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Non technical summary 

The expansion of higher education has lead to a continuously increasing number of jobs that 

deal with scientific problems and methods (Gibbons 1994). In science based industries like 

the biotechnology industry knowledge has become the most important production input. Since 

knowledge as a productive factor has different properties than a scarce production factor new 

economic concepts have been introduced within the last two decades. These new concepts 

emphasize the interactions between organizations which permanently produce and absorb 

knowledge so that knowledge flows occur between all actors in all directions. As a 

consequence knowledge should not only flow between firms or from public research 

organizations to firms but also from firms to public research organizations. The empirical 

literature has mostly neglected this topic so far. 

This paper analyzes differences in the factors that influence the occurrence of knowledge 

flows within industry and from industry to science in the biotechnology sector. The 

knowledge flows are modeled via a backward patent citation analysis on the basis of EPO 

patent data. We then use an quasi-experimental framework that compares the identified citing 

and cited patents with a combined sample of control patents. On basis of this combined 

sample we estimate a weighted bivariate probit model on the citation probability of science 

and industry. We find considerable differences in the citation probability of science and 

industry. Cultural closeness has a positive effect on the citation probability from industry to 

industry while the citation probability of scientific institutions is not affected by cultural 

distance. Moreover many inventions in the biotechnology sector that are protected by patents 

obviously seem to be not profitable at a first glance but feature great value for future scientific 

research because the economic value has only a positive effect on the citation probability of 

industry. Co-operation between firms and research institutions on a patent application seems 

to have a signal effect for other research institutions regarding the potential usefulness for 

own research and thus results in a higher citation rate from science.  

Our results suggest that knowledge transfer in the biotechnology industries indeed is not a 

one-way street between public research organizations and firms but works in both directions. 

This result qualifies present-day biotechnology industries as science-based industries par 

excellence as the division of labor in research activities between firms and public research 

organizations blurs the ancestral boundaries between applied and basic research.



 

Das Wichtigste in Kürze 

In wissenschaftsbasierten Industrien wie der Biotechnologie stellt technologisches Wissen den 

wichtigsten Produktionsfaktor dar. Technologisches Wissen unterscheidet sich aber in seinen 

Eigenschaften von knappen Produktionsfaktoren wie Kapital und Arbeit. Aus diesem Grund 

sind in den letzten beiden Jahrzehnten verschiedene, neuartige ökonomische Konzepte 

vorgestellt worden. Diese neueren, ökonomischen Konzepte betonen die Interaktion zwischen 

Organisationen, die auf der einen Seite neues technologisches Wissen produzieren und auf der 

anderen Seite technologisches Wissen von außerhalb absorbieren. Technologisches Wissen 

fließt demnach nicht nur zwischen Unternehmen oder von öffentlichen 

Forschungseinrichtungen zu Unternehmen, sondern sollte auch von Unternehmen zu 

öffentlichen Forschungseinrichtungen fließen. Die empirische Literatur hat dieses Thema 

jedoch bislang fast gänzlich ausgeklammert. 

Das vorliegende Papier analysiert Unterschiede der Zitationswahrscheinlichkeit zwischen 

Unternehmen seinerseits und von Unternehmen zu öffentlichen Forschungseinrichtungen in 

der biotechnologischen Industrie. Die Zitationen von Unternehmen zu Unternehmen und von 

Unternehmen zu wissenschaftlichen Einrichtungen werden dabei anhand einer 

Zitationsanalyse auf Basis von EPO-Patentdaten abgebildet. Anhand der dabei identifizierten 

Patente und dazu gespielter Kontrollpatente schätzen wir ein gewichtetes bivariates 

Probitmodell, um Unterschiede in den Zitationswahrscheinlichkeiten aufzudecken. 

Die empirischen Ergebnisse zeigen, dass Wissenstransfer von Unternehmen zu öffentlichen 

Forschungseinrichtungen in der biotechnologischen Industrie tatsächlich stattfindet. Dabei 

gibt es eine Reihe von Faktoren, die Unterschiede in den Zitationsstrukturen von 

Unternehmen und öffentlichen Forschungseinrichtungen erklären. So haben beispielsweise 

die kulturelle bzw. räumliche Nähe zwischen zwei Akteuren und der wirtschaftliche Nutzen 

der patentierten Erfindung einen positiven Effekt auf die Zitationswahrscheinlichkeit von 

Unternehmen, jedoch keinen Einfluss auf die Zitationswahrscheinlichkeit von staatlichen 

Forschungsinstituten oder Universitäten. Dahingegen geht von einer gemeinsamen 

Patentanmeldung von Unternehmen und wissenschaftlichen Einrichtungen ein Signaleffekt 

für andere wissenschaftliche Einrichtungen aus und erhöht die Wahrscheinlichkeit, dass 

dieses Patent von wissenschaftlichen Einrichtungen zitiert wird. 
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Abstract 

This study aims at analyzing the differences in the factors that 
influence the probability of knowledge transfer within industry and 
from industry to science in the biotechnology sector. In order to model 
these knowledge flows a citation analysis on the basis of patent data 
was conducted and a weighted bivariate probit model was estimated 
on the citation probability of industry and science on the basis of a 
combined sample of citing and cited patent pairs and an equal number 
of control patent pairs. The empirical results suggest that there are 
considerable differences in the citation probability. Cultural closeness 
for instance has a positive effect on the citation probability from 
industry to industry while the citation probability of scientific 
institutions is not affected by cultural distance.  
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1. Introduction 

The expansion of higher education has lead not only to the fact that many people nowadays 

have acquired substantial knowledge about recent scientific discoveries and research topics 

but also resulted in a continuously increasing number of jobs that deal with scientific 

problems and methods (Gibbons 1994). In science based industries like the biotechnology 

industry science and knowledge has even become the most important production input. 

However knowledge differs from scarce production factors since it can be “sticky” (von 

Hippel 1994) which means that knowledge is sometimes so specialized that it can not be 

easily transferred from one actor to another. In order to capture these preconditions different 

economic concepts have been introduced within the last two decades which seem to be more 

suitable for explaining technological change in science based industries compared to 

neoclassical concepts of scarce recourse allocation. Almost all new economic concepts put 

knowledge in the middle of their analysis and describe innovative processes as a result of 

interactions between organizations that permanently produce and absorb knowledge. The 

concept of innovation systems focuses on the flow of technology between various actors like 

firms, universities and the government and analyses these technology flows on a regional, 

national or supranational level (Lundvall 1992, Nelson 1993,). Etzkowitz and Leydesdorff 

(1997) describe a triple Helix of university-industry-government relations with – in contrast to 

the national innovation systems approach – a reorganizational component across institutions 

and national boundaries. One of the most recent concepts from firm theory puts its main focus 

on the participation in external networks of organization. The idea of “open innovation” was 

first introduced by Henry Chesbrough (2003) who conducted a number of company based 

case studies and came to the result that organizations (i.e. firms) have to open themselves up 

to external networks in order to gain new knowledge. This external knowledge can then be 

combined with the already existing firm knowledge and capacities for innovative activities 

can be successfully be build up2. 

On basis of the introduced economic concepts it becomes visible that knowledge should not 

only flow from universities or other public research institutions to firms but also vice versa. 

                                                 

2 A brief overview of economic concepts that put knowledge in the middle of their perspective can be found in 

Dogson et al. (2006), pp. 334-335. 
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However the empirical literature on technology transfer in science based industries has mostly 

dealt with the question how firms can profit from the research results of scientific institutions 

or other firms but has disregarded the fact that firms themselves can act as valuable 

knowledge producers and thus can produce knowledge flows to other firms or scientific 

institutions.  

This paper analyzes differences in the factors that influence the occurrence of knowledge 

flows within industry and from industry to science in the biotechnology sector. The 

knowledge flows are thereby modeled via a backward patent citation analysis on the basis of 

EPO patent data. As a result we are able to identify cited and citing patent pairs. We then use 

an quasi-experimental design which has been first introduced by Jaffe et al. (1993). This 

quasi-experimental framework compares the identified citing and cited patents with a matched 

sample of control patents. On the basis of this combined sample we estimate a weighted 

bivariate probit model on the citation probability of science and industry.  

The structure of the paper is as follows. In the second section we provide a short overview on 

the characteristics of the biotech industry and the importance of patent protection for this 

industry. The third section discusses the question whether there is a rationale for technology 

transfer from industry to science. The fourth section reviews the empirical literature on patent 

based studies of knowledge flows. The subsequent three sections contain the empirical part of 

the paper. First the data and methodology are presented (fifth section) and then the variables 

and descriptive statistics are shown (sixth section). The estimation strategy and the results are 

presented in the seventh section. Section eight closes with a conclusion 

2. Characteristics of the biotech industry and patent protection 

As other science based industries the biotechnology industry differs from existing non-science 

based industries in its pattern and dynamics of technological change. Pavitt (1984) analyses 

sectoral patterns of technical change by classifying firms according to three dimensions. 

According to this taxonomy supplier dominated firms are characterized by weak R&D and 

engineering capabilities and their main technology lies in cutting costs through embodied 

technical change. Thus supplier dominated firms apply rarely for patents. Whereas production 

intensive firms exploit scale economies of production and therefore aim at realizing 

performance increasing product and process innovations. Product innovations are often 

protected by patents while process innovations are kept secret. In contrast to the first two 
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groups science based firms depend on the progress of the relevant sciences and their main 

technology stems from R&D activities of the firms in the sector. Innovations are protected 

through patents, lead-time advantage and secrecy. However science based industries are not a 

homogeneous group but include mature industries as well as young industries, and also the 

R&D intensity varies widely within the science based industries.  

Within the science based industries the biotech industry is considered to be a rather young 

industry and distinguishes itself due to its high R&D intensity (Niosi 2000). The invention of 

the recombinant DNA technique by Cohen, Boyer and Berg at beginning of the 1970’s is 

often considered to be the starting point for the so called modern biotechnology. Zucker and 

Darby (1996) were among the first who analyzed the success factors for the formation of the 

biotechnology industry. In their work they emphasized the role of individual star scientists as 

a knowledge source for biotech firms. Today the biotechnology industry in developed 

countries is characterized by a large share of small and medium sized firms which are highly 

R&D intensive and attract a large amount of money from public subsidiary programs and 

venture capital agencies (Fuchs 2003). Furthermore biotechnology firms are increasingly 

producing scientific publications. Gittelman and Kogut (2003) have analyzed a sample of 116 

US biotech firms in the time period between 1988 and 1995. They show that the total 

publication rate of the firms almost doubled in that time span. 

With the rise of the modern biotechnological industry and the growing awareness of the 

economic and sociological potential of this industry a major problem occurred in how the 

intellectual property of biotechnological inventions could be protected. The existing patent 

protection laws in the US and other countries at the beginning of the 1980s were not designed 

for the protection of biotechnological inventions. With a broadened definition of patentable 

subject matters due to a change of the patent protection law in the US in 1992 and subsequent 

changes of patent protection laws in other countries it became possible to protect biological 

active substances including single molecules and proteins (Ko 1992). Therefore patents create 

a basis for trading inventions. As a consequence patents have great importance in 

biotechnology not only in the protection of marketable inventions and thus as a positive signal 

for venture capital firms but also for discoveries that are not marketable at the first glance but 

feature great value for further research (Mazzoleni and Nelson 1998). 
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3. Knowledge interactions in the biotechnology industry – is there a rationale for 

knowledge transfer from industry to science? 

Knowledge is nowadays considered to be an indispensable factor for economic growth.  

Arrow was the first who stressed the importance of knowledge for economic growth. In his 

model, Arrow assumes that new knowledge is created depending of the level of new 

investments and in turn the technologies accessible for firms depend on the economy wide 

knowledge stock. This Arrowian view suggests that technological knowledge has the non-

excludable and non-rival character of a public good and can be transferred and appropriated 

with rather low effort and costs (Arrow 1962, Arrow 1969).  

This rather traditional approach to the nature of technological knowledge has been challenged 

by the Neo-Schumpeterian approach in recent years. In the view of Neo-Schumpeterians 

technological knowledge is considered to be a quasi-public good, which means that the 

character of technological knowledge bears higher levels of appropriability and excludability 

compared to the Arrowian view (Rosenberg 1994, Antonelli 1999). Moreover the production 

of technological knowledge is considered to be path-dependent and cumulative and can have a 

local character. This Neo-Schumpeterian view of technological knowledge implies that 

“knowledge is the result of complex processes of creation of new information building upon 

the mix of competences acquired by means of learning processes, the socialisation of 

experience, the recombination of available information and formal R&D activities” (Antonelli 

1999, p. 245). The innovation system approach confirms this view and emphasizes the 

importance of interactions between industry and science for a successful innovation process 

due to its increasing complexity (Lundvall 1992, Nelson 1993, Nelson and Rosenberg 1993). 

Moreover, a number of studies have examined the relationship between the technological 

complexity (measured by the R&D intensity) of industries and the number of R&D alliances 

and they have found a positive correlation between these two factors (e.g. Freeman 1991, 

Hagedoorn 1995). 

Owing to their science based nature, problems of appropriability and excludability of 

technological knowledge are even more severe in the modern biotechnological industry 

(Arora and Gambardella 1990). In order to succeed in the biotechnology industry firms must 

permanently keep close contact to the moving technological frontier and must create valuable 

technological knowledge on their own (Gambardella 1995, Niosi 2003). Thus, the ability of 

firms to draw knowledge from scientific institutions or other firms is regarded to be an 
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important factor for their success (Kenney 1986, Prevezer 2001, Niosi 2003, Powell et al. 

1996). Several studies have shown that geographical closeness between firms and research 

institutions in biotechnology can facilitate this knowledge transfer from science to industry 

(Zucker et al. 1994, Audretsch and Stephan 1996, Zucker and Darby 1998, Powell et al. 

1999). Also the role of individual scientists for the prosperity of firms in biotechnology has 

been highlighted (Zucker and Darby 1996).  

Besides the critical role of knowledge flows from science to industry also knowledge 

interactions between firms in biotechnology have been recognized to be crucial for the 

industrial development. Pyka and Saviotti (2005) analyze research networks in the 

biotechnology industry and conclude that a coexistence of large diversified firms and small 

dedicated biotech firms is crucial for industrial development. For small firms a co-operation 

with large pharmaceutical or chemical firms can result in the gain of more market relevant 

knowledge in the form of the use of advanced production capabilities, better market access 

due to a better distribution infrastructure and experience in conducting clinical trials (Pisano 

1990, Baum et al. 2000). In turn large firms in the biotech sector seek to co-operate with 

small/medium sized research intensive firms in order to acquire marketable knowledge and to 

spread risks (Arora and Gambardella 1990).  

Whilst these two directions of knowledge flows namely from science to industry and within 

industry have been fairly well analyzed there is a lack of evidence regarding knowledge flows 

from industry to science. The main reason for the negligence of research on knowledge 

transfer from industry to science is the threat of a negative influence of technology transfer 

upon the norms of open science (Merton 1973). In traditional sectors like manufacturing, 

universities and public research institutes are still considered to be the most important 

producers of valuable scientific research (Gibbons et al. 1994). 

In the biotechnology industry however, things look different. Due to the mentioned science 

base of the industry, firms themselves next to public research organizations have accumulated 

a large stock of technological knowledge. This creation of technological knowledge within 

firms has been accelerated by venture capital firms with the aim of realizing returns due to 

groundbreaking inventions as well as public subsidy programs with the objective of not 

falling behind the industrial development compared to other countries. As a result, there is a 

considerable amount of valuable technological knowledge in the biotechnology industry that 

has not been transferred by research institutions in the first place but has been created within 
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the firms. Pisano (1990) conducted an empirical analysis among US firms and found that 

firms in biotechnology rely more often only on technological knowledge which has been 

created in-house especially in those areas where the firms have accumulated in-house R&D. 

Thus the question arises whether public research organizations in the field of biotechnology 

are willing and able to participate in the knowledge that has been produced by firms. The 

existing literature on this topic is rare however and there are no specific studies for the 

biotechnology industry. Meyer-Krahmer and Schmoch (1998) have conducted a survey 

among professors from universities or public research institutions in science based fields and 

asked them to rate the importance of different interaction types with industry. As a result the 

interviewed professors rated those interaction types with industry higher where a bidirectional 

exchange of knowledge with industry occurs. Link et al. (2007) have examined knowledge 

transfer between industry and science on the basis of a survey among individual scientists. 

Their results suggest that university researchers rank collaboration with industry as very 

important and state that they benefit from the transferred knowledge and the use of enhanced 

equipment. Kaufman and Tödtling (2001) emphasize the importance of a bidirectional 

knowledge exchange between industry and science in innovation co-operations. It becomes 

obvious that knowledge transfer from industry to science has not been completely neglected 

in previous studies but it is mostly mentioned as a by-product from science to industry 

knowledge flows. This study aims at contributing more empirical evidence to the topic of 

industry to science knowledge flows in the biotechnology industry.  

4. Review on patent based studies of knowledge flows 

Patent data have been extensively used to shed light on the innovation process. Patent 

documents provide information about the technology of an invention as well as detailed 

information about the inventor and assignee of the invention. For example patent counts have 

been frequently used as an indicator of innovation activity. However, patent data should be 

handled with some caution. Griliches has surveyed in his seminal work the pitfalls that may 

arise when using patent statistics as innovation indicators but concludes that “Nothing else 

even comes close in the quantity of available data, accessibility, and the potential industrial, 

organizational, and technological detail” (Griliches 1990, p. 1702).  

The idea to use patent data as an indicator for knowledge flows can be traced back to 

Schmookler (1966) and Scherer (1982). Schmookler among others brought up the discussion, 
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that the economic benefits of firms due to R&D could not be solely reduced to their own 

R&D activities, but also to the embodiment of technological knowledge through intermediate 

products produced by other sectors. Scherer (1982) took up Schmooklers idea and developed 

a complex “interindustry technology flows” matrix which traces back the knowledge of R&D 

performing industries to industries that purchased the products of the R&D performing 

industries. In a following work Scherer relied on a data set that contains over 15.000 US 

patents that were individually examined to determine the original industry of the patent and 

the industries for which the use of the patent was anticipated and linked them to the R&D 

outlay of corporations. The linked R&D outlays were then distributed through a “technology 

flows” matrix. The estimation results indeed revealed the critical role of embodied 

technological knowledge for firms’ productivity growth (Scherer 1982, Griliches and 

Lichtenberg 1984). 

More recent work that use patent citations to trace knowledge flows mostly deal with the 

question whether knowledge flows are technologically bounded, geographically concentrated 

and what industry specific differences exist (e.g. Jaffe et al. 1993, Jaffe and Trajtenberg 1996, 

Porter 2000, Maurseth and Verspagen 2002). 

Stolpe (2002) modeled the citation probability among patents in the liquid crystal display 

technology and revealed that technological closeness has a significantly positive influence on 

the citation probability. However Stolpe (2002) did not make a distinction between the 

institutional types of the assignees of the citing patents. Hu and Jaffe (2003) have worked out 

the positive effect of technological closeness for the citation probability in a cross country 

comparison. Besides the technological closeness also the technological generality of the cited 

patent may have an influence on the citation probability. Trajtenberg et al. (1992) have shown 

that university research outcomes are more basic and harder to appropriate than research 

outcomes of industry. 

The hypothesis that knowledge flows might be geographically bounded has been heavily 

analyzed and discussed within the last years. Firms that have the same cultural background 

are more likely to exchange knowledge than firms with different cultural backgrounds. 

Mowery et al. (1996) have shown that more knowledge exchange takes place in alliances with 

partners who have the same nationality. Empirical evidence is less clear regarding 

geographical closeness. Jaffe et al. (1993) were the first who found direct evidence that 

knowledge spillovers as measured by patent citations are indeed locally concentrated. 



 

8 

Although the quasi-experimental design that was used by Jaffe et al. (1993) was challenged 

afterwards (Thompson and Fox-Kean 2005, Thompson 2006), the empirical evidence could 

not be disproved. Although doubts remain from the theoretical perspective (Breschi and 

Lissoni 2001) it is supposed that geographical closeness has a positive impact on the citation 

probability. 

A few recent studies have analyzed knowledge flows in the biotechnological sector on the 

basis of patent data. McMillan et al. (2000) have worked out the importance of public science 

for the development of the US biotechnology industry on the basis of patent data. The authors 

conclude that especially small biotech firms depend on the basic knowledge that is created by 

public research organizations. Gittelman (2006) has examined the differences in the public-

private knowledge flows between the US and France on the basis of patent citations. In line 

with the work of Zucker and Darby (1998) emphasize the importance of individual scientific 

careers for interactions between firms and public research organizations. Moreover they point 

out that technological performance, as measured by the number of granted patents, depends 

on a heterogeneous setting of organizations and interactions. 

5. Data and methodology 

Patent citation analysis and data 

The aim of the study is to analyze the differences in the factors that influence the probability 

of knowledge transfer within industry and from industry to science in the biotechnology 

sector. In order to model these knowledge flows we conduct a backward patent citation 

analysis: for each patent in the sample all citations which have been made by timely 

subsequent patents in the sample are identified. 

The study is based on patent application data from the European Patent office (EPO)3 which 

cover the years between 1978 and 2003. The patent data include information about the 

name(s) and country(ies) of origin of the inventor(s) as well as the assignee(s), the declared 

IPC classes as well as application and grant dates. Moreover a patent document contains 

references to other patents, so called citations. In EPO patent data, these citations have mainly 

                                                 

3 For a comprehensive overview on the application and examination process at the EPO see Michel and Bettels 

(2001). For differences in the examination process at the EPO and other patent offices see  
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the legal function to specify the knowledge that justifies a claim for novelty and are mostly 

added by the patent examiners instead of the inventors. Alcácar and Gittelman (2006) find 

that examiners played a significant role in identifying prior art, adding 63% of citations on the 

average patent, and all citations on 40% of patents granted. This might be due to two reasons. 

Either the inventors are not aware of the patents that have been added by the examiners 

(Criscuolo and Verspagen 2008) or the inventors have strategically omitted citations (Alcácar 

and Gittelman 2006). Nevertheless, since we focus on a rather small technological field the 

actors should not have problems identifying prior art (Maurseth and Verspagen 2002). 

Regarding strategic omission of prior art the patent examiners and the application process of 

the EPO plays an important role. In the patent application process, the applicant receives a 

detailed search report, conducted by the patent examiners, which discloses essential prior art 

on which the examiner would mainly base his grant decision. After obtaining the search 

report, the applicant must decide whether he wants to pursue the application process or not. 

Thus the risk that prior art remains undetected is minimized by the work of the patent 

examiner. 

In a first step we identify on the basis of the OECD compendium of patent statistics (OECD 

2008) all relevant international patent classification (IPC) classes concerning biotechnology. 

Following this classification scheme all records where at least one of the relevant IPC classes 

was listed in the application are kept for further analysis. Subsequently all applicants in the 

data files are assigned by hand to the following categories: firms, universities, public research 

institutions, individuals, others. Our data cover 72427 patents that have been applied for in the 

mentioned time period. We use the application date of the patent application as the relevant 

time point for our analysis as it is common in most of scientific works that deal with patent 

analysis.  

Truncation and restriction of the sample 

Since the analysis concentrates on a comparison of the knowledge flows from industry to 

science and within industry only those patent pairs were kept, where at least one firm was 

among the applicants of the cited patent and at least one firm and/or one research institution 

was among the applicants of the citing patent. However due to the fact that in many countries 

scientists had or still have the privilege to assign patents under their own name, the share of 

scientific applicants is likely to be underrepresented. 
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Moreover all patent pairs where the cited patent and citing patent showed the same 

application name, so called self citations were excluded from the sample since they solely 

reflect in-house knowledge flows. 

The application of a patent citation approach necessitates considering one difficulty, because 

the patent that has been filed first in the sample has a much larger time frame to be cited 

compared to the patent that has been filed more recently in the sample. This problem of 

truncation has been heavily analyzed in empirical studies. Caballero and Jaffe (1993) and 

Jaffe and Trajtenberg (1999) estimated the shape of the citation lag distribution via a 

parametric function and Hall et al. (2001) used non-linear functions to approximate the shape 

via estimation. Stolpe (2002) states in his work that in the ideal case citation studies should be 

based on patents that have been filed at exactly the same point in time so that the problem of 

temporal influences on the citation frequency can be neglected. However in the same breath 

he accounts for the fact that patent data are flow data and that they are thus only measurable 

over time. In his study he sets a time limit of three years for the selection of the patents that 

are later referred to via citation analysis. Almeida (1996) deals with the problem of truncation 

by including the citation lag in his latter estimation. Gittelman (2006) includes not only the 

citation lag but also the square of the citation lag in her regression and moreover limits the 

time span where the cited patents are identified.  

Figure 1: Citation lag – Kernel density estimation 

 

Citation lag in years 
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Within our sample, the mean citation lag is 4.2 years. Figure 1 shows the distribution of the 

citation lag by means of a Kernel density estimation. The cited patents receive most of their 

citations in the second and third year after their application date. Only 10 percent of the 

citations have been made more than 9 years after the EPO application date of the cited patent. 

Thus by following the approach of Gittelman (2006) and including not only the citation lag 

but also the squared citation lag in the following estimation it is accounted for the fact that 

there are rather few patents with a very short or very long citation lag. Since we have patent 

data available from 1978-2003 and the mean citation lag in our sample is 4.2 years we limit 

the time span in which we select the cited patents to 1978-1998, so that patents which are 

issued in 1998 have a rather equal chance of being cited. 

Construction of a control sample 

Because we aim at analyzing differences in the factors that influence the citation probability 

we need to include reference values to the sample of identified cited and citing patent pairs in 

order to maintain interpretable results. For this purpose we follow an experimental design 

which was first introduced by Jaffe et al. (1993) and later used by several other studies (e.g. 

Almeida and Kogut 1999, Stolpe 2002). Within this experimental framework, a non-cited 

patent that shows the same first three digit international patent classification (IPC) class and 

the same EPO application date as the cited patent is randomly searched for each citing patent 

within the original sample. However it is important to note that the fact that a patent is chosen 

to be a control patent for a specific citing patent does not mean that it can not have received 

citations in an earlier or later point of time. 

Due to the construction of the control sample we are able to model an unconditional 

probability for the factors influencing the citation probability. The conditional probability for 

the influencing factors is given when an actual citation has occurred. Thus the hypothesis that 

can be tested is whether a statistically significant difference between the conditional and 

unconditional probabilities exists when examining the citation probability4. 

                                                 

4 The two probabilities are related. Bayes rule states that P(Citation | Influencing 

factor)/P(Citation)=P(Influencing factor/Citation)/P(Influencing factor) 
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6. Variables and descriptive statistics 

The dependent variables in our estimation INDIND and INDSCI are binary variables 

indicating whether a patent that has been applied for by industry has received a citation by a 

patent that was applied for by either industry (INDIND) and/or scientific institution(s) 

(INDSCI).  

Building upon the previous discussion a set of independent variables was included in the 

estimation that is likely to have an influence on the citation probability.  

First a variable to proxy the technological closeness of the patent pair was included. TECHCL 

is a dummy variable indicating whether the two patents in a patent pair show the same 6-digit 

IPC class. Since we look at industry research outcomes as possible appropriable targets we 

assume that their technological character might be less basic. Nevertheless things might turn 

out to be different for two reasons. First we look at a science intensive industry where a large 

part of industrial actors are involved in basic research and second we only consider 

knowledge flows from industry to industry and industry to science. However, we assume that 

a high technological generality5 implies a more basic technological character of the invention 

of the cited patent and therefore expect that it is positively related with the citation probability 

from industry to science and on the other side we assume that a more specific technological 

character of a technological invention is positively related with the citation probability within 

industry. While previous works that measured the technological specialization of patents on 

the basis of IPC-classes often used the Herfindahl-index, van Zeebroeck et al. (2006) have 

compared different technological concentration measures on the basis of EPO patents and 

come to the result, that the Gini-Coefficient6 in line with the C20-measure are the most 

reliable measures for technological concentration. Moreover they recommend at least a 4-digit 

aggregation level of the IPC-classes used. Consequently, this study relies on the Gini-

Coefficient for the identified biotechnology related IPC classes of the citing patents 

aggregated to the 6-digit level as a measure for technological specialization and we specify  

                                                 

5 Generality is also referred to as basicness. See i.e. Stolpe (2002). 

6 The Gini Coefficient is a statistical measure for relative Concentration. It relies on the concept of the Lorenz 
Curve. The Gini Coefficient takes on values between zero and one, whereas the value one corresponds to perfect 
inequality.  
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generality =1- Gini coefficient 

as a proxy for the technological generality of the cited invention. In those cases where the 

Gini-Coefficient is calculated on the basis of only one IPC-class the measure for generality is 

replaced with zero. However, since the Gini-Coefficient reduces complex data to one 

parameter, there is the danger that valuable information from the used data is neglected. In 

this case, the Gini-Coefficient does not account for the number of different IPC classes of the 

citing patents, although this is obviously valuable information when approximating the 

technological generality of an invention. In order to account for this shortcoming we include 

an interaction term between the measure of technological generality and the total number of 

different IPC-classes of the citing patents (INTGINI) in the regression instead of the plain 

measure of technological generality.  

The variable CULCL indicates the cultural closeness of the patent pairs. CULCL is a dummy 

variable and measures whether the two patents in the patent pairs have the same assignee 

countries.  

Besides that we include a dummy variable reflecting whether the cited or cited control patent 

has been assigned by both, industry and science (COMMON_CITED). It is important to note 

that the variable COMMON_CITED is a rough indicator for joint research, since firms and 

research institutions can of course conduct joint research without being jointly listed as 

assignees in a particular patent application. However, a joint assignment of the common 

research might signal that the protected invention has a major value for both the scientific and 

the industrial progress. 

Moreover we include variables that reflect the overall patenting activity in the biotechnology 

field of the assignee(s) of the cited or cited control patent (NOPATS_CITED) and the 

patenting activity of the applicant(s) of the citing patent (NOPATS_CITING). 

NOPATS_CITED and NOPATS_CITING are continuous variables and contain the cumulated 

number of patents that the assigning institution(s) have applied for up to the EPO date of the 

considered patent in the particular patent pair. It is expected that a high patenting activity of 

the assignee(s) of the citing patent (NOPATS_CITING) is positively related to the citation 

probability, especially regarding scientific institutions as assignees. This assumption is owed 

to the work of Owen-Smith and Powell (2001) who revealed that scientific institutions which 

patent have a higher propensity to engage in technology transfer. More precisely they 
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analyzed the propensity of scientific research institutions transferring knowledge to other 

firms or research institutions. However we assume that scientific institutions that patent might 

also show a higher probability to draw knowledge from patents that have been applied for by 

firms since the scientific institutions might be better informed about the patented inventions of 

firms due to a review of existing inventions during the application process. 

We also include a proxy for the economic value (ECVALUE) of the cited respectively cited 

control patent. ECVALUE contains the whole number of subsequent citations that a cited 

patent has received on the basis of our original sample. Harhoff et al. (1999) obtained value 

estimates of inventions filed in patents due to a survey of the patent owners. They found a 

significant positive relationship between the private value estimate of the invention of the 

filed patent and the number of subsequent citations of this specific patent. Hall et al. (2001) 

have confirmed this positive relationship. In their work they compare different measures that 

are likely to influence the market value of firms and conclude that a citation weighted patent 

stock is more highly correlated with the market value than the plain patent stock. Since we 

expect firms to be profit oriented we expect that they transfer knowledge from the 

economically most valuable inventions.  

Moreover we also control for the country of residence of the assignees at the time point of 

their patent application. Since we have a large number of applicant countries in our sample we 

decide to only include dummies for the three countries that account for most of the patent 

applications in our sample. As a consequence the included country dummies have to be 

interpreted in relation to all other countries that are not captured via the country dummies. For 

example the variable US_CITED contains the information whether at least one of the 

assignees of the cited or cited control patent was located in the United States during the patent 

application process and US_CITING contains the same information for the assignee of the 

citing patent. Analogous dummy variables were created for Japan (JP_CITED, JP_CITING) 

and Germany (GER_CITED, GER_CITING)7.  

As already discussed we include two variables to control for the citation lag. YEAR_DIFF and 

YEAR_DIFFSQ are continuous variables which reflect the time lag between the cited or cited 

                                                 

7 See also the OECD Biotechnology statistics (OECD 2006) for a more general overview on the patenting 

activities of different countries at the EPO.  
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control patent and citing patents and the controls, measured by years. We further include 

dummies for the application year (YEAR1-YEAR23) of the cited and cited control patent to 

control for intertemporal differences in the patenting activity. 

Descriptive statistics 

Table 1 shows the descriptive statistics of the combined sample. Due to the construction of 

the sample the control patent pairs account for exactly half of the data. It can be seen that 

knowledge flows from industry to science are rare but indeed happen. About 10% of the 

patents that were filed by firms and that received citations received them by public scientific 

institutions (INDSCI).  

Table 1: Descriptive statistics 

Variable Obs Mean Std. Dev. Min Max 

INDSCI 30210 0.053 0.225 0 1 
INDIND 30210 0.454 0.498 0 1 
TECHCL 30210 0.431 0.495 0 1 
CULCL 30210 0.292 0.455 0 1 
INTGINI 30210 3.702 2.661 0 16 
COMMON_CITED 30210 0.017 0.130 0 1 
ECVALUE 30210 9.610 11.125 1 112 
NOPATS_CITED 30210 118.119 169.439 1 1083 
NOPATS_CITING 30210 62.331 95.131 2 644 
YEAR_DIFF 30210 4.277 3.486 0 24 
DE_CITED 30210 0.104 0.306 0 1 
US_CITED 30210 0.428 0.495 0 1 
JP_CITED 30210 0.224 0.417 0 1 
DE_CITING 30210 0.125 0.330 0 1 
US_CITING 30210 0.398 0.489 0 1 
JP_CITING 30210 0.218 0.413 0 1 

With respect to the technological closeness (TECHCL), we find that about 40 % of the 

examined patent pairs show the same 6 digit IPC class. Technological closeness can thus be 

observed more often than cultural closeness (CULCL). Only about 30% of the patent pairs 

show the same assignee country. Due to the fact that the indicator for technological generality 

of the cited or cited control invention (INTGINI) is an interaction term, the interpretation of 

the descriptive statistics is rather vague. Yet the high standard deviation indicates that the 

distribution of INTGINI is rather unequal.  

Only a small number of patents in our sample have been jointly applied for by science and 

industry. The variable COMMON_CITED indicates that not more than 2 % of the inventions 
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in our sample have assignees from both industry and science. The actual number of joint 

patent applications between industry and science in the relevant time span is assumingly 

higher since in many countries scientists had and still have the privilege to freely realize the 

economic benefits of their inventions8. So it is important to bear in mind that 

COMMON_CITED can only be interpreted as a rough indicator for joint research between 

science and industry. The variable that reflects the economic value of the patented invention 

shows that on average a cited or cited control patent receives citations from almost 10 other 

subsequent patents. Regarding the overall patenting activity in the biotechnology field of the 

assignee(s) of the patent pairs we find that the assignees of the cited patents 

(NOPATS_CITED) have applied for almost twice as many patents as the assignees of the 

citing patents (NOPATS_CITING). Moreover the descriptive statistics show that most of the 

patents in our sample have been assigned by firms or research institutions from the United 

States (US_CITED, US_CITING).  

7. Estimation strategy & Results 

The focus of this paper is to investigate differences in the citation probability from industry to 

industry and from industry to science. Thus our two dependent variables in the estimation 

indicate whether a patent that has been assigned to industry has either received a citation by a 

scientific institution (INDSCI) or by a firm (INDIND).  

In order to get a first hint on differences between the citation probability of industry and 

science, we conducted t-tests. The results can be found in the annex table A1. However the t-

tests just indicate whether there is a significant difference in the mean values of the variables 

but can not provide information about the size of these effects. Therefore a discrete 

probability model is applied. 

Because we have two dependent variables and an invention can receive patent citations from 

both, industry and science a bivariate probit model is estimated. The bivariate probit model 

estimates the two citation decisions simultaneously and allows the error terms to be 

correlated. 

                                                 

8 I.e. in Germany this privilege was not changed until 2002.  
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Because we restrict our sample to cited and citing patent pairs and their controls we apply 

sample weights to the regression to avoid bias from a probability based sample. The sample 

weights show the probability that a patent pair was chosen from the sample. Thus for patent 

pairs where the cited patent shows a more recent application date, the probability for a citing 

patent to be chosen from all possible subsequent patents is higher compared to cited patents 

with an earlier application date. Additionally, the probability that a cited and citing patent pair 

was chosen from the sample is lower than the probability that a control patent pair was chosen 

from the sample. In the weighted bivariate regression the sample weights are included as 

inverts such that patent pairs with a lower probability to be chosen are weighted higher for the 

estimation in relation to those patent pairs with a higher sample inclusion probability.  

Table 2 shows the estimation results of the weighted bivariate probit model. Tables reporting 

the marginal effects and the correlation among the variables of the estimated bivariate probit 

model can be found in the annex table A2 and A3.  

Technological closeness (TECHCL) of the two patents in a patent pair has a significant 

positive effect on the probability to be cited from both industry and science, thus the findings 

of Stolpe (2002) and Hu and Jaffe (2003) are confirmed. 

Whereas cultural closeness (CULCL) has a positive significant effect on the citation 

probability of industry, it does not matter for the citation probability of scientific institutions. 

A possible explanation is that the knowledge flow is highly related to the persons involved in 

the research process such that spillovers among firms are facilitated from cultural proximity 

(i.e. Porter 2000a, Mowery et al. 1996). In contrast, researchers from scientific institutions are 

forced to conduct a thorough search for prior art and related works when writing for academic 

publications. Therefore they are less likely to be affected by cultural distance.  

The interaction term (INTGINI) that reflects the technological generality of the cited or cited 

control invention suggests that firms and scientific institutions are more likely to cite 

industrial inventions with a less broad technological character. While we expected to find a 

negative relationship between an increasing technological generality of the possible cited 

invention and the citation probability of industry we also find that this relationship holds for 

the citation probability of scientific institutions. Thus this finding might confirm the work of 

Link et al. (2007) who have examined knowledge transfer between industry and science on 
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the basis of a survey among individual scientists and come to the result that the scientists can 

benefit from the applied knowledge of firms and from the use of their enhanced equipment. 

The indicator for joint research COMMON_CITED shows a highly significant positive effect 

on the citation probability from industry to science. As pointed out previously the indicator 

for common research is rather blurry since we expect that more firms have conducted 

common research with science on the patented invention with the difference that these 

scientific institutions were not listed as applicants in the patents applications. Still a joint 

patent application between science and industry obviously signals the scientific relevance of 

the invention to other research institutions and thus increases the probability of a scientific 

citation. 

Table 2: Results of the weighted bivariate probit model 

 Industry to science (INDSCI) Industry to industry (INDIND) 

Variable Coef. Std. Err.  Coef. Std. Err.  

TECHCL 0.120 0.039 *** 0.684 0.023 *** 
CULCL 0.054 0.044  0.375 0.027 ** 
INTGINI -0.030 0.015 ** -0.017 0.009 *** 
COMMON_CITED 0.627 0.090 *** -0.047 0.067 *** 
ECVALUE 0.008 0.007  -0.008 0.004 *** 
ECVALUESQ -0.0001 0.000  0.0001 0.000 ** 
NOPATS_CITED 0.000 0.000  -0.0001 0.000 *** 
NOPATS_CITING -0.006 0.000 *** 0.001 0.000 ** 
YEAR_DIFF -0.008 0.013  0.019 0.008  
YEAR_DIFFSQ 0.001 0.001  -0.001 0.001 ** 
DE_CITED -0.203 0.068 *** -0.081 0.041  
US_CITED -0.018 0.052  -0.228 0.030 ** 
JP_CITED -0.119 0.049 ** -0.135 0.030 *** 
DE_CITING 0.172 0.072 ** 0.022 0.039 *** 
US_CITING 0.127 0.043 *** -0.147 0.028  
JP_CITING -0.327 0.060 *** 0.074 0.033 *** 
CONS -1.079 0.104 *** -0.503 0.068 *** 
ATRHO -0.481 0.027 ***    
RHO -0.447 0.022     
Wald test of rho=0:  chi2(1) =  309.639    Prob > chi2 = 0.0000 
30210 observations    

Note: *** ,**, * indicate a significance level of 1%, 5%, 10%, Year dummies are included. 

The economic value (ECVALUE) of the patented invention expressed by the total number of 

received subsequent citations has no influence for the citation probability of scientific 

institutions whereas for firms a highly significant u-shaped relationship between the economic 

value of the cited patent and the citation probability can be found. This u-shaped relationship 

indicates that contrary to our expectation firms do not only draw knowledge from in an 

economic sense most valuable inventions but are equally interested in inventions which are 
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characterized by a comparable low economic value. A possible explanation for the missing 

significant relationship between the economic value of an invention and the citation 

probability of science could be the mentioned fact that many inventions that are protected by 

patents are not marketable at a first glance and thus do not bear a high economic value but are 

characterized by a considerable value for further scientific research (Mazzoleni and Nelson 

1998). 

The patenting experience of the applicant firm of the cited patent (NOPATS_CITED) has only 

a positive effect on the citation probability of research institutions. Accordingly, research 

institutions are more likely to cite patents that have been applied for by firms who are 

producing a high knowledge output. In contrast to these findings an increase in the 

accumulated number of patents of the citing (NOPATS_CITING) research institutions bears a 

significantly negative probability for the research institution to cite industry patents. This 

finding is opposed to our assumption that research institutions that have a high number of 

accumulated patents might show a higher probability to transfer knowledge from industry 

patents. Obviously research institutions in the biotechnology sector are screening the 

knowledge that has been created by firms on a regular basis, especially when they are not 

frequently patenting. On the contrary assignee firms of the citing patents that show a high 

patenting activity are more likely to cite patents from other firms. Thus the mentioned 

necessity for biotechnology firms to acquire external knowledge from other firms to keep up 

with the technological frontier even when they are actively involved in own research is 

confirmed by this result.  

The included country dummies show opposed effects on the citation probability of industry 

and science. However the following results have to be interpreted with caution due to 

differing privileges in the economic usage of inventions of scientists among the countries. Our 

results show that Germany and Japan as assignee countries of the potentially cited inventions 

lowers the citation probability of science and the US and Japan as assignee countries of 

citable inventions have a negative effect on the citation probability of industry compared to 

the other countries. In contrast to this the citation probability of science increases if the 

(potentially) citing patents show Germany and the US as assignee countries and the citation 

probability decreases if the assignee country of the potentially citing patents are assigned by a 

Japanese scientific institution. In turn citing patents with Germany or Japan as assignee 

countries have a positive effect on the citation probability of industry. Thus the results suggest 

that German and US research institutions compared to Japanese and other research institutions 
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are more actively involved in screening and transferring knowledge that has been produced by 

industry. As pointed out before and confirmed by these results cultural proximity obviously 

plays no role for the knowledge transfer from industry to science.  

8. Conclusion 

This paper aims at investigating differences in the citation probability from industry to 

industry and from industry to science. We estimated a weighted bivariate probit model on the 

citation probability of industry and science on the basis of a combined sample of citing and 

cited patent pairs and an equal number of control patent pairs.  

The empirical results suggest that there are considerable differences in the citation probability. 

Cultural closeness has a positive effect on the citation probability from industry to industry 

while the citation probability of scientific institutions is not affected by cultural distance. The 

economic value has only a positive effect on the citation probability of industry but again has 

no effect on the citation probability of science. However many inventions in the 

biotechnology sector that are protected by patents obviously seem to be not profitable at a first 

glance but feature great value for future scientific research. Co-operation between firms and 

research institutions on a patent application seems to have a signal effect for other research 

institutions regarding the potential usefulness for own research and thus results in a higher 

citation rate from science.  

Our results suggest that knowledge transfer in the biotechnology industries indeed is not a 

one-way street between universities and other public research institutions and firms but works 

in both directions. This result qualifies present-day biotechnology industries as science-based 

industries par excellence as the division of labor in research activities between firms and 

public research organizations blurs the ancestral boundaries between applied and basic 

research. 
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Appendix 

Table A1: T-Tests of the descriptive statistics 

Variable 
T-test between INDIND and 

INDSCI 

 mean difference  

TECHCL 0.077 *** 
CULCL 0.044 *** 
INTGINI 0.133 * 
COMMON_CITED -0.026 *** 
ECVALUE 0.553 * 
ECVALUESQ 31.135  
NOPATS_CITED -9.197 ** 
NOPATS_CITING 46.459 *** 
YEAR_DIFF -0.065  
YEAR_DIFFSQ -1.204  
DE_CITED 0.013 * 
US_CITED -0.018  
JP_CITED 0.031 *** 
DE_CITING 0.009  
US_CITING -0.098 *** 
JP_CITING 0.122 *** 

 

Table A2: Marginal effects of the bivariate probit model 

 Industry to science (INDSCI) Industry to industry (INDIND) 

Variable dy/dx Std. Err.  dy/dx Std. Err.  
TECHCLa 0.010 0.003 *** 0.267 0.009 *** 
CULCLa 0.005 0.004  0.148 0.010 ** 
INTGINI -0.003 0.001 ** -0.007 0.003 *** 
COMMON_CITEDa 0.088 0.019 *** -0.018 0.026 *** 
ECVALUE 0.001 0.001  -0.003 0.002 *** 
ECVALUESQ 0.000 0.000  0.000 0.000 ** 
NOPATS_CITED 0.000 0.000  0.000 0.000 *** 
NOPATS_CITING -0.001 0.000 *** 0.000 0.000 ** 
YEAR_DIFF -0.001 0.001  0.008 0.003  
YEAR_DIFFSQ 0.000 0.000  0.000 0.000 ** 
DE_CITEDa -0.015 0.004 *** -0.032 0.016  
US_CITEDa -0.001 0.004  -0.090 0.012 ** 
JP_CITEDa -0.009 0.004 ** -0.053 0.012 *** 
DE_CITINGa 0.016 0.008 ** 0.009 0.016 *** 
US_CITINGa 0.011 0.004 *** -0.058 0.011  
JP_CITINGa -0.024 0.004 *** 0.029 0.013 *** 
Note: *** ,**, * indicate a significance level of 1%, 5%, 10%, a dummy variable. 
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Table A3: Correlation matrix 
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TECHCL 1                
INTGINI -0.077 1               
CULCL 0.041 0.026 1              
ECVALUE 0.066 0.799 0.042 1             
ECVALUESQ 0.044 0.550 0.042 0.864 1            
NOPATS_CITED 0.012 0.156 0.031 0.153 0.094 1           
NOPATS_CITING 0.016 -0.004 -0.008 0.022 0.047 0.051 1          
COMMON_CITED -0.017 0.007 0.004 -0.006 -0.013 -0.023 -0.007 1         
YEAR_DIFF -0.061 -0.040 -0.044 -0.052 -0.053 -0.031 0.093 -0.012 1        
YEAR_DIFFSQ -0.052 -0.028 -0.035 -0.038 -0.037 -0.032 0.072 -0.011 0.935 1       
DE_CITED -0.037 -0.066 -0.077 -0.098 -0.059 0.100 0.027 0.086 0.027 0.016 1      
US_CITED 0.060 0.150 0.274 0.179 0.120 0.148 0.005 -0.028 -0.021 -0.014 -0.295 1     
JP_CITED -0.055 -0.104 0.026 -0.134 -0.078 -0.140 0.001 0.006 -0.011 -0.012 -0.183 -0.465 1    
DE_CITING 0.012 -0.014 -0.111 -0.022 -0.018 0.016 0.280 0.012 0.044 0.031 0.067 -0.025 -0.013 1   
US_CITING 0.003 0.026 0.318 0.049 0.037 0.002 -0.018 -0.006 -0.083 -0.074 -0.023 0.068 -0.057 -0.307 1  
JP_CITING -0.034 -0.009 0.036 -0.031 -0.023 0.001 -0.099 -0.001 0.073 0.073 -0.010 -0.054 0.125 -0.199 -0,429 1 

 




