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Robust Shift Detection in
Time-Varying Autoregressive Processes

Roland Fried
Technische Universität Dortmund, Germany

Abstract: Tests for shift detection in locally-stationary autoregressive time

series are constructed which resist contamination by a substantial amount of

outliers. Tests based on a comparison of local medians standardized by a

highly robust estimate of the variability show reliable performance in a broad

variety of situations if the thresholds are adjusted for possible autocorrela-

tions.

Zusammenfassung: Robuste Tests zur Erkennung von Sprüngen in lokal-

stationären autoregressiven Zeitreihen werden konstruiert mit dem Ziel, auch

bei erheblicher Ausreißerkontamination zuverlässig zu arbeiten. Ein Ver-

gleich lokaler Mediane standardisiert mit einem robusten Skalenschätzer er-

weist sich bei Verwendung ausreichend großer kritischer Werte als besonders

zuverlässig in relevanten Szenarien.

Keywords: Jumps, Outliers, Test Resistance, Time Series.

1 Introduction

A basic objective of time series analysis is the estimation of the time-varying level (the

signal) underlying the series. Sudden changes of this level are of particular interest since

they point at changes in the data generating mechanism and since they can severely mis-

lead a statistical analysis if they are not taken into account. Running medians (Tukey,

1977) are popular for signal extraction since they almost preserve sudden shifts and resist

outliers, as opposed to e.g. moving averages. However, sometimes one wants a filtering

procedure even to indicate the presence of a shift automatically, i.e. to give an alarm.

Similar to the superiority of running medians with respect to moving averages, robust

functionals lead to much more reliable tests for shift detection in the presence of outliers

than linear functionals (Fried & Gather, 2007, Fried, 2007a). Particularly, tests based on

the differences of the medians in separate time windows standardized by a robust scale

estimate achieve high robustness and considerable power. Such simple tests implicitly

treat the data as independent, although subsequent observations are often positively auto-

correlated. Positive autocorrelations cause monotonic patterns in the data resembling the

occurrence of shifts in short windows. We should hence adjust the tests for autocorrela-

tions because a shift is detected too often otherwise.
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In this paper we discuss median based tests for level shift detection in time series

with time-varying dependencies. The median mostly preserves its nice properties in the

case of positive autocorrelations (Fried, 2007b). We assume that the autocorrelations can

be described locally by a low order autoregressive (AR) model and use highly robust

estimators for model fitting. Then we can either adjust the critical values of simple test

statistics for the autocorrelations, or we can perform the test on the AR residuals.

Section 2 introduces tests for level shift detection in AR models based on linear statis-

tics or median comparisons. Section 3 critically evaluates the arising detection rules.

Section 4 concludes.

2 Level Shift Detection in Autoregressive Models

Let (Yt)t∈Z be an autoregressive (AR) stochastic process of order p with parameters

φ1,t, . . . , φp,t, which vary slowly over time,

(1 − φ1,tB − . . . − φp,tB
p)(Yt − μt) = εt , t ∈ Z . (1)

Here, B denotes the backshift operator, BYt = Yt−1. We assume the zeros of the char-

acteristic polynomials Φt(B) = (1 − φ1,tB − φ2,tB
2 − ... − φp,tB

p) to be larger than

one in absolute value for all t ∈ Z to guarantee local stationarity. We further assume

the innovations εt to be independently normally distributed with common mean zero and

time-varying variance σ2
t . This implies that μt is the level of Yt then. We assume the

model parameters to be almost constant in sufficiently short windows of subsequent vari-

ables Yt−n+1, . . . , Yt, e.g. approximately μt−n+1 = μt−n+2 = . . . = μt, so that the local

model parameters can be approximated from a moving time window.

A level shift at a time point τ ∈ Z means a sudden change of the central location of

the time series from one level to another one. The observed data stem from a disturbed

process (Zt) then (Peña, 2000)

Zt =

{
Yt, t < τ

Yt + ω, t ≥ τ,
(2)

where ω is the size of the shift. In the following we derive a linear regression equation

from (2) with uncorrelated error terms, which can be readily used for estimation of ω

and testing. Using a step function S
(τ)
t , which takes the value one for t ≥ τ and zero

otherwise, equation (2) can be written as

Zt = Yt + ωS
(τ)
t . (3)

Differencing S
(τ)
t gives the indicator function I

(τ)
t , which takes the value one at t = τ and

zero otherwise, (1 − B)S
(τ)
t = I

(τ)
t . Inserting this equation and the definition (1) into (3)
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leads to

Zt − μt = Φ−1
t (B)εt + ω(1 − B)−1I

(τ)
t .

Multiplication by Φt(B) gives a regression equation for the observable residuals at =

Φt(B)(Zt − μt), which is linear in the shift size ω and has the uncorrelated errors εt:

at = εt + ωΦt(B)(1 − B)−1 I
(τ)
t .

Denoting �t(B) = Φt(B)(1 − B)−1 = 1 − �1,tB − �2,tB
2 − . . . we get

at =

⎧⎪⎨
⎪⎩

εt, t < τ

ω+ ετ , t = τ

−ω�t−τ,t+ εt, t > τ .

(4)

Estimates of ω and tests of the null hypothesis H0 : ω = 0 can directly be deduced from

this equation.

In the following let Z1, . . . , Zn be a single window of n subsequent observations of

a time series. We want to test whether there is a level shift at a given time point τ ∈
{2, 3, . . . , n}. We assume that the model parameters are (almost) constant throughout the

window and drop the index t from all parameters therefore.

2.1 Detection Based on Least Squares

The least squares (LS) estimator ω̂LS of ω can be derived from (4) straightforwardly,

ω̂LS =
aτ − �1aτ+1 − �2aτ+2 − . . . − �n−τan

1 + �2
1 + �2

2 + . . . + �2
n−τ

.

Defining ρ2
LS = (1 + �2

1 + �2
2 + . . . + �2

n−τ )
−1, the variance of ω̂LS reads

V ar(ω̂LS) =
σ2

1 + �2
1 + �2

2 + . . . + �2
n−τ

= ρ2
LSσ2 .

We specialize to an AR(1) model in the following, that is Φ(B) = 1−φB. Then we have

�(B) = 1 + (1 − φ)B + (1 − φ)B2 + . . ., leading to the normally distributed estimate

ω̂LS =

n∑
t=τ

at − φ

n∑
t=τ+1

at

1 + (n − τ)(1 − φ)2 .

Standardization leads to a test statistic Tτ for level shift detection at time τ , i.e. for testing

the null hypothesis H0 : ω = 0 of no shift against the alternative H1 : ω �= 0:

Tτ =

n∑
t=τ

at − φ
n∑

t=τ+1

at

σ
√

1 + (n − τ)(1 − φ)2
. (5)
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For calculation of Tτ we need estimates of φ, σ and μ. Simple estimates of the central

location μ of the observations and the standard deviation σ of the innovations (εt) are the

sample mean z of the zt and the empirical standard deviation of the observable residuals

at, respectively. The conditional least squares (CLS) estimator of φ = φ1 after centering

by the sample mean z is

φ̂CLS =

n∑
t=2

(zt−1 − z) · (zt − z)

n−1∑
t=1

(zt − z)2

.

We artificially restrict φ̂CLS not to become larger than 0.99 in absolute value so that the

stationarity assumption is guaranteed locally for the fitted model. A variant is to use data

from the pre-shift period t = 1, . . . , τ − 1 only when calculating the estimates of μ, φ

and σ since the estimates from the full window t = 1, . . . , n are severely biased under the

alternative H1 : ω �= 0. Both variants will be discussed in Section 3.

The distribution of the test statistic Tτ with the estimates plugged in can be approx-

imated by a standard normal under the null hypothesis of no shift if n respectively τ is

large. Otherwise we can derive critical values for Tτ by simulation under H0.

2.2 Detection Based on Robust Estimates

For construction of an outlier-resistent test for shift detection from (4) we replace least

squares by median regression, leading to the estimate

ω̂M = med{aτ ,−aτ+1/�1, . . . ,−an/�n−τ} .

In case of an AR(1) process with Gaussian innovations, ω̂M is asymptotically normal with

variance 2πσ2/(4(n − τ + 1)(1 − φ)2) under the null hypothesis H0 : ω = 0, i.e.

T̃τ =

√
2(n − τ + 1)(1 − φ)2ω̂M

σ
√

π
(6)

can be approximated by a standard normal distribution under H0 if n − τ is large.

To use T̃τ as a test statistic for H0 we estimate σ robustly by applying the Qn method

(Rousseeuw & Croux, 1993) to the residuals at. Qn is based on an order statistic of all

pairwise differences,

Qn(a1, . . . , an) = cn · {|ai − aj| : 1 ≤ i < j ≤ n}(k) with k =

(�n/2� + 1

2

)
.

Here, cn is a finite sample correction to achieve unbiasedness in a Gaussian sample of

size n. Qn possesses a large asymptotic Gaussian efficiency of 82% and can be computed
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in O(n log n) time. If φ = 0 and the median of z1, . . . , zτ−1 is used as estimate of μ, the

resulting detection rule corresponds to the median comparisons (MC) suggested in Fried

(2007a).

In case of φ �= 0 we additionally need to estimate φ, which is also the lag-one auto-

correlation ρ(1). The highly robust SSD estimates (Ma & Genton, 2000) of the autoco-

variance and autocorrelation are based on writing the lag-one autocovariance as

γ(1) =
1

4
[V ar(Yt + Yt−1) − V ar(Yt − Yt−1)] .

These variances are estimated by applying Qn to z2+z1, . . . , zn+zn−1 and z2−z1, . . . , zn−
zn−1, respectively. Since scaling γ̂SSD(1) by the sum of the variances in (2.2) is superior

to scaling by γ̂SSD(0) (see Ma and Genton (2000), Fried (2007a)), we use

φ̂SSD =
Q2

n−1(z2 + z1, . . . , zn + zn−1) − Q2
n−1(z2 − z1, . . . , zn − zn−1)

Q2
n−1(z2 + z1, . . . , zn + zn−1) + Q2

n−1(z2 − z1, . . . , zn − zn−1)
,

which is guaranteed to lie within [−1, 1]. If less than 25% of observations in general

position are replaced by outliers, the numerator and the denominator remain bounded and

bounded away from zero.

If both τ and n − τ are large enough, the distribution of T̃τ is still approximately

standard normal under H0 since we use consistent estimators. Otherwise, we can again

derive critical values for T̃τ from simulations.

3 Experiments

We perform some Monte Carlo experiments to investigate the performance of the detec-

tion rules in several situations. We consider time windows of different widths n = 21 and

n = 33 and test for a level shift at time τ = 15 and τ = 23, respectively. For estimation

of μ we use the observations up to time τ −1. In the LS test we use the standard deviation

and the CLS estimate for σ and φ, both pooled from z1, . . . , zτ−1 and zτ , . . . , zn. In the

MC test we simply apply the Qn to the full window z1, . . . , zn for estimation of σ and

φ as described in Section 2.2. Additionally we comment on the versions which use only

the data z1, . . . , zτ−1 up to the time point τ at which we want to estimate a shift. The

estimates are plugged into the formulae for the residuals (at) and the test statistics. Be-

sides the tests based on Tτ from (5) and T̃τ from (6) we also consider the corresponding

test statistics for the original observations, which assume φ = 0, and adjust their critical

values for autocorrelations in the following.

First we generate 100001 time windows from each of different AR(1) models with

φ ∈ {−0.95,−0.9, . . . , 0.95} and Gaussian errors. The empirical 99.9% percentiles of
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the absolute test statistics will be used as critical values in the following since we aim at

incorrect detection of a shift only once within 1000 time points on average. In this way

we account for the multiple testing caused by testing all time points of a long time series.

Figure 1 shows that the percentiles of the test statistics increase with increasingly positive

autocorrelations φ, particularly in case of the MC test based on the AR residuals (at),

implying that a much larger sample size is needed for the asymptotics to become useful.

We only report the results for n = 21 since those for n = 33 are qualitatively the same.

Now we check whether the tests keep their significance levels when using the sim-

ulated critical values corresponding to the estimates of φ after rounding. We gener-

ate 20000 Gaussian AR(1) windows without shift for each of different values of φ ∈
{−0.9,−0.8, . . . , 0.9}. The percentage false detections is calculated for measuring the

sizes of the tests as a function of φ, see also Figure 1. Obviously, the tests become in-

creasingly liberal with increasing value of φ. This can be explained by using an estimate

of φ instead of its true value. The tests based on the original observations suffer more

from this effect than those based on the AR residuals. If we use the maximum of the

99.9% percentiles derived before as critical values, the test size at least stays small until

φ gets very close to 1, meaning that we get an approximately valid test procedure when

using these thresholds for shift detection.

Next we obtain the power of the tests as a function of the shift size ω = 0.25, 0.5, . . . , 10.

Figure 1 depicts the percentage cases in which a shift was detected within 2000 separate

windows for each ω and φ = 0.5. The least squares methods of course offer higher power

in the case of Gaussian noise considered here. Generally, the most powerful tests are

those which have the biggest difficulties in preserving their size. Particularly, the tests

using the original observations and critical values adjusted for φ have more power than

those based on AR residuals. The tests based on estimated percentiles are of course more

powerful than those using the maximal percentile, but remember that the former do not

preserve their level. The MC test based on the AR residuals with the maximum threshold

does not have power at all, what can be explained by the steeply increasing percentile

function which leads to a very large maximum threshold. As opposed to this, the LS and

the MC tests based on the original data as well as the LS test based on AR residuals still

provide considerable power and preserve their significance level for most values of φ. We

note that the tests using the observations up to time τ −1 only for estimation of the model

parameters turn out to be less powerful than their counterparts using the whole window.

The LS tests loose their superiority in case of a single large outlier into the same di-

rection as the shift before time τ , or into the opposite direction after time τ , while the

ordering of the robust methods remains the same, see also Figure 1. One must totally rely

on additional outlier detection rules when using traditional linear methods for shift detec-

tion, while the robust MC rules still work well even when some outliers are neglected.
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Figure 1: Results for AR(1) with n = 21 and τ = 15: 99.9% percentiles of the absolute

test statistics (top left), test sizes for different values of φ (top right); φ = 0.5: power

(center left) and power in case of an outlier of size 10 (center right), percentage detected

shifts in case of an increasing number of observations shifted by 10 in the left and the

right window (bottom). Estimated thresholds: LS test (thin solid), LS test on AR residuals

(thin dashed), MC test (bold solid) and MC test on AR residuals (bold dashed). Maximum

thresholds: LS test (thin dot-dashed), LS test on AR residuals (thin dotted), MC test (bold

dot-dashed) and MC test on AR residuals (bold dotted).
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For a closer investigation of the test resistances against outliers we simulate the intru-

sion of a level shift into the window. For this we generate windows from an AR(1) model

with φ = 0.5 and shift an increasing number j = 0, 1, . . . , 7 of observations at times

t = 21, 20, . . . , 15 by ω = 10. For optimal resistance we want a shift not to be detected

until more than half of the data at times τ = 15, . . . , n = 21 strongly deviates from the

data at t = 1, . . . , 14. Figure 1 shows that the MC tests with estimated thresholds perform

very well in this respect, while the MC test based on AR residuals with maximal thresh-

old very rarely detects such a shift at all. The MC test based on the original observations

with maximum thresholds performs reasonable and close to the LS tests with estimated

thresholds in case of a shift of size 10, and better than these in case of a larger shift (not

shown here). The LS tests with maximum thresholds do not detect a shift unless all ob-

servations are shifted. This improves if only z1, . . . , zτ−1 are used for the estimates, but

neither the LS tests with maximal threshold nor the median comparison based on the orig-

inal observations perform better than e.g. the MC test based on the original observations

with maximum thresholds. Two large outliers might cause the LS tests with estimated

thresholds to indicate a shift incorrectly with high probability then.

In a similar manner we generate windows from an AR(1)-model with φ = 0.5 and an

increasing number of observations at t = 1, . . . , τ−1 = 14 shifted by 10. For seven or less

observations this points at a couple of outliers in a steady state, while in case of more than

seven deviating observations we might regard a shift with some outliers before the shift as

more likely. Figure 1 illustrates that the MC test based on the original observations with

maximal threshold again performs reasonably well then, like the MC tests with estimated

thresholds. A few outliers before a shift can easily mask the shift for all LS tests. The

results do of course get worse in this situation if we only include the data before the shift

into the estimates.

To investigate the effects of model miss-specification we also generate time series

from a moving average model with parameter θ ∈ {0.5, 1}, obtaining quite similar or

even slightly better results in terms of power than reported above. The power of course

also increases when increasing the width to n = 33 and testing for a shift at τ = 23, with

the ordering of the methods being the same. See Fried (2007c) for more results.

4 Conclusions

Median comparisons allow reliable detection of large shifts in autocorrelated time series

with a locally constant level, time-varying parameters and outliers. To avoid false alarms

we can compare robustly standardized medians of the original observations to sufficiently

large thresholds, obtained by maximization with respect to the autocorrelations. The re-
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Figure 2: Step function (dashed) overlaid by time-varying AR noise (dots) and level esti-

mates: running mean (dotted), running median (bold dotted) both with window width 15

and the same running median improved by MC test and additional rules (bold solid).

sulting tests perform reliably in a broad range of situations. For shift detection within

trends we can replace the median by the repeated median (see Fried & Gather, 2005).

When using Qn we can include the whole time window in the estimation of the AR pa-

rameters and the local variability since it copes well with shifts due to being based on

pairwise differences between the observations. Using an estimated threshold for shift de-

tection, derived from robust estimates of the autocorrelations, leads to more powerful,

but quite oversized tests in case of moderate to strong positive autocorrelations. This

problem becomes less severe but still noteworthy when using model residuals for testing.

Possibly this can be further improved under stronger assumptions than considered here.

Particularly, better estimates derived from longer estimation periods might lead to large

improvements, but afford the model parameters to be almost constant during longer time

spans, or another more elaborated model for the dynamical dependence structure.

Figure 2 depicts a step function which is overlaid by AR(1) noise with time-varying

parameters φt = 0.9−0.9∗sin(πt/300) and σ2
t = 1/(1 − φ2

t ) for illustration. 15 observa-
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tions have been replaced by additive outliers of size 8. While the LS tests with estimated

thresholds incorrectly detect a shift when there are several close-by outliers, the LS tests

with maximum thresholds only detect the shifts at t = 50 and at t = 140 because of the

outliers. As opposed to this, the MC test with maximum thresholds correctly detects the

shifts at t = 50, 140, 160 and 200. This allows to improve a running median with window

width 15, which we have used for comparison, at the detected shifts by using one-sided

medians there. We note that the MC test with estimated thresholds even detects all shifts

correctly without any false alarms in this case.
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