists a sequence (λn)n∈N ⊆ [0, 1] such that

fn − mn ≤ λn

(
ϕ − R(ϕ)

)
for all n ∈ N.

Since [0, 1] is compact, by passing to a subsequence, we may without loss of
generality assume that λn → λ ∈ [0, 1] as n → ∞. Then

f − sup
k∈N

Rϕ(fk) = lim
n→∞(fn − mn) ≤ lim

n→∞ λn

(
ϕ − R(ϕ)

) = λ(ϕ − R(ϕ)
)
,

which proves that Rϕ(f ) ≤ supk∈N Rϕ(fk). Since Rϕ : Cb → R is monotone, it
follows that Rϕ(f ) = limn→∞ Rϕ(fn). �

Proof of Theorem 2.8 First observe that by convexity of Ui for all i ∈ I and (2.4),

sup
i∈I

(
Ui(f1) − Ui(f2)

) ≤ sup
i∈I

(
Ui(f1) + Ui(−f2) − 2Ui(0)

)

≤ 2 sup
i∈I

(
Ui(r) − Ui(0)

)
< ∞ (3.8)

for all r ≥ 0 and f1, f2 ∈ Cb with max{‖f1‖∞, ‖f2‖∞} ≤ r .
1) The implication (iii) ⇒ (i) follows from Remark 3.1 a). To prove that (i) implies

(ii), we first show that for every f ∈ Cb and every ε > 0, there exists some V ∈ V
with

sup
i∈I

|Ui(f + e) − Ui(f )| < ε for all e ∈ V.

To that end, let f ∈ Cb and consider the monotone maps Uf ,Uf : Cb → R given by

Uf (g) := sup
i∈I

(
Ui(f + g) − Ui(f )

)
,

Uf (g) := sup
i∈I

(
Ui(f ) − Ui(f − g)

)
for all g ∈ Cb.

Observe that by (3.8), Uf and Uf are well defined and

Uf (−g) = sup
i∈I

(
Ui(f ) − Ui(f + g)

)
for all g ∈ Cb.
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Moreover, for any V ∈ V , e ∈ V if and only if −e ∈ V . Hence the auxiliary statement
follows from Corollary 2.3 once we have shown that both Uf and Uf are continuous
from above. To that end, let g ∈ Cb and (gn)n∈N ⊆ Cb with gn ↘ g as n → ∞.
Moreover, let ε > 0, n ∈ N and λ ∈ (0, 1). Then using the fact that Ui is convex for
all i ∈ I ,

Uf (gn) − Uf (g) ≤ sup
i∈I

(
Ui(f + gn) − Ui(f + g)

)

≤ λ sup
i∈I

(
Ui

(gn − g

λ

)
− Ui(0)

)
+ λ sup

i∈I

(
Ui(0) − Ui(f + g)

)

+ (1 − λ) sup
i∈I

(
Ui

(f + g

1 − λ

)
− Ui(f + g)

)

and

Uf (gn) − Uf (g) ≤ sup
i∈I

(
Ui(f − g) − Ui(f − gn)

)

≤ sup
i∈I

(
Ui(f − 2g + gn) − Ui(f − g)

)

≤ λ sup
i∈I

(
Ui

(gn − g

λ

)
− Ui(0)

)
+ λ sup

i∈I

(
Ui(0) − Ui(f − g)

)

+ (1 − λ) sup
i∈I

(
Ui

(f − g

1 − λ

)
− Ui(f − g)

)
.

Since the maps

R → R, γ �→ sup
i∈I

(
Ui

(
γ (f ± g)

) − Ui(f ± g)
)

are convex and therefore continuous, we obtain

λ sup
i∈I

(
Ui(0) − Ui(f ± g)

) + (1 − λ) sup
i∈I

(
Ui

(f ± g

1 − λ

)
− Ui(f ± g)

)
<

ε

2

for λ ∈ (0, 1) sufficiently small. Moreover, by assumption,

λ sup
i∈I

(
Ui

(gn − g

λ

)
− Ui(0)

)
<

ε

2

for n ∈ N sufficiently large since gn−g
λ

↘ 0 as n → ∞. We have therefore shown that

0 ≤ Uf (gn) − Uf (g) < ε and 0 ≤ Uf (gn) − Uf (g) < ε

for n ∈ N sufficiently large, and so both Uf and Uf are continuous from above. We
have thus proved the auxiliary statement and are now ready to prove the implication
(i) ⇒ (ii). For i ∈ I and f ∈ Cb, let Ui,f : Cb → R be given by

Ui,f (g) := Ui(f + g) − Ui(f ) for all g ∈ Cb.
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Then Ui,f is convex and monotone with Ui,f (0) = 0 for all i ∈ I and f ∈ Cb.
Moreover, for all λ ∈ (0, 1), i ∈ I and f, g ∈ Cb,

Ui,f (g) ≤ λ

(
Ui

(g

λ

)
− Ui(f )

)
+ (1 − λ)

(
Ui

( f

1 − λ

)
− Ui(f )

)

≤ λ

(
Ui

(g

λ

)
− Ui(0)

)
+ λ

(
Ui(−f ) − Ui(0)

)

+ (1 − λ)

(
Ui

( f

1 − λ

)
− Ui(f )

)
,

where the second inequality uses the fact that Ui(0) − Ui(f ) ≤ Ui(−f ) − Ui(0) for
all i ∈ I . Let r ≥ 0, (gn)n∈N ⊆ Cb with gn ↘ 0 as n → ∞ and ε > 0. Then by (3.8),
the map

R → R, γ �→ sup
‖f ‖∞≤r

sup
i∈I

(
Ui(γf ) − Ui(f )

)

is convex and well defined. Therefore it is continuous and it follows that

λ
(
Ui(−f ) − Ui(0)

) + (1 − λ)

(
Ui

( f

1 − λ

)
− Ui(f )

)
<

ε

2

for λ ∈ (0, 1) sufficiently small. Hence we get

sup
‖f ‖∞≤r

sup
i∈I

Ui,f (gn) ≤ λ sup
i∈I

(
Ui

(gn

λ

)
− Ui(0)

)
+ ε

2
< ε

for n ∈ N sufficiently large, and we have shown that

lim
n→∞ sup

‖f ‖∞≤r

sup
i∈I

Ui,f (gn) = 0.

Using the auxiliary statement for the convex monotone functions Ui,f with i ∈ I and
f ∈ Cb with ‖f ‖∞ ≤ r , there exists some V ∈ V such that

sup
‖f ‖∞≤r

sup
i∈I

|Ui(f + e) − Ui(f )| = sup
‖f ‖∞≤r

sup
i∈I

|Ui,f (e)| ≤ ε for all e ∈ V.

2) It remains to prove the implication (ii) ⇒ (iii). Let r ≥ 0 and ε > 0. Then there
exists some V ∈ V such that

sup
‖f ‖∞≤r

sup
i∈I

|Ui(f + e) − Ui(f )| ≤ ε for all e ∈ V.

By the definition (2.1) of the local base V , there exist some compact C ⊆ � and
some δ > 0 such that

{
e ∈ Cb : sup

x∈C

|e(x)| < δ
}

∩ {e ∈ Cb : ‖e‖∞ ≤ 2r} ⊆ V.
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Now let f1, f2 ∈ Cb with max{‖f1‖∞, ‖f2‖∞} ≤ r . Then by the triangle inequality,
‖f1 − f2‖∞ ≤ 2r . If supx∈C |f1(x) − f2(x)| < δ, then

sup
i∈I

|Ui(f1) − Ui(f2)| ≤ ε.

On the other hand, if supx∈C |f1(x) − f2(x)| ≥ δ, then by (3.8), it follows that

sup
i∈I

|Ui(f1) − Ui(f2)| ≤ M sup
x∈C

|f1(x) − f2(x)|

with M := 2
δ

supi∈I (Ui(r) − Ui(0)). The proof is complete. �

Proof of Corollary 2.9 Since (L, τ) is a locally convex vector lattice, (iv) implies (i).
The implication (i) ⇒ (iii) is trivial, and by Corollary 2.3, (ii) and (iii) are equivalent.
By Theorem 2.8 and Lemma B.1, (ii) ⇒ (iv) and (ii) ⇒ (v), since (ii) together with
Dini’s lemma implies that for every convex and weak∗ compact set K of nonnegative
τ -continuous linear functionals, the map

UK : Cb → R, f �→ sup
μ∈K

μ
(
U(f ) − U(0)

)

is convex with limn→∞ UK(fn) = 0 for every sequence (fn)n∈N ⊆ Cb with fn ↘ 0
as n → ∞. Since for every nonnegative τ -continuous linear functional λ : L → R,
there exists a τ -continuous lattice seminorm p : L → [0,∞) with |λu| ≤ p(u) for
all u ∈ L, (v) implies (ii) by Dini’s lemma. �

Appendix A: Capacities and Choquet integrals

The setup and notation in this section follow that of the main part. The following
lemma is a sort of folklore result; cf. König [20, Property 11.8 and Theorem 11.11].
For the reader’s convenience, we nevertheless provide a short proof.

Lemma A.1 Let c : O → [0,∞) be a capacity. Then the following are equivalent:
(i) For all B1, B2 ∈ O,

c(B1 ∪ B2) + c(B1 ∩ B2) ≤ c(B1) + c(B2).

(ii) For all f1, f2 ∈ Lb,
∫

�

(f1 + f2) dc ≤
∫

�

f1 dc +
∫

�

f2 dc.

Proof We first prove the implication (ii) ⇒ (i). To that end, let B1, B2 ∈ O. Then

c(B1 ∪ B2) + c(B1 ∩ B2) =
∫

�

(1B1 + 1B2) dc

≤
∫

�

1B1 dc +
∫

�

1B2 dc = c(B1) + c(B2).
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We proceed with the proof of the implication (i) ⇒ (ii). In the first step, we prove by
induction over n ∈ N that

∫

�

n∑

i=1

1Bi
dc ≤

n∑

i=1

c(Bi) for all B1, . . . , Bn ∈ O. (A.1)

For n = 1, the statement is trivial. Assume that (A.1) is proved for some n ∈ N and
let B1, . . . Bn+1 ∈ O. Then

n+1∑

k=1

1Bi
= 1⋃n+1

i=1 Bi
+

n∑

k=1

1
(
⋃k

i=1 Bi)∩Bk+1
.

Using (A.1) and (i), we obtain that

∫

�

n+1∑

i=1

1Bi
dc = c

( n+1⋃

i=1

Bi

)
+

∫

�

n∑

k=1

1
(
⋃k

i=1 Bi)∩Bk+1
dc

≤ c

( n+1⋃

i=1

Bi

)
+

n∑

k=1

c

(( k⋃

i=1

Bi

)
∩ Bk+1

)
≤

n+1∑

i=1

c(Bi).

Now let f1, f2 ∈ Lb. Since the Choquet integral is constant additive, we may without
loss of generality assume that f1 ≥ 0 and f2 ≥ 0. Let r := max{‖f1‖∞, ‖f2‖∞}. For
i = 1, 2, n ∈ N and k = 1, . . . , 2n, define Bk

i,n := {fk > k2−nr}. Then for i = 1, 2,

∥∥∥∥fi −
2n∑

k=1

2−nr1Bk
i,n

∥∥∥∥∞
≤ 2−nr −→ 0 as n → ∞.

But positive homogeneity of the Choquet integral and (A.1) give

∫

�

2n∑

k=1

2−nr(1Bk
1,n

+ 1Bk
2,n

) dc = 2−nr

∫

�

2n∑

k=1

(1Bk
1,n

+ 1Bk
2,n

) dc

≤ 2−nr

2n∑

k=1

(
c(Bk

1,n) + c(Bk
2,n)

)

=
∫

�

2n∑

k=1

2−nr1Bk
1,n

dc +
∫

�

2n∑

k=1

2−nr1Bk
2,n

dc,

and so it follows that
∫

�

(f1 + f2) dc ≤
∫

�

f1 dc +
∫

�

f2 dc. �
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Appendix B: Locally convex vector lattices

Thoughout this section, let (L, τ) be a locally convex vector lattice, i.e., a vector
lattice L together with a locally convex topology τ on L which is generated by a
family of lattice seminorms.

Let L+ := {u ∈ L : u ≥ 0} and L′ be the topological dual space of L, i.e., the
space of all continuous linear functionals L → R. Moreover, let

L′+ := {λ ∈ L′ : λu ≥ 0,∀u ∈ L+}
be the set of all positive continuous linear functionals on L. For u ∈ L, we use the
standard notation u+ := u ∨ 0 and u− := −(u ∧ 0). Then u = u+ − u− and
|u| := u+ + u− for all u ∈ L. The following lemma can be deduced from Aliprantis
and Border [2, Theorem 8.24 and Corollary 8.25] together with the fact that every
linear functional that is bounded by a lattice seminorm is order bounded. For the sake
of a self-contained exposition, we provide a short proof.

Lemma B.1 Let p : L → [0,∞) be a continuous lattice seminorm.
a) For every λ ∈ L′ with |λu| ≤ p(u) for all u ∈ L, there exist λ+, λ− ∈ L′+ with

λu = λ+u − λ−u and max{λ+|u|, λ−|u|} ≤ p(u) for all u ∈ L. (B.1)

b) There exists a convex and weak∗ compact set K ⊆ L′+ with

max
μ∈K

|μu| ≤ max
μ∈K

μ|u| = p(u) ≤ 2 max
μ∈K

|μu| for all u ∈ L.

Proof a) Since p is a lattice seminorm, it follows that p(u) = p(v) for all u, v ∈ L

with |u| = |v|. In particular,

p(u) = p(|u|) for all u ∈ L. (B.2)

Let λ ∈ L′ with |λu| ≤ p(u) for all u ∈ L, and define

λ+u := sup{λv : v ∈ L+, v ≤ u} for all u ∈ L+.

Since p is a lattice seminorm, 0 ≤ λ+u ≤ p(u) and λ+(αu) = αλ+u for all
u ∈ L+ and α ≥ 0. In order to prove that λ+ is additive, let u1, u2 ∈ L+. Then
for v1, v2 ∈ L+ with v1 ≤ u1 and v2 ≤ u2,

λv1 + λv2 ≤ λ(v1 + v2) ≤ λ+(u1 + u2).

Hence λ+u1+λ+u2 ≤ λ+(u1+u2). On the other hand, for v ∈ L+ with v ≤ u1+u2,
let

v1 := (v − u2)+ ≥ 0, v2 := v − v1 = v + (u2 − v) ∧ 0 = v ∧ u2 ≤ u2.

Moreover, v1 ≤ u1 since u1 ≥ 0, and v2 = v ∧ u2 ≥ 0 since v ≥ 0 and u2 ≥ 0.
Hence

λv = λv1 + λv2 ≤ λ+u1 + λ+u2.
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We have therefore shown that λ+(u1 + u2) = λ+u1 + λ+u2. For u ∈ L, define

λ+u := λ+u+ − λ+u−.

Let u, v ∈ L. Then

(u + v)+ − (u + v)− = u + v = u+ − u− + v+ − v−,

and so

λ+(u + v)+ + λ+u− + λ+v− = λ+
(
(u + v)+ + u− + v−

)

= λ+
(
(u + v)− + u+ + v+

)

= λ+(u + v)− + λ+u+ + λ+v+,

which implies that λ+(u + v) = λ+u + λ+v. Moreover, for all u ∈ L and α > 0,

λ+(αu) = λ+(αu)+ − λ+(αu)− = λ+(αu+) − λ+(αu−) = αλ+u.

Since by definition (−u)+ = −u− and (−u)− = −u+ for all u ∈ L, it follows that
λ+ : L → R is linear, and by (B.2),

|λ+u| ≤ λ+|u| ≤ p(|u|) = p(u),

which implies that λ+ : L → R is continuous. Now, defining λ−u := λ+u − λu for
all u ∈ L, we find that

λ−u = sup{λ(v − u) : v ∈ L+, v ≤ u} = sup{λ(−w) : w ∈ L+, w ≤ u} = (−λ)+u

for all u ∈ L+. Using the fact that λ− is linear and replacing λ by −λ, it follows that

|λ−u| ≤ λ−|u| = (−λ)+|u| ≤ p(u).

In particular, λ− is continuous, and the proof of part a) is complete.
b) Let V := {u ∈ L : p(u) ≤ 1}. Then by the Banach–Alaoglu theorem, the set

V ◦ := {λ ∈ L′ : λu ≤ 1,∀u ∈ V } is convex and weak∗ compact. By (B.2) and the
Hahn–Banach theorem,

p(u) = max
λ∈V ◦ |λu| for all u ∈ L.

Since the set L′+ := ⋂
u∈L+{λ ∈ L′ : λu ≥ 0} is convex and weak∗ closed, it follows

that K := V ◦ ∩ L+ is convex and weak∗ compact. By (B.2),

max
μ∈K

|μu| ≤ max
μ∈K

μ|u| ≤ p(|u|) = p(u) for all u ∈ L.

By (B.1), for all λ ∈ V ◦ and u ∈ L,

−λ−|u| ≤ λ|u| ≤ λ+|u| and max{λ+|u|, λ−|u|} ≤ p(u).
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This shows that λ+, λ− ∈ K and |λ|u|| ≤ max{λ+|u|, λ−|u|} for all λ ∈ V ◦. Hence
by (B.2),

p(u) = p(|u|) = max
λ∈V ◦

∣∣λ|u|∣∣ ≤ sup
λ∈V ◦

max{λ+|u|, λ−|u|} ≤ max
μ∈K

μ|u|.

We have therefore shown that p(u) = maxμ∈K μ|u| for all u ∈ L. On the other hand,

p(u) = max
λ∈V ◦ |λu| ≤ max

λ∈V ◦(|λ+u| + |λ−u|) ≤ 2 max
μ∈K

|μu|. �
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