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Asymptotic normality and confidence intervals for
inverse regression models with convolution-type

operators

Nicolai Bissantz1 and Melanie Birke1

1Fakultät für Mathematik
Ruhr-Universität Bochum, Germany

July 21, 2008

Abstract

We consider inverse regression models with convolution-type operators which mediate
convolution on Rd (d ≥ 1) and prove a pointwise central limit theorem for spectral regular-
isation estimators which can be applied to construct pointwise confidence regions. Here,
we cope with the unknown bias of such estimators by undersmoothing. Moreover, we
prove consistency of the residual bootstrap in this setting and demonstrate the feasibility
of the bootstrap confidence bands at moderate sample sizes in a simulation study.

Keywords: Bootstrap, Inverse problems, Model selection, Testing.

1 Introduction

Suppose that we have observations (zk,Yk), k = (k1, . . . , kd) = {−n, . . . , n}d, from the model

Yk = g(zk) + εk, (1)

where g = Ψ∗θ is a one-to-one convolution operator with a function Ψ, the zk =
(
k1
nan

, . . . , kd
nan

)
are fixed design points, the εk’s are i.i.d. errors with Eεk = 0, Eε2k = σ2 (k = (k1, . . . , kd)),
and an is a sequence which converges asymptotically to zero. The observable signal g can be
represented as the image of the signal θ under the operator

(Kθ)(z) =
∫

Rd

Ψ(z − t)θ(t)dt.

Recovery of the signal θ from the data (zk, Yk) in model (1) is a statistical inverse problem
(e.g. Mair and Ruymgaart, 1996, and Bissantz et al., 2007b) which is closely related to
density deconvolution (e.g. Stefanski and Carroll, 1990; Fan, 1991; Delaigle and Gijbels,
2002). It is usually assumed in nonparametric deconvolution regression models (e.g. Cavalier
and Tsybakov, 2002) that the function θ is periodic (say on [0, 1]), and that A is thus a
convolution operator on [0, 1] with periodic Ψ which is, however, often unrealistic in practice.
Examples are the deconvolution of astronomical and biological images from telescopic and
microscopic imaging devices which involves deconvolution, but where the signal is usually not
periodic. In this paper we will discuss the estimation of the signal θ from model (1), which
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appears to be more appropriate in this context. An important difficulty in this situation
is that the reconstruction of θ from g = Kθ at any location x on the real line requires (at
least asymptotically) information on g on the full real line. We therefore use a design which
includes an additional sequence an → 0 to ensure that the design points zk will asymptotically
exhaust R

d.
In this paper we discuss pointwise convergence properties of Fourier-based estimators in model
(1). The estimator and some useful assumptions are introduced in Section 2. Asymptotic
normality and confidence intervals are discussed in Section 3 and a bootstrap version of the
confidence intervals in Section 4. Whereas it is known that asymptotic confidence intervals do
not perform well for moderate sample sizes (e.g. Hall, 1993, in the direct density estimation
context, and Bissantz et al., 2007a, for uniform confidence bands in density deconvolution), we
demonstrate a satisfactory performance of the bootstrap confidence intervals in a simulation
study in Section 5. Finally, in order to keep the paper more readable, all proofs are deferred
to an appendix.

2 Prerequisites. Estimator, notation and assumptions

Notation. In the following, we consider the jth derivative of a function or estimator θ̂n(x),
which depends on a d-variate covariable x. By the jth derivative j = (j1, . . . , jd) we denote
the partial derivative ∂j/∂xj11 · · · ∂xjdd , where j = j1 + · · ·+ jd, and we suppose j1, . . . , jd to be
such that j ≤ p, where θ has partial derivatives of order p which are all continuous. Moreover,
ωj, where ω ∈ R

d, means ωj11 · · ·ωjdd .
The estimator. We consider the Fourier estimator

θ̂(j)
n (x) = θ̂

(j)
n,h(x) =

1
(2π)d

∫
Rd

(−iω)je−i〈ω,x〉Φk(hω)
Φ̂g(ω)
ΦΨ(ω)

dω, 0 ≤ j ≤ p, (2)

Here h > 0 is a smoothing parameter called the bandwidth, and Φ̂g is the empirical Fourier
transform of g defined by

Φ̂g(ω) =
1

Nadn

∑
r∈{−n,...,n}d

Yre
i〈ω,zr〉,

where N = nd.
Hence, the estimator θ̂(j)

n can be written in kernel form as follows:

θ̂(j)
n (x) =

1
Nhj+dadn

∑
r∈{−n,...,n}d

YrK
(j)
n

(
x− zr

h

)
,

where the kernel

K(j)
n (x) =

1
(2π)d

∫
Rd

(−iω)je−i〈ω,x〉
Φk(ω)

ΦΨ(ω/h)
dω, 0 ≤ j ≤ p,

depends on n through h and Φk, which provides regularisation in the Fourier space, is the
Fourier transform of some kernel function k.
Hence, the estimator f̂n(x) may be written as

θ̂(j)
n (x) =

∑
r∈{−n,...,n}d

Yr
1

Nhj+dadn
K(j)
n

(
x− zr

h

)
=

∑
r∈{−n,...,n}d

Yrwj,r,n(x),
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with weights

wj,r,n(x) =
1

Nhj+dadn
K(j)
n

(
x− zr

h

)
. (3)

Further assumptions. We will make the following common assumptions on Φk and Ψ. Our
first assumption is that Ψ is ordinary smooth, i.e. we consider mildly ill-posed problems in
model (1).

Assumption 1. The Fourier transform Φψ satisfies

Φψ(ω)||ω||β → Cε, ω → ∞
for some β > 0 and Cε ∈ C \ {0}.
We also make some regularity assumptions on the Fourier transform Φk, which in effect causes
the regularization of the estimator.

Assumption 2. The Fourier transform Φk of k is symmetric and supported on [−1, 1]d with
Φk(ω) = 1 for ω ∈ [−b, b]d, b > 0, and |Φk(ω)| ≤ 1 for all ω ∈ [−1, 1]d.

Finally, we make the following assumptions on the signal θ and its image g = Kθ, where
the first assumption is about the smoothness of θ. The second assumption is about the tail
behaviour of g and will be required in the computation of the bias to determine the impact
of the parts of the signal which are not observed at given sample size 2n + 1 due to the fact
that the support of the design is then limited to

[
− 1
an
, 1
an

]
.

Assumption 3. A. The Fourier transform Φθ of θ satisfies∫
R

|Φθ(ω)| ||ω||s−1 dω <∞ for some s > p+ 1.

B. The function g = Kθ satisfies ∫
R

|g(z)| ||z||r dz <∞

for some r > 0 such that arn = o(hβ+s+d−1).

3 Asymptotic normality and asymptotic confidence intervals

3.1 Asymptotic normality

Our purpose in this section is to derive the pointwise asymptotic distribution of the estimator
defined above. The result is stated in Theorem 1 and a consequence of the Lindeberg central
limit theorem which is also used in Bissantz and Holzmann (2008) to derive the asymptotic
distribution of deconvolution estimators of periodic functions on [0, 1] in the inverse regression
context. If we know the pointwise asymptotic distribution of the estimator we can construct
pointwise confidence regions for the unknown function θ which is described in Section 3.2. The
following result follows from a general central limit theorem for weighted sums of independent
random variables (Eubank, 1999) under the condition

maxk∈{−n,...,n}d |wj,k,n(x)|( ∑
r∈{−n,...,n}d

w2
j,r,n(x)

)1/2
→ 0. (4)
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Theorem 1. Suppose in model (1) that assumption 1 holds and h→ 0 and an → 0 as n→ ∞
such that Nhdadn → ∞. Then⎛⎝σ2

∑
r∈{−n,...,n}d

w2
j,r,n(x)

⎞⎠−1/2 (
θ̂(j)
n (x) − Eθ̂(j)

n (x)
) D→ N (0, 1).

3.2 Asymptotic confidence intervals

With the asymptotic distribution derived in Section 3.1 we are now able to construct point-
wise asymptotic confidence intervals for the function θ. In the following subsections we will
propose two different methods for this. The first one is the typical way to construct asymp-
totic confidence intervals where we use the quantiles of the asymptotic distribution of the
estimator. Like in all nonparametric regression problems we will see that this method has
some drawbacks. As we see in Theorem 1 the asymptotic distribution still depends on the
unknown function θ and the standard deviation σ through bias and variance. Furthermore, in
general we cannot obtain a closed form of the bias such that we cannot use a plug in estimator
for θ in this expression but have to apply undersmoothing. Therefore, we state the results on
asymptotic confidence intervals here but also propose a bootstrap approach in the following
section.
For the sake of simplicity let in the sequel

bθ,n(x) := E[θ̂n(x)] − θ(x)

s2 :=
1

(2π)d

∫
Rd

ω2βω2j|Φk(ω)|2dω

denote the bias and part of the asymptotic variance of the estimator θ̂n(x). Based on Theorem
1 we can state the following result.

Corollary 2. Let the assumptions of Theorem 1 be fulfilled. Then, with

c̃n(x) :=
(
θ̂n(x) − bθ,n(x) −

σ2s2u1−α
2√

Nh2β+2j+dadn
, θ̂n(x) − bθ,n(x) +

σ2s2u1−α
2√

Nh2β+2j+dadn

)
,

P (θ(x) ∈ c̃n(x)) → 1 − α

for n→ ∞,

where u1−α
2

is the (1− α
2 )-quantile of the standard normal distribution. The interval c̃n(x) in

Corollary 2 cannot be used as confidence interval for θ since it still depends on the unknown
parameters bθ,n(x) and σ2. To construct a confidence interval from c̃n(x) we propose to use

a variance estimator σ̂2 of σ2 with convergence rate o
(√

Nh2β+2j+dadn

)
, i.e. faster than the

estimator θ̂n(x). A possible choice are e.g. difference estimators (Munk, Bissantz, Wagner
and Freitag, 2005). A common way to achieve (asymptotic)) negligibility of the bias is to
undersmooth the estimator (e.g. Hall, 1993, Bissantz et al., 2007a). Below, in Corollary 4,
we will state a result for confidence intervals with undersmoothing bandwidth. To this end
we first determine the order of the bias in Lemma 3 under assumptions 1-3.
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Lemma 3. Under the assumptions 1-3, if Nadnhβ+s+d−1 → ∞ we have

bθ,n(x) = o(hs−j−1).

We are now in a position to define (asymptotically valid) confidence intervals based on un-
dersmoothing of the estimator. Here, undersmoothing follows immediately from the o()-rate
of the bias, if hs−j−1 � (Nh2β+2j+d)−1/2 due to assumptions 2 and 3.A.

Corollary 4. Let the assumptions of Theorem 1, assumptions 1-3, Nadnhβ+s+d−1 → ∞ and
Nh2β+2s+d−2adn = O(1) be fulfilled. Then with

cn(x) :=
(
θ̂n(x) −

σ̂2s2u1−α
2√

Nh2β+2j+dadn
, θ̂n(x) +

σ̂2s2u1−α
2√

Nh2β+2j+dadn

)
,

P (θ(x) ∈ cn(x)) → 1 − α

for n→ ∞.

Corollary 4 follows from Theorem 1 because σ̂2 converges faster than the
√
Nh2β+2j+dadn rate

of the estimator θ̂(j)(x). Now, cn(x) is a pointwise conficence interval for θ(x) but usually in
nonparametric regression, asymptotic confidence intervals are conservative. Although we can
cope with the bias by undersmoothing this may have negative effects on the estimator θ̂n(x).
Especially the spectral regularisation method used here is very sensitive to undersmoothing
(cf. Bissantz et al., 2007a). Therefore, in the next subsection, a bootstrap method is proposed.

4 Bootstrap confidence intervals

Another method to deal with the unknown bias is to use bootstrap to construct confidence
intervals. Bootstrap is often used in nonparametric regression to cope with the unknown
bias or variance of an asymptotic distribution. Available approaches for fixed design include
wild bootstrap (see e.g. Wu, 1986 or Mammen, 1993) and residual bootstrap (see e.g. Efron,
1979 or Härdle and Bowman, 1988). We restrict ourselves to the latter one and prove its
consistency in the setting under consideration in this paper. In the first step of the residual
bootstrap the distribution of the residuals is estimated from the residuals of (some) estimator
ĝ of the regression function g = Kθ. Here, we have reduced the inverse regression problem
to a direct one by writing model (1) as Yk = g(zk) + εk. A straightforward choice for ĝ is
to choose ĝdc,h̃ = Kθh̃, where θ̂h̃ is a Fourier estimator determined from the original sample.
However, in practice different choices are possible, e.g. to estimate g with a local polynomial
estimator ĝlp,h̃ of order p ≥ 0.
To generate the bootstrap data let ε∗k, k = 1, . . . , n be drawn with replacement from the
distribution of the centered residuals ε̂k − ¯̂ε, k ∈ {−n, . . . , n}d with ε̂k = Yk − ĝi,h̃(zk) and
i = dc, lp, respectively. The data is then generated by

Y ∗
k = ĝi,h̃(zk) + ε∗k, i = dc or lp

where h̃ is a second bandwidth, typically larger than h, and the bootstrap estimator of θ(j)

is defined as
θ̂(j) ∗
n (x) =

1
Nhj+dadn

∑
r∈{−n,...,n}d

Y ∗
r K

(j)
n

(x − zr

h

)
.
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In the following, to simplify notations, we restrict ourselves to the cases ĝh = ĝdc,h and d = 1.
To show feasibility of the residual bootstrap in our setting we now prove that the bootstrap
estimator θ̂(j) ∗

n has asymptotically the same distribution as the estimator θ̂(j)
n . To this end

we need the following assumptions on the estimator ĝ.

Assumption 4. A. The Fourier transform Φθ̂h̃
of θ̂h̃ exists and fulfills∫

R

|Φθ(ω) − Φθ̂h̃
(ω)||ω|s−1 dω = oP (1).

B. The estimator ĝh̃ satisfies∫
R

|ĝh̃(z)||z|r dz <∞ for some r > 0.

Assumption 4.A is concerned with the smoothness of the difference function θ−θ̂h̃, analogously
to assumption 3.A on the smoothness of the function of interest θ, and the second part 4.B
of the assumption with the smoothness of the estimated Fourier transform of g.
With this assumption our bootstrap is consistent:

Theorem 5. With assumptions 1-3 and 4 the bootstrap described above is consistent, that is

sup
t

∣∣∣P∗
((
σ2

n∑
r=−n

w2
j,r,n(x)

)−1/2(
θ̂(j) ∗
n (x) − E∗[θ̂(j) ∗

n (x)]
)
≤ t
)
− Φ(t)

∣∣∣ = oP (1)

for t → ∞, where P∗ and E∗ denote the probability and expectation conditionally on Y =
{Yr|r ∈ {−n, . . . , n}}.
Hence, we can bootstrap the (pointwise) distribution of the estimator (2) and define boot-
strap confidence intervals from the following procedure. We generate B bootstrap samples
(xk, Y

∗,l
k ), k ∈ {−n, . . . , n}d, l = 1, . . . , B and bootstrap estimates θ̂(j) ∗,l

n (x), l = 1, . . . , B and
use the 	Bα
-th order statistic ϑ∗n,α(x) = θ̂

(j) ∗,(�Bα�)
n (x) as an estimate for the α-quantile of

the distribution. This results in the bootstrap confidence interval

c∗n(x) =
(
2θ̂(x) − ϑ∗n,1−α/2(x) , 2θ̂(x) − ϑ∗n,α/2(x)

)
of level (1 − α).

5 Simulations

In this section we demonstrate the performance of the bootstrap confidence intervals with
the results of a small simulation study. First, in Section 5.1 we introduce the simulation
framework and discuss the problem of bandwidth choice. Then, in Section 5.2, we present the
results of our simulation study of the bootstrap confidence intervals for the Fourier estimator
on R

1.
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Figure 1: Simulated effective coverage probabilities and interval length for (residual) bootstrap
confidence intervals with 90% nominal coverage probability at a number of locations along
the x-axis, and in dependence of the bandwidth h. The true function is the Gaussian θ1(x),
and the simulation parameters are 2n + 1 = 201, σ = 0.1 and an = 0.25. Solid lines indicate
the effective coverage probability, and dashed lines the effective confidence interval length
(multiplied by a factor of 3).
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Figure 2: Simulated effective coverage probabilities and interval length for (residual) bootstrap
confidence intervals with 90% nominal coverage probability at a number of locations along
the x-axis, and in dependence of the bandwidth h. The true function is the bimodal function
θ2(x), and the simulation parameters are 2n + 1 = 201, σ = 0.1 and an = 0.25. Solid lines
indicate the effective coverage probability, and dashed lines the effective confidence interval
length (multiplied by a factor of 3).
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5.1 Simulation framework and bandwidth selection

Our simulations are based on the assumption that the observations follow model (1), i.e.

Yk = (Kθ)(zk) + εk, k = −n, . . . , n,

where A is the convolution operator on R which causes the convolution of the function of
interest θ with the convolution function ψ, and the noise is (centered) normally distributed
with variance σ2. The design points are zk = k

nan
. The convolution function ψ is given by

the Laplace density function

ψ(x) =
λ

2
e−λ|x|,

where λ = 3 and the functions of interest are

θ1(x) = e−
(x−1.1)2

2·0.64 and

θ2(x) = e−
(x−0.2)2

2·0.09 + 1.2 · e− (x−0.85)2

2·0.04 .

We have performed simulations for a number of combinations of the parameters sample size
2n + 1 and noise variance σ2. The design parameter an = 0.25 was selected such that
the interval

[
− 1
an
, 1
an

]
includes most of the x−axis where the functions θ1 and θ2 deviate

significantly from 0. In all cases we generated randomly 200 data sets according to model (1)
and then performed 400 replications of a residual bootstrap to determine confidence intervals
for θ(x). To this end we constructed the sampling distribution for the residuals from all
observations |zk| ≤ 1

an
−2.01h. Confidence intervals were determined at 39 equidistant points

along the x-axis.
Figures 1 and 2 show the effective (simulated) coverage probability and size of the confidence
intervals at some of the considered locations along the x-axis in dependence of the bandwidth
h. Similar as for uniform confidence bands (e.g. Bissantz et al. 2007a, and Birke et al., 2008)
the coverage probability decreases with increasing bandwidth h, due to the increasing bias of
the estimator which has to be corrected by the bootstrap. On the other hand, for decreasing
bandwidth, the variability of the estimates increases significantly, which results in a large area
of the confidence intervals. Note that the bias problem is less obvious at positions close to
the boundary of the coverage region of the design points [−1/an, 1/an], which is due to the
small curvature and the proximity of the function values to 0 of the true functions θ1 and θ2
there. However, in general the bandwidth choice is fundamental to a proper determination of
the confidence intervals. We use the L∞-motivated bandwidth selection algorithm introduced
in Bissantz et al. (2007a) and applied in Birke et al. (2008) for the selection of bandwidth.
However, whereas these authors aimed at an undersmoothing bandwidth there and, in con-
sequence, chose the bandwidth somewhat smaller than ”approximately L∞-optimal”, we also
bootstrap the bias here, and do not need to achieve undersmoothing. The L∞-motivated
bandwidth estimator consists in evaluating the estimator f̂n(x;h) at equidistantly spaced
bandwidth, and choosing among these the largest bandwidth, where the supremum of the dif-
ferences between the estimators for two adjacent bandwidth steps exceeds a certain threshold.
Since we do not necessarily need undersmoothing here, we choose a smaller tuning parameter
τ for the bandwidth selection than in the uniform confidence bands case. Values τ ≈ 1.5 in
combination with 12 bandwidth steps involved, covering an order of magnitude in bandwidth
value, turned out to be a good choice in simulations. Here we proceed by first selecting a
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Figure 3: Typical estimates θ̂n(x) (solid line) and associated 95% nominal coverage probability
residual bootstrap confidence intervals for the Gaussian function (left) and bimodal function
(right) at a number of positions along the x−axis. Dashed lines indicate the true functions
θ1 and θ2, respectively.

bandwidth for each combination of parameters θi, i = 1, 2, n, σ and an from analyzing a
small number of random datasets with the L∞-optimal bandwidth estimator. Then we keep
this bandwidth fixed for all subsequent simulations with the same set of parameters.

Figure 3 shows typical estimates of θ1 and θ2 for sample size 2n+1 = 201, σ = 0.1 and an = 0.1
together with some of the associated pointwise 95%-confidence intervals. To give the plots a
clearer lay-out we only show confidence intervals at every second x-position considered in the
simulations. Here, the confidence intervals were computed as

c∗n(x) =
(
2θ̂n(x) − ϑ∗n,0.975(x) , 2θ̂n(x) − ϑ∗n,0.025(x)

)
,

where ϑ∗n,0.025(x) and ϑ∗n,0.975(x) are the 0.025 and 0.975-quantile of the bootstrapped distri-
bution θ̂∗n(x) at the respective position.

5.2 Simulation results

We now discuss the results of the simulations. Table 1 provides mean and standard deviation
of the simulated coverage probabilities and confidence interval lengths at 16 locations covering
the interval [−1, 3] on the x−axis. This interval has been selected such that it represents well
the region where most of the signal of both functions of interest θ1 and θ2 is.
From the Tables, we make the following conclusions. The confidence intervals perform well
for both functions of interest with respect to the coverage probabilities, being only slightly
smaller than their nominal values. In particular the fact that this is already true for sample
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θ n σ an 80% nominal cov. 90% nominal cov. 95% nominal cov.
Cov.prob. Length Cov.prob. Length Cov.prob. Length

[%] (×100) [%] (×100) [%] (×100)
100 0.1 0.25 78 ± 3 7.3 ± 0.1 88 ± 3 9.4 ± 0.1 93 ± 2 11.2 ± 0.1
100 0.5 0.25 74 ± 3 26.5 ± 0.3 86 ± 2 34.0 ± 0.4 92 ± 2 40.5 ± 0.4

θ1 1000 0.1 0.25 77 ± 3 2.8 ± 0.03 88 ± 2 3.7 ± 0.04 93 ± 2 4.4 ± 0.04
1000 0.5 0.25 76 ± 2 10.3 ± 0.1 87 ± 2 13.2 ± 0.1 93 ± 1 15.8 ± 0.1
100 0.1 0.25 75 ± 3 28.9 ± 0.1 86 ± 2 37.0 ± 0.1 92 ± 2 44.1 ± 0.1

θ2 1000 0.1 0.25 73 ± 7 11.5 ± 0.1 85 ± 7 14.8 ± 0.2 91 ± 5 17.6 ± 0.2

Table 1: Mean and standard deviation of the simulated coverage probabilities and confidence
interval length for the Gaussian function θ1 and the bimodal function θ2 determined from
the properties of confidence intervals computed at 16 equidistant positions approximately
covering the interval [−1, 3].

Setting 80% nominal cov. 90% nominal cov. 95% nominal cov.
Cov.prob. Length Cov. prob. Length Cov.prob. Length

[%] (×100) [%] (×100) [%] (×100)
Standard dev. of ψ
5% underestimated

71 ± 4 7.9 ± 0.1 83 ± 3 10.2 ± 0.1 89 ± 3 12.2 ± 0.2

Standard dev. of ψ
5% overestimated

75 ± 5 6.9 ± 0.1 85 ± 4 8.9 ± 0.1 91 ± 3 10.6 ± 0.1

Laplace, miss-spec.
as Gaussian

73 ± 3 8.8 ± 0.1 83 ± 4 11.3 ± 0.2 89 ± 3 13.5 ± 0.2

Gaussian, miss-spec.
as Laplace

72 ± 6 7.4 ± 0.1 83 ± 5 9.5 ± 0.1 89 ± 4 11.3 ± 0.1

Table 2: Mean and standard deviation of the simulated coverage probabilities and confidence
interval length for the Gaussian function determined from the properties of confidence inter-
vals computed at 16 equidistant positions approximately covering the interval [−1, 3] for some
scenarios of miss-specification of the convolution function ψ.
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size 2n + 1 = 201 for the bimodal function indicates a good performance of the bootstrap
procedure w.r.t. bias correction. However, for the bimodal function this comes at the price
of significantly larger confidence intervals than for the more simple unimodal function (note
the different noise levels used for the functions of interest).
Finally, in Table 2 we show the results of some simulations where the convolution function ψ
is miss-specified. This is often the case in practical applications if the distribution of errors of
the measurements of the covariate x is imperfectly known. The first two rows give the results
from simulations where the parameter λ in the convolution function ψ is over- respectively
underestimated by 5%. The simulations discussed in the third and fourth row show results of
simulations where the shape of the convolution function ψ is miss-specified. Here, in the first
case we assume that the convolution function ψ is in fact given by the density of a Laplace
distribution but specified as the density of a normal distribution with same variance 2/9 in
the estimator. In the second case (shown in the fourth row) the Laplace and normal density
are exchanged. The results of the simulations in Table 2 indicate that our confidence intervals
are not very sensitive on such kinds of modest miss-specification of the convolution function
ψ, since a comparison with the corresponding results in the first line of Table 1 reveals only
a reduction of the effective (simulated) coverage probabilities of about 2 − 6% points, and
increase in confidence interval length of ≈ 10%.
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6 Appendix: Proofs

Proof of Theorem 1.
To prove asymptotic normality of the estimator (2) we show that condition (4) holds for the
weights defined in (3) (cf. Eubank, 1999). First, we have

max
k∈{−n,...,n}d

∣∣∣∣∣ 1
Nhj+dadn

1
(2π)d

∫
Rd

(−iω)j
e−i〈ω,(x−zk)〉/hΦk(ω)

ΦΨ(ω/h)
dω

∣∣∣∣∣ = O

(
1

Nadnh
β+j+d

)
,

using assumption 1.
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For the denominator, we have the following result from Parseval’s equality and Assumption 1

∑
r∈{−n,...,n}d

w2
j,r,n(x) =

∑
r∈{−n,...,n}d

1
N2h2j+2da2d

n

⎛⎝∫
Rd

(−iω)j
1

(2π)d
e−i〈ω,(x−zr)〉/hΦk(ω)

ΦΨ(ω/h)
dω

⎞⎠2

=
1

Nh2j+dadn

⎛⎜⎝ ∫
[−1/(han),1/(han)]d

⎛⎝∫
Rd

1
(2π)d

(−iω)j
e−i〈ω,(x/h−s)〉Φk(ω)

ΦΨ(ω/h)
dω

⎞⎠2

ds +O

(
1

(nan)d

)⎞⎟⎠

� 1
Nh2j+dadn

∫
Rd

⎛⎜⎜⎜⎜⎜⎜⎝
∫
Rd

1
(2π)d

(−iω)j
e−i〈ω,(x/h−s)〉Φk(ω)

ΦΨ(ω/h)
dω

︸ ︷︷ ︸
=:G(−s)

⎞⎟⎟⎟⎟⎟⎟⎠

2

ds [1 + o(1)]

=
1

Nh2j+dadn

∫
Rd

1
(2π)d

|ΦG(ω)|2dω [1 + o(1)]

=
1

Nh2j+dadn

∫
Rd

1
(2π)d

||ω||2j|Φk(ω)|2
|ΦΨ(ω/h)|2 dω [1 + o(1)]

∼ 1
Nh2β+2j+dadn

∫
Rd

1
(2π)d

||ω||2β+2j |Φk(ω)|2dω.

Hence, we have

maxk∈{−n,...,n}d |wj,k,n(x)|( ∑
r∈{−n,...,n}d

w2
j,r,n(x)

)1/2
= O

(
N−1a−dn h−β−j−d

N−1/2h−β−j−d/2a−d/2n

)
= O

(
1√

Nhdadn

)
.

Therefore, condition (4) is fulfilled and with the central limit theorem in Eubank (1999),

N1/2hβ+j+d/2ad/2n

(
θ̂(j)
n (x) − Eθ̂(j)

n (x)
)

is asymptotically normal with asymptotic variance

σ2

(2π)d

∫
Rd

ω2βω2j|Φk(ω)|2dω.

Proof of Lemma 3.
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First note that

E
[
θ̂(j)
n (x)

]
− θ(j)(x) = − 1

(2π)dhj+d

∫
Rd

(−iω)je
−i〈ω,x〉

h (1 − Φk(ω))Φθ (ω/h) dω

− 1
(2π)dhj+d

∫
Rd

(−iω)je
−i〈ω,x〉

h
Φk(ω)
ΦΨ

(
ω
h

) · ( ∫
([−1/an,1/an]d)c

e
i〈ω,y〉

h g(y)dy
)
dω

+O
(
(Nadnh

j+d)−1
) 1
(2π)dhj+d

∫
Rd

(−iω)je
−i〈ω,x〉

h
Φk(ω)
ΦΨ

(
ω
h

)dω
= A+B + C ·O((Nadnhj+d)−1

)
. (5)

For A we get with assumption 2

|A| ≤ 1
(2π)dhj+d

∫
Rd

||ω||j |1 − Φk(ω)||Φθ(ω/h)|dω

≤ 2
(2π)dhj+d

∫
([−b,b]d)c

||ω||j |Φθ(ω/h)|dω

=
2

(2π)d

∫
([−b/h,b/h]d)c

1
||η||s−j−1

||η||s−1|Φθ(η)|dη

≤ 2hs−j−1

bs−j−1(2π)d

∫
([−b/h,b/h]d)c

||η||s−1|Φθ(η)|dη = o(hs−j−1)

since b/h→ ∞ for h→ 0 and assumption 3.A holds. For B we obtain with assumptions 3.B
and 1

|B| ≤ 1
(2π)dhj+d

∫
Rd

||ω||j |Φk(ω)|
|Φψ(ω/h)|dω

(∫
([−1/an,1/an]d)c

1
||y||r |g(y)| ||y||rdy

)
≤ O

( arn
hβ+j+d

)∫
Rd

||ω||β+j |Φk(ω)|
||ω/h||β |Φψ(ω/h)|dω

≤ O
( arn
hβ+j+d

)∫
[−1,1]d

||ω||β+jdω = O
( arn
hβ+j+d

)
= o(hs−j−1).

The third term can be estimated quite similarly by

|C| = O
( 1
hβ

)
such that we get with (5)

bθ,n(x) = o(hs−j−1) +O
( 1
Nadnh

β+j+d

)
= o(hs−j−1).

Proof of Theorem 5.
We apply a conditional central limit theorem (see Corollary 3.1 of Hall and Heyde, 1980) to
the estimator

θ̂(j) ∗
n (x) =

n∑
r=−n

Y ∗
r wj,r,n(x)
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with the same deterministic weights wj,r,n(x) as in (3). If the bootstrap residuals are generated
as described above, they are, conditionally on Y, independent identically distributed and
satisfy

E∗[ε∗r ] =
1

2n+ 1

n∑
k=−n

(ε̂k − ¯̂ε) = 0 (6)

E∗[(ε∗r)
2] =

1
2n+ 1

n∑
k=−n

(ε̂k − ¯̂ε)2 P→ σ2 (7)

From Theorem 1 we see that the variance of the estimator, after standardization, is

Var
(( n∑

r=−n
w2
j,r,n(x)

)−1/2
θ̂(j)
n (x)

)
= σ2.

We have to show that the conditional variance of
(∑n

r=−nw
2
j,r,n(x)

)−1/2
θ̂
(j) ∗
n (x) converges

to σ2. Conditionally on the sample Y, the random variables Y ∗−n, . . . , Y ∗
n are independent.

The expectation of Y ∗
r , conditionally on Y, is ĝ(zr) and the conditional variance is

Var∗
(( n∑

r=−n
w2
j,r,n(x)

)−1/2
θ̂(j) ∗
n (x)

)
=
( n∑
r=−n

w2
j,r,n(x)

)−1
n∑

r=−n
w2
j,r,n(x) E[(Y ∗

r − ĝ(zr))2|Y ∗
−r+1, . . . , Y

∗
r−1]

=
( n∑
r=−n

w2
j,r,n(x)

)−1
n∑

r=−n
w2
j,r,n(x) E∗[(ε∗r)

2]

=

(
1

2n+ 1

n∑
r=−n

(ε̂r − ¯̂ε)2
)

→ σ2

because of (7) and with

s2n(x) = σ2
n∑

r=−n
w2
j,r,n(x)

and
Xn,r = wj,r,n(x)

Y ∗
r − ĝ(zr)
sn(x)

the first condition of Corollary 3.1 of Hall and Heyde (1980), that is

n∑
r=−n

E[X2
n,r|Y ∗

−r+1, . . . , Y
∗
r−1]

P→ 1

is fulfilled.
In the second step we verify the conditional Lindeberg condition

n∑
r=−n

E
[
X2
n,rI {|Xn,r| > δ}∣∣Y ∗

−r+1, . . . , Y
∗
r−1

] P→ 0. (8)
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To this end note that E∗[Y ∗
r ] = ĝ(zr) and Y ∗

r − ĝ(zr) = ε∗r. With these notations, the left-hand
side of (8) is

1
s2n(x)

n∑
r=−n

w2
j,r,n(x) E∗

[
ε∗r

2I

{
|ε∗r | > δ

sn(x)
|wj,r,n(x)|

}]
=

∑n
r=−nw

2
j,r,n(x)Λn,r∑n

r=−nw
2
j,r,n(x)

.

The Lindeberg condition is fulfilled if Λn,r
P→ 0 uniformly in r but with sn(x)/maxnj=−n |wj,r,n(x)| =

cn → ∞ because of condition (4) there is

Λn,r ≤ E∗
[
ε∗r

2I {|ε∗r | > δcn}
]

=
∫

(−∞,−δcn]
ε∗r

2dPr,∗ +
∫

[δcn,∞)
ε∗r

2dPr,∗ (9)

where Pr,∗ denotes the conditional measure of ε∗r given Y. The whole integral∫
(−∞,∞)

ε∗r
2dPr,∗ = E∗[ε∗r ]

exists and converges in probability to σ2 (see (7)) and therefore the tail integrals in (9)
converge to 0 in probability uniformly in r because, conditionally on Y, the residuals ε∗r ,
r = −n, . . . , n are identically distributed. We now obtain

(sn(x))−1
(
θ̂∗n(x) − E∗[θ̂∗n(x)]

) D→ N (0, 1)

and it remains to check if the difference between E θ̂
(j)
n (x)− θ(j)(x) and E∗[θ̂

(j) ∗
n (x)]− θ̂

(j)
n (x)

converges in probability to 0. With (6) and (7) we obtain with a similar computation as in
the proof of Lemma 3 for the difference between the two biases

E[θ̂(j)
n (x)] − θ(j)(x) − (E∗[θ̂(j) ∗

n (x)] − θ̂(x)) = oP (hs−j−1) +OP

( arn
hβ+j+1

)
+OP

( 1
nhβ+j+1an

)
= oP

( 1√
nh2β+2j+1an

)
.
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