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Abstract

In this paper, a method for estimating monotone, convex and log-concave densities is

proposed. The estimation procedure consists of an unconstrained kernel estimator which is

modified in a second step with respect to the desired shape constraint by using monotone

rearrangements. It is shown that the resulting estimate is a density itself and shares the

asymptotic properties of the unconstrained estimate. A short simulation study shows the

finite sample behavior.

Key words: Convexity, log-concavity, monotone rearrangements, monotonicity, nonparametric

density estimation

Introduction

A typical setting for nonparametric density estimation is the following. Assume that the obser-

vations X1, . . . , Xn are independent identically distributed on A ⊆ IR with density f . Usually,

this density is completely unknown and it can be estimated by several nonparametric estimators,
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e.g. kernel density estimators. To this end let K be a kernel with support Λ ⊆ IR and h the

corresponding bandwidth. Then the kernel density estimator is given by

f̂(x) =
1

nh

n
∑

i=1

K
(x − Xi

h

)

. (1)

In some context the density f is unknown but there is information like monotonicity, convexity

or log-concavity about its shape. In general, the unconstrained estimator defined in (1) will not

necessarily fulfill those shape constraints but if there is such information, it is desirable to have

estimators which meet these constraints. In the literature, there are several proposals of such

estimators in density as well as regression estimation but most methods rely on maximum likeli-

hood estimation or constrained least squares where the estimator is obtained by minimizing the

L2-distance to the data over the set of all monotone, convex or log-concave density functions. A

monotone maximum likelihood estimator is first discussed by Grenander (1956) and Groeneboom

(1985). Van der Vaart and van der Laan (2003) propose a smooth monotone estimator based

on least squares estimation where the data is first smoothed by an unconstrained kernel density

estimator. Recently, Balabdaoui and Wellner (2007) propose a maximum likelihood estimator

for a k-monotone density which includes for k = 1 the case of a monotone density discussed

by Groeneboom (1985). There may occure problems in monotone maximum likelihood estima-

tion in selection biased samples or at points of discontinuity. Methods for those cases are given in

Woodroofe and Sun (1993), El Barmi and Nelson (1999), El Barmi and Nelson (2000) and Anevski

and Hössjer (2002), respectively. Work on convex density estimation using least squares or max-

imum likelihood estimators has been done by Groeneboom, Jongbloed and Wellner (2001) and

Dümbgen, Rufibach and Wellner (2007) but there has not much work been done on log-concave

density estimation which has recently been considered by Dümbgen and Rufibach (2007).

It is the purpose of the present paper to define such shape constrained estimators by only using

kernel methods. In a first step, the density is estimated by an unconstrained kernel estimate and
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then, in a second step, it is modified with respect to the shape constraints by using monotone,

convex or concave rearrangements which have been introduced in nonparametric regression by

Dette, Neumeyer and Pilz (2006), Birke and Dette (2005) and Birke and Dette (2007). Those

methods produce shape constrained estimators which have the same asymptotic distribution as

the unconstrained estimator one starts with. For example, in the case of kernel density estimation

the asymptotic distribution is a normal distribution which is appealing for practitioners.

The remaining article is organized as follows. In section 1 monotone, convex and concave rear-

rangements are shortly introduced. The application to unconstrained estimators is then straight

forward and the resulting estimates are presented in section 2 together with some asymptotic

properties. It turns out that the asymptotic result for a convex density estimate still holds if

the true density is only two times continuously differentiable. This also improves the result in

Birke and Dette (2007) where the estimated function is assumed to be three times continuously

differentiable. Finally, in section 3 the finite sample behavior is investigated in a small simulation

study.

1 Rearrangements

The basic tool for all rearrangements used in the sequel are monotone rearrangements which are

first introduced in an analytical context in Hardy, Littlewood and Pólya (1952). Properties of

monotone rearrangements are discussed in Bennett and Sharply (1988) or Lieb and Loss (1997).

But those rearrangements also have a statistical motivation which is presented here. In the follow-

ing this motivation is given and several rearrangements are defined. Properties are only discussed

as far as they are needed for the discussion of the estimation methods in the following section.

If U is uniformly distributed on A = [al, au] and g : A → IR is a strictly increasing and differentiable

function then g(U) has density

(g−1)′(u)I[g(0),g(1)](u)
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and distribution function

g−1(t) =

∫ t

−∞

(g−1)′(u)Ig(A)(u)du + al =

∫ au

al

I{g(v) ≤ t}dv + al, t ∈ g(A).

Now, if g is not strictly increasing, the distribution function can still be calculated as the right

integral in the above equation, that is

φ(g)(t) =

∫ au

al

I{g(v) ≤ t}dv + al, t ∈ g([al, au]) (2)

and the increasing rearrangement is given as the generalized inverse of the distribution function,

φ(g)−1(x) = inf{t ∈ IR|φ(g)(t) ≥ x}. (3)

A differentiable increasing rearrangement is obtained by smoothing the distribution function by a

kernel smoother. To this end, Kd is a positive kernel of order 2 and hd is a smoothing parameter

called bandwidth. Then there is

φhd
(g)(t) =

1

hd

∫ au

al

∫ t

−∞

Kd

(g(v) − u

hd

)

dudv + al (4)

and the smoothed increasing rearrangement is given by

φhd
(g)−1(x) = inf{t ∈ IR|φ(g)(t) ≥ x}. (5)

In an analoguous way decreasing rearrangements can be defined via the distribution functions

ϕ(g)(t) =

∫ au

al

I{g(v) ≥ t}dv + al, t ∈ g([al, au]) (6)
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and

ϕhd
(g)(t) =

1

hd

∫ au

al

∫

∞

t

Kd

(g(v) − u

hd

)

dudv + al (7)

as

ϕ(g)−1(x) = sup{t ∈ IR|ϕ(g)(t) ≤ x} (8)

and

ϕhd
(g)−1(x) = sup{t ∈ IR|ϕhd

(g)(t) ≤ x}, (9)

respectively. One property of monotone rearrangements is that they have the same Lp-norm for

p ≥ 1 as the original function, that is

∫

A

|φ(g)−1(x)|pdx =

∫

A

|g(x)|pdx

(see e.g. Bennett and Sharpley, 1988). Another property is that they reduce the Lp-estimation

error for all p ≥ 1 if applied to an unconstrained approximation (estimate) of the function, that

means
(

∫

A

|φ(ĝ)−1(x) − g(x)|p
)1/p

≤
(

∫

A

|ĝ(x) − g(x)|p
)1/p

(see Chernozhukov, Fernández-Val and Galichon, 2007).

For defining convex estimators note that a differentiable function is convex if and only if its

first derivative is increasing. Therefore one possibility to define a convex rearrangement is to

apply the increasing rearrangement to the derivative of the function. Depending on the increasing

rearrangement that is used there is the convex rearrangement

ρ(f)(x, a) =

∫ x

a

φ(f ′)−1(u)du + f(a) (10)
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or the smoothed convex rearrangement

ρhd
(f)(x, a) =

∫ x

a

φhd
(f ′)−1(u)du + f(a). (11)

A disadvantage of the last two rearrangements is that they strongly depend on the lower integration

bound a. A way out is to use the L2-optimal rearrangement

ρ∗(f)(x) =
1

au − al

∫ au

al

ρ(f)(x, a)da (12)

or

ρ∗

hd
(f)(x) =

1

au − al

∫ au

al

ρhd
(f)(x, a)da. (13)

Concave rearrangements of a function f can be defined analoguously by using decreasing instead

of increasing rearrangements for the first derivative. The corresponding concave rearrangements

are denoted as ̺(f)(x, a), ̺hd
(f)(x, a), ̺∗(f)(x) and ̺∗

hd
(f)(x).

2 Shape constrained estimators

In this section the different rearrangements are applied to an unconstrained kernel density es-

timator. This results in monotone, convex or log-concave density estimators and for each the

asymptotic behavior is discussed. It turned out that for the asymptotics of the convex estimator

it suffices to consider a two times continuously differentiable function. Although that is very help-

ful in density estimation (see also Remark 2) this result is not restricted to that special setting

and therefore also improves the results for regression estimation considered in Birke and Dette

(2007).
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2.1 Monotone density estimators

Let f be defined on a compact interval A = [al, au] ( IR and increasing. Then, an increasing

estimator of f on A is given by

f̂I(x) = φhd
(f̂)−1(x) (14)

where the smoothed increasing rearrangement in (5) is applied to the unconstrained density es-

timator defined in (1). If f is decreasing on A, a decreasing estimator is defined analogly by

applying the decreasing rearrangement in (9),

f̂D(x) = ϕhd
(f̂)−1(x).

Because of the similar structure of increasing and decreasing estimates the following results are

only stated for the increasing case but they also hold true for decreasing estimators. Suppose,

that D is the set of all densities on A. Then for any n ∈ IN and any bandwidth h it is clear that

f̂ ∈ D. Furthermore it can be shown, that for a sufficiantly small bandwidth hd, the increasing

estimator defined in (14) is still a density. This result is stated in the following Lemma.

Lemma 1 For any unconstrained uniformly continuous density estimator f̂ ∈ D, n ∈ IN and h

fixed, the increasing estimator converges for hd → 0 pointwise to an element in D, that is

f̂I −→
hd→0

φ−1(f̂) ∈ D

where

φ(f̂)(t) =

∫

A

I{f̂(v) ≤ t}dv + al
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Proof. In a first step it is shown, that the inverse φhd
(f̂)(t) converges for hd → 0 to φ(f̂)(t). To

simplify notation A is chosen as the interval [0, 1]. It is

φhd
(f̂)(t) =

1

hd

∫ 1

0

∫ t

−∞

Kd

( f̂(v) − u

hd

)

dudv

=
1

hd

∫ 1

0

I{f̂(v) ≤ t + hd}
∫ f̂(x)

f̂(v)−hd

Kd

( f̂(v) − u

hd

)

dudv

=

∫ 1

0

I{f̂(v) ≤ t̂ + hd}
∫

(f̂(v)−t)/hd

Kd(u)dudv

=

∫ 1

0

I{f̂(v) ≤ t + hd}I{f̂(v) ≤ t − hd}dv

+

∫ 1

0

I{t − hd ≤ f̂(v) ≤ t + hd}
∫ 1

(f̂(v)−t)/hd

Kd(u)dudv

=

∫ 1

0

I{f̂(v) ≤ m̂(x) − hd}dv

+

∫ 1

0

I{t − hd ≤ f̂(v) ≤ t + hd}
∫ 1

(f̂(v)−t)/hd

Kd(u)dudv

and hence

|φhd
(f̂)(t) − φ(f̂)(t)| =

∣

∣

∣

∫ 1

0

I{t − hd ≤ f̂(v) ≤ t}dv

−
∫ 1

0

I{t − hd ≤ f̂(v) ≤ t + hd}
∫ 1

(f̂(v)−t)/hd

Kd(u)dudv
∣

∣

∣

≤
∫ 1

0

I{t − hd ≤ f̂(v) ≤ t}dv

+

∫ 1

0

I{t − hd ≤ f̂(v) ≤ t + hd}dv = o(1)

using the uniform continuity of f̂ . Because of the continuity of the functional which maps a

function onto its inverse in a fixed point x, this yields

f̂I(x) −→
hd→0

φ−1(f̂)(x).
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It remains to show, that φ−1(f̂) is a density. But that is clear from the theory of monotone

rearrangements. Since f̂ ≥ 0 and φ−1 only rearranges the function values in an increasing order,

also φ−1(f̂) ≥ 0. Monotone rearrangements preserve the Lp norm of the original function (see

Bennett and Sharpley (1988) for details). Therefore

∫

A

φ(f̂)(x)dx =

∫

A

|φ(f̂)(x)|dx =

∫

A

f̂(x)dx = 1

which proves Lemma 1.

From an asymptotic point of view, if the true density is increasing and two times continuously

differentiable, the unconstrained and the isotone density estimator show the same behavior. That

means, f̂I is pointwise consistent if f̂ is pointwise consistent and both have the same asymptotic

normal distribution. The consistency of f̂I follows from results stated in Neumeyer (2007). For

the sake of simplicity the asymptotic considerations are stated for A = [0, 1] but they hold true

for any compact interval A

Theorem 1 Let the density f ∈ C2([0, 1]) be strictly increasing and K be a kernel of order 2. If

the bandwidths fulfill

hd → 0, h → 0, nh5 = O(1),
hd

h
→ 0 and

log h−1

nhh3
d

→ 0

for n → ∞, then for any x ∈ (0, 1) with f ′(x) > 0

√
nh

(

f̂I(x) − f(x) − h2b(2)
n (x)

)

D→ N (0, s2(x))

where

b(2)
n (x) =

f ′′(x)

2

∫ 1

−1

u2K(u)du,
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s2(x) = f(x)

∫ 1

−1

K2(u)du

are the essential bias and asymptotic variance of the unconstrained density estimator f̂ .

The proof of this theorem is similar to that for an increasing regression function and therefore

omitted. Details for the regression case can be found in Dette, Neumeyer and Pilz (2006).

Remark 1 (Densities with unbounded support) For the sake of simplicity the monotone

rearrangements above were only introduced for densities with bounded support. Dette and Vol-

gushev (2007) define monotone rearrangements for densities with unbounded support. In the

present case of monotone densities it is interesting to consider supports of the type A = (−∞, au]

(increasing case) and A = [al,∞) (decreasing case). To this end let G : A → [0, 1] be a strictly

increasing known function. Then

f ◦ G−1 : [0, 1] → f(A)

has again bounded support and the distribution function and monotone rearrangement can be

calculated as usual. The increasing rearrangements of f are then obtained by

φ(f ◦ G−1)−1(G(x)) and φhd
(f ◦ G−1)−1(G(x))

while the decreasing rearrangements are

ϕ(f ◦ G−1)−1(G(x)) and ϕhd
(f ◦ G−1)−1(G(x)).

Substituting f by an estimator f̂ then yields the increasing and decreasing estimates, respectively.

In finite samples the rearrangement depends on the choice of G and a proper choice is discussed

in Dette and Volgushev (2007) but it is also shown there that the choice of G does not influence

the asymptotic behaviour of the rearrangement.
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2.2 Convex density estimators

Let again A = [al, au] ( IR. If the convex rearrangement defined in (11) is applied to the derivative

of an unconstrained density estimator, we get a convex estimator of the density. With

f̂ ′(x) =
1

nh2

n
∑

i=1

K ′

(x − Xi

h

)

,

for any fixed x ∈ A there is

f̂C(x, a) = ρhd
(f̂)(x, a) =

∫ x

a

φhd
(f̂ ′)−1(z)dz + f̂(a) (15)

(16)

a convex estimator of f . Applying the L2-optimal convex rearrangement (13) yields

f̂ ∗

C(x) = ρ∗

hd
(f̂)(x) =

1

au − al

∫

A

ρhd
(f̂)(x, a)da (17)

as convex estimator of f independent of the choice of a. If f is concave, an application of the

corresponding concave rearrangements results in the concave estimators

f̂Conc(x, a) = ̺hd
(f̂)(x, a) =

∫ x

a

ϕhd
(f̂ ′)−1(z)dz + f̂(a) (18)

(19)

and

f̂ ∗

Conc(x) = ̺∗

hd
(f̂)(x) =

1

au − al

∫

A

̺hd
(f̂)(x, a)da. (20)

The following results are only stated for the convex case but also hold true for concave estimators.

Lemma 2 For any unconstrained density estimator f̂ ∈ D, n ∈ IN and h fixed, the increasing
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estimator converges for hd → 0 to an element in D, that is

f̂ ∗

C −→
hd→0

ρ∗(f̂) ∈ D

where

ρ∗(f̂)(x) =
1

au − al

∫

A

(

∫ x

a

φ(f̂ ′)(v)dv + f̂(a)
)

da.

The integration to 1 only holds for the L2-optimal convex or concave estimators. It is not true for

any convex or concave estimator with arbitrary lower bound a ∈ A.

Proof of Lemma 2. To simplify the notation, the interval A is again chosen as [0, 1]. If Φ

denotes the primitive of φ(f̂)−1, then

∫ 1

0

ρ∗(f̂)(x)dx =

∫ 1

0

(

∫ 1

0

(

∫ x

a

φ(f̂ ′)(v)dv + f̂(a)
)

da
)

dx

=

∫ 1

0

∫ 1

0

(

Φ(x) − Φ(a) + f̂(a)
)

dadx

=

∫ 1

0

Φ(x)dx −
∫ 1

0

Φ(a)da +

∫ 1

0

f̂(a)da = 1

The convex estimator also has the same asymptotic behavior as the unconstrained one.

Theorem 2 Let the density f ∈ Cp([0, 1]) be strictly convex and K be a kernel of order p ≥ 2

which is at least two times continuously differentiable. If the bandwidths fulfill

hd → 0, h → 0, nh5+δ = O(1),
hd

h1+δ/4
→ 0 and

(log h−1)1/2

nh3h2
d

→ 0 (21)

for n → ∞, then for any x ∈ (0, 1) with f ′′(x) > 0 and any a ∈ (0, 1)

f̂C (x, a) − f (x) = f̂ (x) − f (x) + op

(

1√
nh

)
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This also yields that the convex estimator is consistent for all x ∈ (0, 1). The proof of Theorem 2

is similar to that for convex estimators of regression functions in Birke and Dette (2007) and to

that of Lemma 3 in Section 2.3 and therefore omitted.

Corollary 1 If the assumptions of Theorem 2 hold and f is p ≥ 2 times continuously differentiable,

then
√

nh
(

f̂C (x, a) − f (x) − hpb(p)
n (x)

)

D→ N
(

0, s2 (x)
)

(22)

for any x, a ∈ (0, 1), where the asymptotic bias and variance are given by

b(p)
n (x) =

f (p)(x)

p!

∫ 1

−1

upK(u)du,

s2 (x) = f(x)

∫ 1

−1

K2 (u) du

respectively.

Remark 2 Theorem 2 and Corollary 1 show that we obtain asymptotic normality of the convex

density estimate if f is two times continuously differentiable. But in this case the bandwidth

has to be chosen slightly smaller than the optimal bandwidth which is proportional to n−1/5.

The consequence is, that for p = 2 and 0 < δ < 2 the bias of the estimates is not of order

O(1/
√

nh). The situation changes if f is known to be three times continuously differentiable.

Then the optimal bandwidth is proportional to n−1/7 which corresponds to nh5+δ = O(1) with

δ = 2 and the convex estimator has the optimal convergence rate n3/7. Nevertheless, assuming a

three times continuously differentiable density evokes some problems in the choice of the kernel.

Like in the regression framework it makes sence to choose a kernel K of order 3 if the density

is three times continuously differentiable. But such a kernel is no longer symmetric or positive.

Even symmetric kernels of order p ≥ 4 are no longer positive. This has the effect, that, in finite

samples, the density estimator with a higher order kernel is not necessarily positive and therefore

no density. Therefore several other bias correction techniques have been considered in literature.
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For example, Jones, Signorini and Hjort (1999) consider a modified density estimator which has a

bias of order O(h4) as long as the true density is four times continuously differentiable while the

kernel is of order 2 and therefore positive. Ruppert and Cline (1994) use transformation-kernel

density estimators to reduce the bias. This results in a bias of order O(h3) and h = O(n−1/7) if

the density is three times continuously differentiable. Further bias reduction techniques are given

in Abramson (1982), Silverman (1986), Gajek (1986), Hall and Marron (1988) or Hall (1990). If

one of those unconstrained estimates is used for convex estimation, the convex density estimator

inherits the bias behavior of that estimator.

2.3 Log-concave density estimators

A strictly positive density f is said to be log-concave if log f is concave. Therefore, to obtain a

log-concave density estiamtor of f , the concave rearrangement defined in section 1 is applied to

log f̂ and in a second step transformed back. Log-concave densities have to be strictly positive

on their support and, if the procedure described above shall work, so has to be the estimate f̂ .

To this end, let K be a positive and symmetric kernel with support IR and h the corresponding

bandwidth. Then the kernel density estimator

1

nh

n
∑

i=1

K
(x − Xi

h

)

is strictly positiv on the set A. A log-concave density estimator can then be defined as

f̂lc(x, a) = exp(̺hd
(log f̂)(x, a))

and the L2-optimal one as

f̂lc(x) = exp(̺hd
(log f̂)(x, alc))

14



with

alc = arg min
a∈A

∫

A

(f̂lc(x, a) − f̂(x))2dx.

Another possibility is to use the L2-optimal concave rearrangement for log f̂ , that is

f̂lc(x) = exp(̺∗

hd
(log f̂)(x)).

In practice, the two ways to choose a produce only negligibly differences in the resulting estimators.

The following result holds for any choice of a.

Theorem 3 Let the density f be log-concave and p ≥ 2 times continuously differentiable on

A ⊆ IR. If the bandwidths fulfill

hd → 0, h → 0, nh5+δ = O(1),
hd

h1+δ/4
→ 0 and

(log h−1)1/2

nh3h2
d

→ 0, (23)

then for any fixed x ∈ A with f ′′(x)f(x) − f ′2(x) > 0 and any a ∈ A◦

√
nh(f̂lc(x) − f(x) − hpb(p)

n (x))
D→ N (0, s2(x))

with

b(p)
n (x) =

f (p)(x)

p!

∫ 1

0

upK(u)du

s2(x) = f(x)

∫ 1

−1

K2(u)du.

This statement follows from the next Lemma by applying the Delta method.

Lemma 3 Under the assumptions of Theorem 3 we have for any a ∈ A◦

√
nh

(

̺hd
(log f̂)(x, a) − log f(x) − hp b(p)(x)

f(x)

)

D→ N
(

0,
s2(x)

f 2(x)

)
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Proof of Lemma 3. To simplify the notation set log f = g and log f̂ = ĝ and let A = [0, 1]. For

considering the asymptotic theory of ̺hd
(ĝ)(x) a representation of the decreasing rearrangement

of (log f̂)′ = ĝ′ is necessary. The mean value theorem yields for ξn(t) with |ξn(t) − g′(t)| ≤

|ĝ′(t) − g′(t)|.

̺hd
(ĝ)(x, a) − g(x) = −

∫ x

a

ϕhd
(ĝ′)(ĝ′(t)) − g′(g′(t))

(ϕhd
(ĝ′))′(ξn(t))

dt

= An(x)(1 + oP (1)) + ĝ(a) − g(a)

with

An(x) = −
∫ x

a

ϕhd
(ĝ′) − g′

(g′−1)′
(g′(t))dt.

This decomposition is true because

|ĝ′(z) − g′(z)| =
∣

∣

∣

f̂ ′(z)

f̂(z)
− f ′(z)

f(z)

∣

∣

∣

≤ |f̂ ′(z) − f ′(z)|f(z) + |f̂(z) − f(z)||f ′(z)|
f̂(z)f(z)

= OP

( log h−1

nh3

)1/2

,

so that with a similar calculation as in Birke and Dette (2005).

sup |ϕhd
(ĝ′)(t) − g′−1(t)| = OP

( log h−1

nh3

)1/2

+ O(hd) = oP (1)

sup |ϕhd
(ĝ′)′(t) − (g′−1)′(t)| = OP

( log h−1

nh3h2
d

)1/2

+ o(1) = oP (1)

which finally yields that ξn(t) converges uniformly to g′(t) and hence, that ϕhd
(ĝ′)′(ξn(t)) converges

uniformly to (g′−1)′(g′(t)) which justifies the decomposition above. The leading term An(x) can
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be decomposed into a stochastic and a deterministic part.

An(x) = An,1(x) + An,2(x)

with

An,1(x) = −
∫ x

a

ϕhd
(ĝ′) − ϕhd

(g′)

(g′−1)′
◦ g′(t)dt

An,2(x) = −
∫ x

a

ϕhd
(g′) − g′

(g′−1)′
◦ g′(t)dt.

The definition of ϕ̂hd
and a Taylor expansion yields for An,1

An,1(x) = − 1

hd

∫ g′(a)

g′(x)

∫ 1

0

Kd

(g′(v) − t

hd

)

(ĝ′(v) − g′(v))dvdt

− 1

2h2
d

∫ g′(a)

g′(x)

∫ 1

0

K ′

d

(g′(v) − t

hd

)

(ĝ′(v) − g′(v))2dvdt(1 + oP (1))

= ∆(1)
n (x) +

1

2
∆(2)

n (x)(1 + oP (1))

where the notations ∆
(1)
n and ∆

(2)
n become clear from the previous equality. The quantity ∆

(1)
n can

be decomposed into

∆(1)
n (x) = ∆(1.1)

n (x) + ∆(1.2)
n (x) + ∆(1.3)

n (x) (24)

with

∆(1.1)
n (x) =

∫ g′−1(g′(x)+hd)

g′−1(g′(a)−hd)

∫ 1

−1

Kd(t)dt(ĝ(v) − g(v))′dv

∆(1.2)
n (x) =

∫ g′−1(g′(a)−hd)

0

∫ 1

g′(v)−g′(a)
hd

Kd(t)dt(ĝ(v) − g(v))′dv

∆(1.3)
n (x) =

∫ 1

g′−1(g′(x)+hd)

∫
g′(v)−g′(x)

hd

−1

Kd(t)dt(ĝ(v) − g(v))′dv.

17



A further Taylor expansion yields for the first term

∆(1.1)
n (x) =

∫ g′−1(g′(x)+hd)

g′−1(g′(a)−hd)

(ĝ(v) − g(v))′dv (25)

= (ĝ − g)(g′−1
(g′(x) + hd)) − (ĝ − g)(g′−1

(g′(a) − hd))

with |ζz − g′(z)| ≤ hd for z = x, a. After substituting v = g′−1(g′(a) + hdw) and v = g′−1(g′(x) +

hdw), respectively and again using a Taylor expansion, the two remaining terms are

∆(1.2)
n (x) =

∫ g′−1(g′(a)−hd)

0

∫ 1

g′(v)−g′(a)
hd

Kd(t)dt(ĝ − g)′(v)dv (26)

= hd

∫ 1

−1

Kd(t)

∫ w

−1

(g′−1
)′(g′(a) + hdv)(ĝ − g)′(g′−1

(g′(a) + hdv))dvdt

=

∫ 1

−1

Kd(t)[(ĝ − g)(g′−1
(g′(a) + hdt)) − (ĝ − g)(g′−1

(g′(a) − hd))]dt

= −(ĝ − g)(a) − hd

∫ 1

−1

tKd(t)(g
′−1

)′(ζa,t)(ĝ − g)′(g′−1(ζa,t))dt − (ĝ − g)(g′−1
(g′(a) − hd))

and in the same way

∆(1.3)
n (x) =

∫ 1

g′−1(g′(x)+hd)

∫
g′(v)−g′(x)

hd

−1

Kd(t)dt(ĝ − g)′(v)dv (27)

= hd

∫ 1

−1

tKd(t)(g
′−1

)′(ζx,t)(ĝ − g)′(g′−1(ζx,t))dt − hd(g
′−1

)′(ζx)(ĝ − g)′(g′−1(ζx)) (28)

with |ζz,t − g′(z)| ≤ hd|t| ≤ hd for z = a, x. Bearing in mind that

sup
u∈J

|ĝ′(u) − g′(u)| = OP (1) sup
u∈J

|f̂ ′(u) − f ′(u)| = OP

( log h−1

nh3

)1/2

(29)

(see Silverman, 1978), equations (24) - (27) combine to

∆(1)
n (x) = ĝ(x) − g(x) − ĝ(a) − g(a) (30)

18



+hd

∫ 1

−1

tKd(t)(g
′−1

)′(ζx,t)(ĝ − g)′(g′−1(ζx,t))dt

−hd

∫ 1

−1

tKd(t)(g
′−1

)′(ζa,t)(ĝ − g)′(g′−1(ζa,t))dt

= ĝ(x) − g(x) − ĝ(a) − g(a) + OP

(h2
d log h−1

nh3

)1/2

= ĝ(x) − g(x) − ĝ(a) − g(a) + oP

( 1√
nh

)

.

The second term is negligible which can be seen by the following estimation

∆(2)
n (x) = −

∫ 1

−1

Kd(v)(g′−1
)′(g′(x) + hdv)(ĝ′ − g′)2(g′−1

(g′(x) + hdv))dv

+

∫ 1

−1

Kd(v)(g′−1
)′(g′(a) + hdv)(ĝ′ − g′)2(g′−1

(g′(a) + hdv))dv.

The uniform convergence rates in (29) and conditions (23) now provide that

∆(2)
n (x) = OP

( log h−1

nh3

)

= oP

( 1√
nh

)

.

The deterministic part can be similarly calculated as in Dette, Neumeyer and Pilz (2006) where

now it has to be regarded that g′ is strictly decreasing. If G denotes the primitive of g′−1,

integration by parts and a taylor expension yield

An,2(x) =

∫ g′(a)

g′(x)

{ 1

hd

∫ 1

0

∫

∞

t

Kd

(g′(v) − u

hd

)

dudv − g′−1(t)
}

dt

=
1

hd

∫ g′(a)

g′(x)

{

∫ g′−1(t−hd)

0

∫ g′(v)+hd

t

Kd

(g′(v) − u

hd

)

dudv − g′−1(t)
}

dt

=

∫ g′(a)

g′(x)

{

g′−1(t + hd) +

∫ g′−1(t−hd)

g′−1(t+hd)

∫ (g′(v)−t)/hd

−1

Kd(u)dudv − g′−1(t)
}

dt

=

∫ g′(a)

g′(x)

{

g′−1(t + hd) − hd

∫ 1

−1

(g′−1)′(t + hdv)

∫ v

−1

Kd(u)dudv − g′−1(t)
}

dt

=

∫ g′(a)

g′(x)

{

g′−1(t + hd) −
(

g′−1(t + hdv)

∫ v

−1

Kd(u)du
)∣

∣

∣

1

−1
+

∫ 1

−1

g′−1(t + hdv)Kd(v)dv − g′−1(t)
}

dt
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=

∫ g′(a)

g′(x)

{

∫ 1

−1

g′−1(t + hdv)Kd(v)dv − g′−1(t)
}

dt

=

∫ 1

−1

Kd(v)
{

G(g′(a + hdv)) − G(g′(a)) − (G(g′(x) + hdv) − G(g′(x)))
}

dv

= h2
dκ2(Kd)

{ 1

g′′(a)
− 1

g′′(x)

}

+ o(h2
d) = o

( 1√
nh

)

.

Therefore it is shown that

̺hd
(log f̂)(x, a) − log f(x) = log f̂(x) − log f(x) + oP

( 1√
nh

)

.

It is well known that

√
nh(f̂(x) − f(x) − b(p)

n (x))
D→ N (0, s2(x))

and hence an application of the delta method yields the assertion of Lemma 3. 2

3 Simulations

In this section the performance of the antitone, convex and log-concave estimators are demon-

strated by first showing some typical estimates and after that comparing their simulated mean

squared error (MSE) and integrated mean squared error (IMSE) to those of the unconstrained

estimator. The simulations are performed for the densities

f1(x) = 2 exp(−2x)I[0,∞)(x)

f2(x) = 12
(

x − 1

2

)2

I[0,1](x)

f3(x) =
15

16
(1 − x2)2I(−1,1)(x)

f4(x) =
1

2
√

2π
exp

(

− x2

8

)

.
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(a) decreasing estimation of f1
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(b) convex estimation of f2

Figure 1: (a) Left part: Typical decreasing (solid line) and unconstrained (dashed line) estimates
of the true density f1 (dotted line), right part: MSE of the decreasing (solid line) and the un-
constrained (dashed line) estimates. (b) Left part: Typical convex (solid line) and unconstrained
(dashed line) estimates of the true density f2 (dotted line), right part: MSE of the convex (solid
line) and the unconstrained (dashed line) estimates

To this end, n = 100 observations are simulated according to the densities f1 - f4, respectively.

From this data the antitone, convex and log-concave estimators are calculated. The unconstrained

estimates of f1, f3 and f4 are based on gaussian kernels while for f2 the Epanechnicov kernel is

used. The bandwidth h is chosen by the plug-in method dpik implemented in the KernSmooth

package in R while hd is chosen as h2. Figure 1(a) presents a typical decreasing estimator (solid

line) of f1 compared to the underlying unconstrained one (dashed line) and the true density f1

(dotted line) and the corresponding mean squared errors of both estimates. Figure 1(b) shows the

same for the convex estimate of f2. A first inspection of the representative estimators in the left

pictures of (a) and (b) shows that the restricted estimators correct the shape by preserving the

quality of the unconstrained estimator. The unconstrained estimators show in particular some

problems in estimating f1 or f2 correctly near the boundary. This is quite well corrected by the

constrained estimators without using boundary corrected kernels. After that first impression the

estimators are compared by using the MSE criterion. The pointwise mean squared errors of the

constrained and unconstrained estimates in the right parts of (a) and (b) are calculated from 200

simulation runs. Both, the unconstrained as well as the constrained estimators behave very simi-

lar in the interior of the domain but there are clear advantages for the constrained estimators at
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(a) log-concave estimation of f3
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(b) log-concave estimation of f4

Figure 2: Left: Typical unconstrained (dashed line) and log-concave (solid line) estimates with
the true density (dotted line); middle: logarithm of the unconstrained (dashed line) and the log-
concave (solid line) estimates and of the density (dotted line); right: MSE of the unconstrained
(dashed line) and the log-concave (solid line) estimates.

the boundary. Seen over the whole interval, the integrated mean squared error is an appropriate

measure for the quality of an estimator. The IMSE of the unconstrained estimator of f1 is 0.01217

which is larger than the IMSE 0.00589 of the decreasing estimate. This, to some extend, confims

the theoretical results of Chernozhukov, Fernández-Val and Galichon (2007) for monotone func-

tion estimators and indicates that for f1 and a fixed sample size the decreasing estimator performs

better than the unconstrained one. For f2 the IMSE of the unconstrained estimator is 0.16429

and that of the convex estimator gives 0.10142. This yields an advantage of the convex estimator

over the unconstrained one.
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Figure 2 shows typical log-concave estimates (solid line) with the underlying unconstrained esti-

mates (dashed line) and the true density (dotted line) in the left part. Figure 2(a) corresponds to

f3 and Figure 2(b) to f4. In the middle there are the log transforms of f̂lc (solid line), f̂ (dashed

line) and fi, i = 3, 4 (dotted line). Based on the left and middle part of Figure 2 it can be observed

that the log-concave transform corrects slight non-log-concavities in the unconstrained estimate

while both behave very similar where log-concavity is already fulfilled. Finally, the right part

of Figure 2 shows the MSE of the unconstrained (dashed line) and the log-concave (solid line)

density estimate. In (a) there are clear advantages for the log-concave estimate over nearly the

whole interval. This is also confirmed by the IMSE whose value is 0.00771 for the unconstrained

and 0.00548 for the log-concave estimate. In the right part of Figure 2(b), that is for the normal

density f4, there cannot be observed such clear advantages over the whole interval. Looking at

the typical estimates in the left and middle part it seems as if the log-concave estimate better

estimates the peak of the density. This first impression is confirmed by the simulated MSE which

is considerable smaller for the log-concave estimate around the maximum of the true density. But

there are also regions where the unconstrained estimate has a smaller MSE. The IMSE of both

estimates is very similar, that is 0.00016 for the unconstrained and 0.00015 for the log-concave

one. This means that, seen over the whole interval both estimates are qualitatively comparable

but if the peak should be modeled correctly, the log-concave estimate should be prefered.
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