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Abstract

Structural innovations are typically hidden and often identified by means of a-

priori economic reasoning. Under multivariate Gaussian model innovations there is

no loss measure available to distinguish between particular identifying restrictions

and rotations thereof. Based on a non Gaussian copula distribution framework, this

paper proposes a loss statistic that can be used to discriminate between alternative

identifying assumptions on the basis of higher order moment characteristics. The

merits of Moment Targeted Structural Innovations are illustrated by means of Monte

Carlo simulations and real data applications to bivariate systems of US stock prices

and total factor productivity and of international breakeven inflation rates.
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1 Introduction

Vector autoregressive (VAR) models have generated a widely adopted and rather flex-

ible toolkit to in-sample investigate the dynamic relations of socioeconomic time series

and out-of-sample forecasting (Lütkepohl 2005). Regarding the former field of theoretical

and applied econometrics, VAR models are descriptive in the sense that they offer a pro-

found understanding of reduced form features of the data. When it comes to a structural

perspective on the linkage of economic variables, structural VAR models (Amisano and

Giannini 1997) have to borrow from economic theory, statistical ad-hoc decompositions of

reduced form covariance matrices, or simply from (economic) a-priori reasoning. Opposite

to traditional simultaneous equation modeling, structural VAR models are mostly char-

acterized by using just identifying restrictions. Generally, distinct settings of identifying

restrictions might compete for the understanding of simultaneous economic relationships.

For instance, in the multivariate Gaussian framework, upper and lower triangular decom-

positions of reduced form covariance matrices are observationally equivalent although they

carry markedly distinct implications for the recursive ordering of structural innovations.

Hence, it is a particular shortcoming of the Gaussian model framework that identifying

restrictions cannot be tested against each other, or that there is no loss measure at hand

that orders competing assumptions according to data based criteria.

Although Gaussian (quasi) log-likelihood optimization has become a powerful and

often applied device for parameter estimation, further econometric tasks, interval fore-

casting, Value-at-Risk quantification etc., have recently raised an interest in more general

frameworks to describe contemporaneous linkages among economic and financial time se-

ries. In this field copula distributions (Cherubini et al. 2004, Joe 1997, Nelsen 2006)

are attracting intense interest, since a huge dimensional space of copula distributions

promises most flexible response to rather general dependence patterns featuring empirical

data. Given that from a statistical perspective the implementation of copula distributions

is often straightforward this framework has been productively used for diverse applica-

tions with a particular focus in empirical finance. Recently, Lee and Long (2008) have

introduced a copula based multivariate GARCH model to embed innovations to volatility

in such a general setting. Given the plentitude of potential copula models that could be

responsible for the generation of a models’ stochastic characteristics, model choice and

care for model misspecification are important issues in practice. Chen and Fan (2006)

highlight the potential that in reality an analyst might in fact choose from two false distri-

butional settings. Accordingly, they propose criteria for model choice among misspecified

alternatives.
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In this paper the framework of non Gaussian copula distributions is considered to

derive loss measures associated with alternative (identifying) structural patterns. In the

proposed set up, structural innovations bear the interpretation of news processes that

are uncorrelated over the time dimension. In lack of multivariate normality, however,

structural shocks are dependent in higher order moments. In turn, this dependence can

be exploited to attach distinct losses to particular identifying assumptions. Although

the proposed Moment Targeted Structural Innovations (MTSI) are not restricted to the

VAR framework they contribute to a rapidly expanding literature in the field of structural

modeling.

Lanne and Lütkepohl (2008, 2010) and, similarly, Rigobon (2003) propose an identifi-

cation scheme distinguishing states of lower and higher variance for which the causation

structure is assumed identical. The assumption of invariant structural characteristics over

distinct economic states can, however, be subjected to criticism. The former approach

has been further generalized towards a Markov switching model (Lanne, Lütkepohl and

Maciejowska 2009) formalizing the dynamic pattern (and recurrence) of distinct variance

regimes. As a main distinction, MTSI fully proceed under the presumption that avail-

able (vector valued) reduced form residuals are independent and identically distributed

(iid) over the time dimension. Hence, MTSI might be seen to provide an assessment of

structural assumptions in a scenario where statistical tools based on time heterogeneity

cannot be applied. The MTSI concept is statistical and does not rely on a-priori reasoning

with regard to some ’most likely’ or ’weakest’ restrictions placed on potential patterns

of contemporaneous features as, for instance, in Uhlig (2005). Opposite to identifying

impulse responses by means of sign restrictions (Faust 1998, see also Fry and Pagan 2007)

the proposed identification scheme is analytical and does not make use of simulation tech-

niques. Moreover, it does not restrict the long run impacts of structural innovations as

outlined in Blanchard and Quah (1989).

Similar to the Markov switching approach in Lanne, Lütkepohl and Maciejowska

(2009), the MTSI provide statistical loss measures that can be used to evaluate com-

peting assumptions on the generation of contemporaneous reduced form characteristics.

As a particular merit, however, MTSI loss functionals are also sensible for the contrasting

of just identifying restrictions. It may associate, for instance, distinct losses to alternative

recursive patterns characterizing the transmission from structural to reduced form model

information. Thus, MTSI loss statistics can be used for the data based implementation of

impulse response functions that make use of a Cholesky decomposition of the reduced form

covariance matrix. Since MTSI are derived for iid reduced form disturbances, simplest

resampling schemes, i.e. iid resampling with replacement, can be adopted to quantify the
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uncertainty attached to the diagnosis of a particular direction of instantaneous causality.

The remainder of this paper is organized as follows: In the next Section structural

innovations as stemming from a standardized bivariate copula distribution are introduced

and the loss measure attached to competing structural assumptions is derived. Section 3

provides Monte Carlo evidence on the strength of the MTSI method to distinguish alter-

native directions of recursive structural models. In Section 4 two empirical applications

consider the contemporaneous interaction of international breakeven inflation rates in the

first place. Secondly, a bivariate system of US stock prices and total factor productiv-

ity (Beaudry and Portier 2006) is subjected to the detection of a data supported news

process. Two Appendices provide the copula distribution functions used for Monte Carlo

exercises and some detailed representations of third order data characteristics motivated

in Section 2.2.

2 Modelling iid reduced form disturbances

In this section first, the statistical framework applied to characterize structural innovations

and to attach loss measures to particular identifying assumptions is outlined. Secondly,

the content of higher order moments for structural parameter identification is highlighted.

Then, a strategy is sketched to evaluate the loss attached to particular identifying assump-

tions in a huge dimensional space of models that might generate structural innovations.

Fourthly, a few remarks are made on the interpretation and implementation of impulse

response functions within the non Gaussian modeling framework. Since the entire ap-

proach relies on the assumption of iid residuals, in the fifth place, a resampling scheme is

outlined that supports an empirical analyst to quantify the uncertainty associated with

decisions in favor of particular instantaneous causation schemes.

2.1 Copula distributed structural innovations

The statistical model embedding MTSI is in full analogy to the copula multivariate

GARCH model proposed by Lee and Long (2009). Opposite to their framework, the

second order moments of the serially uncorrelated, mean zero observables, denoted ut,

are time invariant, however. It is noteworthy that the origin of the observables ut is not

made explicit in this work. For instance, one might regard it as the (estimated) residual

vector of a VAR model, a vector of standardized residuals determined by means of a

multivariate volatility model (GARCH or stochastic volatility models, say) or it could be

obtained by stacking (standardized) residuals of univariate linear regression (conditional

volatility) models. With Φ(•) and C(•) denoting the Gaussian and a copula distribution
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function, respectively, consider the following representation of ut

ut = Det, (1)

where et = Ω−1/2ξt, ξt ∼ C(Φ(ξ1t), Φ(ξ2t), γ), Cov[ξt] = Ω. (2)

As formalized in (2) both elements of ξt are (marginally) Gaussian distributed, i.e. ξit ∼
N(0, 1), i = 1, 2. The joint distributional characteristics are governed by a copula dis-

tribution C(ζ1, ζ2, γ), where the random variables ζit, i = 1, 2, are uniformly distributed

over the interval [0, 1] and γ is a parameter or vector of parameters. Thus, while their

margins are Gaussian the joint distribution of the elements in ξt is generally not multi-

variate normal. In fact, the special case of joint normality is covered by the model in (2)

if C(ζ1, ζ2, 0) is the Gaussian copula. In this case ξ1t and ξ2t are independent. While first

and second order characteristics of et are identical over all possible copula choices, each

of these generates a distinct dependence pattern and therefore results in model specific

higher order cross moments of ξt, et and ut.

Since the case of independence is ruled out for the elements of ξt, the model setup

obtains for the implied second order moments

Cov[ξt] = Ω =

(
1 ω

ω 1

)
, ω 6= 0.

By construction, the random vector et = Ω−1/2ξt comprises random variables that are

uncorrelated but not independent in general. The elements of et are considered to compose

the vector of structural innovations that govern the instantaneous stochastic properties

of the (reduced form) disturbances ut. Without loss of generality and exploiting the

properties of et it is assumed that the elements of ut are in standardized form, i.e.

Cov[ut] = DΩ−1/2ΩΩ−1/2′D′ =

(
1 σ

σ 1

)
= DD′ = Σ.

Notably, σ, −1 < σ < 1, is the empirically measurable (reduced form) correlation between

u1t and u2t and Σ is nonsingular.

Relating reduced form and structural innovations, the matrix D is of core importance

for economic and econometric modeling. For the so-called AB model, set out by Amisano

and Giannini (1997) in the structural VAR framework, we have, for instance, D = A−1B.

While reduced form residuals are often easily available, the structural innovations et are

hidden and cannot be specified without (a-priori) assumptions about the composition of

D. For instance, one might presume a (lower vs. upper) triangular structure of D, such

that one element of the reduced form disturbances obeys the interpretation of a structural
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shock process. Alternatively, D could be a full matrix. In this case, a symmetric speci-

fication implies that observable disturbances result from some ’equal’ cross weighting of

two underlying structural shocks. In their context of volatility impulse response model-

ing, Hafner and Herwartz (2006) show that the square root matrix D = Σ1/2 identifies

unique structural innovations in a model with independent standardized t-distributed in-

novations to (multivariate GARCH) volatility. Presuming an asymmetric structure of D

means that there is one dominating structural shock which is, however, not sufficient to

fully explain the contemporaneous links among the reduced form disturbances. Let dij

denote a typical element of D. For the purpose of identification the following additional

assumptions are made:

• A1: D 6= Ω−1/2.

• A2: dii > 0, i = 1, 2.

• A3: C(Φ(ξ1t), Φ(ξ2t), γ) is not the Gaussian copula.

• A4: E[ξ2
1tξ2t] = θ21 6= 0, E[ξ1tξ

2
2t] = θ12 6= 0.

A1 is of technical nature. It can only be binding in case of a particular relation between ω

and σ which is unlikely to apply in reality and which has zero probability if the correlation

parameter σ is estimated from the data. In case Assumption 1 is violated, reduced form

residuals are directly drawn from the copula distribution. Following Lee and Long (2009),

Ω1/2 is set to the symmetric square root matrix of Ω such that, by assumption, both

random innovations ξ1t and ξ2t contribute symmetrically to the generation of structural

innovations et. Using the square root matrix for standardization appears particularly

justified, since it is ’neutral’ with regard to structural assumptions which are typically

of recursive nature or originate from the notion of some dominating structural impulse.

Alternatively, one might also think of a triangular decomposition of Ω−1 to formalize

the transmission from ξt to structural innovations et. However, making use of rotation

matrices, the space of triangular decompositions is infinite while the square root matrix

Ω1/2 is unique up to trivial rotations (reordering of the elements in ξt or sign changes).

Noting that the ξt are not jointly normally distributed each triangular decomposition is

likely to result in distinct dependence patterns and, therefore, is prohibitive for a closed

form distributional view at the data ut. A2 implies that a particular element of eit

must impact on its own reduced form counterpart uit positively. Notably, identification

only requires a nonzero impact, i.e. dii 6= 0 is required, however, from an economic

perspective it appears justified to somewhat reduce the space of admissible parameter

settings. Presuming a recursive structure, i.e. having an upper or lower triangular matrix
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D, A2 implies that a zero restriction prevents eit to impact on ujt, j 6= i. Assumption

3 rules out the multivariate Gaussian distribution from generating the (reduced form)

stochastic properties of et or ut. Since this particular distribution is known to be fully

invariant under rotation of the variables in the system, two competing and distinct guesses

about D could be observationally equivalent. If A3 is overly restrictive for applied work

can be directly addressed by implementing the model in (1) and (2) with a Student-t

copula. In case of a large estimated degrees of freedom parameter, the scope to identify

the structure of D within the framework of the model in (1) and (2) is limited. Since

the Gaussian case is ruled out by A3, the additional restrictions imposed by A4 appear

rather mild, since dependence between ξ1t and ξ2t will be reflected in higher order cross

moments.

In Section 2.3 a moment based distance measure is introduced that quantifies in how

far a particular assumption on the structure of the matrix D is supported by empirical

data. Before providing this loss measure and motivating the informational content of

higher order moments for identification in Section 2.2, particular features of the model in

(1) and (2) are discussed in some detail.

1. Marginals

At the first sight it appears rather restrictive to fix the marginal distribution to

the Gaussian case. Owing to the standardization et = Ω1/2ξt, however, the actual

structural form residuals belong, similar to the approach in Lanne and Lütkepohl

(2010), to the family of mixed normal distributions. Given the flexible weighting

scheme generated by a plentitude of possibly underlying copula distributions, the

proposed model class might be sufficiently general to capture joint characteristics

of empirical data.

In how far the explicit setting of the marginal distribution to the Gaussian case

limits the empirical scope of the considered class of joint distributions is not clear

at this stage, however. Notably, for the validity of the moment based identification

scheme proposed Section 2.3 the specific marginal setting is not essential as long as

particular higher order moments exist.

To get an impression of the joint distributional features implied by particular copula

distributions, Figure 1 displays scatter diagrams of bivariate samples drawn from

the standardized Clayton, Gumbel, Frank, the Student-t with 10 degrees of free-

dom and the Gaussian copula. The initial dependence level of the elements in ξt is

small as Kendall’s τ (or the linear correlation, denoted ρ, for the latter two copulae)

is 0.3. While the former two copulae formalize an asymmetric joint distribution,
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the Frank, the Student-t copula with 10 degrees of freedom and the Gaussian cop-

ula are symmetric around the origin. The asymmetric copulae appear to generate

some upward (Clayton) and downward (Gumbel) pointing triangular pattern. The

symmetric Frank and the Student t−copula distribution deviate markedly from the

Gaussian benchmark. While the former appears to be more concentrated around

the origin, the standardized Student-t copula is more dispersed in comparison with

the Gaussian counterpart. If one would increase (reduce) the dependence parame-

ter (τ, ρ), the described shape features would see some strengthening (weakening).

Apparently, the non Gaussian copula distributions generate a flexible space of joint

distributions although, prior to standardization, all marginal distributions are fixed

to the Gaussian case. Imagining an ’almost’ symmetric shape even of the standard-

ized Clayton or Gumbel distribution (with concordance parameter τ = 0.1 say), it

seems that the class of considered distributions is general enough to approximate

cases of rather weak, medium and strong deviations from the multivariate Gaus-

sian case. The lower left panel of Figure 1 shows a rotated version of the Clayton

distribution, which appears symmetric against the unrotated Clayton distribution

displayed in the lower left panel. As outlined below in Section 3 three alternative

rotations of each copula distribution augment the distributional space considered in

this work and, thus, provide an additional dimension to enhance the flexibility of

the model class defined in (2).

2. Moment techniques vs. maximum likelihood

The copula distribution model is fully parametric, and, therefore, presuming a par-

ticular copula specification, maximum likelihood estimation of the elements in D

appears straightforward. Letting aside numerical issues involved with maximum

likelihood optimization, a (potentially not fully efficient) moment based identifica-

tion scheme is proposed in this paper for the following two reasons: Firstly, although

maximum likelihood estimation of D for given ut and C(ζ1, ζ2, γ) appears feasible,

any choice of a copula distribution (or one of its rotations) bears the risk of misspec-

ification. In light of the plentitude of available parametric copula distributions, it

appears most likely to miss ’the true’ distributional setting when deciding in favor

of a particular parametric model C(ζ1, ζ2, γ). Likelihood estimates might carry some

content for the adequacy of particular model selections. Given the huge space of

parametric copulae (Cherubini et al. 2004, Joe 1997, Nelsen 2006), however, the

detection of a most convenient joint distribution model remains cumbersome for an

empirical analyst and the choice between two misspecified alternatives as considered
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in Chen and Fan (2006) does not resolve the issue to detect most appropriate struc-

tural innovations within a huge dimension space of distributions. Secondly, depend-

ing on the model that generates the reduced form residuals ut (VAR, MGARCH,

stacked univariate processes), it is not clear if vectors ut fulfill the properties of

maximum likelihood implied residuals. In this respect, it is noteworthy that max-

imization of a full copula VAR (vector error correction model) likelihood function

can become rather demanding (at least) for particular copula distributions. Model

estimation based on OLS is often consistent with regard to the conditional mean

model parameters and therefore provides a suitable approach to extract ut from

empirical data.

2.2 The informational content of higher order moments

To verify how higher order moments can be used in the non Gaussian case to identify the

elements in D consider the reduced form representation

ut = DΩ−1/2ξt. (3)

Noting that Ω1/2Ω1/2 = Ω the typical diagonal w1 and off diagonal elements w2 in Ω obey

the representation

w1 =

√
1

2
+

√
1− ω2

2
and w2 =

ω

2w1

. (4)

Therefore, by the model outset all elements in

Ω−1/2 =

(
w1 −w2

−w2 w1

)
1

w2
1 − w2

2

,

depend on the copula covariance ω in a well specified form. It is worthwhile pointing

out that the solution given in (4) is not a unique representation for the elements w1 and

w2. By trivial rotations of Ω1/2 further ’typical elements’ can be derived which all in

basically the same elements to be collected in ξt = Ω1/2et (except for joint sign changes,

and reordering). Recall that DD′ = Σ and that the diagonal elements in Σ are unity.

Therefore, the off-diagonal elements of D can be expressed in terms of their row neighbors,

i.e. d12 =
√

1− d2
11, d21 =

√
1− d2

22. Moreover, the nontrivial diagonal elements, d11 and

d22, are subjected to the restriction

d11

√
1− d2

22 + d22

√
1− d2

11 = σ. (5)

Let νrs = E[ur
1tu

s
2t] and θrs = E[ξr

1tξ
s
2t] be shorthand notations summarizing the higher

order and cross moment characteristics of reduced form disturbances and of the copula
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distributed random variables, respectively. The existence of all these moments follows

from the setting of Gaussian marginal distributions. Notably, the moments θr0 and θ0s

are known a-priori. In addition, standard results for convergence in probability imply

that the moments νrs can be estimated from available data with asymptotically vanishing

estimation error. From the relation in (3) a system of equations linking higher order

moments is immediate to derive. For the case of third order moments, r + s = 3, the

following representation can be shown to exist




ν30

ν21

ν12

ν03




=




g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44







θ30

θ21

θ12

θ03




. (6)

The parameters characterizing the moment relations of the data ut and copula distributed

random variables ξt are rather complicated since, according to (4) and (5) the elements in

Ω−1/2 and D obey nonlinear restrictions in the correlation level of observable data (σ) and

the latent moment ω = Cov[ξ1t, ξ2t], respectively. In explicit terms the third order implied

system (6) is given in Appendix A. For a given level of correlation σ it can be shown that

the system in (6) comprises 4 unknown parameters/moments, namely d11, ω, θ12 and θ21.

The moments θ30 and θ03 are fixed by assumption of Gaussian marginals, θ30 = θ03 = 0.

Note that a similar system can naturally be set out for higher order moments.

Applying straightforward algebra the four equation system (6) can be transformed

into a two dimensional system by imposing the restrictions θ30 = θ03 = 0 and eliminating

the unknown moments θ12 and θ21 under the assumption that these latter moments differ

from zero (A4). Then, one obtains for the third order moments of ut

(
ν30

ν03

)
=

(
g12 g13

g42 g43

)(
g22 g23

g32 g33

)−1 (
ν21

ν12

)
,

or, in compact notation,

ν0 = G(1)
(
G(2)

)−1
ν1 ⇔ ν0 = G(3)ν1. (7)

The system in (7) links the empirical third order moments of ut in a well defined manner

if the matrix G(3) is of rank 2. Notably, this system comprises two unknown parameters,

d11 and ω. The parameter d11 is unique, i.e. identified, if there are no two distinct

choices of d11 that give rise to the same full rank matrix G(3). In light of the intense

complexity of the relation between {d11, ω} and the elements in G(1), G(2) (and, thus, of

G(3)) analytical solutions of this identification issue are not available, though. However,

numerical experiments help to clarify the identification issue. For this, the parameters
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−1 < σ < 1, −1 < ω < 1, 0 < d11 < 1 are varied on a three dimensional grid with

stepsize 0.01 within the respective support. For all combinations matrix elements d22 are

determined from (5) and solutions that are not admissible according to A2 (d22 ≤ 0) are

removed from the parameter settings. To evaluate uniqueness of the elements in G(3)

the modulus of its maximum eigenvalue is considered. Note that concentration on the

first eigenvalue might be sufficient for identification while uniqueness of this modulus is

not necessary, since the second eigenvalue gives another direction for matrix comparison.

It turns out that for all admissible settings the rank of G(3) is 2. Moreover, within the

relevant parameter space the modulus of the maximum eigenvalue of the matrix G(3) is

unique over alternative settings {d11, ω}. To illustrate this to some extent, Figure 2 shows

selected outcomes of the numerical treatment of the equation system (6). It displays the

moduli of maximum eigenvalues for a few selections of σ = ±0.1,±0.5 and ω = ±0.1,±0.5

as a function of d11. Apparently, for given reduced form parameter σ, each d11 yields a

distinct matrix G(3) for some ω. Moreover, the displayed eigenvalues differ for given d11

when varying the copula covariance parameter ω.

2.3 The identification scheme

Having shown in Section 2.2 that third order moments of the data carry informational

content for the structural form parameters D a potential avenue for empirical modeling

appears to exploit the estimated third order moment features of ut and determine a

moment estimator for d11 and ω on this basis. Such an approach is not adopted here

for the following reasons. Firstly, the rather complex relation between the unknown

parameters {d11, ω} on the one hand and νrs, r, s = 0, . . . , 3, r + s = 3 on the other

hand (see Appendix A) is likely prohibitive to derive a suitable GMM estimator. Second,

the motivation of identifiability of D has been concentrated on the case of third order

moment characteristics. However, with the presumption of Gaussian marginals further

finite order moment conditions might be considered that promise additional strength

in distinguishing alternative guesses about the structural parameters in D. Notably,

(cross) moments of orders r + s ≥ 5 are likely to suffer from substantial estimation

uncertainty. Therefore power gains can be expected reasonably from joining third and

fourth order moment information as also proposed in the framework of normality testing

(Jarque and Bera 1980). In light of these considerations it is apparent that third order

results in Section 2.2 along with assumption A4 only provide an analytical frame that is

sufficient for identification. The conditions in A4 are not necessary for identification and

could be replaced by other settings applying to fourth and higher order characteristics of

ξt. Recalling the functional complexity between moments νrs and model parameters the
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identification scheme proposed in this paper does not target at the moment features of ut

but, rather, at those of implied innovations ξt that follow from an a-priori choice of D and

ω. Without presuming a particular copula model the underlying covariance structure Ω

is not accessible to an analyst. Assume for the moment that the covariance/correlation

parameter ω, i.e. the only unknown element in Ω is known. Conditional on ω, some guess

about D, and applying the square root standardization we have

ξt = Ω1/2D−1ut, Ω1/2 =

(
w1 w2

w2 w1

)
.

With weights fulfilling the restrictions in (4) and estimates et = D−1ut implied draws

from some copula distribution ξt = Ω1/2et are given as

ξ1t = w1e1t + w2e2t, (8)

ξ2t = w2e1t + w1e2t. (9)

The latter estimates exhibit a Gaussian distribution if all assumptions made on D and ω

hold true. Thus, in terms of (univariate) higher order moments the following characteris-

tics apply amongst others

E[ξ3
it] = 0, E[ξ4

it] = 3, i = 1, 2. (10)

The proposed identification scheme basically exploits moment characteristics of (available)

estimates et that are related with the assumptions made for the marginal distributions.

Let e
(rs)
t be short for random variables er

1te
s
2t. The following relations link structural

innovations et and underlying random vectors ξ
t
, where the underlining is used to indicate

that these random vectors are determined from ut conditional on a specific choice {D, ω}:

ξ3

1
= w3

1e
(30)
t + 3w2

1w2e
(21)
t + 3w1

1w
2
2e

(12)
t + w3
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1e
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t ,
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2
2e

(22)
t + 4w1w
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2
1e
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3
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t + w4
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(04)
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Let a vector ξt collect higher order powers of marginals implied by the assumptions on

D and ω, ξt = (ξ3

1t
, ξ3

2t
, (ξ4

1t
− 3), (ξ4

2t
− 3))′ and ξ = (ξ1, ξ2, . . . , ξT )′. The following

loss measures are attached to {D,ω} and {D}, the singled out a-priori guess about the

structural pattern, respectively,

L(D, ω) = ξ̄
′
(

ξ̃
′
ξ̃

T

)−1

ξ̄ and LD = min
ω

L(D, ω). (11)
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In (11) ξ̄ denotes the unconditional mean of the elements in ξ, and ξ̃ is the matrix of

centered variables ξt. In practice, the LD loss can be found by means of a grid search for

the unknown parameter ω, |ω| < 1. As given in (11) the model selection criterion exploits

rigorously the features of the presumed marginal Gaussian distribution up to moments

of order 4 and is similar to the Jarque-Bera statistic (Jarque and Bera 1980) for testing

the normality assumption. In its exact form the statistic differs from the Jarque-Bera

statistic, since the ξt are not jointly normal even if the choice {D,ω} coincides with the

true model parameters. In case that the elements of ξ
t

are Gaussian, standard central

limit theorems apply to confirm that the L(D,ω) statistic in (11) is asymptotically χ2

distributed with 4 degrees of freedom.

2.4 Impulse response functions

Impulse response functions (IRFs) are often applied for the analysis of dynamic relation-

ships characterizing a multiple time series with reduced form disturbances ut. Notably,

the MTSI approach can assist an analyst when determining an upper or lower triangular

covariance decomposition for the outset of IRFs. By definition, IRFs trace the effects

of a unit shock hitting a particular variable on all variables of a system. Implementing

IRFs by means of triangular decompositions proceeds from the perspective that a system

contains a variable specific shock. Assume without loss of generality that e1t is such a

shock process, meaning that an analyst applies a lower triangular decomposition of the

empirical reduced form covariance to determine a systems’ IRFs. In the framework of the

Gaussian model the ’on-impact’ effect on u2t of a unit shock hitting e1t is σ. Given that

in the Gaussian model E[e2t|e1t = 1] = 0 the instantaneous reaction of the u2t process

does not entail any response to own innovations which facilitates the derivation of IRFs

and allows for a global interpretation of the functional patterns. Moreover, the effects

of positive and negative shocks of the same size are identical (except for the sign im-

pacts). This changes if the elements in et lack independence. In the MTSI framework it

is not justified to presume that the instantaneous response of u2t to a unit shock in e1t

is fully driven by the shock process, since E[e2t|e1t = 1] 6= 0, in general. If the marginal

processes in ut are not jointly normally distributed, implied IRFs are local in the sense

that E[e2t|e1t = 1] = m(e1t). In addition, also the sign of the shock might matter since

for asymmetric copula distributions E[e2t|e1t = e] 6= (−1)E[e2t|e1t = −e]. Hence, IRFs

implied by the framework in (1) and (2) are similar to conditional moment profiles in-

troduced in Gallant et al. (1993). However, opposite to the more general concept of

conditional moment profiles, locality in the MTSI framework does not refer to states de-

fined in terms of the reduced form residuals ut. In the copula model and applying a lower
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triangular covariance decomposition, the ’on impact’ effect of an isolated unit shock in

e1t could be given as

E[u2t|e1t = 1]− E[u2t|e1t = 0, e2t = 0] = σ +
√

1− σ2E[e2t|e1t = 1].

Depending on the underlying distributional model, this quantity can differ markedly from

σ, its counterpart in the Gaussian setting. In relative terms the ’on impact’ approximation

error involved with standard IRFs applied in non Gaussian cases is most severe if σ is

small.

Accordingly, typical IRFs derived under the assumption of joint normality suffer from

a risk of misspecification and a spurious global interpretation, whenever the data do not

accord with the presumption of joint normality. Given the large class of distributional

models spanned by the framework in (2) one may expect that misspecification or locality

of IRFs is more the rule rather than exceptional. Moreover, since E[e2t|e1t = 1] 6= 0 one

may regard the shock variable e1t to instantaneously cause e2t and, therefore, refer to a

triangular matrix D as formalizing some pattern of instantaneous causation (rather than

merely a direction of recursion).

2.5 A resampling scheme for empirical data

Since the MTSI loss functional in (11) is derived within an iid setting, simplest resampling

with replacement techniques are natural candidates to quantify the uncertainty attached

to the decision in favor of a particular pattern of instantaneous causation. Suppose

an analyst wants to distinguish between two presumptions made for the D matrix. For

instance, she could be interested in a comparison of a lower vs. an upper triangular scheme,

denoted Dl and Du, respectively. The respective loss statistics are in shorthand notation

Ll and Lu. The following resampling scheme is designed to quantify the particular merits

of these alternative assumptions:

1. Determine Ll and Lu from the data.

2. Draw sufficiently often, H times say, reduced form disturbances {u∗t}T
t=1 from {ut}T

t=1

with replacement and determine bootstrap losses L∗h,l and L∗h,u, h = 1, . . . , H. In

the empirical section the number of bootstrap replications is fixed to H = 1000.

From the set of bootstrap statistics {L∗h,l, L∗h,u}H
h=1 the following empirical frequencies

carry informational content for the data supported scheme of instantaneous linkage of the

news processes in et

P̂lu =
1

H

H∑

h=1

I(L∗h,l < L∗h,u), Q̂ul =
1

H

H∑

h=1

I(Lu < L∗h,l), Q̂lu =
1

H

H∑

h=1

I(Ll < L∗h,u), (12)
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where I() is an indicator function. All these frequencies are informative for the robustness

at which a particular guess about D is stronger supported by empirical data in comparison

with a competing view. Since one would expect empirical frequencies close to uncondi-

tional quotes of 50% under a multivariate Gaussian framework, the resampling scheme

is also informative in how far the data generating model can be distinguished from the

multivariate Gaussian case. Since the MTSI loss statistics are, similar to model selection

criteria, not designed for inferential purposes, frequencies as defined in (12) do not obey

the interpretation of formal significance levels. To assess if particular statistics deviate

from an unconditional success frequency one might compare the P̂• and Q̂• statistics with

approximate confidence bands 0.5± 2
√

0.25/H. Alternatively and for the case of the P̂•

statistics, it is also sensible to adopt the Monte Carlo test principle (Dufour 1989) and

simulate the distribution of P̂• statistics under multivariate normality. As a particular

merit, Monte Carlo critical values (opposite to ad-hoc bounds 0.5±2
√

0.25/H) naturally

adapt to the sample size T .

3 Monte Carlo analysis

To investigate the scope of the MTSI distance measure in (11) to detect recursive struc-

tures in serially uncorrelated random vectors ut, a rather simple simulation experiment

is provided in this section. First the simulation design and implementation issues are

sketched before simulation results are discussed in detail.

3.1 The simulation design

Monte Carlo experiments consist of the generation of structural innovations entering re-

duced form disturbances according to a particular recursive direction. Then, MTSI loss

statistics L• are compared to uncover the shock process that underlies the data. Lower and

upper triangular matrices are used alternatively for data generation, and the underlying

recursion is determined from the loss statistics Ll and Lu as described in Section 2.3.

Seven distinct copulae (plus the Gaussian) are employed for generating random vari-

ables ξt, namely the Clayton, Farlie-Gumbel-Morgenstern (FGM), Frank, Gumbel, Plack-

ett, Ali-Mikhail-Haq (AMH) and Student−t copula with 10 degrees of freedom. Formal

representations of the copula functions are given in Appendix B. For further reference and

an intensified discussion of distributional features generated by the considered copulae the

reader may consult Cherubini et al. (2004) or Nelsen (2006). Moreover, these references

provide suitable algorithms for drawing random vectors from the copula distributions. In

addition, for each employed copula C(1) = C(ζ1, ζ2, γ) three rotations are used for data
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generation, namely,

C(2) = C((1− ζ1), ζ2, γ), C(3) = C(ζ1, (1− ζ2), γ), C(4) = C((1− ζ1), (1− ζ2), γ). (13)

While the so-called survival copula C(4) in (13) does not change the general direction of

dependence between ξ1t and ξ2t the two other (partial rotations) invert the dependence

direction as already illustrated for the case of the (rotated) Clayton copula in Figure 1

(upper and lower left hand side panel). Thus, leaving out the Gaussian, 28 distinct

copula distributions are employed in the Monte Carlo study 20 of which (Frank, Plackett,

FGM, Student-t, AMH and their rotations) imply a symmetric contemporaneous relation

between the elements of ξt. Similarly, 8 copulae (derived from the Clayton and Gumbel

model) generate asymmetric dependence.

The underlying copula distributions are characterized by distinct degrees of contempo-

raneous dependence measured in terms of Kendall’s τ (Clayton, Gumbel, Frank, Plackett,

FGM, AMH) or the linear correlation coefficient (Student-t, Gaussian). To be explicit,

alternative settings τ, ρ = 0.1, 0.2, . . . , 0.8 are considered for the Clayton, Gumbel, Frank,

Plackett and the Student-t copula with 10 degrees of freedom. Regarding the FGM and

AMH copula it is known that these models support only a limited range of dependence

in terms of Kendall’s τ . Accordingly, FGM and AMH copulae are parameterized to have

measures of concordance τ = 0.1 and τ = 0.2. For the purpose of benchmarking, the

Gaussian copula is also used for data generation. In this setting, however, the average

identification success should be identical to the unconditional probability of predicting

the correct recursive direction scheme, i.e. 50%.

For a given draw {et = Ω−1/2ξt}T
t=1 reduced form residuals are determined as

ut = Dlet or ut = Duet, t = 1, . . . , T,

where

Dl =

(
1 0

σ
√

1− σ2

)
and Du =

( √
1− σ2 σ

0 1

)
. (14)

Overall, 23 values of σ are chosen, namely,

σ = −.95,−.90, .− 80, . . . ,−.10,−.05, 0, .05, .10, .20, . . . , .90, .95.

After generation of ut the correlation parameter is estimated from standardized data, i.e.

σ̂ =
1/T

∑
t û1tû2t√

(1/T
∑

t û
2
1t)(1/T

∑
t û

2
2t)

,

with ûit = (uit − ūi)/s(ui), ūi =
1

T

T∑
t=1

uit, s(ui)
2 =

1

T − 1

T∑
t=1

(uit − ūi)
2, i = 1, 2.
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Then, the correlation estimate σ̂ is used to determine alternative structural estimates

êt = D̂−1
l ût and ět = D̂−1

u ût.

For the translation of estimated structural disturbances (êt or ět) to underlying random

variables ξ
t

the latter’s covariance must be known. Since ξt is latent, loss measures in

(11) are determined by means of a grid search for the copula covariance parameter ω =

0.01j, j = 0,±1,±2, . . . ,±99. With either {êt, ω} or {ět, ω} alternative loss statistics Ll

and Lu are determined, respectively, and a lower (upper) triangular structure is diagnosed

for the transmission of et to ut if Ll < Lu (Lu < Ll).

To study small and larger sample properties of the MTSI identification scheme alter-

native sample sizes are T = 100, 200, 400, 1000. The number of replications of each Monte

Carlo experiment is R = 5000. All simulations are performed in Gauss 6.0. Simula-

tion results are throughout provided in terms of relative frequencies of correct directional

identification, i.e.

f̂l =
1

R

R∑
r=1

I(Lr,l < Lr,u|Dl) and f̂u =
1

R

R∑
r=1

I(Lr,u < Lr,l|Du), r = 1, . . . , R. (15)

Given that the unconditional success frequency is 0.5 and that 5000 Monte Carlo replica-

tions are run by experiment, significant identification success can be diagnosed if estimates

f̂•, • = l, u, exceed an upper threshold of 0.5+2
√

0.25/5000 = 0.514. Similarly, f̂• < 0.486

hints at a systematic failure of the MTSI based identification strategy.

3.2 Monte Carlo results

Table 1 documents frequency estimates f̂l and f̂u for time series dimensions T = 200,

T = 400 and T = 1000 and small to medium levels of dependence of copula distributed

innovations ξt. For the Clayton, Gumbel, Frank, Student−t and Plackett copula Kendall’s

τ (the linear correlation for the Student−t) is either τ, ρ = 0.2 or τ, ρ = 0.4. For the FGM

and AMH copula simulation results are provided for a parameter choice implying τ = 0.2.

Notably, the case τ, ρ = 0.2 formalizes a rather mild state of dependence such that the

joint distribution of ξ1t and ξ2t is (in small samples) rather difficult to distinguish from

the uninformative case of Gaussian innovations. Simulation results are tabulated for al-

ternative degrees of contemporaneous correlation, σ = 0.1, 0.3, 0.5, 0.7, 0.9. Moreover,

simulation results are provided for the case where a rotated copula distribution (namely

(C2)) has been used for the generation of structural innovations. Before discussing simu-

lation results in more detail it is worthwhile pointing out that f̂l and f̂u (lower vs. upper

triangular recursion) are rather similar and also the patterns of correct identification do
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not differ markedly if structural innovations et are generated from a raw (C(1)) or rotated

copula (C(2)).

With regard to finding the actual direction of causality, notably, no frequency estimate

f̂l or f̂u is significantly below 0.5 and, moreover, these frequencies increase with the sample

size, i.e. they are uniformly higher for T = 400 in comparison with T = 200. Only a

few estimates f̂• are below the upper 95% confidence bound constructed around the

unconditional success ratio of 50%. Maximum rates of correct identification are listed

throughout for T = 1000. Thus, the proposed identification scheme does not suffer

from systematic or eventual biases towards the likelihood of suggesting a false direction

of instantaneous causation. Moreover, the MTSI based identification scheme appears

consistent. For the case of an underlying Gaussian distribution, it turns out that, as

expected, f̂l and f̂u are insignificantly close to the unconditional success frequency of 50%

throughout.

Conditional on the small sample size T = 200, smallest and highest success frequencies

f̂l are, respectively, 76.0% (Plackett, τ = 0.4, σ = 0.7) and 50.4% (Student-t, ρ = 0.4,

σ = 0.1). Generally, rates of correct identification are relatively low for the Student−t

copula (with 10 degrees of freedom). The relatively weak content for identification of

the Student-t model cannot be addressed to the symmetry of this distribution. Other

symmetric copula specifications yield estimates f̂l that markedly exceed the identification

rates achieved under the Student−t model. Generally the estimates f̂• are lower for

boundary levels of correlation (σ = 0.1 or σ = 0.9) than for more medium levels (σ = 0.3

or σ = 0.7). Intuitively, while scenarios with σ ≈ 0 are characterized with rather weak

contemporaneous linkage at all, at the opposite end, |σ| ≈ 1 formalizes some states of

coincidence. In both cases the identification of a recursive pattern from observed data is

rather demanding at least in small samples.

For the asymmetric distributions (Clayton and Gumbel) we obtain the interesting

result that the identification success appears to shrink for σ = 0.5 if the dependence of

the elements in ξt is weakened, i.e. if one compares results for τ = 0.4 and τ = 0.2. In

fact, particular levels of concordance (in combination with selected values of σ) eventually

require large dimensional sample information to take advantage of the overall consistency

of the MTSI approach. In the documented large sample cases (T = 1000) the frequencies

of finding the correct recursion are almost throughout rather high with identification under

the Student-t model being the least favorable. Since the Student−t copula is specified

with 10 degrees of freedom, this result is not critical for the MTSI method as it is clear

that with increasing the degrees of freedom parameter the Student-t model converges to

the Gaussian case and, therefore, lacks identifiability in the limit.
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Further simulation results are displayed graphically for the Clayton, Gumbel and

Frank copula in Figure 3 and the remaining distributions in Figure 4. In the left (right)

hand side panels of these Figures simulation results are displayed for a given level of

dependence (for a given sample size) with varying sample sizes (degrees of dependence).

In analogy with the f̂• statistics documented in Table 1 these results allow the following

general remarks:

1. In case of uncorrelated reduced form data (σ = 0 or Σ being the identity matrix)

the MTSI implied frequency of detecting a lower triangular recursion coincides with

an unconditional success frequency of 50%. In the asymptotic case T = 1000 this

theoretical probability is matched rather closely for all copulae.

2. For the given level of moderate dependence characterizing the underlying copula

innovations ξ1t and ξ2t (τ, ρ = 0.2) the MTSI identification scheme is consistent as

the frequency of correctly detecting the lower triangular scheme is increasing in the

sample size and is (close to) unity for numerous simulation experiments with large

sample size (T = 1000) and medium (positive or negative) level of correlation.

3. Looking at the identification success as a function of the empirical correlation σ, it

appears that for most copulae the detection of the correct lower triangular recursion

pattern is more likely if σ is of moderate to medium size in absolute value. Generally,

patterns of successful identification appear symmetric around σ = 0.

The double humped pattern of successful identification is more characteristic for

the Gumbel, Frank, Plackett, FGM and AMH copula as it is for the Clayton and

Student−t model. For the latter two distributions the pattern of successful iden-

tification exhibits marked local minima for reduced form correlation of |σ = 0.4|
(Clayton) and |σ = 0.6| (Student−t) which are most evident in the large sample

case (T = 1000).

4. Conditional on the rather low copula dependence level (τ, ρ = 0.2) the MTSI scheme

is unlikely to detect the true recursive pattern with considerable nontrivial proba-

bility in small samples. In the weak dependence scenario and for T = 100 highest

success frequencies of up to 65% (|σ| ≈ 0.4) are obtained if random variables ξt are

drawn from the FGM distribution.

5. For a given sample size the degree of dependence between ξ1t and ξ2t stimulates

the identification success for all considered symmetric copula distributions. For the

Clayton copula the identification rates achieved if τ = 0.6 are rather similar (and

eventually superior) to those obtained if τ = 0.8. Similarly, for the Gumbel model
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the identification success deteriorates for higher levels of dependence τ and states

of relatively high correlation between reduced form model disturbances (|σ ≈ 0.7|).

3.3 Summary

Overall, the simulation based evidence is supportive for the MTSI approach as providing a

powerful tool for comparing alternative structural assumptions that might underly reduced

form disturbances of empirical models. As the approach is fully based on an assumption

of iid residuals it is clear that particular scenarios might be difficult to distinguish in finite

samples. Potential cases where MTSI loss measures are likely close to each other are (very)

small sample cases or scenarios in which the correlation of reduced form disturbances

is either small or close to unity. In any case, with the resampling scheme described in

Section 2.5 at hand, an analyst using the MTSI loss statistics for model choice can suitably

control the degree of uncertainty attached to a particular model choice.

4 Empirical applications

To further illustrate the scope of MTSI implied loss statistics two prominent issues of

empirical macroeconometrics are considered in this section. Firstly, MTSI loss statistics

are used to uncover potential patterns of monetary dependence in four systems of in-

ternational breakeven inflation rates. Secondly, raised recently by Beaudry and Portier

(2006) loss statistics L(•) are determined to rank competing notions of news processes in

a bivariate system of US stock prices and total factor productivity.

4.1 International linkage of breakeven inflation

4.1.1 Monetary dependence

A core concern of monetary policy is long term price stability. Since the 1990s infla-

tion targeting has become a widely followed strategy to implement a moderate and pre-

dictable evolution of prices. The essential element in such a framework is to anchor long

run inflation expectations. Hence, the extent to which central banks are able to imple-

ment stable, unique and definite beliefs is crucial. The ability of monetary authorities

in small economies for the targeting of inflation expectations could be threatened by the

neighborhood to or intense trading relationships with leading economies such as the US

or the European Monetary Union (EMU). Particular central banks that might be sub-

jected to cross market monetary transmission in this respect are the Bank of Canada

or the Bank of England. In this section monetary linkage is empirically assessed in
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terms of the degree to which ex-ante inflation rates are determined on international mar-

kets comprising a subset of the G7, namely Canada, France, the UK and the US. Infla-

tion compensation as implied by the (liquidity adjusted, Shen 2006) difference between

yields of long term ’Treasury Inflation Protected Securities’ and conventional bonds is

regarded to measure future inflation prospects. Daily price quotes cover the time period

4/2/2001- 9/30/2008. Breakeven inflation rates as analyzed below are available from

the net (http://www.bepress.com/snde/vol13/iss4/art5/, see also Herwartz and Roestel

2009). Liquidity adjusted breakeven inflation rates are displayed in Figure 5. By graph-

ical inspection adjusted breakeven rate dynamics appear consistent in the sense that all

respective monetary authorities have been communicating inflation targets around 2% to

3% over the last decade.

4.1.2 Reduced form estimates

In total we consider four bivariate systems of innovations governing daily break even

inflation rate changes. Below, these systems are labeled with roman numbers and comprise

the following combinations of bond markets

I II III IV

CA,US FR,US UK,US UK,FR

The systems I, III and IV are ordered such that a presumably dominating market

is listed after a potentially dominated market. For the second system one might also

a-priori consider the US bond market to informationally dominate the European counter-

part. Regarding recent empirical evidence (Ehrmann and Fratzscher 2004), it is, however,

conceivable that the notion of US dominance (over the Euro Area) has seen some weak-

ening over more recent time periods.

Modeling first and second order features of the ex-ante inflation expectations we find

that changes of liquidity adjusted breakeven inflation rates show at most rather weak se-

rial correlation features but instead marked patterns of volatility clustering. Quantifying

second order characteristics by means of GARCH(1,1) specifications turns out to approx-

imate higher order features of the Canadian and UK breakeven rate changes accurately.

With regard to the remaining two series diagnostic results indicate that GARCH(1,1) im-

plied standardized residuals might show some (mild) remaining conditional heterogeneity.

An expansion of the empirical model towards a GARCH(2,1) or GARCH(1,2), however,

failed to provide reasonable (i.e.) positive GARCH parameters and/or to improve the

diagnostic features of standardized residuals. Therefore, underlying market innovations

are extracted from breakeven inflation rate changes by means of univariate GARCH(1,1)
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models. GARCH(1,1) implied standardized residual processes are stacked to obtain bi-

variate systems of reduced form bond market innovations. Estimation and diagnostic

results and, moreover, the cross correlation matrix of univariate GARCH residuals are

shown in Table 2. From the theoretical outset of the MTSI approach it is clear that its

identification potential vanishes in case that reduced form residual processes are jointly

Gaussian. It well established that residuals of volatility models, though being iid dis-

tributed, often fail to exhibit a Gaussian distribution. For the considered systems of

breakeven inflation innovations explicit tests on joint normality are not provided in de-

tail. In fact, Jarque-Bera test statistics (Jarque and Bera 1980) determined for the four

breakeven systems vary between 211.11 (CA/US) and 2589.23 (UK/US).

4.1.3 Structural analysis

From the empirical results in Table 2 we deduce that the correlation estimates obtained

in the four dimensional system vary between 0.16 (UK/US) and 0.44 (CA/US). Noting

that almost 2000 time series observations enter the analysis for each system one might

expect that if the true contemporaneous market relation is of a recursive type the MTSI

identification scheme delivers clear cut identification results. In the case that both markets

of a system contribute to reduced form disturbances, the true scheme of instantaneous

causality is not of a recursive structure. A-priori, given that monetary policy in the Euro

area and the US are both likely to issue unrelated news one might expect the second

system to deliver some mixed evidence on recursive patterns of processing structural

innovations. Consequently, for this system a symmetric square root decomposition of the

reduced form covariance might be most convenient according to a-priori considerations.

Empirical MTSI loss measures for systems of (standardized) breakeven inflation rates are

shown in the upper part of Table 3.

For the systems comprising Canadian and French breakeven rates jointly with US in-

flation expectations an upper triangular scheme is characterized by smaller loss statistics

as the lower triangular counterpart. Thus, according to these statistics shocks in the US

rate are more likely to impact on the remaining rate in comparison with a recursion where

innovations of the US rate cannot be interpreted as a news process. Over all bootstrap

replications this direction of instantaneous causation is confirmed in ≈80% (CA/US) and

≈70% (FR/US) of all replications. Table 3 also lists 90% and 95% Monte Carlo con-

fidence intervals for the latter frequencies supporting the upper triangular recursion for

both systems at the 5% significance level. For both bivariate systems the upper triangular

scheme is also found to offer smaller loss in comparison with a matrix formalizing sym-

metric contemporaneous causality. In 71% (CA/US) and 64% (FR/US) of all bootstrap
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replications loss statistics are smaller for the upper triangular recursion in comparison

with the symmetric response matrix. Regarding the French breakeven rate to represent

EMU inflation expectation the diagnosed upper triangular scheme is at odds with recent

empirical evidence for a weakened impact of the US market on European interest rates

(Ehrmann and Fratzscher 2004), and more in line with traditional views on interest rate

transmission from the US to the German and smaller European markets (Katsimbris and

Miller 1993, Hassapis, Pittis and Prodromidis 1999).

The third system comprising standardized innovations of US and UK inflation com-

pensation is closest to the notion of symmetric instantaneous causality, i.e. with regard

to inflation expectations particular recursive transmission cannot be retrieved from these

markets. On the one hand this result might be surprising in light of the literature available

on US dominance, however, for the informational content of breakeven inflation rates it is

noteworthy that the trading of inflation protected securities has a by far longer tradition

in the UK in comparison with all remaining markets. Owing to weakened liquidity in

US markets at the beginning of the sample period one might attribute particular infor-

mational content to UK inflation expectations. From a statistical perspective also the

relatively low level of correlation between reduced form information for these two markets

might be a reason for the mixed evidence with regard to potential patterns of instan-

taneous causation. A liquidity based argument might also apply when considering the

UK/FR system which does not reflect a dominance of French/EMU breakeven rates. In

fact, one diagnoses some evidence of a lower triangular relation characterizing this partic-

ular system. From resampling it turns out that in almost 68% of all bootstrap replications

the lower triangular scheme is confirmed which is outside the confidence band obtained

when imitating the bootstrap outcomes in a bivariate Gaussian system.

Summarizing the results on monetary dependence for the two smaller economies con-

sidered, it turns out that in comparison with the Bank of Canada, the Bank of England

is likely better able to target domestic long run inflation.

4.2 Is US total factor productivity a shock process ?

4.2.1 Reduced form modeling

Recently, Beaudry and Portier (2006) have raised the issue if in a bivariate system com-

prising a technology measure (TFP) and stock prices (SP) as an indicator of future ex-

pectations about the business cycle, surprises i.e. news are released in expectations (i.e.

stock prices) or technology. Interestingly, the former case would suggest that technological

change is to some extent ’foreseen’ or processed in stock prices. The quarterly data on US

23



total factor productivity and stock prices spans the period 1947 to 2000 and can be drawn

from the net (http://www.aeaweb.org/articles.php?doi=10.1257/aer.96.4.1293). To clar-

ify the origin of news Beaudry and Portier (2006) also employ higher dimensional systems

comprising consumption and/or hours worked which is beyond the scope of the MTSI ap-

proach as introduced in this work. For the bivariate system two alternative identification

schemes are applied in Beaudry and Portier (2006) one of which relies on long term iden-

tifying restrictions that allow a non vanishing response of the news shock on total factor

productivity. Alternatively, Beaudry and Portier (2006) use a Cholesky decomposition

excluding on impact dynamics operating from stock prices on total factor productivity. It

turns out that these two identification schemes obtain highly correlated news shocks. The

Cholesky type lower diagonal identification scheme used by Beaudry and Portier (2006)

can be subjected to loss comparison with an alternative upper triangular decomposition

scheme. It is this particular aspect of the relationship between technology and stock prices

that can be subjected to a loss assessment in the MTSI framework.

To investigate the empirical linkage of stock prices and factor productivity four al-

ternative VAR specifications are used to extract reduced form residuals. According to

standard model selection criteria (AIC, BIC, HQ) applied to level data with determin-

istic trend, lag order 2 is broadly supported. Accordingly, the four systems analyzed

are a VAR(2) with trend for level data, a VAR(2) for level data without trend and a

VAR(2) and VAR(1) model for first differences of stock prices and total factor produc-

tivity both excluding a deterministic trend. Reduced form residuals extracted from these

model specifications are throughout rather similar and the empirical residual correlation

in these bivariate systems is around σ̂ ≈ 0.16. VAR estimates are provided in Table 4.

Noting an only weak correlation of reduced form disturbances in the TFP/SP system and

the relatively small time series dimension the discriminatory content of the MTSI loss

statistics is likely limited on the one hand. On the other hand, documented statistics

testing the presumption of joint reduced form normality are significant at any reasonable

level such that MTSI loss statistics naturally apply for a comparison of distinct structural

assumptions.

4.2.2 Structural analysis

Triangular schemes MTSI loss statistics for the US system are reported in the lower

part of Table 3. All estimated VAR systems deliver smallest loss statistics for the lower

triangular decomposition (Ll < Lu) implying that innovations in stock prices have no

contemporaneous effect on reduced form innovations featuring total factor productivity.

Thus, total factor productivity is confirmed to bear the interpretation of a news process.

24



Applying resampling techniques the decision in favor of the lower triangular scheme is

supported in about 60% of all replications. These frequencies are, however, within 95%

confidence intervals for such a statistic under inconclusive normality. Moreover, for the

level systems the data based Ll loss is in about 80% less than the L∗u statistics obtained

by resampling. The evidence in favor of symmetric instantaneous causation is weaker as

it is for the most likely (i.e. the lower triangular) recursive scheme. Interestingly, Beaudry

and Portier (2006) rely on this identifying assumption on the basis of a-priori reasoning.

Impulse response functions Recalling the marked evidence against joint normality

featuring the TFP/SP system and the discussion in Section 2.4 it is noteworthy that the

interpretation of common IRFs has to be given a local perspective, and, moreover, the

selection of (0, 1) or (1, 0) shocks could be subjected to criticism.

To illustrate in some more detail the issues arising from non Gaussian structural

innovations for impulse response modeling, suppose one is interested in the effects of a unit

shock hitting TFP on both variables of the TFP/SP system. Adopting a lower triangular

decomposition of the reduced form covariance a scatter diagram of the implied structural

innovations (VAR 2, level data, with trend) is shown in Figure 6. Confirming the test

on joint normality for the reduced form disturbances the structural innovations appear to

differ markedly from an elliptical shape. Using simple kernel techniques to evaluate the

expectations of e2t conditional on e1t = ±1 underpin the case of local contemporaneous

characteristics, i.e. E[e2t|e1t = 1] = −0.144 and E[e2t|e1t = −1] = −0.016. Accordingly,

Figure 7 shows the IRFs for two distinct shock scenarios, (1, 0) and (1,−0.144), along with

95% bootstrap based confidence intervals. As a result, both estimates IRFs agree in their

overall shape. In the short run a positive technology shock stimulates stock prices. For the

’more realistic’ right hand side response of stock prices, however, the initial stimulation

is weaker and, moreover, significance of the effect is not diagnosed at all.

5 Conclusions

In this paper a loss functional is introduced that carries informational content to discrim-

inate between competing structural relations in a non Gaussian framework. Although

Moment Targeted Structural Innovations (MTSI) are determined within a fully paramet-

ric class of copula distributions the approach is nonparametric in the sense that it does

not rely on the a-priori choice of a particular copula distribution. Providing a ranking

of alternative just identifying structural data representations, MTSI assist in determin-

ing a data supported structural view at the economy. Put differently, MTSI highlight to
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which extent particular identifying restrictions are not supported by empirical processes.

The MTSI concept fully relies on the notion of data being independent and identically

distributed over the time dimension such that resampling with replacement supports an

analyst to resolve inferential issues with regard to competing a-priori settings of structural

data relations.

For the purpose of simplicity and computational tractability the outline of MTSI in

this paper has addressed the bivariate case exclusively. The generalization towards higher

order systems is straightforward and feasible in principle. As an alternative, however, one

might also consider for a K > 2 dimensional system all possible bivariate subsystems and

integrate partial evidence to an overall system perspective. The determination of MTSI

in higher dimensional systems is an interesting direction of future research. Moreover, the

proposed loss functional to evaluate competing MTSI processes exploits only third and

fourth order moments of a prespecified marginal distribution. Identifying restrictions to

be drawn from even higher moments are not exploited. Using higher order data char-

acteristics might easily suffer from rather volatile empirical moments. In how far higher

order information can be used to enhance the informational content of the loss measure

proposed in this study might also be addressed in future work.

Throughout, the derivation of MTSI relied on the presumption of underlying Gaussian

innovations generating the mixed normal structural innovations. Utilizing a more general

framework, mixed symmetric distributions say, appears as an interesting avenue for gen-

eralizing the scope of structural moment targeting in empirical practice. The derivation

of powerful loss statistics under more general than mixed normal settings is regarded a

further direction of future research.

References

Amisano, G. and C. Giannini (1997), Topics in Structural VAR Econometrics, 2nd Ed.,

Springer, Berlin.

Beaudry, P. and F. Portier (2006), News, Stock Prices and Economic Fluctuations,

American Economic Review, 96, 1293-1307.

Blanchard, O. and D. Quah (1989), The Dynamic Effects of Aggregate Demand and

Supply Disturbances, American Economic Review, 79, 655-673.

Chen, X., Y. Fan (2006), Estimation and Model Selection of Semiparametric Copula-

Based Multivariate Dynamic Models under Copula Misspecification, Journal of

Econometrics, 135, 125-154.

26



Cherubini, U., E. Luciano and W. Vecchiato (2004), Copula Methods in Finance, Wiley

& Sons, Chichester.

Dufour, J.-M. (1989), Nonlinear Hypotheses, Inequality Restrictions, and Non-Nested

Hypotheses: Exact Simultaneous Tests in Linear Regressions, Econometrica, 57,

335-355.

Ehrmann, M. and M. Fratzscher (2004), Equal Size, Equal Role? Interest Rate Interde-

pendence between the Euro Area and the United States, Economic Journal, Royal

Economic Society, 115, 928-948.

Faust, J. (1998). The Robustness of Identified VAR Conclusions About Money, Carnegie-

Rochester Conference Series in Public Policy, 49, 207-244.

Fry, R. and Pagan, A. (2007). Some Issues in Using Sign Restrictions for Identifying

Structural VARs, NCER Working Paper 14, National Center for Econometric Re-

search.

Gallant, A.R., Rossi, P.E., Tauchen, G., 1993. Nonlinear Dynamic Structures, Econo-

metrica, 61, 871–907.

Hafner, C. M. and H. Herwartz (2006), Volatility Impulse Responses for Multivariate

GARCH Models: An Exchange Rate Illustration, Journal of International Money

and Finance, 25(5), 719-740.

Hassapis, C., N. Pittis and K. Prodromidis (1999), Unit Roots and Granger Causality

in the EMS Interest Rates: the German Dominance Hypothesis Revisited, Journal

of International Money and Finance, 18, 47-73.

Herwartz, H. and J. Roestel (2009), Monetary Independence under Floating Exchange

Rates: Evidence Based on International Breakeven Inflation Rates, Studies in Non-

linear Dynamics and Econometrics, 13(4), Article 5. DOI: 10.2202/1558-3708.1655.

Jarque, C. M. and A. K. Bera (1980), Efficient Tests for Normality, Homoscedasticity

and Serial Independence of Regression Residuals, Economics Letters, 6, 255259.

Joe, H. (1997), Multivariate Models and Dependence Concepts, Chapman & Halls, Boca

Raton.

Katsimbris, G. M. and S. M. Miller (1993), Interest Rate Linkages within the European

Monetary System: Further Analysis, Journal of Money, Credit and Banking, 22,

388-394.

27



Lanne, M. and H. Lütkepohl (2008), Identifying Monetary Policy Shocks via Changes in

Volatility, Journal of Money, Credit and Banking, 40, 1131-1149.

Lanne, M. and H. Lütkepohl (2010), Structural Vector Autoregressions with Nonnormal

Residuals, Journal of Business and Economic Statistics, 28(1), 159-168.

Lanne, M, Lütkepohl H and Maciejowska, K. (2009) Structural Vector Autoregressions

with Markov Switching. Journal of Economic Dynamics and Control, 34, 121-131.

Lee, T. H. and X. Long (2009), Copula-based Multivariate GARCH Model with Uncor-

related Dependent Errors, Journal of Econometrics, 150, 207-218.

Lütkepohl, H. (2005), New Introduction to Multiple Time Series Analysis, Springer, New

York.

Nelsen, R. B. (2006), An Introduction to Copulas (Lecture Notes in Statistics), 2nd Ed.,

Springer, New York.

Rigobon, R. (2003), Identification through Heteroskedasticity, Review of Economics and

Statistics, 85, 777-792.

Shen, P. (2006), Liquidity Risk Premia and Breakeven Inflation Rates, Economic Review,

Federal Reserve Bank of Kansas City, Second Quarter, 29-54.

Uhlig, H. (2005), What are the Effects of Monetary Policy on Output? Results from an

Agnostic Identification Procedure, Journal of Monetary Economics, 52, 381-419.

28



Tables and Figures

29



Dl, C(1) Dl, C(2) Du C(1)

τ, ρ T ; σ .1 .3 .5 .7 .9 .1 .3 .5 .1 .3 .5

CLA 2 200 .546 .545 .540 .646 .512 .552 .550 .523 .552 .550 .521

CLA 4 200 .719 .755 .519 .733 .544 .713 .751 .510 .713 .751 .509

GUM 2 200 .528 .537 .532 .544 .515 .520 .529 .518 .520 .529 .519

GUM 4 200 .559 .563 .492 .484 .512 .557 .563 .490 .557 .563 .491

FRA 2 200 .514 .548 .574 .594 .566 .504 .539 .575 .504 .539 .574

FRA 4 200 .545 .621 .672 .718 .649 .533 .605 .664 .533 .606 .663

STT 2 200 .510 .528 .526 .512 .525 .508 .522 .525 .508 .524 .524

STT 4 200 .504 .527 .529 .520 .530 .509 .530 .530 .509 .531 .529

PLA 2 200 .511 .544 .572 .595 .558 .508 .541 .574 .507 .540 .573

PLA 4 200 .547 .653 .726 .760 .699 .546 .640 .725 .546 .639 .725

FGM 8 200 .562 .671 .679 .606 .688 .517 .618 .696 .516 .618 .695

AMH 2 200 .497 .527 .560 .594 .551 .526 .537 .561 .526 .536 .559

GAU 2 200 .509 .502 .503 .504 .508 .497 .494 .512 .497 .494 .512

CLA 2 400 .625 .620 .564 .784 .527 .621 .613 .559 .621 .613 .558

GUM 2 400 .539 .558 .557 .596 .545 .550 .563 .554 .550 .562 .553

FRA 2 400 .537 .595 .649 .674 .623 .517 .577 .640 .517 .578 .639

STT 2 400 .514 .527 .528 .519 .539 .499 .534 .536 .500 .533 .538

PLA 2 400 .541 .597 .653 .682 .630 .515 .585 .651 .515 .585 .650

FGM 8 400 .562 .682 .732 .665 .723 .531 .620 .753 .530 .620 .753

AMH 2 400 .527 .577 .629 .689 .600 .540 .576 .623 .540 .575 .623

GAU 2 400 .505 .502 .504 .499 .496 .506 .496 .498 .506 .495 .497

CLA 2 1000 .742 .779 .657 .965 .590 .746 .779 .661 .747 .779 .661

GUM 2 1000 .628 .679 .670 .805 .645 .630 .670 .656 .630 .669 .656

FRA 2 1000 .579 .697 .779 .835 .753 .562 .687 .779 .562 .686 .778

STT 2 1000 .521 .595 .624 .557 .639 .535 .600 .634 .534 .600 .634

PLA 2 1000 .571 .703 .799 .843 .770 .564 .695 .799 .564 .695 .799

FGM 8 1000 .603 .670 .812 .776 .742 .552 .636 .809 .551 .636 .808

AMH 2 1000 .580 .674 .743 .863 .698 .580 .669 .742 .580 .669 .742

GAU 2 1000 .491 .504 .504 .503 .508 .508 .513 .508 .509 .513 .508

Table 1: Simulation results: Frequencies of detecting the correct direction of instantaneous

causation. Underlying random variables ξt are drawn from alternative copulae, namely

Clayton (CLA), Gumbel (GUM), Frank (FRA), Student-t with 10 degrees of freedom

(STT), Plackett, FGM, AMH, and the Gaussian (GAU). Dl (lower triangular) and Du

(upper) indicate the underlying true recursion while τ, ρ indicate the concordance or

the linear correlation featuring (CLA, GUM, FRA, PLA, FGM, ALH) or (STT, GAU),

respectively. Rotated copulae are obtained by simulating from C(ζ1, (1−ζ2)) . Simulation

results for underlying rotated copulae C((1− ζ1), ζ2) and C((1− ζ1), (1− ζ2)) are in full

analogy to those listed in the table for the cases of negative and positive dependence.
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co. α̂0 α̂1 β̂1 LM1 LM5 corrs (σ̂)

CA 2.95E-06
(1.51)

.030
(3.92)

.968
(120.)

0.040
(0.84)

3.907
(0.56)

CA FR UK

FR 4.84E-06
(2.25)

0.069
(4.24)

0.922
(55.5)

5.387
(0.02)

12.46
(0.03)

.230

UK 1.47E-06
(1.03)

0.024
(3.29)

0.973
(117.)

0.299
(0.58)

2.833
(0.73)

.207 .293

US 2.19E-06
(1.10)

0.047
(2.61)

0.954
(60.1)

5.033
(0.02)

25.70
(0.00)

.440 .214 .159

Table 2: GARCH(1,1) parameter estimates and model diagnostics for changes of

breakeven inflation rates in Canada (CA), France (FR) the UK and the US, denoted

εt. For a particular variance process the conditional variance σ2
t = E[ε2

t |Ft−1] character-

izing the time series εt is, σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1. Values in parentheses are either

t-ratios (for parameter estimates) or p−values (for the LM-statistic testing against con-

ditional heteroskedasticity in GARCH implied standardized residuals). The right hand

side panel shows unconditional correlations for the standardized GARCH(1,1) residuals.

Ll Lu Ls P̂lu P̂ls P̂us Q̂lu Q̂ul Q̂ls Q̂us

GARCH(1,1) residuals from breakeven inflation rates

CA/US 5.805 4.799 5.760 .202 .328 .710 .422 .930 .628 .834

FR/US 6.667 5.605 6.105 .325 .341 .645 .440 .821 .500 .769

UK/US 4.326 4.697 4.377 .460 .472 .550 .897 .820 .899 .833

UK/FR 5.933 7.268 7.737 .676 .772 .537 .927 .632 .950 .796

US total factor productivity and stock prices (VAR residuals)

VAR2, t, c 0.972 1.221 1.084 .641 .594 .340 .784 .618 .747 .620

VAR2, c 0.926 1.188 1.051 .613 .562 .351 .756 .604 .733 .607

∆ VAR2 2.653 3.700 3.210 .600 .468 .279 .604 .389 .576 .383

∆ VAR1 2.315 3.043 2.678 .592 .469 .289 .591 .420 .565 .410

Table 3: Empirical MTSI loss measures for bivariate systems of international breakeven

inflation rates (upper panel) and US total factor productivity vs. stock prices (lower

panel). In the left hand side of the table loss statistics Ll,Lu,Ls are given, respectively, for

the lower and upper triangular Cholesky and the square root decomposition of the reduced

form covariance matrix. Smallest loss measures L are in bold face. Bootstrap based

frequencies of particular relations are documented in the right hand side. The bootstrap

based frequency estimates are defined in (12). The number of bootstrap replications

is H = 1000, and accordingly and ad-hoc significance bound is 0.5 ± 2
√

0.25/1000 =

[0.468, 0.532]. Determining critical values for the P̂lu statistics by means of simulations

from the Gaussian obtains [33.7, 68.9] and [36.5, 63.0] ([34.3, 63.4] and [39.2, 60.6]) as 95%

and 90% confidence regions for sample size T = 200 (T = 2000), respectively.
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TFP SP TFP SP ∆ TFP ∆ SP ∆ TFP ∆ SP

TFP(-1) 0.944
(13.7)

0.165
(0.42)

0.945
(13.8)

0.227
(0.57)

−0.036
(−0.51)

0.295
(0.73)

−0.024
(−0.35)

0.217
(0.55)

TFP(-2) 0.040
(0.58)

−0.414
(−1.06)

0.045
(0.66)

−0.225
(−0.57)

0.085
(1.24)

−0.603
(−1.54)

- -

SP(-1) 0.057
(4.66)

1.283
(18.6)

0.058
(4.99)

1.346
(19.8)

0.054
(4.35)

0.367
(5.17)

0.058
(4.87)

0.345
(5.09)

SP(-2) −0.055
(−4.47)

−0.288
(−4.12)

−0.057
(−4.83)

−0.354
(−5.15)

0.007
(0.53)

−0.042
(−0.56)

- -

c 0.021
(1.20)

−0.030
(−0.31)

0.019
(1.14)

−0.072
(−0.73)

0.003
(3.71)

0.008
(1.82)

0.003
(4.33)

0.005
(1.36)

t 2.37E-05
(0.53)

0.001
(3.33)

- - - - - -

LM 10 3.180
(0.53)

2.620
(0.62)

3.512
(0.48)

3.152
(0.53)

JB 95.12 80.03 89.85 90.03

Table 4: VAR parameter estimates for bivariate systems of US total factor productivity

and stock prices (Beaudry and Portier 2006). Model selection criteria (AIC, BIC, HQ,

not documented) are in favor of a VAR order two if the model is specified in levels

and contains a linear trend). VAR parameter estimates are documented with t-ratios in

parentheses. LM is the Lagrange Multiplier test (p-value in parentheses) for multivariate

serial correlation up to lag order 10. JB is the Jarque-Bera statistic on joint normality

of both reduced form residual processes. Under the null hypothesis of normality JB is χ2

distributed with 4 degrees of freedom, p−values are not provided. Dependent variables

are listed in the top row, where ∆ is short for the first difference operator. The left hand

side column lists the conditioning variables from which TFP and SP are either in levels or

in first differences. Moreover, c and t signify a constant and a trend, respectively, entering

the VAR. Estimation and diagnostic results are obtained from Eviews 6.0.
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rot. CLA

GUM

CLA

GAU

STT

FRA

Figure 1: Simulated iid uncorrelated innovation processes et (T = 2000) from 6

alternative copula distributions, Clayton (CLA, upper left), Gumbel (GUM, medium

left), rotated Clayton (lower left), Frank (FRA, upper right), Student-t with 10 degrees

of freedom (STT, medium right) and Gaussian (GAU, lower right). Kendall’s τ (or

the linear correlation for STT and GAU) is τ, ρ = 0.3. Horizontal and vertical lines

indicate absolute unit levels.
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σ = 0.1

σ = 0.5 σ = −0.5

σ = −0.1

d11 d11

Figure 2: Largest moduli (y-axis) of the matrix G(3) as implied by distinct levels of

reduced correlation (σ), copula covariance (ω) and alternative upper left elements of

D, d11 (x-axis). Solid curve give results for positive choices ω = 0.1, 0.5 and dashed

curves are for negative copula covariance, ω = −0.1,−0.5.
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FRA

GUM

CLA

T = 1000

T = 400

T = 200

T = 100

τ = 0.8

τ = 0.6

τ = 0.4

τ = 0.2

Figure 3: Simulation results 1: Frequencies of correct detection of a lower triangular

recursive pattern, f̂l, for 3 copulae. Estimates f̂l are shown for given τ = 0.2 and

sample sizes T = 100, 200, 400 and T = 1000 (left hand side) and for given T = 200

and concordance measures for the elements of ξt being τ = 0.2, 0.4, 0.6 and τ = 0.8

(right hand side). For identification of single figures see the bottom panels.
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AMH

FGM

PLA

STT

τ = 0.2

τ = 0.1

Figure 4: Simulation results 2: Frequencies of correct detection of a lower triangular

recursive pattern, f̂l for 4 copulae. For the FGM and AMH copula distinct levels of

concordance are used for simulation τ = 0.1 and τ = 0.2. For further reference see

Figure 3.
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US

CA

UK

FR

Figure 5: Liquidity adjusted breakeven inflation rates for Canada and the US (left

hand side) and France and the UK (right hand side).
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e2t

e1t

Figure 6: Lower triangular implied structural innovations for the US TFP/SP sys-

tem as implied by a VAR model of order 2 estimated for level data and including a

deterministic trend.
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TFP response

Stock prices response

Figure 7: Estimated responses to a unit TFP shock in the US TFP/SP system.

In the left hand side panels the unit shock is (1, 0) while in the right hand side the

considered shock is (1,-0.144). 95% confidence bands are determined by resampling

with replacement from reduced form disturbances ut and reestimating the VAR.
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Appendix A - Third order moment linkage

In this appendix explicit representations of the moment system in (6) is given, for d11

denoting the upper left element of D and w1 and w2 being the typical diagonal and off-

diagonal elements of Ω−1/2, respectively. Recall also the restrictions/representation in (5)

and (4). The system in (6) is, in specific,

ν30 = {d3
11w

3
1 + 3d2

11(1− d2
11)

1/2w2
1w2 + 3d11(1− d2

11)w1w
2
2 + (1− d2

11)
3/2w3

2}θ30

+ {3((1− d2
11)

1/2w1 + d11w2)(d11w1 + (1− d2
11)

1/2w2)
2}θ21

+ {3((1− d2
11)

1/2w1 + d11w2)
2(d11w1 + (1− d2

11)
1/2w2)}θ12

+ {(1− d2
11)

3/2w3
1 + 3d11(1− d2

11)w
2
1w2 + 3d2

11(1− d2
11)

1/2w1w
2
2 + d3

11w
3
2}θ03

ν21 = {d2
11(1− d2

22)
1/2w3

1 + 2d11(1− d2
11)

1/2(1− d2
22)

1/2w2
1w2 + d2

11d22w
2
1w2

+(1− d2
11)(1− d2

22)
1/2w1w

2
2 + 2d11(1− d2

11)
1/2d22w1w

2
2 + (1− d2

11)d22w
3
2}θ30

+ {(d11w1 + (1− d2
11)

1/2w2)
2(d22w1 + (1− d2

22)
1/2w2)

+2((1− d2
11)

1/2w1 + d11w2)(d11w1 + (1− d2
11)

1/2w2)((1− d2
22)

1/2w1 + d22w2)}θ21

+ {2((1− d2
11)

1/2w1 + d11w2)(d11w1 + (1− d2
11)

1/2w2)(d22w1 + (1− d2
22)

1/2w2)

+((1− d2
11)

1/2w1 + d11w2)
2((1− d2

22)
1/2w1 + d22w2)}θ12

+ {((1− d2
11)d22w

3
1 + (1− d2

11)(1− d2
22)

1/2w2
1w2 + 2d11(1− d2

11)
1/2d22w

2
1w2

+2d11(1− d2
11)

1/2(1− d2
22)

1/2w1w
2
2 + d2

11d22w1w
2
2 + d2

11(1− d2
22)

1/2w3
2)}θ03

ν12 = {d11(1− d2
22)w

3
1 + (1− d2

11)
1/2(1− d2

22)w
2
1w2 + 2d11(1− d2

22)
1/2d22w

2
1w2

+2(1− d2
11)

1/2(1− d2
22)

1/2d22w1w
2
2 + d11d

2
22w1w

2
2 + (1− d2

11)
1/2d2

22w
3
2}θ30

+ {2(d11w1 + (1− d2
11)

1/2w2)(d22w1 + (1− d2
22)

1/2w2)((1− d2
22)

1/2w1 + d22w2)

+((1− d2
11)

1/2w1 + d11w2)((1− d2
22)

1/2w1 + d22w2)
2}θ21

+ {(d11w1 + (1− d2
11)

1/2w2)(d22w1 + (1− d2
22)

1/2w2)
2

+2((1− d2
11)

1/2w1 + d11w2)(d22w1 + (1− d2
22)

1/2w2)((1− d2
22)

1/2w1 + d22w2)}θ12

+ {(1− d2
11)

1/2d2
22w

3
1 + 2(1− d2

11)
1/2(1− d2

22)
1/2d22w

2
1w2 + d11d

2
22w

2
1w2

+(1− d2
11)

1/2(1− d2
22)w1w

2
2 + 2d11(1− d2

22)
1/2d22w1w

2
2 + d11(1− d2

22)w
3
2}θ03

ν03 = {(1− d2
22)

3/2w3
1 + 3(1− d2

22)d22w
2
1w2 + 3(1− d2

22)
1/2d2

22w1w
2
2 + d3

22w
3
2}θ30

+ {3(d22w1 + (1− d2
22)

1/2w2)((1− d2
22)

1/2w1 + d22w2)
2}θ21

+ {3(d22w1 + (1− d2
22)

1/2w2)
2((1− d2

22)
1/2w1 + d22w2)}θ12

+ {d3
22w

3
1 + 3(1− d2

22)
1/2d2

22w
2
1w2 + 3(1− d2

22)d22w1w
2
2 + (1− d2

22)
3/2w3

2}θ03
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Appendix B - Copula distribution functions

This appendix lists briefly the distribution functions of the copulae, C• = C(ζ1, ζ2; γ) used

in the Monte Carlo exercises described in Section 3. Recall that ζ1 and ζ2 are uniform

distributed random variables. For a detailed discussion of these copulae (and others) see

Cherubini et al. (2004), Joe (1997) or Nelsen (2006).

1. AMH

CAMH =
ζ1ζ2

1− γ(1− ζ1)(1− ζ2)
, γ ∈ [−1, +1].

2. Clayton copula

CCLA(ζ1, ζ2; γ) =
(
ζ−γ
1 + ζ−γ

2 − 1
)−1/γ

, γ ∈ [−1,∞), γ 6= 0.

3. Frank copula

CFRA(ζ1, ζ2; γ) = −1

γ
ln

[
1−

(
1− e−γζ1

) (
1− e−γζ2

)

(1− e−γ)

]
, γ ∈ R/ {0}

4. FGM

CFGM = ζ1ζ2 + γζ1ζ2(1− ζ1)(1− ζ2), γ ∈ [−1, +1]

5. Gaussian

CGAU = ΦR

(
Φ−1(ζ1), Φ

−1(ζ2)
)
,

where ΦR(·, ·) is the bivariate Gaussian distribution with correlation matrix R.

6. Gumbel copula

CGUM = exp
{
− [(− ln ζ1)

γ + (− ln ζ2)
γ]

1/γ
}

, 1 ≤ γ < ∞.

7. Plackett

CPLA =
[1 + (γ − 1)(ζ1 + ζ2)]−

√
[1 + (γ − 1)(ζ1 + ζ2)]2 − 4ζ1ζ2γ(1− γ)

2(γ − 1)
, γ > 0, γ 6= 1.

8. Student−t

CSTT = TR,κ

(
t−1
κ (ζ1), t

−1
κ (ζ2)

)
,

where κ is the degrees of freedom parameter, and TR,κ() be the bivariate Student

distribution with κ degrees of freedom and correlation matrix R. Moreover, tκ() is

the univariate Student-t CDF with κ degrees of freedom.
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