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Introduction 
 
It is well known that both volatility and trading volume are characterized by a much higher 

degree of predictability than the returns of financial assets. In the huge literature on 
forecasting volatility, the vast majority of papers use variants of the GARCH family of 
stochastic processes, which provide an easy and convenient way to capture the basic auto-
regressive structure of conditional variances (see Granger and Poon, 2003, for a recent survey 
of the voluminous literature on volatility forecasting). However, results are not unanimously 
in favour of the potential of GARCH models to improve upon the forecasting performance of 
simpler models like the historical mean volatility or moving average or smoothed 
representations of it. Dimson and Marsh (1990) and Figlewski (1997), among others, find that 
simpler models can indeed outperform GARCH or related approaches at least when applied to 
low-frequency (weekly, monthly) data. On the other hand, dozens of papers investigate 
whether improvements over GARCH as a benchmark are possible using non-linear models or 
artificial intelligence techniques (e.g. West and Cho, 1995; Brailsford and Faff, 1996; 
Donaldson and Kamstra, 1997; Klaasen, 2002; Neely and Weller, 2002). However, given the 
ample evidence for long-term dependence in volatility (i.e. hyperbolic decay of its 
autocorrelation function rather than the exponential decay characteristic of short-memory 
models), it also appears worthwhile to explore the potential value added by models sharing 
this feature. Long memory in volatility has been first pointed out as a stylised fact by Ding, 
Engle and Granger (1992). Prevalence of this feature in financial data has meanwhile been 
confirmed in many subsequent studies and counts now as one of the truly universal properties 
of asset markets (cf. Lobato and Savin, 1998). 

 
Long memory generalizations of standard short-memory time series models are available in 

the ARFIMA (Granger and Joyeux, 1980) and FIGARCH models (Baillie et al., 1996). When 
browsing the literature on volatility forecasting, it comes as a certain surprise that these 
candidate models have received relatively scant attention so far. Basically, only two papers 
with a direct comparison between GARCH and FIGARCH forecasts appear to be available at 
present, Vilasuso (2002) and Zumbach (2004) both considering volatility forecasts in foreign 
exchange markets. Vilasuso reports relatively large reductions of both mean squared error and 
mean absolute errors over forecasting horizons of 1 to 10 days with FIGARCH compared to 
GARCH. Zumbach’s result using intra-daily data are more sobering in that he finds 
improvements in daily forecasts to be only of the order of one to two percent of MSE. Given 
that there is essentially only one study supportive of superior predictability of long-memory 
models, a more systematic analysis of this issue seems to be worthwhile.  

 
The exclusive focus on exchange markets also raises the question how long-memory models 

would perform in other types of markets, e.g. in national stock markets. We attempt to shed 
light on both issues with our investigation of Japanese stocks. Our data base consists of daily 
prices and volume for more than 1,000 stocks traded in the first section of the Tokyo stock 
exchange (trading in the first section requires that certain criteria are met on outstanding 
shares, trading volume and dividend payments). Data are available at daily frequency over the 
twenty-seven years period 01/01/1975 to 12/31/2001. A rather typical example of the 
evolution of stock price and daily trading volume is shown in Fig. 1 for the Nippon Suisan 
Company. What stands out here and in most other time series is the enormous increase of 
stock prices during the Japanese bubble in the second half of the eighties and the decline 
thereafter. Another common feature of many stocks is the increase of trading volume during 
the bubble reaching levels that are often by far the highest over the whole sample. After the 
collapse of the bubble, prices gradually fell to their levels in the early eighties while volume 
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also went down to roughly its level of the pre-bubble period. For some stocks in our data 
base, trading stopped before 2001 because of bankruptcy of the company. To our knowledge, 
analyses of the volatility dynamics of Japanese stocks have so far been confined to short 
memory GARCH type models (e.g., Tse, 1991; Fong, 1997). An exception is Ray et al. 
(1997) who estimate ARFIMA models for the Tokyo Stock Price Index (TOPIX) and 15 
individual stocks. However, they are interested in the predictability of raw returns (they find 
predictable components in the range between 5 and 15% of monthly variations), but do not 
explore the issue of predicting volatility or volume as we will do in the following. 

 
Since analysis of all stocks appeared to be too time-consuming, we selected two subsets of 

one hundred entries, respectively. The first of these subsets consisted of 100 randomly chosen 
stocks, the second of those with the largest average volume. For all these stocks we estimated 
four time series models for their volatility dynamics: GARCH, FIGARCH, ARFIMA and the 
‘causal multi-fractal model’ recently introduced by Calvet and Fisher (2001), another model 
that at least allows to ‘mimic’ long-term dependence (see below for details). We included 
ARFIMA models to see whether a difference exists between the performance of the original 
ARFIMA structure applied to volatility and its embedding into a GARCH framework (i.e., the 
FIGARCH model). The multi-fractal model (a variant of the one proposed originally by 
Mandelbrot, Calvet and Fisher, 1997) provides an alternative formalization of long-term 
dependence in volatility and has already been found to outperform GARCH and FIGARCH in 
some time series (Calvet and Fisher, 2003; Lux, 2003). In contrast to the additive structure of 
the GARCH dynasty, the multi-fractal model conceives volatility as a hierarchical, 
multiplicative process with heterogeneous components, but, in fact, achieves this in a rather 
parsimonious way using (in the version applied here) only two parameters. Our overall 
finding is that improvements over GARCH can be achieved by alternative models which is in 
contrast to frequent findings of the opposite in the literature (which, however, mostly does not 
include long-memory models as alternatives). 

 
Since volume is known to share the long memory property of volatility (Bollerslev and 

Jubinski, 1999; Ray and Tsay, 2000) and to be strongly contemporaneously correlated with 
volatility, it seems to be worthwhile to also investigate its predictability along similar lines. 
Since GARCH type models are not applicable to volume, we use only the ARFIMA and 
multi-fractal models and compare their performance to ARMA models as a short-memory 
benchmark. Again, dominance of the alternative models is confirmed. As it turns also out, the 
predictable component in volume appears to be much higher on average than that in volatility 
judged by the improvements in mean-squared errors and mean absolute errors against naïve 
forecasts.  

 
In a final exercise, we use pooled parameters estimates (averages of the parameter estimates 

obtained by any particular model over the whole sample of 100 stocks) for forecasting of 
future volatility. Counterintuitively, discarding information about individual time series in this 
way leads to vast improvements of average forecast quality for volatility and, albeit to a lesser 
extent, for volume as well. 

 
Our study proceeds along the following lines: sec. 2 deals with volatility forecasts. In sec. 

2.1 we introduce the models and estimation methods, while results are presented in secs. 2.2 
and 2.3. Similarly, models and results for volume are found in secs. 3.1 and 3.2./3.3. Sec. 4, 
then, considers pooled estimates. Our conclusions are to be found in sec. 5. 
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Fig. 1: Stock price and volume of Nippon Suisan Company (stock identification number 1332). Nippon Suisan 

is a company processing marine food. It has been established in 1911 and, as of September 2003, it had 1,534 
employees and 36,336 shareholders. As with most other entries in our database, the Japanese bubble in the 
second half of the eighties has also affected the price evolution of this stock. As one typically observes, volume 
also reaches its maximum levels during the bubble phase. 

 
 
1. Forecasting Volatility of Japanese Stocks 
 
2.1.  Models 
 
In our analysis of forecastability of volatility, the standard benchmark is the GARCH (1,1) 

model, which we expand – like all other models – by allowing for a constant and first-order 
autoregressive component in raw returns (xt): 

 
(1)   tt1tt hxx ε⋅+⋅ρ+µ= −  with εt ∼  N(0, 1) 

 
with volatility dynamics being governed by: 
 
(2)   1t1

2
1t1t hh −− β+εα+ω= ,           ω > 0, α1, ß1 ≥ 0. 

 
The fractionally integrated extension of the GARCH model (FIGARCH) expands the 

variance equation by considering fractional differences. Like with the baseline GARCH 
model, we restrict attention to one lag in both the autoregressive and moving average terms, 
i.e., FIGARCH(1,d,1), which can be written as: 

 
(3)  2

t
d

111t1t ))L1)(L1(L1(hh ε−ϕ−−β−+β+ω= − . 



 5

 
As is well known, the Binomial expansion of the fractional difference operator introduces 

an infinite number of past lags with hyperbolically decaying coefficients. In practice, the 
number of lags considered in estimating a FIGARCH model has to be truncated. We used lag 
truncation at 1,000 steps.1 Because of the time needed for FIGARCH estimation, we only 
consider FIGARCH (1,d,1). Both GARCH and FIGARCH are estimated via the standard 
MLE procedures. 

 
Since FIGARCH adopts the ARFIMA approach for modelling the dynamics of conditional 

volatility, one may ask whether one could not also use the original ARFIMA model as a 
possible data generating mechanism for financial volatility. The general ARFIMA model 
reads: 

 
(4)  Φ(L) (1- L)d yt = Θ(L) ηt 

 
with Φ(L) and Θ(L) the AR and MA polynomials, respectively, and d the parameter of 

fractional differentiation. In our present application, yt is given by squared residuals after 
filtering of linear dependence according to eq. (1). Like with GARCH and FIGARCH, we 
restrict ourselves to a maximum of one autoregressive and one MA term (i.e., p ≤ 1 and q ≤ 
1). In contrast to FIGARCH, we also tried somewhat more parsimonious variants of the 
model allowing for p = 0 or q = 0 (this was possible because the computational burden for 
ARFIMA estimation is only a fraction of that necessary to obtain FIGARCH estimates). 
However, the specification p = q = 1 was almost always preferred. Estimation has first been 
tried via Fox and Taqqu’s frequency domain maximum likelihood approach. However, when 
estimating the whole set of the parameters in this way, preliminary analysis of a smaller 
sample of time series showed extremely volatile and often very extreme results. We, 
therefore, resorted to estimating the fractional differentiation parameter via the Geweke and 
Porter-Hudak (1983) periodogram regression and, then, estimated the remaining parameters 
via the method of Fox and Taqqu assuming lag polynomials with roots strictly greater than 1 
in modulus (which, in fact, seems to be the most popular method for estimating ARFIMA 
models in applied work). 

 
Finally, the fourth model is the multi-fractal model of asset returns (Calvet and Fisher, 2001, 

2002) in the version of Lux (2003). Essentially this is a stochastic volatility model whose 
volatility process, denoted by θt, is characterized by a multiplicatively connected hierarchy of 
random variables of various mean life-time: 

 

(5)  ∏
=

=θ
k

1i

)i(
t

k
t m2  

 
The key distinguishing feature of this model is that the renewal of volatility components 

follows a stochastic process with different probabilities depending on their rank in the 
hierarchy of multipliers. Here we assume that Prob (new )i(

tm ) = 2-(k-i) and that replacement of 

                                                 

1 We also tried a moving lag length using all available past data plus 1,000 presample entries following the 
recommendation given in Chung (2002). However, this computationally even more burdensome practice 
produced virtually the same results. 
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a multiplier j implies simultaneous renewal of all i > j as well. This relatively simple and 
parsimonious construction allows for a variety of active components in current instantaneous 
volatility with mean live-time extending from 2-(k-1) days for the first multiplier down to 2-(k-k) 

= 1 day for the k-th component. Like in Calvet and Fisher (2002) and Lux (2003), the 
multipliers are drawn from a Lognormal distribution ( )22)i(

t )2ln(s),2ln(LN~m λ−  in which 
the second parameter s can be determined by the normalization of the mean value of each 

component to 0.5, 5.0]m[E )i(
t = . Returns are obtained as a subordinate process with a multi-

fractal instantaneous volatility according to (5): 
 
(6)  tutt ux ⋅σ⋅θ=    
 
with ut ∼  N(0, 1) and σu a stock-specific scale parameter. 
 
Again, returns have been corrected for a constant mean and first-order serial dependence 

prior to estimation of this volatility model. For both estimation of the Lognormal multi-fractal 
model and its use for forecasting purposes, we follow Lux (2003) by implementing the GMM 
estimator devised in this paper with the same moment conditions (log increments at various 
lags together with their second moments). 

 
In order to derive forecasts of future volatility (future squared returns) from the above 

models, different algorithms have to be used. While it is possible to explicitly derive 
conditional expectations for GARCH and FIGARCH models which, then, give the most 
efficient forecasts, this is not possible for MF and ARFIMA. In the later cases, we, therefore, 
resort to best linear forecasts (cf. Brockwell and Davis (1991, chap. 5) on the base of the 
autocovariances of these models for which closed form solutions can be obtained (cf. Beran, 
1994, chap 8 for the ARFIMA process, and Lux, 2003 for the Lognormal MF model).2 It is 
interesting to note that due to the use of moments of log increments in the GMM approach to 
estimation of the multifractal model, the scale parameter σu drops out from the moment 
conditions and cannot be estimated together with λ. However, this is not a drawback for 
forecasting purposes as any scale parameter would appear in both the numerator and the 
denominator of the coefficients of the best linear forecasts and would, therefore, drop out 
anyway. The MF model is, therefore, fully defined by the Lognormal parameter λ and the 
number of cascade steps, k.  

 
 
2.2.  Estimated Models 
 
The parameter estimates of the GARCH, FIGARCH, ARFIMA and MF models are 

exhibited in Tables 1 to 4. From the roughly 1,200 stocks represented in the data base we 
have selected two subsamples: one with a random sample of 100 firms and another with the 
100 companies with largest average trading volume. The appendix lists the names and length 
of the available time horizon (typically from 1975 to 2001 except for firms that were 
liquidated over the nineties). The length of the time series used for in-sample estimation of the 

                                                 

2 For the simpler Binomial MF model of Calvet and Fisher (2001, 2003) explicit conditional expectations can be 
derived. However, a comparison between both forecasting algorithms (research in progress) shows 
practically no difference in performance.  
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parameters of the various models has been restricted to the 10 year period from 1975 to the 
end of 1984. Our main aim in restricting the in-sample period to roughly 40 percent of the 
data was to leave a relatively large sample for assessment of the forecasting quality of our 
models which then could be investigated over more than 15 years. Assuming a stationary 
volatility process according to one of our models, one may argue that ten years of data should 
be sufficient to estimate the model parameters reliably enough. 

 
 
Table 1: GARCH parameter estimates 
Random sample 

 mean std min max GARCH preferred 
ω 0.376 0.316 0.002 1.860 AIC BIC 
α1 0.801 0.160 0.000 0.990 19 33 
β1 0.122 0.137 0.000 0.999   

α1+ β1 0.923 0.083 0.572 0.999   
Large volume 

 mean std min max GARCH preferred 
ω 0.345 0.320 0.004 1.978 AIC BIC 
α1 0.769 0.165 0.000 0.983 16 22 
β1 0.151 0.135 0.016 0.999   

α1+ β1 0.920 0.081 0.474 1.000   
 
 
When inspecting the distribution of parameter estimates (whose mean, standard deviation, 

minimum and maximum across the pertinent subsamples are given in Tables 1 to 4), one 
remarks a relatively large variability. For example, both the parameters α1 and β1 of the 
GARCH model as well as the parameter of fractal differencing d in the FIGARCH model 
have values spread over the entirety of their admissible range [0,1]. The same variability 
applies to the ARFIMA’s d although in the later case, we have not restricted the range of 
admissible vales to d < 1.3 Table 1 also indicates how often the GARCH would be preferred 
over FIGARCH on the base of the Akaike and Schwartz information criteria (AIC and BIC). 
As it turns out, FIGARCH is preferred by about two out of three to four out of five cases and 
more so under AIC. This squares with the usual observation that BIC favours more 
parsimonious models. Table 3 also reports the order of the ARFIMA models (p,d,q) with p ∈  
{0,1} and q ∈  {0,1} estimated by the AIC criterion. The (1,d,1) model is the preferred one 
with only one exception in the ‘large volume’ sample (results with BIC are only marginally 
different). 

 
 

                                                 

3 There is hardly any other choice than allowing for unrestricted d in the ARFIMA case since we cannot 
guarantee that the Geweke and Porter-Hudak estimates would fall into any prescribed interval. In contrast, 
the usual MLE estimation procedure for FIGARCH presupposes 0 ≤ d <1. 
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Table 2: FIGARCH parameter estimates 
Random sample Large volume 

 mean std min max mean std min  max 
ω 0.503 0.395 0.002 1.795 0.405 0.336 0.023 1.868 
β1 0.546 0.304 -0.499 0.986 0.452 0.320 -0.535 0.922 
φ1 0.401 0.335 -0.621 0.959 0.340 0.336 -0.621 0.874 
d 0.309 0.213 0.001 0.999 0.315 0.166 0.001 0.999 

 
 
Table 3: ARFIMA parameter estimates: Volatility 
Random sample 

Chosen models based on AIC Estimate of d 
(1,d,1) (1,d,0) (0,d,1) (0,d,0) mean std min max 

100 0 0 0 0.218 0.153 0.001 0.975 
Large volume 

Chosen models based on AIC Estimate of d 
(1,d,1) (1,d,0) (0,d,1) (0,d,0) mean std min max 

99 0 1 0 0.254 0.143 0.002 0.992 
 
 
Lastly, turning to our parameter estimates for the MF model, we again see a large variation 

of parameter values. Note that the lognormal distribution parameter λ is restricted to the open 
half line [1,∞). Estimates λ = 1 make the volatility cascade collapse to a constant value which 
leads to the benchmark case of Normally distributed returns. The mean values of the number 
of cascade steps k are about 12 and 14, for the ‘random sample’ and ‘large volume’ cases, 
respectively. It might be noted that, unlike ARFIMA and FIGARCH, the MF model is not a 
‘true’ long-memory model, but only mimics hyperbolic decline of the autocorrelation function 
over about 2k time lags after which one encounters an exponential drop-off of the ACF. Note 
that our average estimates of k, therefore, amount to slow decline of memory over up to 
16,000 time steps – much more than used for estimating the model. The maximum estimate k 
= 19 even amounts to hyperbolic decline of the autocorrelation function over roughly half a 
million days, i.e. 2,000 years of daily trading. It is, therefore, obvious that the deviation of the 
MF model from ‘true’ long memory can be arbitrarily small. On the other hand, the minimum 
k = 2 has a range of hyperbolic scaling of just 4 days which makes it a rather clear-cut short-
memory model. 

 
 
Table 4: Multi-fractal parameter estimates: volatility 
Random sample 

Estimate of λ Estimate of k 
mean std min max mean std min max 
1.591 0.442 1.000 4.221 14.320 2.093 2.000 19.000 

Large volume 
Estimate of λ Estimate of k 

mean std min max mean std min max 
1.315 0.297 1.000 2.590 12.060 3.104 2.000 17.000 
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2.3  Forecasting Performance 
 
 

Now turn to the results of our horse race for forecasting volatility: our estimated models 
have been tested out-of-sample for the 16-year period 1986 to 2001. Forecasting horizons 
start at the daily level and proceed via 5 day and 10 day forecasts up to 100 days ahead. Note 
that we have used only one set of parameter estimates and have not re-estimated the 
parameters within the out-of-sample period. The reason for not using rolling estimates is the 
computational burden of the FIGARCH model – with the other models it would have been 
feasible. We have also looked at the performance in subsamples (1986-1990,1991-1995, and 
1996-2001), but to our surprise found no remarkable differences. As these periods cover quite 
diverse financial and economic conditions in Japan (including the stock market bubble, its 
crash and the subsequent stagnation) the homogeneity of the results speaks in favour of very 
regular structure in the volatility dynamics despite large changes in the level of volatility over 
time. 

 
In order to compare the performance of the four candidate models, we apply the traditional 
concepts of mean squared error (MSE) and mean absolute error (MAE). However, since we 
want to have a meaningful measure allowing to compare the performance across stocks we 
have to standardize these statistics. We do so by reporting relative MSE and MAE obtained 
after division by the pertinent mean squared error and mean absolute error of the naïve 
predictor using historical volatility (i.e., the sample mean of squared returns over the period 
1975 to 1984). In order not to compound errors in the mean equations and in the volatility 
dynamics, we also first filter out linear dependence analogously to eq. (1) and compute the 
naïve MSE and MAE from the squared residuals. 
 
Our criteria for comparing predictive accuracy are, thus: 
 

(7) relative MSE = ∑∑
==

ε−ε−
N

1t

22
tn,t

N

1t

22
tj,t )h(

N
1)h(

N
1 , 

 

(8) relative MAE = ∑∑
==

ε−ε−
N

1t

2
tn,t

N

1t

2
tj,t )h(

N
1)h(

N
1 ; 

 
with t = 1,…, N the out-of-sample observations, j = { GARCH, FIGARCH, ARFIMA, MF } 
the estimates from the candidate time series models, the subscript n denoting the naïve 
predictions using historical volatility and εt the residuals obtained after linear filtering of 
returns (using the in-sample means and first-order autocorrelations). 
 

Table 5 compares the average relative MSEs and MAEs of our four models for the ‘random 
sample’ of 100 stocks. Since results obtained for the ‘large volume’ cases are very similar, we 
have not reproduced them here for the sake of brevity, but are prepared to supply them upon 
request. 

 
The winner in terms of average MSE reduction is the ARFIMA model (which so far has 

seldomly been considered as a model of volatility dynamics) followed by MF and FIGARCH. 
Interestingly, GARCH performs worse than all other models even over short horizons. The 
average improvement compared to naive forecasts are in the range of up to about 6 percent at 
daily horizons, 3 percent at ten days and still 1.5 percent at 100 day horizons.  
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To provide more details, Fig. 2 shows box plots of the distribution of MSEs and MAEs over 

all 100 stocks, for all methods and time horizons. A glance at the range of results for the 
different methods reveals some interesting tendencies. It particularly shows that for all long-
memory models the inter-quartile range is below the benchmark of one for all time horizons. 
In contrast to GARCH, we, therefore, do find an improvement against the naïve prediction in 
the majority of cases with these models so that mean values above 1 in Table 5 are due to 
very large entries in the upper end (the median is always < 1 for these methods). At the lower 
end, we find that for the one day horizon, MSE can be reduced against the naïve forecast by 
as much as 18 percent (GARCH, ARFIMA and FIGARCH and slightly less for MF) and still 
7.5 percent improvement can be found at 100 day horizons for one particular stock (here 
GARCH seems to dominate slightly).  

 
In terms of the upper end (the worst prediction within the sample), MF is best with a 

maximum MSE that never rises above unity (i.e., that is never worse than that of the naive 
forecasts). Note that it, therefore, can be described as the least dangerous method. This is in 
contrast to all other models with which the user always appears to face the danger of 
forecasts, that are worse than the most naive ones (i.e. max > 1). Note in particular how 
‘dangerous’ GARCH and FIGARCH forecasts can become! Lastly, it appears noteworthy that 
ARFIRMA and MF have very small variability of their performance which also decreases 
with time horizon, while the fluctuations across assets in the (FI)GARCH models rather show 
a tendency for increasing dispersion at long horizons. 

 
 
Table 5: Forecasting Volatility  

relative MSE  relative MAE 
 

horizon 
 

GARCH 
 

FIGARCH 
 

ARFIMA 
 

MF 
 

GARCH 
 

FIGARCH 
 

ARFIMA 
 

MF 

1 0.954 0.947 0.935 0.944 1.060 1.084 1.045 1.011 

5 0.985 0.964 0.960 0.971 1.080 1.106 1.055 1.020 

10 1.000 0.975 0.968 0.978 1.092 1.118 1.058 1.021 

20 1.019 0.985 0.974 0.982 1.114 1.136 1.057 1.021 

30 1.043 0.997 0.977 0.985 1.138 1.153 1.056 1.021 

40 1.071 1.008 0.979 0.987 1.162 1.168 1.054 1.020 

50 1.106 1.021 0.981 0.988 1.187 1.184 1.053 1.019 

60 1.145 1.036 0.981 0.988 1.211 1.199 1.051 1.019 

70 1.192 1.053 0.983 0.989 1.237 1.214 1.050 1.018 

80 1.243 1.071 0.983 0.989 1.261 1.229 1.049 1.018 

90 1.300 1.089 0.983 0.990 1.286 1.243 1.048 1.017 

100 1.370 1.110 0.984 0.990 1.311 1.258 1.047 1.017 

 
Note: the ‘winners’ under each criterion are marked by bold numbers. 
 
 
With respect to MAE, the multi-fractal model is the winner in all categories, over all time 

horizons. However, as a grain of salt, average performance of all models is worse than that of 
naive forecasts. On the other hand, the largest reduction of MAE achieved is as much as 24 % 
(1 day), 20 percent (10 days) and still 13 percent (100 days). Otherwise, results are 
comparable to those for the MSE criterion with a narrow range of entries for MF and a wide 
variation for FIGARCH and GARCH. Note also that MF comes closest to at least being 
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‘neutral’ under this criterion while all other methods have the inter-quartile range above the 
benchmark value of 1 and, therefore, lead to a deterioration against naïve forecasts in the 
majority of cases. 
 
 

 
 
Fig. 2a: Distribution of MSEs of volatility predictions on the base of individual parameter estimates. The boxes 

show the median of the distribution surrounded by a box that spans the centre half of the data set (the inter-
quartile range). The whiskers give the full range spanned by all 100 cases. For better comparability, we have 
chosen the same scale for all four box plots. The plots for the FIGARCH and GARCH results, therefore, do 
not show their respective maximum MSE which extends from 1.42 at lag 1 to 7.75 at lag 100 for FIGARCH 
(1.66 at lag 1 to 21.60 at lag 100 for GARCH). 

 

 
 
Fig. 2b: Distribution of MAEs of volatility predictions on the base of individual parameter estimates. For better 

comparability, we have chosen the same scale for all four box plots. The plots for the FIGARCH and GARCH 
results, therefore, do not show their respective maximum MAE which extends from 1.47 at lag 1 to 8.13 at lag 
100 for FIGARCH (1.60 at lag 1 to 11.79 at lag 100 for GARCH). 
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A typical question arising in comparative studies of alternative predictors is whether the 

models under investigation use different information or not. The interesting consequence is 
that combinations of forecasts could improve results if the various models would not rely on 
the same information, whereas no such improvement appears feasible if their differences in 
performance are explained by different success in exploitation of the same underlying 
information. Typically one would use encompassing tests (Chong and Hendry, 1986) in order 
to shed light on this issue. However, our large sample of stocks renders this approach 
somewhat unpractical. Instead, we explore this question by computing the rank correlation of 
the forecasting success across all assets for each pair of methods. A high entry would suggest 
that two methods use virtually the same information so that the difference in their relative 
MSEs and MAEs is mainly to be explained by difference in the accuracy of the conditional 
expectations. Low rank correlation, on the other hand, might suggest room for improvement 
via forecast combination. 

 
 
Table 6: Rank Correlations of Volatility Predictions Across Assets 
Random sample: relative RMSE 

 
lead 

GARCH- 
FIGARCH 

GARCH -
ARFIMA 

GARCH-
MF 

FIGARCH- 
ARFIMA 

FIGARCH -
MF 

ARFIMA- 
MF 

1 0.896 0.610 0.423 0.558 0.447 0.442 
5 0.843 0.612 0.323 0.701 0.462 0.373 

10 0.732 0.512 0.224 0.699 0.430 0.352 
20 0.578 0.430 0.170 0.697 0.423 0.345 
30 0.489 0.305 0.082 0.690 0.393 0.327 
40 0.404 0.219 0.083 0.686 0.392 0.320 
50 0.372 0.137 0.124 0.653 0.389 0.316 
60 0.348 0.110 0.127 0.651 0.396 0.318 
70 0.340 0.076 0.125 0.624 0.386 0.309 
80 0.335 0.053 0.145 0.612 0.385 0.320 
90 0.328 0.046 0.154 0.609 0.403 0.327 

100 0.335 0.028 0.167 0.604 0.399 0.326 
Random sample: relative MAE 
lead GARCH- 

FIGARCH 
GARCH -

ARFIMA 
GARCH-

MF 
FIGARCH- 
ARFIMA 

FIGARCH -
MF 

ARFIMA- 
MF 

1 0.767 0.664 0.471 0.667 0.510 0.462 
5 0.737 0.555 0.326 0.565 0.390 0.374 

10 0.686 0.494 0.275 0.537 0.370 0.348 
20 0.622 0.378 0.189 0.520 0.330 0.321 
30 0.574 0.289 0.152 0.495 0.303 0.284 
40 0.551 0.235 0.140 0.487 0.280 0.276 
50 0.527 0.173 0.097 0.462 0.265 0.256 
60 0.518 0.121 0.073 0.446 0.258 0.251 
70 0.510 0.093 0.054 0.434 0.257 0.248 
80 0.500 0.082 0.050 0.425 0.257 0.243 
90 0.500 0.068 0.041 0.419 0.254 0.241 

100 0.497 0.065 0.038 0.415 0.247 0.244 
 
Note: At a significance level of 95 percent, the null hypothesis of no correlation in the performance of 

different methods would have to be rejected for absolute entries beyond 0.197 (=1.96 √(n-1)) with n = 100 in our 
case). 
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Table 6 gives the rank correlation across assets for all pairs of two methods for both relative 

MSE and relative MAE. If all methods would have the same ranking of MSEs and MAEs 
across assets, rank correlations would be 1. This is not the case: although a relatively large 
rank correlation exists at small horizons, different methods are more or less successful in 
predicting the volatility of individual assets. This implies that they are not simply using the 
same information more or less efficient, but that they might perform differently on different 
assets. Combination of forecasts, therefore, might still improve the overall results. 
Furthermore, the highest correlations exist between FIGARCH and GARCH at small 
forecasting horizons and between FIGARCH and ARFIMA at longer horizons pointing to the 
built-in similarities in their behaviour for short and long time horizons, respectively.  

 
 
 
3. Forecasting Volume 
 

3.1. Models 
 
 
The empirical finance literature has mainly concentrated on trying to predict returns and 

volatility, but has hardly paid any attention to volume: a systematic search has brought about 
one single entry, Kaastra and Boyd (1995). These authors use neural networks and ARIMA 
models to forecast monthly futures trading volume for the Winnipeg Commodity Exchange. 
They emphasize the practical implications of volume predictions for the operation of the 
exchange. Besides its importance for forecasting transaction fees and liquidity, we may add 
that volume forecasting is also interesting in view of the similarity of the time series 
properties of both volatility and volume. Given the evidence on similar long term dependence 
in both series (Bollerslev and Jubinski, 1999; Ray and Tsay, 2000) it seems interesting to 
explore whether models with this feature are similarly capable of predicting both future 
volume and volatility. 

 
We, therefore, continue our study by also using the volume entries in our data base to 

investigate the forecastability of transaction volume. To enhance comparability with the 
results obtained for volatility, we use again both the stocks represented in the ‘random 
sample’ and the selection based on the average volume itself. Since results are again quite 
similar, we only exhibit those for the randomly selected stocks and provide additional results 
for the high volume cases upon request. As before, we estimate models on the base of the 
eleven year period 1975 through 1985 and test the forecasting performance of the models for 
the remaining fifteen years (sometimes less) 1986 to 2001 thus allowing an assessment of 
their success over a relatively long time horizon. When investigating volume data of stock 
exchanges, researchers typically find that these are non-stationary and have to be detrended 
first before they can be used to shed light on volatility and return dynamics. Interestingly, 
considering the 27 year period from 1975 to 2001 as a whole, trends in trading volume are 
practically non existent in the Japanese market. This is readily  apparent form the quite typical 
behaviour of the volume of the Nippon Suisan Kaisha share exhibited in Fig. 1: while long 
subsets of the data from 1975 to about 1990 would have given rise to apparently positive time 
dependence, the later development suggests that the increase of volume in second half of the 
eighties should be interpreted as an intermittent episode rather than the signature of a secular 
trend. Given this absence of clear trends, we use the raw volume data without any correction 
or detrending in our subsequent forecasting exercise. 
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Because of the lack of applicability of the GARCH family, only three models have been 

estimated for the volume time series: 
 
As a short-memory benchmark we estimate an ARMA(p,q) model: in order to see whether a 

moderate number of lags suffices to capture the time dependence in volume records, we select 
an ARMA(p,q) model for forecasting within the range p ≤ 5 and q ≤ 5 via maximum 
likelihood and use the Akaike criterion for selection of one of these alternatives. We 
deliberately chose AIC rather than the typically more parsimonious BIC criterion in order to 
allow for a sizable number of lags which could suffice for modelling the dynamics without 
having to resort to genuine long memory models. However, despite BIC’s tendency towards 
more parsimonious models, results with respect to forecasting quality turned out to be similar. 

 
Our second model is the fractionally integrated ARFIMA(p,d,q) model. Because of the 

higher computational burden and also because longer lags should be captured by the 
fractional differentiation term, we restrict ourselves again to a maximum of one 
autoregressive and one MA term (i.e., p ≤ 1 and q ≤ 1). Estimation proceeds along the same 
lines as in the application of ARFIMA to volatility. For both ARMA and ARFIMA models, 
estimation is restricted to lag polynomials with roots strictly greater than 1 in modulus. the 
ARFIMA models we allowed for non-stationary variants by estimating the ARFIMA model 
with differenced data when the initial GPH estimate of the fractional differencing parameter d 
exceeded the benchmark 0.5. Forecasting, then, is performed by integrating the forecasts of 
the differenced series. 

 
Third, we also apply the multi-fractal cascade process as a model for volume. Since volume 

has a structure similar to volatility, we simply adopt the volatility cascade part depicted in eq. 
(5):  

(9) ∏
=

=θ
k

1i

)i(
t

k
t m2 , 

 
but skip the incremental Normal distribution introduced in eq. (6) which in the volatility 

model mainly serve to randomise the sign of returns. All that is needed to use this as a model 
of the volume dynamics is an additional scaling factor to capture the different size of mean 
volume in each stock. Hence, volume can be written as volt = it χ⋅θ  where iχ  is the scaling 
factor for asset i. However, one should note that we neither need the scale parameter for 
estimating the other parameters nor in constructing forecasts so that iχ  is, in fact, only 
introduced to organize our discussion of the model. Since estimation is again based on GMM 
with log increments, this parameter drops out and only the location parameter of the 
Lognormal multipliers, λ, has to be estimated. And iχ  is also not needed in our forecasting 
exercise as any scale parameter would appear in both the numerator and the denominator of 
the coefficients of the best linear forecasts and would, therefore, drop out anyway. Again, the 
MF model is, therefore, fully defined by the Lognormal parameter λ and the number of 
cascade steps, k.  

 
Since our short-memory benchmark is now an ARMA(p,q) model, we also do not subject 

the data to filtering out linear dependency. The multi-fractal cascade, therefore, is applied to 
volume in its basic format (eq. 9) without any additional adjustments. An advantage of MF 
against ARMA and ARFIMA models might be seen in the fact that by its very definition, it 
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allows for positive entries only while negative realizations cannot be excluded in the two 
alternative models. We, therefore, used zero as the lower bound for our forecasts from ARMA 
and ARFIMA models (which, however, was hardly ever a binding constraint). 

 
In our initial tests, we also estimated ARIMA(p,1,q) models. However, since it turned out 

that their forecasting performance was almost always far worse than that of the alternative 
models, we dropped them from our final design of this forecasting exercise. 

 
 

3.2. Parameter Estimates 
 
 

Now turn to the estimation results: Table 7, first, shows that ARMA estimation tends to 
favour models with many parameters at least under the AIC criterion. Comparing the AIC and 
SIC model selection criteria for the preferred ARMA and ARFIMA models, we see that AIC 
would prefer the ARMA over the ARFIMA specification in 98 out of 100 cases for both the 
large volume and random sample. Hence, the long-term dependence seems not to be able to 
compensate for the admission of more AR and MA components in our ARMA design. The 
SIC, however, produces fewer cases of preferred ARMA models confirming the well-known 
finding that it typically favours more parsimonious models than AIC.  

 
 
Table 7: ARMA parameter estimates 
Random sample 

Chosen models ARMA preferred 
(5,5) (5,4) (5,3) (4,5) (3,5) other AIC SIC 

35 14 6 14 10 21 98 58 
Large volume 

Chosen models ARMA preferred 
(5,5) (5,4) (5,3) (4,5) (3,5) other AIC SIC 

26 19 10 16 6 23 98 58 
 
 
Table 8 shows that the ARFIMA model produces higher dispersion of its key parameter d 

for the random sample albeit with a lower average d than for the large volume firms. The 
preferred type of model is overwhelmingly the (1,d,1) variant modulating the prevalent long-
term dependence via additional AR and MA components. Due to the wide variability of the 
AR and MA components, their statistics are not shown but are available upon request. 
Comparison with volatility (Table 3) reveals no clear tendency of the differences: while mean 
estimates of d are higher with volume, the minima and maxima across samples are lower. 

 
 
Table 8: ARFIMA parameter estimates: Volume 
Random sample 

Chosen models Estimate of d 
(1,d,1) (1,d,0) (0,d,1) (0,d,0) mean std min max 

97 1 2 0 0.291 0.135 0.002 0.671 
Large volume 

Chosen models Estimate of d 
(1,d,1) (1,d,0) (0,d,1) (0,d,0) mean std min max 

91 5 4 0 0.344 0.121 0.074 0.639 
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Table 9 exhibits information about the parameters of the estimated multi-fractal model. One 

can infer that the estimates of the key parameter λ are all within the interval between 1.00 and 
about 1.2 (1.00 being the lower limit for this parameter). Estimated λ’s are somewhat higher 
on average for the random sample of stocks signalling larger bursts of activity. This might be 
explained by a larger increase of trading volume during the bubble for the average firm 
compared to large firms which already had relatively high trading volume before the bubble 
episode. Besides that, we find a higher dispersion of both the λ and k estimates for the random 
sample compared to the large volume firms which shows a higher degree of homogeneity of 
the time series characteristics of the later sample. Compared with Table 4, we see that both 
the estimated λs as well as the number of cascade steps are smaller on average for volume 
than for volatility. 

 
 
Table 9: Multi-fractal parameter estimates: volume 
Random sample 

Estimate of λ Estimate of k 
mean std min max mean std min max 
1.118 0.039 1.000 1.221 9.250 2.153 2 13 

Large volume 
Estimate of λ Estimate of k 

mean std min max mean std min max 
1.089 0.027 1.050 1.195 8.950 1.617 6 12 

 
 
3.3. Forecasting Results 
 
 
Table 10 shows the forecasting performance of the ARMA, ARFIMA, and MF models over 

forecasting horizons of 1, 5, 10, 20 etc. up to 100 days for the out-of-sample period 1986 to 
2001. We resort again to the criteria of relative mean squared error (MSE) and relative mean 
absolute error (MAE) for our assessment of the forecasting performance. The table shows the 
mean relative MSEs and MAEs over the 100 time series from the random sample of stocks 
(results for the 100 stocks with the highest average trading volume are again quite similar and 
can be obtained upon request). The results are perplexing: in both categories, the multi-fractal 
model has lowest average MSEs and MAEs over most time horizons. Furthermore, these 
means are all smaller than in the case of volatility signalling a sizable average gain in 
forecasting performance against the naïve model (i.e., the in-sample mean value of the time 
series). Roughly, MF achieves an average improvement of 45 percent (MSE) or 29 percent 
(MAE) for one-day horizons and even over a forecasting horizon of 100 days has a 
performance that is by about 4 -5 percent better in both criteria than the naïve model. The 
ARFIMA forecasts mostly reach second rank with averages only slightly above those of MF, 
while ARMA yields much poorer results (implying a deterioration against the naïve forecasts 
for all but the 1 day horizon).  

 
As can be seen from Fig. 3, the MF model also has again the smallest standard deviation of 

its forecast errors showing that the success of this method is more uniform than that of 
ARFIMA and ARMA models. While ARFIMA is comparable to MF in its average 
performance (as indicated by its inner-quartile ranges), it has much higher cases of ‘failure’ 



 17

(the upper and of the whiskers). MF’s maxima, in contrast, do only very slightly exceed the 
benchmark value of 1, so that here the danger of getting worse forecasts than with the naive 
model is almost nonexistent. As with GARCH and FIGARCH in the case of volatility 
forecasting, ARMA models of volume produce very unsatisfactory results. Not only does one 
face the danger of extremely poor entries (with MSE up to 146 times that of the naïve model 
in one case), but rather the whole ensemble of 100 forecasting exercises performs quite 
poorly. ARMA only produces an improvement against the naïve forecasts for the one day 
horizon and does hugely worse thereafter. It is particularly astonishing that even for the one 
day horizon, ARMA is dominated by both ARFIMA and MF throughout and that it performs 
the worst at the five day horizon although it typically uses 5 lags in either the MA or AR 
component or both.4  

 
The most astonishing feature is, however, the success of the MF model which even for small 

horizons is better than its competitors – although one estimates only two parameters and 
unlike in the AR(FI)MA classes there are no parameters available in this model for fine-
tuning of short-term dependence. Nevertheless, the MF model mostly produces better short-
term forecasts than the naïve benchmark prediction and even in its ‘bad’ cases has relative 
MSEs and MAEs only slightly above one while the ARFIMA and particularly the ARMA 
models can be far off the mark.  

 
These results are also interesting from the perspective of the theoretical literature on 

forecasting on the base of ARMA and ARFIMA models. Most perplexingly, the results 
exhibited for ARFIMA (and MF) in Table 10 are close to (if not better than) what one could 
expect to obtain for an ARFIMA process with known parameter values. Beran (1944, chap. 4) 
computes MSE improvements over the (known) unconditional variance from best linear 
forecasts with an infinite number of past observations. In his Table 8.8 we find for d = 0.1 und 
d = 0.4 improvements by 1.91 % and 48.82 % (one step ahead), 0.22 % and 27.06 % (ten 
steps), and 0.03 % and 14.75 % (hundred steps). A rough interpolation between these 
extremes with our mean estimates of 0.29 from Table 8, in fact, indicates that our volume 
forecasts are pretty much in line with what could be expected with a ‘true’ underlying 
ARFIMA model even without accounting for parameter uncertainty. 

 
From this perspective, however, the poor performance of the ARMA class is surprising as 

several papers show that suitably adapted ARMA models can produce forecasts comparable 
to that of ‘true’ underlying ARFIMA models (Basak et al., 2001; Man, 2003). This divergence 
might be explained by different factors: on the one hand, estimated fractional differentiation 
parameters of our data are relatively high so that it is hard to cover the persistency of the data 
by short-memory models. In fact, several papers have shown that the approximation of long-
memory models by ARMA structures works best for small values of d and becomes less 
satisfactory for strongly dependent processes (Brodsky and Hurvich, 1999; Crato and Ray, 
1996). Furthermore, our ARMA models have been chosen by the usual AIC (or BIC) criteria 
and, therefore, are not those optimally adapted for forecasting an assumed underlying long-
memory process. In any case, the results illustrates that the choice between short-memory and 
long-memory processes can crucially affect forecasting performance (even over short 
horizons). 
 
                                                 

4 ARFIMA performs worse for the large volume than for the random sample but inspection shows that the 
difference is actually only due to one extreme outlier in the large volume sample. Eliminating this entry, 
results for large volume become almost the same as for the random sample. 
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Table 10: Forecasting Volume 

relative MSE relative MAE 
horizon ARMA ARFIMA MF MF ARFIMA MF 

1 0.822 0.560 0.556 ARMA 0.713 0.707 
5 2.784 0.827 0.815 0.938 0.890 0.873 

10 1.976 0.880 0.869 1.287 0.932 0.911 
20 1.549 0.911 0.903 1.260 0.962 0.936 
30 1.340 0.927 0.920 1.236 0.978 0.949 
40 1.294 0.934 0.927 1.184 0.984 0.953 
50 1.142 0.938 0.934 1.171 0.990 0.957 
60 1.089 0.941 0.938 1.134 0.991 0.958 
70 1.069 0.945 0.943 1.112 0.995 0.960 
80 1.061 0.944 0.945 1.096 0.995 0.961 
90 1.064 0.945 0.948 1.087 0.996 0.962 

100 1.057 0.947 0.949 1.085 0.997 0.962 
 
Note: the ‘winners’ under each criterion are marked by bold numbers. 
 
 

 
 
Fig. 3: Distribution of MSEs and MAEs of volume predictions on the base of individual parameter estimates. 

The boxes show the median of the distribution surrounded by a box that spans the centre half of the data set 
(the inter-quartile range). The whiskers give the full range spanned by all 100 cases. For better comparability, 
we have chosen the same scale for all four box plots. The plots for the ARMA results, therefore, do not show 
their respective maximum values which extend from 4.25 at lag 1 to 2.90 at lag 100 for MSEs (2.29 at lag 1 to 
2.47 at lag 100 for MAEs). Interestingly, the MSEs and MAEs of the estimated ARMA models exhibit an 
inverted U shape in most cases with maximum errors at the 5 day forecasting horizon (the maxima over all 
stocks at the 5 day horizon are 146.19 for MSE and 8.94 for MAE). 
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Again, we try to provide an overall assessment of the degree of complementary between 
methods. To this end, Spearman’s coefficients of rank correlation are exhibited in Table 11 
for both the MSE and MAE values achieved at various forecasting horizons by the various 
time series models. Interestingly, the correlation between the success of the MF and ARFIMA 
models is highly significant over all forecasting horizons. This means that if MF produces a 
high (low) reduction of MSE and MAE against the naïve model, the same is also likely to 
happen for the ARFIMA model. Hence, exploitation of information from past variables is 
quite uniform with both models: cases in which one model is particularly good while the other 
performs very poorly occur relatively seldom. Mostly, good results obtained from MF 
coincide with relatively good forecasting performance of ARFIMA as well. In contrast, 
correlation between the long-memory models and the ARMA model is significant only for 
few lags and is uniformly smaller than the MF-ARFIMA correlation. 

 
 
Table 11: Rank Correlations of Volume Forecasts Across Assets: Random Sample 

 MSE MAE 
lead ARMA-

ARFIMA 
ARMA- 
MF 

ARFIMA- 
MF 

ARMA-
ARFIMA 

ARMA- 
MF 

ARFIMA- 
MF 

1 0.511 0.443 0.914 0.523 0.526 0.929 
5 0.170 0.240 0.854 0.219 0.236 0.914 
10 0.202 0.267 0.825 0.182 0.181 0.884 
20 0.139 0.180 0.841 0.145 0.174 0.866 
30 0.082 0.060 0.832 0.109 0.138 0.845 
40 0.039 0.011 0.834 0.096 0.103 0.833 
50 -0.020 -0.080 0.858 0.069 0.067 0.829 
60 -0.026 -0.070 0.832 0.066 0.094 0.824 
70 -0.074 -0.092 0.823 0.042 0.053 0.814 
80 -0.097 -0.142 0.823 0.049 0.020 0.817 
90 -0.099 -0.151 0.823 0.053 -0.012 0.812 
100 -0.116 -0.164 0.803 0.036 -0.005 0.811 

 
Note: At a significance level of 95 percent, the null hypothesis of no correlation in the performance of 

different methods would have to be rejected for absolute entries beyond 0.197 (= 1.96 √(n-1)) with n = 100 in 
our case). 

 
 
4. Forecasting with Pooled Estimates 
 
Inspection of parameter estimates and forecasting results for GARCH, FIGARCH, ARMA 

and ARFIMA models across stocks shows that the worst results are obtained with extreme 
parameter estimates. For example, in volatility forecasting GARCH and FIGARCH 
performance is worst for nearly integrated processes, i.e. 111 ≈+ βα  in the GARCH and 

1≈d  in the FIGARCH model, respectively. Similarly, the performance of the ARMA models 
for volume often becomes extremely poor when one of the roots approaches one. For 
ARFIMA, we also encounter relatively poor results for high estimates of d. Interestingly, the 
problem of extreme failures in some individual stocks seems non-existent for the multi-fractal 
model which in this important sense appears to be much more robust – in both its application 
to volatility and volume – than all the more traditional models. Particularly striking is the 
observation that at least the MSE of volatility forecasts does never (in not one single case of 
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100 stocks and in not one single forecasting horizon) exceed that of the naïve estimator.5 
Interestingly, application of ARFIMA models to volatility seems to be much ‘safer’ than their 
use in forecasting of volume (the maximum deterioration in MSEs against the naive forecasts 
are about 10% for volatility against more than 50% for volume). 

 
The big failures of some methods with some series could have quite different sources: first, 

if the underlying time series were, in fact, non-stationary or almost non-stationary, it might 
simply be that their degree of forecastibility is lower than for some other series. Along a 
similar line of argument, they might simply possess some large outliers (remember that we 
included the bubble period) or other particularities, which could have affected our forecasting 
results. Interestingly, our comparative investigation of alternative forecasts seems to allow to 
safely exclude this possibility: in all cases there had at least been one method whose forecasts 
did not perform too badly for exactly the same series (i.e., the MF model). 

 
An alternative explanation would, therefore, have to look for the fault in the parameter 

estimates of the poorly performing models. The poor forecasts might then be attributed to the 
variability of parameter estimates with extreme failures being due to rather large random 
deviations between estimated and ‘true’ parameters.6 

 
In order to see whether restricting the variability of parameter estimates allows us to avoid 

the defective results in some cases, we resorted to forecasting with the mean parameter 
estimates obtained across our 100 randomly selected stocks. 

 
The average estimates are taken from Tables 1 to 4 for the volatility models and from 

Tables 7 to 9 for the models used to forecast volume. To account for varying scale of the 
fluctuations across stocks, the following adjustments have to be made: 

 
For the GARCH models, we now forecast on the base of the average parameters 801.01 =α  

and 122.01 =β . Since the remaining parameter, ω, gives the scale of fluctuations (with the 

unconditional variance equal to 
111 β−α−

ω ) it would hardly be useful to average this coefficient 

across stocks. Instead we compute ω  from the unconditional sample variance of each 
(linearly filtered) return series, 2σ̂ , using the average estimates of the remaining parameters: 

( ) 2
11 ˆ1 σ⋅β−α−=ω . Alternatively, we used averages for the dynamic parameters 1α  and 1β  

but kept the previous stock-specific estimate of ω which yielded practically identical results. 
 
In the FIGARCH model, the mean volatility level (the conditional variance) is not 

determined. However, in practice one has to approximate the fractional difference operator on 
the RHS of eq. (3) by a finite approximation of its expansion. The chosen cut-off of the 
infinite sum, then, in fact guarantees existence of the unconditional variance which is given 

                                                 

5 Practically the same outcome applies when the 100 stocks with the highest trading volume are chosen rather 
than a random selection of stocks. 

6 To be precise, we cannot really speak of  ‘true’ parameters in a comparative study of various models of which 
none will be the ‘true’ data generating mechanism. One might, therefore, rather think of the ‘true’ 
parameters as those that best represent the particular class of models for a certain purpose (forecasting). 
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by ( )1dδ
ω  with ( ) ( ) ∑ ⋅δ≈−=δ

=

maxk

0k

k
k,d

d
d LL1L  where the summation up to the cut-off maxk  

instead of the infinite theoretical sum leads to a non-vanishing ( ) 01d ≠δ  (Chung, 2002). 
Taking this implication of the practical approach to FIGARCH modelling into account, we 
can fix the parameter ω similarly as for the GARCH model in order to capture the different 
scales of fluctuations for individual assets. Alternatively, we also tried the average ω (along 
with average values of 11,βα  and d) for all stocks which produced practically identical 
results). 

 
For the multi-fractal model we simply took the mean estimate of the crucial parameter λ  

together with the mean of the number of cascade steps rounded to the nearest integer. Note 
that unlike in the GARCH and FIGARCH cases, for the multi-fractal as well as the ARFIMA 
models, the scale parameter is irrelevant as the weights in the best linear forecasts are scale-
free (more precisely, the scale parameter appears in both the numerator and denominator and, 
therefore, does not affect the forecasts).  

 
For those models where we allowed for flexible choice of the number of lags (ARMA and 

ARFIMA), the mean estimates were computed for the maximum number of lags. The 
coefficients of the average estimates are, then, the means over the one hundred individual 
samples with cases of more parsimonious models contributing a zero value for their missing 
coefficients. 

 
The results of our exercise are quite striking: overall, we mostly see an improvement of 

forecasting performance when using average instead of individually optimised parameters. 
Table 12 details our results for volatility: under the MSE criterion, we find improvements for 
all models under almost all perspectives. In particular, the mean MSE is always smaller than 
with the individual parameter estimates with the improvement being most pronounced for 
FIGARCH and GARCH whose performance was lacking behind ARFIMA and MF when 
using individual parameter estimates. As a result, the three long memory models are now head 
to head with MF slightly behind FIGARCH and ARFIMA. Again, for all lags (even the 
smallest ones) GARCH despite its improvement falls clearly behind the long memory models. 
What is more, a look at Fig. 4 shows that this better average performance does not come at 
the price of deterioration of the best cases (the lower part of the whiskers shows little 
variation between Figs. 2 and 4 and if anything the ‘best’ cases become even better in the case 
of pooled estimates). It, therefore, appears that the whole distribution of forecasting results 
seems to shift to the left. Overall, under the MSE criterion, averaging appears almost 
unambiguously superior as it not only improves forecasting performance in good cases but 
also appears to minimize the risk of poor predictions (all the maximum entries are now close 
to 1). 
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Table 12: Forecasting Volatility: Pooled Estimates 
 
relative MSE 

 
 relative MAE 

 
horizon 

 
GARCH 

 
FIGARCH 

 
ARFIMA 

 
MF 

 
GARCH 

 
FIGARCH 

 
ARFIMA 

 
MF 

1 0.926* 0.920* 0.916* 0.919* 1.037* 1.083* 1.053* 1.036 
5 0.966* 0.951* 0.949* 0.952* 1.039* 1.110* 1.068* 1.047 

10 0.977* 0.959* 0.958* 0.962* 1.024* 1.118 1.070* 1.048 
20 0.986* 0.963* 0.965* 0.969* 1.006* 1.123* 1.068* 1.045 
30 0.994* 0.968* 0.969* 0.974* 1.002* 1.126* 1.066* 1.043 
40 0.997* 0.969* 0.971* 0.976* 1.001* 1.126* 1.063* 1.041 
50 0.999* 0.971* 0.973* 0.978* 1.000* 1.127* 1.062* 1.039 
60 0.999* 0.972* 0.975* 0.979* 1.000* 1.128* 1.060* 1.038 
70 1.000* 0.973* 0.976* 0.980* 1.000* 1.129* 1.059* 1.037 
80 1.000* 0.973* 0.977* 0.981* 1.000* 1.129* 1.057* 1.035 
90 1.000* 0.974* 0.977* 0.982* 1.000* 1.129* 1.056* 1.034 
100 1.000* 0.974* 0.978* 0.983* 1.000* 1.129* 1.055* 1.033 

 
Note: the ‘winners’ under each criterion are marked by bold numbers. The asterisks indicate an improvement 

in average MSE and MAE against the forecasts with individual parameter estimates in sec. 2. Note that pooled 
estimates lead to improvements for all models under the MSE criterion and for all but MF (and FIGARCH at 10 
day horizon) under the MAE criterion. 

 
 
Results are somewhat different under the MAE criterion: here we find a slight deterioration 

for MF, but again improvements for GARCH, FIGARCH and ARFIMA. The winner is the 
GARCH model while we had a clear dominance of the MF model for individually optimised 
estimates. However, with the transition form the formerly winning MF to GARCH and 
ARFIMA as the best performing alternatives in the pooled estimation exercise no real gain is 
achieved under the MAE criterion since  the average GARCH prediction essentially coincides 
with the naïve forecast for horizons of 20 days and more. Therefore, the major gain would 
consist in a reduction of the relative MSE of the worst performing cases. 
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Fig. 4a: Distribution of MSEs of volatility predictions on the base of pooled parameter estimates. For the 

construction of the box plot, cf. the legend of Fig. 2. Apparently, the danger of poor predictions is dramatically 
reduced. 

 
 
 

 
 
Fig. 4b: Distribution of MAEs of volatility predictions on the base of pooled parameter estimates. For the 

construction of the box plot, cf. the legend of Fig. 2.  
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Now turn to volume: again we find mostly improvements under the MSE criterion when 
replacing the individual parameter estimates by pooled estimates (Table 13). Improvements 
are more spectacular for ARFIMA and particularly so for ARMA, which had a relatively poor 
performance with individual estimates, while only slight positive and negative changes can be 
identified for the MF model. As can be seen from Fig. 5, the overall performance of MF and 
ARFIMA is now virtually the same for the MSE criterion, but it shows a certain advantage for 
MF under the MAE criterion. Similarly as with for volatility the most striking finding is the 
highly reduced danger of poor performance, particularly so for ARMA and ARFIMA models.  

 
 

Table 13: Forecasting Volume: Pooled Estimates 
relative MSE relative MAE 

horizon ARMA ARFIMA MF ARMA ARFIMA MF 
1 0.647* 0.541* 0.552* 0.792* 0.704* 0.706* 
5 0.978* 0.803* 0.811* 0.991* 0.891 0.873 

10 0.987* 0.859* 0.865* 0.990* 0.936 0.910* 
20 0.996* 0.892* 0.898* 0.994* 0.967 0.932* 
30 0.998* 0.910* 0.917* 0.996* 0.984 0.945* 
40 0.999* 0.917* 0.925* 0.997* 0.991 0.948* 
50 0.999* 0.923* 0.933* 0.997* 0.997 0.952* 
60 0.999* 0.924* 0.936* 0.998* 0.998 0.951* 
70 0.999* 0.928* 0.942* 0.998* 1.001 0.953* 
80 0.999* 0.930* 0.945 0.998* 1.002 0.954* 
90 0.999* 0.931* 0.947* 0.998* 1.003 0.955* 

100 0.999* 0.931* 0.950* 0.998* 1.002 0.955* 
 
Note: the ‘winners’ under each criterion are marked by bold numbers. The asterisks indicate an improvement 

in average MSE and MAE against the forecasts with individual parameter estimates in sec. 2. Note that pooled 
estimates lead to improvements for practically all models and horizons under the MSE criterion and for all but 
ARFIMA under the MAE criterion. 
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Fig. 5: Distribution of MSEs of MAEs of volume predictions on the base of pooled parameter estimates. For the 
construction of the box plot, cf. the legend of Fig. 2. Apparently, the danger of poor predictions is dramatically 
reduced. 
 
 
Overall, it appears that using pooled estimates is more useful in improving predictive power 

for volatility models than for volume prediction, but for both volume and volatility it greatly 
reduces the danger of arriving at very poorly performing models. It is also instructive to 
compare the rank correlations between methods for pooled estimates (Tables 14 and 15) to 
those computed for our original estimates (Tables 6 and 11). In contrast to sec. 3 and 4, we 
now find a much higher correlation among the long memory models over all time horizons 
which even at a forecasting horizon of one-hundred days remains above 90 percent. This 
indicates that pooled estimates of different models exploit the same features of the data. 
Combination of forecasts would, then, surely not improve upon the performance of the best 
model. In contrast, rank correlation between long memory (FIGARCH, ARFIMA and MF) 
and short memory models (GARCH and ARMA) are decreasing much faster with increasing 
time horizon. While they remain somewhat significant for volatility models, they clearly 
become insignificant for the volume models. 

 
Taking into account the better performance of the long-memory models, this result 

underscores that the data exhibit features, which are solely detected by models with long-term 
dependence. Since pooled GARCH and ARMA forecasts are mostly undistinguishable from 
naïve forecasts at long horizons, this finding speaks in favour of the “true” presence of long 
correlations in both the volume and volatility data. 
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Table 14: Rank Correlations Across Assets: Volatility Forecasts, Random Sample 
 MSE 
lead GARCH- 

FIGARCH 
GARCH -

ARFIMA GARCH-MF FIGARCH- 
ARFIMA 

FIGARCH 
-MF 

ARFIMA- 
MF 

1 0.983 0.985 0.981 0.981 0.984 0.999 
5 0.975 0.955 0.932 0.993 0.983 0.997 

10 0.940 0.921 0.903 0.993 0.985 0.998 
20 0.920 0.908 0.898 0.988 0.982 0.998 
30 0.925 0.929 0.926 0.980 0.976 0.999 
40 0.908 0.917 0.911 0.973 0.968 0.998 
50 0.855 0.869 0.857 0.966 0.959 0.998 
60 0.751 0.764 0.762 0.960 0.956 0.999 
70 0.461 0.502 0.501 0.951 0.946 0.999 
80 0.278 0.317 0.323 0.943 0.939 0.999 
90 0.143 0.190 0.201 0.939 0.933 0.998 

100 0.060 0.109 0.118 0.930 0.926 0.999 
 MAE 
lead GARCH- 

FIGARCH 
GARCH -

ARFIMA GARCH-MF FIGARCH- 
ARFIMA 

FIGARCH 
-MF 

ARFIMA- 
MF 

1 0.991 0.983 0.984 0.995 0.993 0.997 
5 0.977 0.961 0.962 0.994 0.990 0.994 

10 0.955 0.925 0.933 0.987 0.988 0.991 
20 0.889 0.823 0.865 0.975 0.983 0.985 
30 0.758 0.646 0.732 0.953 0.975 0.976 
40 0.737 0.640 0.722 0.945 0.973 0.980 
50 0.696 0.560 0.647 0.925 0.962 0.976 
60 0.711 0.545 0.643 0.913 0.959 0.976 
70 0.655 0.504 0.589 0.912 0.959 0.977 
80 0.594 0.513 0.574 0.899 0.950 0.978 
90 0.490 0.494 0.519 0.889 0.939 0.983 

100 0.357 0.395 0.399 0.869 0.930 0.979 
 
Note: At a significance level of 95 percent, the null hypothesis of no correlation in the performance of 

different methods would have to be rejected for absolute entries beyond 0.197 (= 1.96 √(n-1)) with n = 100 in 
our case). 

 
 
Table 15: Rank Correlations Across Assets: Forecasts of Volume, Random Sample 
 MSE MAE 
lead ARMA-

ARFIMA 
ARMA- 
MF 

ARFIMA- 
MF 

ARMA-
ARFIMA 

ARMA- 
MF 

ARFIMA- 
MF 

1 0.926 0.875 0.989 0.901 0.898 0.997 
5 0.640 0.647 0.996 0.481 0.556 0.985 

10 0.761 0.776 0.994 0.600 0.669 0.986 
20 0.493 0.517 0.993 0.609 0.644 0.974 
30 0.347 0.355 0.994 0.517 0.509 0.966 
40 0.160 0.163 0.992 0.389 0.330 0.958 
50 0.084 0.089 0.991 0.301 0.185 0.950 
60 0.021 0.024 0.991 0.270 0.126 0.938 
70 -0.039 -0.040 0.988 0.243 0.089 0.930 
80 -0.070 -0.076 0.986 0.238 0.081 0.922 
90 -0.085 -0.084 0.985 0.229 0.061 0.916 

100 -0.090 -0.096 0.980 0.218 0.036 0.906 
 
Note: At a significance level of 95 percent, the null hypothesis of no correlation in the performance of 

different methods would have to be rejected for absolute entries beyond 0.197 ( = 1.96 √(n-1)) with n = 100 in 
our case). 
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5. Conclusion 
 
This paper has examined the potential of time series models with long memory (FIGARCH, 

ARFIMA, multi-fractal) to improve upon the forecasts derived from short-memory models 
(GARCH for volatility, ARMA for volume). In order to get a broad picture, we have used a 
large data-base applying the competing models to long forecasting horizons for a long out-of-
sample period. A number of interesting results emerged form this exercise: first, as concerns 
volatility, our selection of long-memory models performs better in most cases than the naive 
sample variance and GARCH forecasts. 

 
However, this potential improvement against short-memory models is overshadowed by 

occasional dramatic failures particularly by the FIGARCH model and to lesser extent by 
ARFIMA. Interestingly, the newly proposed multi-fractal approach seems not to suffer at all 
from this problem. Remarkably, results are better throughout for the MSE than the MAE 
criterion (some trial runs with other data suggest that this is not a particularity of the Japanese 
market). Time series methods, thus, seem to be better suited for forecasting large realizations 
of volatility rather than small or medium ones. 

 
Second, as concerns volume, we find a higher degree of forecastability than with volatility 

(both under the MSE and MAE criterion) and again a dominance of long-memory models 
(ARFIMA and MF). As with volatility, MF also provides much safer forecasts which never 
rise above the benchmark of unity under the relative MSE criterion. 

 
Third, our observation of different degrees of the variability of performance of different 

methods motivated an analysis of the forecasting quality of pooled estimates (i.e. mean values 
of estimated parameters over the one hundred selected stocks). Astonishingly, nothing was 
lost by discarding stock-specific estimates, but results improved under practically all 
perspectives. In particular, the formerly more ‘dangerous’ methods with some extremely 
poorly performing cases now also became as safe as the multi-fractal model. Using pooled 
estimates, we also see an even more clear-cut difference between all long-memory models 
and their short-memory counterparts: as can be seen in Figs. 4 and 5, pooled GARCH and 
ARMA quickly converge to the behaviour of naïve forecasts for increasing forecasting 
horizon yielding uniform relative MSE and relative MAE equal to unity from horizons of 
about forty days. In contrast, the long-memory models all have a uniformly better 
performance at least with respect to the MSE criterion. In our view, this finding speaks in 
favour of ‘true’ long-term dependence being present in the data. It is also remarkable, that 
rank correlations over markets in the pooled estimation cases are close to unity for the long-
memory models showing that they all extract similar information. Overall, these results 
suggest the following interpretation: volatility and volume are characterized by processes 
which have strong persistency. This persistent component can be captured to some degree by 
different time series models which have built-in long correlations. The improvement form 
pooled estimates indicates that persistency is similar across stocks so that one gets a better 
assessment of the dependence structure by increasing the data size via merging all stocks 
rather than by the more common fine-tuning of individual estimates. Work in progress, in 
fact, confirms this view: in preliminary experiments we applied our average estimates from 
the Japanese market to data from other countries and again found a better performance than 
with individually estimates parameters. A more systematic exploration of these findings is left 
for future research. 
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Appendix: Stocks used in the analysis 
 
The ‘random sample’ consisted of the following stocks which were randomly chosen from our data 

base (in parentheses: stock identification number):  
 
 Nippon Suisan Kaisha (1332), Hoko Fishing (1351), Fudo Construction (1813),Tekken Corp. (1815), 

Nakano Corp. (1827), Toda Corp. (1860), Penta-Ocean Construction (1893), Obayashi Road Corp. 
(1896),Daiwa House Industry (1925), Nippon Koei (1954), Morinaga (2201),  Nippon  Meat Packers 
(2282), Itoham Foods (2284), Nichirei Corp. (2871), Kawashima Textile Manufacturers (3009), 
Nisshinbo Industries (3105), Ashimori Industries (3526), Showa Denko K.K. (4004), Nippon 
Carbide Industries (4064), Sakai Chemical Industries  (4078, until 09/97), Mitsui Chemicals (4183), 
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JSR Corp. (4185), Nippon Kayaku (4272), Sankyo (4501), Yamanouchi Pharmaceutical (4503), 
Daiichi Pharmaceutical (4505), Kansai Paint (4613), Tohpe Corp. (4614), Chugoku Marine Paints 
(4617), Toyo Ink Mfg. (4634), Takasago International Corp. (4914), Toyo Tire & Rubber (5105), 
Osaka Cement  (5235, until 12/93), Nippon Hume Corporation (5262), Nippon Yakin Kogyo (5480), 
Nippon Denko (5563), Suzuki Metal Industries (5657), Nihon Seiko (5729), Sakurada (5917), 
Amada Machines (6107), Koike Sanso Kogyo (6137), Kioritz Corp. (6313), Meiji Machines (6334), 
Sintokogio (6339), Sumitomo Precision Products (6355), Nippon Gear (6356), Sakai Heavy 
Industries (6358), Toyo Kanetsu K.K. (6369), Tsubakimoto Chain Co. (6371), Fuso Lexel (6386), 
Sanjo Machine Works (6437), Riken Corp. (6462), Koyo Seiko (6473), Yashakaw Electric Corp. 
(6506), Makita Corp .(6586), Nishishiba Electric (6591), Kawaden (6648, until 09/2000), The 
Nippon Signal (6741), Nec Tokin Corp. (6759), Kawasaki Heavy Industries (7012), Shin Maywa 
Industries (7224), Tokyo Radiator Mfg. (7235), Daihatsu Motor (7262), Oval Corp. (7727), Riken 
Keiki (7734), Chinon Industries (7738), Pentax Corp. (7750), Canon (7751), Dantani Corp. (7910), 
Yamaha Corp. (7951), Takara Standard (7981), Daiwa Seiko (7990), Kanematsu Corp. (8020), 
Tohto Suisan (8038), Tsukiji Uoichiba (8039), Seiko Corp. (8050), Shoko (8090), Inabata (8098), 
GSI Creos Corp. (8101), Sinanen (8132), Matsuzakaya (8235), Maruzen (8236), Bank of Yokohama 
(8332), Gunma Bank (8334), Musashino Bank (8336), Hyakugo Bank (8368), Kiyo Bank (8370), 
Iyo Bank (8385), Oita Bank (8392), Sumitomo Insurance  (8753, until 09/2001), Nipponkoa 
Insurance (8754), Sompo Japan Insurance Inc. (8755), Nissan Fire & Marine Ins. (8756), Nissay 
Dowa General Insurance (8759), Nichido Fire & Marine Ins. (8760), Taiheiyo Kaiun (9123), KDD  
(9431, until 09/2000), Chugoku Electric Power (9504), Toho Gas (9533), Shochiku (9601). 

    
 
 
 
 
The 100 stocks with the highest average trading volume are (stock identification numbers in 

parentheses):    
  
 Teikoku Oil (1601), Taisei Corp. (1801), Obayashi Corp. (1802), AC Real Estate Corp. (1806), 

Kajima Corp. (1812), Kumagai Gumi (1861), Aoki Corp. (1886), Daiwa House Industry (1925), 
Kirin Brewery (2503), Toyobo (3101), Unitika (3103), Teijin (3401), Toray Industries (3402), 
Mitsubishi Rayon (3404), Asahi Kasei Corp. (3407), Sangoku Pulp (3702, until 07/92), Oji Paper 
(3861), Mitsui Toatsu Chemical (4001, until 12/96), Showa Denko K.K. (4004), Sumitomo 
Chemical (4005), Mitsubishi Chemical Corp. (4010), Ishihara Sangyo Kaisha (4028), Tosoh Corp. 
(4042), Denki Kagaku Kogyo Kabushiki Kai (4061), Ube Industries (4208), Takeda Chemical 
Industries (4502), Dainippon Ink and Chemicals (4631), Fuji Photo Film (4901), Nippon Oil Corp. 
(5001), Mitsubishi Oil (5004, until 03/99), Cosmo Oil (5007), Nippon Sheet Glass (5202), Taiheiyo 
Cement Corp. (5233), Nippon Steel Corp. (5401), Kawasaki Steel (5403),  NKK Corp. (5404), 
Sumitomo Metal Industries (5405), Kobe Steel (5406), Nisshin Steel (5407), The Japan Steel Works 
(5631), Nippon Light Metal Company (5701), Mitsui Mining and Smelting (5706), Mitsubishi 
Materials Corp. (5711), Nippon Mining (5712, until 07/91), Sumitomo Metal Mining (5713), Dowa 
Mining (5714), The Furukawa Electric (5801), Sumitomo Electric Industries (5802), Fujikura (5803), 
Komatsu (6301), Sumitomo Heavy Industries (6302), Kubota Corp. (6326), Hitachi (6501), Toshiba 
Corp. (6502), Mitsubishi Electric Corp. (6503), Fuji Electric (6504), Nec Corp. (6701), Fujitsu 
(6702), Oki Electric Industry (6703), Matsushita Electric Industrial (6752), Sharp Corp. (6753), 
Sony Corp. (6758), Sanyo Electric (6764), Mitsui Engineering & Shipbuilding (7003), Hitachi 
Zosen Corp. (7004), Mitsubishi Heavy Industries (7011), Kawasaki Heavy Industries (7012), 
Ishikawajima-Harima Heavy Indust. (7013), Nissan Motor (7201), Isuzu Motors (7202), Toyota 
Motor Corp. (7203), Mazda Motor Corp. (7261), Honda Motor (7267), Fuji Heavy Industries (7270), 
Canon (7751), Ricoh Company (7752), Itochu Corp. (8001), Marubeni Corp. (8002), Mitsui (8031), 
Mitsubishi Corp. (8058), Nissho Iwai Corp. (8063), Sakura Bank (8314, until 03/2001), Bank of 
Tokyo-Mitsubishi (8315, until 03/2001), Sumitomo Bank (8318), Asahi Bank (8322), Daiwa 
Securities Group Inc. (8601), Yamaichi (8602, until 11/97), Nikko Cordial Corp. (8603), Nomura 
Holdings (8604), Tokio Marine & Fire Ins. (8751), Mitsui Fudosan (8801), Mitsubishi Estate (8802), 
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Tobu  Railway (9001), Tokyu Corp. (9005), Keisei Electric Railway (9009), Mitsui O.S.K. Lines 
(9104), Kawasaki Kisen Kaisha (9107), The Tokyo Electric Power (9501), Tokyo Gas (9531), 
Osaka Gas (9532) 

  


