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equilibrium solutions to the two variants of the auction game, illustrate them, and examine their 
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1 Introduction 

This paper considers two interactive decision making games called unique bid auctions. The 

study of these games has been motivated by a new type of on-line auction which has been 

gaining popularity in Western Europe, Australia, and the US.1 The two auction games have the 

following simple structure. Each of n players independently decides whether to enter the auction 

or stay out. Players opting to enter the auction incur a fixed, non-refundable cost of entry. 

Subsequently, each entrant chooses a single bid from a common set of integers pre-specified by 

the auctioneer. In the lowest unique bid auction (LUBA) game, the winner is the player 

submitting the lowest unique bid (i.e., the lowest bid among unique bids). In the highest unique 

bid auction (HUBA) game, the winner is the player submitting the highest unique bid. The game 

may or may not have a winner. If there is a winner, then pays her bid and receives an 

exogenously determined prize with common valuation. All other n-1 bidders receive nothing.  

The novel feature of the LUBA and HUBA games, that sharply differentiates them from 

classical auctions (e.g., first-price sealed-bid auctions), is the requirement that the bid be unique 

in order to be considered as an eligible bid. Unique bid auction games include no exogenous 

lottery mechanism for breaking ties; rather, a necessary condition for winning the prize is for the 

winning bid to be unique (unmatched). This new feature renders the connection between the 

winning bid and the value of the prize tenuous. Variants of unique bid auctions have been 

studied both theoretically and empirically by several researchers including Raviv and Virag 

(2007), Östling et al. (2008), Eichberger and Vinogradov (2008), and Houba et al. (2008). 

                                                 
1 A considerable number of websites adopt a similar auction format to sell a variety of items, such as cars, houses, 
solid gold bars, gift cards, plasma televisions, MP3 players, laptop computers, and professional football tickets. 
Examples are Auctions4aCause.com, limbo.com, GlobalBidders.com, hammerdeal.de, uniquebidhomes.co.au, and 
liverpoolfc.tv. These websites use more complicated rules than the unique bid auction games studied in the current 
paper. 
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Although all of these studies maintain the key feature of the uniqueness of winning bid, they 

differ from one another in some key assumptions. 

Studying unique bid auction games is the first step in understanding the richer structure of 

on-line unique bid auctions, some of them allowing several rounds of bidding until a winner is 

chosen, some allowing each bidder to submit (and pay for) multiple bids, and most of them 

requiring the bidding to proceed sequentially, updating and publicly displaying the number of 

bidders before some threshold number of bidders is exceeded and the auction takes place. We 

report equilibrium solutions of the LUBA and HUBA games as well as their following features: 

1. Neither the LUBA nor HUBA games possess a symmetric equilibrium in pure strategies. 

2. Any asymmetric pure-strategy equilibrium includes one bidder choosing the minimum 

(maximum) bid and the other bidders choosing to stay out in the LUBA (HUBA) game. 

3. The support of the symmetric mixed-strategy equilibrium for the LUBA game always 

includes the minimum bid, and if the support includes multiple bids, then they must be 

consecutive. 

4. The symmetric mixed-strategy equilibrium probabilities for the LUBA game are strictly 

decreasing in the bids. 

5.  The support of a symmetric mixed-strategy equilibrium for the HUBA game covers all bids 

that make a net payoff of winning at least as much as the equilibrium payoff.  

The paper is organized as follows. Section 2 reviews the related literature. Section 3 formally 

presents our LUBA and HUBA games and then states several characteristics of pure- and mixed-

strategy equilibria of these games. Section 4 describes our indirect approach for computing 

symmetric mixed-strategy equilibria. Section 5 conducts comparative static analysis by 

systematically changing values of the parameters. Section 6 generalizes the LUBA and HUBA 
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games and their equilibrium solutions to the case of incomplete information where the number of 

bidders is not known but only its distribution is assumed to be common knowledge. Section 7 

summarizes the results. 

2 Related Literature 

Raviv and Virag (2007) considered a similar selling mechanism that they call gambling auction.2 

Their game includes a fixed number of bidders with a common valuation of an exogenously 

determined prize. Similarly to our LUBA game, each bidder pays an entry fee and submits a 

single bid. The winner is the bidder who submits the unique highest bid. Unlike the LUBA game, 

if such a bid does not exist, then the auctioneer repeats the auction with the same set of bidders. 

The winner receives the prize and pays an amount equal to her bid, whereas non-winners only 

pay the entry fee. The equilibrium analysis of their game is an approximation based on an 

assumption that the distance between the maximum allowed bid and a winning bid is negligibly 

small.3 This assumption transforms the bidder’s objective from maximizing the expected payoff 

into maximizing the probability of winning the prize.4 Under this assumption, Raviv and Virag 

derived the equilibrium solution by restricting the probability of winning to be constant across 

bids. 

Östling et al. (2008) reported an analysis of what they call LUPI (lowest unique positive 

integer) games. Similarly to the LUBA game, bidders in the LUPI game independently choose 
                                                 
2 Raviv and Virag concede that the rules of the mechanism “do not meet the traditional definitions of a lottery” (p. 
3). Nevertheless, they refer to the mechanism also as lottery because under the symmetric mixed-strategy 
equilibrium solution the winner is chosen probabilistically. In doing so, they opt not to differentiate between 
lotteries in which the probabilities are determined endogenously (e.g., like in the “matching pennies” game) or 
exogenously with pre-determined values. Commonly, the term “gamble” is reserved to lotteries with exogenously 
determined probabilities (e.g., slot machines, roulette wheels). 
 
3 This assumption is built upon their observation in the field data collected from Auction4aCause.com. 
   
4 More precisely, the bidder’s new problem is to maximize the probability of winning the prize multiplied by the 
difference between the prize and the maximum allowed bid. Since this difference is a fixed value, the bidder’s 
problem boils down to maximizing the probability of winning the prize. 
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positive integers, and the player bidding the lowest unique integer wins a fixed prize of 1 and 

pays nothing.5  Unique to their study is that their game treats the number of bidders as a random 

variable with a commonly known distribution. In particular, and mostly for analytical reasons, 

they assume that this distribution is Poisson. They report an exact equilibrium solution to this 

case using the theory of Poisson games of Myerson (1998, 2000), who proved its uniqueness, 

and described its properties.  

Eichberger and Vinogradov (2008) provided the most relevant framework for LUBA games 

played on the Internet. They constructed analytical solutions for a variant of the LUBA game in 

which the number of potential bidders is fixed and commonly known, and the outside option 

(i.e., not entering the auction) is an element of the player’s strategy space.6 The major difference 

from other studies in the literature, which is also their major contribution, is that each bidder is 

allowed to submit multiple bids. This assumption renders their model closer to the lowest unique 

bid auctions on the Internet than any other study, but at the same time it makes the 

characterization of a general solution of the game complicated. 

Houba et al. (2008) study a lowest unique bid auction (like LUBA) in which each bidder 

chooses a single bid and, as in Eichberger and Vinogradov and the present study, participation in 

the auction is voluntary.7 Houba et al. characterized its general properties and then used three 

numerical methods to solve for the equilibrium solution.  

Two comments on this literature are in order. First, common to the first three studies is an 

attempt to test their models with field data. Critical to the models of Raviv and Virag and of 

                                                 
5 The prize is fixed in LUPI games. This implies that as in Raviv and Virag (2007) the bidder’s problem is 
equivalent to maximizing the probability of winning the prize. 
 
6 They call this type of auction as the least-unmatched price auction (LUPA). 
 
7 Houba et al. commented that a previous draft of the present paper assumed zero entry cost and non-voluntary 
participation. As we show below, these restrictions no longer hold in both the LUBA and HUBA games. 
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Östling et al., as to the present model, is the assumption that each bidder submits a single bid. 

Therefore, the number of bids is the same as the number of bidders. In contrast, unique bid 

auctions conducted on the Internet do not restrict the number of bids per entrant. Clearly, if a 

bidder submits multiple bids, the bids will necessarily differ from one another. Consequently, 

multiple bids by the same bidder cannot be considered independent, and field data are, in our 

judgment, inappropriate for testing models postulating single bids. A second equally important 

issue with using field data is the possibility of collusion between bidders. The model of 

Eichberger and Vinogradov overcomes this issue by explicitly allowing dependency of bids 

within a bidder while it still requires independence between bidders. However, it may be 

infeasible, or even impossible, to exclude cases of collusion between bidders from field data.8 

Therefore, the assumption of bidder independence may not be valid in field data. 

Second, all the studies that allow for a single bid per player attempted to solve for symmetric 

mixed-strategy equilibria by what we call a direct approach that consists of stating a system of 

equations and solving them numerically. Although the direct method is straightforward in 

principle, it is computationally explosive. Hence, their numerical results are restricted to the very 

special case of a relatively small number of bidders (at most 9 bidders). To mitigate similar 

difficulties in the computation of the symmetric mixed-strategy equilibrium solutions to our 

LUBA and HUBA games, we proceed with a different indirect approach in which we solve the 

games from the viewpoint of a designated bidder, assuming that all the other bidders adhere to a 

symmetric mixed-strategy equilibrium and using a non-stationary Markov chain to reduce the 

computational burden. This considerably weakens the restriction on the number of bidders in the 

equilibrium solutions presented in the previous studies. 

                                                 
8 Collusion between bidders has been reported in the field data examined by Östling et al. Eichberger and 
Vinogradov also reported that their field data might have included cases that a single bidder submits multiple sets of 
bids using different identities. 
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Our paper complements contributions of the existing literature in two major ways. First, we 

establish several characteristics of the equilibrium solutions of both the LUBA and HUBA 

games. Second, we construct an algorithm to numerically solve for the symmetric mixed-strategy 

equilibria of these games. As shown in Section 6, not only does our indirect approach introduce a 

symmetric mixed-strategy equilibrium for the game with a relatively large number of bidders but 

it is also extendable to the case where the number of bidders is a random variable. 

3 Theory 

3.1 Unique Bid Auction Games 

There are n bidders who independently decide whether to enter an auction by submitting a single 

bid or stay out. To participate in the auction, bidders must pay a non-refundable fixed entry fee 

to the auctioneer. The winner is the bidder who submits the lowest (highest) bid among unique 

(i.e., unmatched) bids in the LUBA (HUBA) game. She must pay her bid and then receives the 

prize from the auctioneer. If there is no winner, every bidder receives nothing, and the prize 

remains in the auctioneer’s hands. 

We assume risk-neutrality and denote the set of identical bidders by . All 

bidders have the common set of strategies 

},...,2,1{ nI =

}{,...}3,2,1{ soB ∪=  where “so” stands for the 

decision to stay out. Each bidder independently chooses her strategy Bbi ∈ . We let  

denote a pure-strategy profile of all bidders, where 

)i−b,( ib=b

),...,1i bb +,,...,( 11 ii bb −− n=b  is a pure-strategy 

profile of all but bidder i. 

Players who enter the auction by choosing a single bid incur a fixed, non-refundable entry fee 

of c (c>0). The winner receives the prize v (v>c) and pays her winning bid. Losers get nothing. 

Thus, bidder i’s payoff function is given by 
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⎪
⎩

⎪
⎨

⎧
−

−−
=−

out stays bidder  if0
game (HUBA)LUBA  in the bid unique (highest)lowest  not the is  if

game (HUBA)LUBA  in the bid unique (highest)lowest   theis  if
),(

i
bc

bcbv
bu i

ii

iii b  

In the rest of the paper, we restrict our attention to the common set of strategies 

. We truncate all bids above }{},...,3,2,1{ socvB ∪−≡ cv −  because any bid that exceeds cv −  

is strictly dominated by the choice of “stay out.” Also, we assume that 1>− cv . This assumption 

is quite natural;  in unique bid auctions played on the Internet. cv >>

3.2 Pure-Strategy Equilibria  

In both the LUBA and HUBA games, there exists no symmetric pure-strategy equilibria; any 

symmetric pure-strategy profile cannot be in equilibrium because there always exists a bidder 

who wishes to unilaterally deviate from her strategy. Therefore, pure-strategy equilibria, if any, 

must be asymmetric. 

Below we present several properties of asymmetric pure-strategy equilibria. 

Proposition 1 Any asymmetric pure-strategy equilibrium for the LUBA game includes a single 

bidder choosing the minimum bid and the remaining bidders staying out. 

To prove this proposition, we need several lemmas. 

Lemma 1 In any asymmetric pure-strategy equilibrium for the LUBA game at least one bidder 

chooses the minimum bid. 

Proof of Lemma 1 Suppose to the contrary that there exists an asymmetric pure-strategy 

equilibrium  in which ),...,,( 21 nbbb=b 1≠ib  for all Ii∈ . Consider the following two cases: (i) 

bidder i is a winner and (ii) she is not. Suppose that bidder i is a winner. Then,  since she 

participates in the auction. She wishes to switch her bid from  to  since she still wins 

the auction and 

1>ib

1>ib 1=ib

)b(1 iucc),1( b ii vu ibv =−−>−−=−  for any . Next, suppose that bidder 1>ib
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i is not a winner. Then, she either stays out or chooses a higher bid than 1. Again, she has an 

incentive to unilaterally deviate to 1=ib

0c

 in both cases; switching from staying out assures 

herself a payoff of )(1),1( bb iii uvu =>

)(biu

−−=−

1)i ccv

, and switching away from  yields her a 

payoff of 

1>ib

,1( biu =−>−−=− . Hence,  cannot be in equilibrium, which is a 

contradiction. ■ 

b

Lemma 1 is silent about how many bidders choose the minimum bid in equilibrium. The next 

lemma proves that only a single bidder chooses the minimum bid in equilibrium. 

Lemma 2 In any asymmetric pure-strategy equilibrium for the LUBA game only a single bidder 

chooses the minimum bid. 

Proof of Lemma 2 Suppose to the contrary that there exists an asymmetric pure-strategy 

equilibrium with at least two bidders who choose the minimum bid of 1. As a result, each of 

them receives a payoff of -c. However, one of them wishes to unilaterally deviate to staying out 

in order to assure her a payoff of 0. ■ 

Now, we are ready to prove Proposition 1. 

Proof of Proposition 1 Without loss of generality, assume that bidder 1 bids 1. Suppose that not 

all of the other bidders stay out; a subset of the other bidders enter the auction. By Lemma 2, 

none of them bids 1. Let  denote such a subset. Then, any bidder }1>ib|{ ∈=′ IiI Ij ′∈  does 

not win the auction, which results in the payoff of cb jju j −=− ),b( . For any ,  there is 

always some bidder  who can improve her payoff by switching to staying out. ■ 

0/≠′I

Ij∈ ′

It follows immediately from this proposition that the LUBA game only possesses n 

asymmetric pure-strategy equilibria of this type. Because a similar argument is used, we claim 

the following proposition without stating its proof. 
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Proposition 2 Any asymmetric pure-strategy equilibrium for the HUBA game includes only a 

single bidder choosing the maximum bid and the remaining bidders staying out. 

Again, the HUBA game also possesses n asymmetric pure-strategy equilibria of this type. 

3.3 Symmetric Mixed-Strategy Equilibria 

A symmetric equilibrium does not exist in pure strategies but it does exist in mixed strategies.9 

Let  be a mixed strategy for bidder i, which is a vector ip ))(),(),...,2(),1(( sopcvpppp iiiii −=  

such that  for all  and 0)( ≥bpi Bb∈ ∑ ∈
=

Bb i bp 1)( . Let ),(),...,,( 21 iin pppp −== pp

),...,1 np+

 be a 

profile of mixed strategies, where ,,...,,( 121 ippp − ii p− =p

i−

() i bu=

 is a mixed-strategy profile of 

all but bidder i. Given p , we denote bidder i’s (expected) payoff from playing  by  

 in a slight abuse of notation. A mixed-strategy equilibrium is a profile p  such 

that for each ,  for all 

ip

)( ip

),( iip −p

Ii∈ u

) =p( ii uu

) ,bb, i−′ p S,(i b i−p ∈′ , and  for all 

, where , i.e.,  is  the support of . 

),(),( iiii bubu −− ′′≥ pp

ip) S(S∉ ipb ′′ }0) > ( ipS(bpi )|{ ∈ Bb)( pi =

In the symmetric mixed-strategy equilibrium, all n bidders follow the same mixed strategy, 

namely,  for all ))(),(),...,2(),1(( sopcvpppp −= Ii∈ . The corresponding strategy profile is 

denoted by , where ),(),...,,( i

n

pppp −== pp
43421

),...,
1
43

−

− ,(
421

=
n

i pppp  is a symmetric mixed-strategy 

profile of all but bidder i.  

3.3.1 Symmetric Mixed-Strategy Equilibria for the LUBA Game 

We argued earlier that symmetric equilibria cannot exist in pure strategies. This implies that 

symmetric equilibria must be in mixed strategies and that bidders randomize over at least two 

strategies in B. In the LUBA game, a bidder may wish to place a low bid to win the prize; the 

                                                 
9 See Dasgupta and Maskin (1986) and Becker and Damianov (2006) for the existence of a symmetric mixed-
strategy equilibrium in finite symmetric games. 
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lower the bid she places, the higher her payoff if she wins. Thus, when bidders randomize over 

their strategies, they may be inclined to place more weight on lower bids than on higher bids. In 

this section, we present several properties of symmetric mixed-strategy equilibria for the LUBA 

game, which support our intuition about the bidder’s behavior. 

Proposition 3 Suppose that  is a symmetric mixed-strategy equilibrium for the LUBA game. p

(a) Its support )( pS  includes the minimum bid. 

(b) If its support )( pS  includes at least two bids, it contains a set of consecutive bids. 

Proof of (a) Suppose to the contrary that the minimum bid of 1 is not in . Then, bidder i’s 

payoff from choosing the pure strategy of bid 1 must be less than or equal to the payoff under the 

symmetric mixed-strategy equilibrium, i.e., 

)( pS

)(),1( pp iii uu ≤−

cvui

. Note that the equilibrium payoff 

cannot exceed a payoff of  because the maximum possible payoff if a bidder wins is 

. Since each bidder’s probability of winning the prize is strictly less than 1 under 

symmetric mixed-strategy equilibrium play, 

cv −− 2

cv −− 2

−−< 2)(p  for each i. Then, bidder i wishes to 

unilaterally deviate to bid 1 because she can win the prize for sure and increase her payoff; 

, which is a contradiction. ■ )21 vcv −>−−= (piuc >−),1( p iiu −

Proof of (b) Suppose to the contrary that there exists a gap in bids in . We denote this bid 

by . Since ,   Let 

)( pS

Bb ∈
~ )(~ pSb ∉ .0)~( =bp Bk ∈  be the minimum bid in  such that . 

Then, for bidder i, 

)p(S kb <
~

)) (,(),~(i bu piu=p i−p ii ku≤− . However, bidder i wishes to unilaterally 

deviate to bid b~  because she can increase not only the probability of winning the prize but also 

the payoff when she wins. Thus, )(),(),~(i bu pii u=−pp i− i ku> , which is a contradiction. ■ 

Proposition 4 Suppose that  is a symmetric mixed-strategy equilibrium for the LUBA game. 

Let b  and  be bids in . Then, 

p

( p1+b )S )1()( +> bpbp .  
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Proof Suppose to the contrary that )1()( +≤ bpbp . Since b  and 1+b  are bids in , when all 

the other bidders use the symmetric mixed strategy p bidder i is indifferent between choosing b  

and choosing , i.e., 

)( pS

1+b ),1( ii bu −),( ii bu − += pp . We want to show that this equality no longer 

holds if . )1)( +bp (≤ bp

Suppose that there are exactly u bidders (out of the 1−n  other bidders) who do not bid less 

than or equal to  and there exists no unique bid for any bid less than or equal to 1−b 1−b . First, 

consider the probability that bidder i wins by bidding 1+b , given that all the other bidders use 

the symmetric mixed strategy p. She wins the prize if there is no unique bidder who chooses bid 

b and none of the rest bids ; for example, bidder i wins the prize if three bidders bids b and 

none of the  bidders bids . Given that exactly u bidders do not bid less than equal to 

 and there exists no unique bid for any bid less than or equal to 

1+b

b3−u 1+

1−b 1−b , bidder i wins the prize 

by bidding  with probability  1+b

 , (1) 

  

u
k

⎛

⎝⎜
⎞

⎠⎟
[h(b)]k[1− h(b)]u−k[1− h(b+1)]u−k

k=0
k≠1

u

∑

where .  is the probability of bidding b, given that a bidder does 

not bid less than or equal to .  

))(1/()()( 1

1∑ −

=β
β−=

b pbpbh

1−b

)(bh

 On the other hand, when all the other bidders use the symmetric mixed strategy p, bidder i 

can win the prize by bidding b with probability . Then, the following lemma addresses 

the relationship between these two probabilities. 

ubh )](1[ −

Lemma 3 If , . )1()( +≤ bpbp

  

[1− h(b)]u >
u
k

⎛

⎝⎜
⎞

⎠⎟
[h(b)]k[1− h(b)]u−k[1− h(b+1)]u−k

k=0
k≠1

u

∑

Proof of Lemma 3 See Appendix. ■ 
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We denote by  the probability that exactly u bidders do not bid less than or equal to 

 and there exists no unique bid for any bid less than or equal to . Then, bidder i’s 

expected payoff from bidding b is  

)1( −π bu

1−b 1−b

 , (2) cbhbbvbu
n

u

u
uii −−−π−= ∑

−

=
−

1

0

)](1)[1()(),( p

and her expected payoff from bidding 1+b  is 

 . (3) 

   

ui (b+1,p− i ) = (v − b−1) πu (b −1)
u
k

⎛

⎝⎜
⎞

⎠⎟
[h(b)]k [1− h(b)]u−k [1− h(b +1)]u−k

k=0
k≠1

u

∑
u=0

n−1

∑ − c

It follows from Lemma 3 and comparison between (2) and (3) that ),1(),( iiii bubu −− +> pp , 

which is a contradiction. ■ 

Similar properties to propositions 3 and 4 have been reported and proved by Houba et al.10  

3.3.2 Symmetric Mixed-Strategy Equilibrium for the HUBA Game 

In a sharp contrast to the LUBA game, a bidder in the HUBA game is driven by two motives that 

operate in opposite directions. To win the prize, the bidder wishes to place a high bid. However, 

the higher the bid she places, the lower her payoff if she wins. Therefore, one may intuitively 

think that bidders should choose higher bids with higher probabilities. However, the following 

proposition dispels this intuition. Let }|}{\{)( ecbvsoBbeB >−−∈= for any e. 

Proposition 5 Suppose that  is a symmetric mixed-strategy equilibrium for the HUBA game 

and the associated equilibrium payoff is e. Then, its support  is equal to  

p

)( pS )(eB .

Proof  To prove this proposition, we need to show (i)  and (ii) . We 

begin the proof by showing that statement (i) is true. Suppose that there is a bid b such that 

 but . Then, 

)()( eBpS ⊆ )()( pSeB ⊆

)( pSb∈ )(eBb∉ cevb −−≥ . Since )( pSb∈ , when all the other bidders use the 

                                                 
10 See Theorem 4 in Houba et al. (2008). 
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symmetric mixed strategy p, bidder i’s expected payoff from choosing the pure strategy of bid b 

must be equal to e, i.e., . It also follows from ebu ii =− ),( p )( pSb∈  that bidder i’s probability of 

winning by choosing b must be less than 1 because . Therefore, 0) >(bp cbvbu ii −−<− ),( p . 

Since , we have cevb −−≥ cbve −−≥ . Then, u ec ≤−bveb ii −<=− ),p(

)

, which is a 

contradiction. Hence, statement (i) is true. 

Now, show that statement (ii) is also true. Suppose that there is a bid b such that  but 

. Let  be the maximum bid in . We consider the following two cases: 

 and . 

)(eBb∈

)p )(
max

pSb

)(
max

p Sbb <

max
Sbb >

(Sb∉

Sbb >

( pS

)p(
max

Consider . Since , )( p )p ((Sb∉ bp

c

0) = . This implies that . If bidder i 

unilaterally deviates from the symmetric mixed strategy p to bidding b, she can win the prize for 

sure. Thus, u

ei ≤− ),pbui (

bvb i −−=− ),( p )(eBb∈. Since , . Thus, 

, which is a contradiction. 

i cev −−<b

e≤)

)(
max

pSb k

bucb i=− ,(ve −< i−p

Now, consider b . Let < B∈  be the minimum bid such that  and bk > )( pSk ∈ . 

Then, . Note that when all other bidders follow the symmetric mixed-strategy p, 

then bidder i’s expected payoff from bidding b must be strictly smaller than her expected payoff 

from bidding k, i.e.,  u . 

)(
max

pSbkb ≤<

k

)i−p

i
pS

−
)(

max ),p

,(),( ii kub − <p

)(
max

pS

buku iii =− (),( p

i

Suppose that . When all other bidders use the symmetric mixed-strategy p, bidder 

i’s expected payoff from bidding k is 

b=

 . (4) c−−1bp npS )(
max )](k −1)[v −= (

On the other hand, bidder i’s expected payoff from bidding b is  
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  (5) 
.)](1[)]([

1
)(

)](1)[(),(

1)(
max

)(
max

1

2

1)(
max

cbpbp
j

n
bv

bpbvbu

jnpSjpS
n

j

npS
ii

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+

−−=

−−
−

=

−
−

∑

p

Hence, it follows from comparison between (4) and (5) that , which is a 

contradiction. 

),(),( iiii kubu −− > pp

Next, suppose that . Denote by )(
max

pSbk < )1( +π ku  the probability that there exists no unique 

bid for any bid higher than or equal to 1+k

1

 and exactly u bidders (out of the  other bidders) 

do not bid higher than or equal to 

1−n

+k . Then, when all other bidders play the symmetric mixed-

strategy p, bidder i’s expected payoff from bidding k is  

ckhkkvkkvku n

u
u

uii −−+π−++π−= ∑ −

=−
1

10 )](1)[1()()1()(),( p , 

where .  is the probability of bidding k given that a bidder 

does not bid higher than or equal to 

))(1/()()(
1∑ −

+=β
β−=

cv

k
pkpkh )(kh

1+k . Thus,  is the probability that there 

exists no unique bid for higher bids than k and none of the u bidders bids k. On the other hand, 

bidder i’s expected payoff from bidding b is  

u
u khk )](1)[1( −+π

ckhkuhkbvkbvbu n

u
u

uii −−−+π−++π−= ∑ −

=
−

−
1

1
1

0 })](1)[(1){1()()1()(),( p , 

where  is the probability that exactly one bidder (out of the u bidders) chooses 

bid k. Note that  

1)](1)[( −− ukhkuh

1)](1)[(1)](1[ −−−=− uu khkuhkh  for 1=u  

and 

1)](1)[(1)](1[ −−−<− uu khkuhkh  for any . 1>u

Then, 
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ui (k,p− i ) = (v − k)π0(k +1) + (v − k) πu (k +1)[1− h(k)]u
u=1

n−1∑ − c

< (v − k)π0(k +1) + (v − k) πu (k +1){1− uh(k)[1− h(k)]u−1}
u=1

n−1∑ − c

< (v − b)π0(k +1) + (v − b) πu (k +1){1− uh(k)[1− h(k)]u−1}− c
u=1

n−1∑
= ui(b,p− i )

 

which is a contradiction. Since both statements (i) and (ii) are true, )()( eBpS = . ■ 

Proposition 5 claims that bidders assign positive probabilities to bids that result in a net 

payoff of winning that exceeds the equilibrium payoff e. Thus, under symmetric mixed-strategy 

equilibrium play, a bidder may not choose higher bids with positive probabilities. Table 1 

illustrates a symmetric mixed-strategy equilibrium for the case n = 3, c = 1, and v = 500. Since 

the equilibrium payoff e is 7.0798, the symmetric mixed-strategy equilibrium solution prescribes 

positive probabilities only to bids smaller than 9202.491=−− cev . As shown in Table 1, the 

symmetric mixed-strategy equilibrium solution dictates that a bidder should randomize over all 

bids in , namely, all bids smaller than 491.9202. In a sharp contrast to the LUBA game 

where the lowest bid must be included in , the highest bid is not necessarily an element of 

 in the HUBA game.  

)(eB

)( pS

)( pS

-- Insert Table 1 about here -- 

Another implication of this proposition is that the support of the symmetric mixed strategy 

contains a set of consecutive bids, namely, all bids in . As illustrated in Table 1, there is no 

gap in bids in the support of the symmetric mixed strategy (bids between 5 and 489 are not 

reported in Table 1 but they also are chosen with positive probabilities). 

)(eB

4 Computing Symmetric Mixed-Strategy Equilibria: Algorithm 
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This section describes a procedure that uses non-stationary Markov chains to numerically 

compute a symmetric mixed-strategy equilibrium for the LUBA game. An algorithm for the 

HUBA game is omitted because it uses an almost identical procedure. 

As defined earlier, we denote by p a symmetric mixed-strategy of a bidder. That is, 

, where  is the probability that a bidder bids  

and  is the probability that a bidder chooses to stay out. Let one of the n bidders, bidder i, 

be a designated bidder; from now on, we observe the game from this bidder’s point of view. The 

expected payoff for this bidder for each bid b is computed and then used to solve for the 

probabilities . Assume that each of the 

))(),(),...,2(),1(( sopcvpppp −=

)(sop

),(),...,2(),1( cvppp −

)(bp }{\ soBb∈

)(sop n −1 other bidders, as well as 

the designated bidder, independently chooses the bids or stays out according to the probabilities 

. )(),(),...,2(),1( sopcvppp −

Suppose that the designated bidder chooses an arbitrary bid }{\ soBb∈ . To determine 

whether b is the winning bid, the only relevant bids of the n −1 other players are the ones less 

than or equal to b.11 As bid value increases, there are fewer other bidders who do not bid yet. In 

other words, the number of other bidders who bid greater than b, ranging from 0 to   n −1, is a 

non-increasing stochastic process. If exactly one of the other player bids at any lower bid than b, 

or any other player(s) bids b, then the designated bidder loses (denoted by the absorbing state no 

win, or NW). Therefore, the bidding process can be modeled over bids as a non-stationary 

Markov chain. The state space of the process is denoted by },1,..., NWn1,0{ −=Ω . Let Ω∈ω  be 

a state. There are 1+=Ω n  possible states for any bid. 

                                                 
11 In the HUBA game the only relevant bids of the n-1 other bidders are the ones equal to or higher than b. 
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Let  be a  initial vector, whose elements are probabilities over possible states 

before the game starts. Denote by 

)0(π )1(1 +× n

)(bωπ  the probability of state ω  at bid b. Before the game 

starts, the probability of state  must be 1, i.e., 1−=ω n 1)0(1 =π −n . Therefore, 

]01...00[])0()0(...)0()0([)0( 110 =ππππ=π − NWn . 

For , define a  transition matrix as follows: 1≥b )1()1( +×+ nn

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−−
−

=−

−−−−

10...000

))(1)(()1())(1(...))(1())((
2

1
0))((

..................
))(1)((20...))(1(0))((

)(0...0)(10
00...001

),1(

21321

22

nnnn bhbhnbhbhbh
n

bh

bhbhbhbh
bhbh

bbT , 

where 
∑ −

=β
β−

=
−++

= 1

1
)(1

)(
)(...)(

)()( b p
bp

cvpbp
bpbh .12   is the probability of bidding b, given 

that a bidder does not place any lower bid than 

)(bh

1−b . For example, the entry intersecting the 1st 

row and 1st column represents the probability of transition from 0 =ω  at −1 to 0  b =ω  at b. 

The entry 1 intersecting the (n+1)th row and the (n+1)th column gives the probability of a 

transit  ω  a o NWion from tNW=    b −1 t =ω  at b. The row vector π (b−1)  that constitutes the 

probability distribution over s vectors at btate −1 is obtained by the following matrix 

multiplication: 

)1,2()1,2()...2,1()1,0()0()1( −)2( −π −=−−π=−π bbbbTTTb . Tb

                                                 
12 To construct a transition matrix, all possible transitions from one state to another must be considered. However, it 
is impossible for some transitions to take place. The probability of such a transition is 0. Note that the use of a 
transition matrix is strictly for simplifying computations. No information about bidders’ choices is revealed during 
the auction. 
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 example, the (u+1)th element of this vector, denoted by )1For ( −bπu , is the probability that there 

is no unique bid for any bid less than or equal to b −1 and u bidders (out of the   n −1 bidders) do 

not bid han ual t

Suppose that the designated bidder bids b and u

 less t or eq o     b −1.

=ω  at b −1. Then, the designated bidder 

becomes the winner only if none of the u bidders bids  of winning by bidding b 

when  at s . Hence, when each of the other bidders uses the 

symmetric mixed strategy p, the designated bidder’s expected payoff from bidding b is 

To compute the  recall that the beha

who 

probabilities only through 

. To determine , the values of  are fixed and 

b. The probability

u=ω   b −1 i  u
u bhb )](1)[1( −−π

cbhbbvbu
u

uii −−−π−= ∑
−

=
−

0

)](1)[1()(),( p . 

symmetric mixed-strategy equilibrium, vior of bidders 

bid higher than b does not affect the payoffs of those who bid b or lower. Thus, the expected 

payoff from bidding b is a function of the equilibrium 

n
u

1

)1(),...,2(),1( −bppp

)(bp  is varied. Since 

)(bp

1(

)1(),...,2(),1( −bppp

)),...,2(),1( −bppp  are fixed and used by all the other bidders, the 

designated bidder’s expected payoff from bidding b is rewritten as 

 

We denote 

cbhbbvbppbpbu
n

u
ui −−−π−=− ∑

−1

)](1)[1()())1(),...,1(|)(,( .
u=0

))1(),...,1(|)(,( −bppbpbui

))  is continuous 

e of )(bp

 by , unless specifically stated otherwise. 

on  w  is the 

. Then, we will use the following proposition to num rically 

sea

))(,( bpbui

)](, max bp , ∑ −

=β
β−=

1

1max )(1)( b pbp

e

Notice that (,( bpbui  0[ here 

maximum feasible valu

rch for )(bp .  

Proposition 6 Given )1(),...,2(),1( −bppp , if )(bpp ′ ))(,())(,( bpbubpbu ii ′< .)(b , then >  

Proof See Appendix. ■ 

 19

Jena Economic Research Papers 2009 - 005



The intuition behind this proposition is that ))(,( bpbui  is strictly decreasing in )(bp  because 

the probability of a tie (i.e., losing) increases as )(bp  increases.  

te the equil  probab ed-

brium. Suppose that e is an equilibrium expected payoff of the game. Then, (i) 

ebpbui ≤))(,(  for all Bb∈ , (ii) bpbui

To compu ibrium ilities, we use standard characterizations of mix

strategy equili

e=))(,(  i 0 , and (iii) 0)(f )( >bp =bp  if 

ebpbui <))(,( . Since the value of e is unknown, the algorithm must start with st an e .13 

h iated p

imate of e

For a given value of e, t e assoc robabilities 1(p )( cvp),..., −  are constructed lly 

hat sta gh bid

 sequentia

through the following algorithm id 1 and co s th t rts at b ntinue rou  cv − . 

Step 1 Set a v ue of e. al

Step 2 Consider bid b. Given ),1( )1(..., −bpp pute )0,(bui .  , com

pa. If eb , then keeui ≤)0,(  0)( =bp . cvb −< If , increase b by 1 unit and repeat Step 

compute ∑ −2. Otherwise, 
=β

β−=
cv psop
1

)(1)(  and go to S

 evaluate ))(,( max bpbui .  

i. If ebpbui ≤))(,( max , then, there exists )(bp  ( )()(0 max bpbp ≤

tep 3. 

b. If ebui >)0,( ,

< ) such that 

ebpbui =))(,(  since ))(,( bpbui  is con )](,0[ max bp  and strictly 

dec

tinuo

 vb

u

 6. If

s on 

creasing in )(bp  by Proposition −< , then increase b by 1 unit 

and repeat Step 2. Otherwise, computer ∑ −

=β
β−=

cv psop
1

)(1)(  and go to Step 

3. 

                                                 
13 Lower and upper bounds for e are –c and v-1-c, respectively. If the value of e is set too high, the sum of the 
associated probabilities may be much smaller than 1. On the other hand, if the value of e is set too low, no 
equilibrium solution may exist. 
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ii. If ebpbui >))(( max , then the game has no solution for the given value of e. 

Terminate the algorithm. Return to S

,

tep 1, increase e because e is a lower 

 a

Step 3

bound, nd repeat the algorithm. 

 There are three possible scenarios: 

a. If 0>e  and 0)( >sop , then there is no solution. G e because it 

is an upper bound, and rep

o to Step 1, decrease 

eat the algorithm.  

nd ∑b. If 0>e  a  then compute  0)( =sop , −

=β
β−

cv p
1

)(1 . If −∑ ε>β
− p )( ,
=β

cv

1
1  where ε  

specifies how close is the sum of the probabilities to 1, then return to Step 1, decrease 

e, and repeat the algorithm. Otherwise, ))(),(),...,1(( sopcvppp −=  are the 

equilibrium probabilities. 

c. If 0=e , )(),(),...,1( sopcvpp −  are the equilibrium probabilities. 

To verify that our algorithm accurately generates symmetric mixed-strategy equilibria, we 

con

mmetric mixed-strategy equilibria and their corresponding equilibrium 

payoffs for various values of the ) and n=9 (lower panel). In both 

eproduces the results of Houba et al. to the fourth decimal point. The 

e 2 about here -- 

5 Numerical Analysis 

sider the same numerical examples reported in Houba et al. (2008), whose game is most 

closely related to the LUBA game. The only difference between their game and our LUBA game 

is in the strategy space; Houba et al. assume that the smallest bid is zero whereas we assume that 

it is 1. We modified our algorithm by including bid zero in the strategy space. 

Table 2 reports the sy

prize v when n=3 (upper panel

cases, c=1. Our algorithm r

lower panel of Table 2 shows clearly that when v>>c, the mixed-strategy equilibrium solution 

converges as v increases. 

-- Insert Tabl
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Sec

ropositions 3 an

 solutions for the HUBA games and the same parameter values as in 

Fig. 1. In all three panels fo

tion 5 exhibits six figures in order to illustrate the equilibrium solutions for the LUBA and 

HUBA games. For each of these games, we present three figures to examine the effect of the 

number of players n, prize v, and entry cost c. 

Figure 1 exhibits in three panels the effect of the number of bidders. In all three cases, for 

n=10, 30, and 50, the prize is held fixed at v=100 and entry cost at c=1. Because the value of c is 

relatively low, the probability of staying out is 0 in all three cases. As n increases, the support of 

the mixed strategy increases too. In agreement with P d 4, the bids are seen to be 

consecutive and the bid probabilities decrease in the value of b. Figure 2 displays symmetric 

mixed-strategy equilibrium

r n=10, 30, and 50 ,...,2,1{)( =eB }97  (see Proposition 5). The 

probability of staying out )(sop  increases in n and, correspondingly, }97,...,2,1{)( =eB  becomes 

more “flat” as n increases. 

-- Insert Figs. 1 and 2 about here -- 

Figure 3 exhibits solutions for v=10, 50, and 90 when n=30 and c=1. When v=10, the 

equilibrium solution results in a relatively high probability of staying out, namely, 

7957.0)( =sop . Beyond some threshold value of v 0)( =sop .14 The effect of v is similar to the 

effect of n in the LUBA game (Fig. 1); as v increases, the support of the mixed strategy 

increases. Figure 4 displays similar equilibrium solutions for three HUBA games for the same 

parameter values as in Fig. 3. A notable feature of the mixed-strategy equilibrium solution for 

the HUBA games is that the n shifts horizontally towards 

hig

                                                

 equilibrium probability distributio

her bids as v increases. The probabilities of staying out decrease slightly but monotonically as 

v increases. 

 
14 p(so)=0.0047 when v=37 while p(so)=0 when v=38. 
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-- Insert Figs. 3 and 4 about here -- 

The last two figures in this section illustrate the effects of ch y cost c on the 

equilibrium solution. In the LUBA game (Fig. 5), 0)(

anges in the entr

=sop  increases from 0 if c=2 to 0.2456 if 

c=4 and then to 0.5771 if c=7. . The same effect holds in the 

e ort

 In all three cases, n=30 and v=100

r, the supp  }97,...,2,1{)( =eBthree HUBA games depicted in Fig. 6. Moreov  of the mixed 

where n is a random variable with a Poisson distribution. Under most general 

circ

ers to 2/5 

                                                

strategy shrinks if c increases when n and v are held constant. 

-- Insert Figs. 5 and 6 about here -- 

6 Extension to Random Number of Bidders 

The unique bid auction games have been studied under the assumption that n is fixed and 

commonly known. The exception is Östling et al. (2008), who restricted their analysis to the 

special case 

umstances, the exact value of n may not be known with certainty. We propose capturing this 

uncertainty with the assumption that n is a random variable with a commonly known 

distribution. 

When considering games with an uncertain number of bidders, caution should be exercised in 

distinguishing between the probability distribution of the number of bidders perceived by an 

outside observer and the probability distribution perceived by a bidder who participates in the 

game.15 To illustrate this distinction, consider a LUBA game in which the number of bidders is 

either 100 or 150 with equal probability. An observer looking at the game from the outside 

would conclude that the expected number of bidders is 125. A bidder who participates in the 

game would conclude that she is 1.5 times as likely to interact with 149 than with 99 other 

bidders. She then updates the conditional probability of interacting with 99 other bidd

 
15 For the importance of this distinction, see Cooper (1981) and Myerson (1998). 
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and

e care of eds to modify the 

initial vector and transition probability matrix. Recall that the elements of the initial vector 

ders, n, 

is fixed and known, then the  initial vector takes the following form: 

 the conditional probability of interacting with 149 other bidders to 3/5. From her perspective, 

the expected number of other bidders she plays with is 99 × 2/5 + 149 × 3/5 = 129. Therefore, 

including herself, she expects 130 (rather than 125) bidders to participate in the game. 

A major advantage of the present computational approach is that the modifications of the 

algorithm in Section 3 that tak  this distinction are minimal; one only ne

specify probabilities over possible states before the game starts. When the number of bid

)1(1 +× n

]01...00[])0()0(...)0()0([)0( 110 =ππππ=π − NWn . 

The probability of 1 is assigned to  and all the other elements take the value of 0. 

Suppose that n is either equal to with probability 

)0(π 1−n

Ln  )Pr( Lnn =  or  with probability 

, where 

Hn

)Pr( Hnn = HL nn < , 1)Pr(Pr( ) ==+= Hnnnn

0{ˆ =Ω

L , and that this distribution is commo

,1−

n 

 and a state knowledge. A set of possible states is denoted by }1, NWn,...,1,...,n − HL

Ω . There are by ∈ω ˆˆ 1+=Ω Hn  possible states for any bid. Then, we denote by )0(π̂  a ˆ Ω×1  

hose elements are probabilitie r possible states before the game starts. To 

construct this vector

ˆ

r w

 states: (i) 

initial vecto

1−Ln

s ove

ilities of

e 1

, one mu

 other bidders are in the gam

st compute probab

 and (ii) 

 the following two possible

−Hn

 the conditional probability of Lnn

 other bidders are in the game. Denote by 

)In|Pr( nn L= = , given that a bidder is one of the participants 

in the game. Then,  
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.
)|Pr()Pr()|Pr()Pr(

)|Pr()Pr(                       

)P)
)Pr(

)Pr(
)Pr()|Pr( L

In
Innn

In
InnnInnn

+∩
∩=

∩=
==

r(Pr(
                       

HHLL

LL

HL

L

L

nnInnnnnInnn
nnInnn

Innnnn

==+==
==

=

∩==
=  

We assume that the auctioneer assigns bidders to auctions in a way that results in “size-biased” 

sampling (Stein and Dattero, 1985), which is discussed above. This results in the assumption 

. Then, )|Pr()/()|Pr( LLHH nnInnnnnIn ===

.
)Pr()Pr(

)Pr(                       

)Pr()/()Pr(
)Pr(

)|Pr())|Pr(
L

LL

nn

nnInnnInnn

=
                       

)|Pr()Pr()/()|Pr()Pr(
Pr(

HHLL

LL

HLHL

L

LHLHL
L

nnnnnn
nnn

nnnnnn

nnInnnnnnnInnn

=+=
=

=

=+=
=

==+==
==

==

 

Similarly, the conditional probability of Hnn = , given that a bidder is one of the participants in 

the game is computed fr, )|Pr( Innn H= om 

)Pr()Pr(
)Pr()|Pr(1)|Pr(

HHLL

HH
LH nnnnnn

nnnInnnInnn
=+=

=
==−== . 

In the initial vector  is assigned to the state in which  other bidders )0(π̂ , )|Pr( Innn L= 1−Ln

are in the game, while )|Pr( Innn H=  is assigned to the state in which 1−Hn  other bidders are 

in the game. In other words, 

...)0(ˆ)0(ˆ[)0(ˆ 10 ππ=π

].0)|Pr(...)|Pr(...00[        InnnInnn HL ===

A 

])0(ˆˆ...ˆ 11 NWnn HL
πππ −−  

Ω×Ω ˆˆ  transition matrix whose elements are probabilities of transition from one state to 

another must be defined. Then, the same algorithm described in Section 3.1 applies here with 

these new initial vector and transition matrix. 
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Table 3 presents symmetric mixed-strategy equilibria for the following four cases in the 

LUBA game: (i) n = 20, (ii) Pr(nL=15)=0.625 and Pr(nH=25)=0.375, (iii) Pr(nL=10)=0.75 and 

Pr(nH=30)=0.25, and (iv) Pr(nL=5)=0.875 and Pr(nH=35)=0.125. Each bidder in all these four 

cases expects the same numbe irst case knows that there are 

exa

similar re

o values nL and nH and the expected number of other bidders is held fixed at 

the expected payoff for the LUBA game increases dramatically from 0.1926 

r of other bidders; any bidder in the f

ctly 19 other bidders whereas for any bidder who participates in the other three cases the 

expected number of other bidders is 19. For each of these cases, v=50 and c=1. Table 4 shows 

sults for the same parameter values in the HUBA game 

-- Insert Tables 3 and 4 about here -- 

Table 3 displays results that give rise to several conjectures. In the present example, if n 

assumes one of tw

191 =−n , then 

when n=20 to 1.8165 when p(nL=5)=0.875 and p(nH=35)=0.125. In the four HUBA games 

(Table 4), as the uncertainty about n increases the probability of staying out decreases from 

0.7906 to 0.4376. 

7 Conclusion 

Unique bid auctions implemented on the Internet, whether of the LUBA or HUBA type, 

introduce a new format of auctions. There are by now hundreds of websites that conduct auctions 

in which the winning bid must simultaneously satisfy two criteria, namely, it must be the lowest 

(in the LUBA game) or highest (in the HUBA game) among all the bids, and it must be 

unmatched by the other bids; see examples from Sweden, Holland, and Germany in the papers 

by Östling et al. (2008), Houba, et al. (2008), and Eichberger and Vinogradov (2008) and dozens 

of British, Australian, and US websites that advertise on the Internet. Our contribution in this 

paper is a new algorithm for computing symmetric mixed-strategy equilibria, which models the 
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auction as a non-stationary Markov chain rather than approaching its numerical solution as a 

combinatorial problem. Our algorithm has several attractive properties. It is readily applicable to 

LU

, the algorithm has not been intended to capture the richer format of on-line unique bid 

auctions nor is it applicable to field data. We view it as yet another step, complementary to the 

results of Raviv and Virag, Östling et al., and Houba, et al., and Eichberger and Vinogradov, and 

hope that collectively these studies will contribute to a better understanding of this new auction 

format. 

 

BA and HUBA games. It can handle exogenous as well as endogenous entry. With a minor 

modification, it can relax the assumption that the number of bidders is fixed. Most importantly, it 

is not subjected to the same computational difficulties that have plagued the numerical solutions 

in the previous studies. 

However, the algorithm is not without limitations. It is presently restricted to unique bid 

auctions with homogenous players, single bids, and a single round of play. It generates a 

symmetric mixed-strategy solution but it is still an open question whether the solution is unique. 

As such
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Appendix 

Proof of Lemma 3 
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k

b
k

p
bpbh

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

β−
=

∑ −

=β

1

1
)(1

)()]([ , 

ku

b

b

ku

p

p
bh

−

−

=β

=β−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

β−

β−
=−

∑
∑

1

1

1

)(1

)(1
)](1[ , 

ku

b

b

ku

p

p
bh

−

=β

+

=β−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

β−

β−
=+−

∑
∑

1

1

1

)(1

)(1
)]1(1[ . 

Then,  

[ ] [ ]

[ ]
u

b

b

u

b

ub

u

b

b

u

b

kub
u

k
k

k

u

b

u

k
k

kukuk

p
p

pbp
u

p
p

pbp
k
u

p

bhbhbh
k
u

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
β−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

β−
<

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

β−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
β−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

β−
=

β−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

β−
=

+−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∑
∑

∑∑
∑

∑∑
∑

∑

+

≠β
=β

−

=β

−+

=β

+

≠β
=β

−

=β

−+

=β

≠
=

−

=β

≠
=

−−

1

1
1

1

11

1

1

1
1

1

1

1

1
0

1

1

1
0

)(1
)(1

1

)(1)(
1

)(1
)(1

1

)(1)(
)(1

1

)]1(1[)](1[)]([
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Proof of Proposition 6 

Proof: Once  are fixed, all the components of )1(),...,2(),1( −bppp )1( −π b , in other words, 

 for all u, are determined. Since )1( −π bu
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Table 1: Symmetric mixed-strategy equilibria of the HUBA game 

for n = 3, c = 1, and v = 500.  

Bid Equilibrium 
Probability 

Cumulative 
Equilibrium
Probability 

1 0.0062 0.0062 
2 0.0024 0.0086 
3 0.0018 0.0105 
4 0.0015 0.0120 

… … … 
490 0.0501 0.9475 
491 0.0525 1 
492 0 1 
493 0 1 
494 0 1 
495 0 1 
496 0 1 
497 0 1 
498 0 1 
499 0 1 
so 0 1 

Equilibrium 
Payoff (e) 7.0798 
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Table 2: Symmetric mixed-strategy equilibria for different values of the prize v 

n = 3 and c = 1 

Bid Prize 
Value  (v) so 0 1 2 3 

Equilibrium 
Payoff (e) 

Sum 
Payoff 

3 0.5669 0.4226 0.0105 0 0 0 0 
4 0.2887 0.5000 0.2113 0 0 0 0 
5 0 0.5191 0.3407 0.1403 0 0.1565 0.4694 
6 0 0.5093 0.3189 0.1717 0 0.4445 1.3336 
10 0 0.4903 0.2902 0.2154 0.0041 1.5974 4.7921 
15 0 0.4801 0.2769 0.1750 0.0680 3.0539 9.1617 
25 0 0.4713 0.2659 0.1577 0.1051 5.9885* 17.9656*

 

n = 9 and c = 1 

Bid Prize 
Value (v) 0 1 2 3 4 5 6 

Equilibrium
Payoff (e) 

50 0.2559 0.2384 0.2112 0.1651 0.0978 0.0314 0.0002 3.6999* 
100 0.2536 0.2365 0.2099 0.1646 0.0989 0.0339 0.0025 8.6289* 
200 0.2526 0.2357 0.2092 0.1644 0.0995 0.0351 0.0036 1.4850* 
400 0.2520 0.2352 0.2089 0.1643 0.0998 0.0357 0.0041 3.1932* 

 
      * Not provided by Houba et al. (2008) 

 33

Jena Economic Research Papers 2009 - 005



Table 3: Symmetric mixed-strategy equilibrium probabilities for the LUBA game under 

uncertainty for v = 30 and c = 1. 

Bid n = 20 
Pr(nL = 15) = 0.625

& 
Pr(nH = 25) = 0.375

Pr(nL = 10) = 0.75
& 

Pr(nH = 30) = 0.25 

Pr(nL = 5) = 0.875 
& 

Pr(nH = 35) = 0.125 

1 0.1546 0.1677 0.2155 0.3361 
2 0.1486 0.1579 0.1935 0.2707 
3 0.1416 0.1462 0.1622 0.1395 
4 0.1329 0.1323 0.1252 0.0841 
5 0.1221 0.1165 0.0965 0.0646 
6 0.1080 0.0990 0.0770 0.0498 
7 0.0890 0.0799 0.0602 0.0345 
8 0.0637 0.0581 0.0423 0.0176 
9 0.0329 0.0330 0.0225 0.0031 
10 0.0065 0.0093 0.0051 0 

11 to 29 0 0 0 0 
so 0 0 0 0 

Equilibrium 
Payoff (e) 0.1926 0.2859 0.6447 1.8165 
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Table 4: Symmetric mixed-strategy equilibrium probabilities for the HUBA game under 

uncertainty for v = 30 and c = 1. 

Bid n = 20 
Pr(nL = 15) = 0.625

& 
Pr(nH = 25) = 0.375 

Pr(nL = 10) = 0.75
& 

Pr(nH = 30) = 0.25 

Pr(nL = 5) = 0.875 
& 

Pr(nH = 35) = 0.125 

1 0.0017 0.0019 0.0029 0.0050 
2 0.0017 0.0020 0.0029 0.0053 
3 0.0018 0.0021 0.0031 0.0055 
4 0.0019 0.0022 0.0032 0.0057 
5 0.0019 0.0022 0.0033 0.0059 
6 0.0021 0.0023 0.0035 0.0062 
7 0.0021 0.0024 0.0036 0.0064 
8 0.0022 0.0026 0.0038 0.0067 
9 0.0024 0.0027 0.0040 0.0070 
10 0.0025 0.0029 0.0042 0.0073 
11 0.0026 0.0030 0.0044 0.0076 
12 0.0028 0.0032 0.0046 0.0080 
13 0.0030 0.0034 0.0049 0.0083 
14 0.0032 0.0036 0.0052 0.0086 
15 0.0035 0.0039 0.0055 0.0090 
16 0.0037 0.0042 0.0059 0.0094 
17 0.0041 0.0045 0.0064 0.0098 
18 0.0045 0.0050 0.0069 0.0104 
19 0.0049 0.0055 0.0075 0.0117 
20 0.0056 0.0061 0.0083 0.0149 
21 0.0063 0.0070 0.0094 0.0215 
22 0.0075 0.0082 0.0113 0.0311 
23 0.0093 0,0103 0.0149 0.0419 
24 0.0128 0.0142 0.0213 0.0529 
25 0.0187 0.0208 0.0299 0.0636 
26 0.0267 0.0290 0.0383 0.0723 
27 0.0340 0.0359 0.0434 0.0714 
28 0.0358 0.0367 0.0399 0.0489 
29 0 0 0 0 
so 0.7906 0.7725 0.6976 0.4376 

Equilibrium 
Payoff (e) 0 0 0 0 
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Figure 1: Symmetric mixed-strategy equilibria for the LUBA game for  

n=10, 30, and 50, v = 100, and c = 1. 
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Figure 2: Symmetric mixed-strategy equilibria for the HUBA game for 

n=10, 30, and 50, v = 100, and c = 1. 
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Figure 3: Symmetric mixed-strategy equilibria for the LUBA game for  

v=10, 50, and 90, n = 30, and c = 1. 
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Figure 4: Symmetric mixed-strategy equilibria for the HUBA game for  

v=10, 50, and 90, n = 30, and c = 1. 

0

0.005

0.01

0.015

0.02

0.025

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Bid

Pr
ob

ab
ili

ty

HUBA
n  = 30
v  = 10
c  = 1
p(so)  = 0.8991
Eq. payoff (e ) = 0

 

0

0.005

0.01

0.015

0.02

0.025

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Bid

Pr
ob

ab
ili

ty

HUBA
n  = 30
v  = 50
c  = 1
p(so)  = 0.8430
Eq. payoff (e ) = 0

 

 42

Jena Economic Research Papers 2009 - 005



0

0.005

0.01

0.015

0.02

0.025

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Bid

Pr
ob

ab
ili

ty

HUBA
n  = 30
v  = 90
c  = 1
p(so)  = 0.8244
Eq. payoff (e ) = 0

 

 

 43

Jena Economic Research Papers 2009 - 005



Figure 5: Symmetric mixed-strategy equilibria for the LUBA game for  

c=2, 4, and 7, n = 30, and v = 100. 
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Figure 6: Symmetric mixed-strategy equilibria for the HUBA game for  

c=2, 4, and 7, n = 30, and v = 100. 
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