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Multivariate Wishart Stochastic Volatility Models

Bastian Gribisch∗, Roman Liesenfeld†

February 8, 2010

Abstract

We generalize the basic Wishart multivariate stochastic volatility model of Philipov & Glick-

man (2006) to encompass regime switching behavior. The latent state variable is driven by a

first-order Markov process. In order to estimate the proposed model we use Bayesian Markov

Chain Monte Carlo procedures. For the computation of filtered estimates of the latent variances

and covariances we rely upon particle filter techniques. The model is applied to five European

stock index returns. Our results show that our proposed regime-switching specification sub-

stantially improves the estimates of the conditional covariance matrix and the VaR performance

relative to the basic model.

JEL classification: C11, C15, C32, G15

Keywords: Markov Switching, MCMC, Multivariate Stochastic Volatility, Particle Filter, Volati-

lity Spillovers

1 Introduction

Learning about existing inter-market linkages and the extent of integration between different markets

is of great importance for economists and investors interested in assessing new investment opportu-

nities, examining the effectiveness of capital markets or analyzing the risk involved in international

portfolio diversification. In order to reflect inter-market linkages, contagion and spillover effects on

financial markets, the basic univariate frameworks of volatility modeling have to be extended to the

multivariate case.

Engle (1982) and Bollerslev (1986) proposed the famous Autoregressive Conditional Heteroscedas-

ticity (ARCH) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) framework

to model the conditional variance of asset returns, where the univariate models have quickly been
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extended to the multivariate case allowing to display time-varying correlations in the context of small

asset portfolios and a contagion-based analysis of inter-market spillover effects. The probably most

prominent representatives of these models are given by the DCC GARCH model of Engle (2002)

and the BEKK GARCH model of Engle & Kroner (1995).

In contrast to the existing ARCH and GARCH models, which represent a purely statistical

description of the observed stylized facts of financial asset returns, the SV model dating back to

Clark (1973) features a theoretical foundation in the information process driving observed asset

prices and allows for greater flexibility in describing the stylized facts of returns and volatilities

by introducing a stochastic evolution of the conditional volatility process1. Compared to ARCH

and GARCH models, SV model specifications therefore appear to constitute a more appropriate

framework for discussing effects of international information transmission.

However, generalizing the existing univariate Stochastic Volatility (SV) specifications to a mul-

tivariate setting turned out to be rather complicated2. Proposed multivariate SV models, e.g. em-

ployed by Harvey et al. (1994), Danielsson (1998) and Smith & Pitts (2006), therefore usually feature

vectors of log-volatilities interacting through a constant correlation structure. The latter feature,

however, is inappropriate in describing effects of time-varying international information transmission

which find a representation in time-varying correlations of asset returns. Factor models, employed

e.g. by Pitt & Shephard (1999), Liesenfeld & Richard (2003) and Chib et al. (2006), represent an

alternative framework capable of accommodating time-varying correlation structures. The return

vector is assumed to be driven by a fixed number of latent factors (e.g. common market factors)

which in turn feature stochastic volatilities. Hence factor models are able to display effects of in-

ternational information spillover resulting from single driving factors like e.g. risk factors and have

already been successfully employed to analyze contagion effects3. The main drawback of the fac-

tor model approach, however, is its lack of flexibility. The dynamic evolution of return variances

and correlations is actually driven by the same set of underlying latent factors and is therefore not

allowed to evolve independently from one another over time.

The apparent problem of modeling dynamic stochastic correlations in a flexible way has been

alleviated by Philipov & Glickman (2006), who proposed a Multivariate Stochastic Volatility (MSV)

model based on the Wishart distribution for the inverse covariance matrix of a return vector. The

approach does not only allow for a direct modeling of time-varying correlations independent from

1Compare e.g. Danielsson (1998).
2Compare Chib et al. (2009) for an overview.
3Compare e.g. Lopes & Carvalho (2007).
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the time-varying volatilities without assuming an underlying factor structure, but in addition for

volatility spillover effects in a flexible MSV framework. However, the ability of the Wishart MSV

model in reflecting the dynamic and distributional properties of the return process could potentially

be improved.

The present paper analyzes the stochastic properties of the basic Wishart Multivariate Stochastic

Volatility (WMSV) model and extends the latter by introducing a Markov Switching (MS) frame-

work, which induces state-dependent volatility spillover and volatility scaling effects. The latter

effect is known to compensate the general overestimation of the persistence within the volatility

process as e.g. documented by Diebold (1986), Lamoureux & Lastrapes (1990), Hamilton (1994)

and Lopes & Carvalho (2007). Both model specifications are applied to five-dimensional return data

of European stock indices, where the focus of the analysis is given by international contagion and

spillover effects. We furthermore apply model diagnostic tests based on standardized returns, which

check the model’s ability to accommodate the dynamic correlation structure within the return data

and the model’s ability to fit the unconditional distribution of the observed return series. Based on

a forecasting application we finally test for the unconditional and conditional coverage of the 5%

Value-at-Risk (VaR).

The outline of the article is given as follows: Section two illustrates the basic and the MS WMSV

model, the Bayesian simulation based estimation scheme, model diagnostics based on standardized

returns as well as test procedures for the unconditional and conditional coverage of the 5% VaR based

on VaR forecasting. Section three discusses the estimation-, VaR-forecast- and model diagnostic

results for both model specifications and section four concludes.

2 Model Specification, Bayesian Inference and Model Checking

The present section details the applied basic Wishart Multivariate Stochastic Volatility (WMSV)

model proposed by Philipov & Glickman (2006) and its stochastic and dynamic properties as well

as a Markov Switching (MS) WMSV model specification. We additionally illustrate the applied

Bayesian simulation based estimation scheme, model diagnostic tests based on standardized returns

and model checking via VaR forecasts.
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2.1 Basic WMSV Model

The Wishart Multivariate Stochastic Volatility (WMSV) model proposed by Philipov & Glickman

(2006) describes the stochastic behavior of a k-dimensional return vector Yt over the time periods

t = 1, . . . , T , where the covariance matrix of Yt conditional on the realization of the past period’s

covariance matrix follows an inverse Wishart distribution.

The WMSV model for the time evolution of a k-dimensional return series {Yt}
T
t=1 is given by

the stochastic process

Yt|Σt ∼ N(0,Σt), (1)

Σ−1
t |ν,St−1 ∼ Wishk(ν,St−1), (2)

where the return vector Yt is assumed to be mean-corrected. Σt denotes the covariance matrix of

Yt and ν (ν > k) and St (positive definite) are the degrees of freedom (d.o.f.) parameter and the

scaling matrix of the Wishart distribution. The mean correction of Yt is e.g. achieved by filtering

each return series by autoregressive processes.

To cover the volatility clustering effect and dynamic correlations, the evolution of the Wishart

distribution’s scaling matrix is modeled time-dependent by introducing a positive definite symmetric

parameter matrix A and a scalar persistence parameter d. The resulting parametrization of the

scaling matrix St is then given by

St =
1

ν
Σ

−d/2
t AΣ

−d/2
t , (3)

where the scaling matrix of the Wishart distribution for the inverse covariance matrix Σ−1
t is modeled

as a function of the lagged inverse covariance matrix Σ−1
t−1. Σ

−d/2
t furthermore denotes a specific

function of the spectral decomposition of the inverse covariance matrix Σ−1
t . Denoting the matrix

of eigenvectors of Σ−1
t by Vt and the respective diagonal matrix of eigenvalues Λt, the expression

Σ
−d/2
t can be decomposed according to

Σ
−d/2
t = VtΛ

d
2

t V′
t, (4)

where the power operator is defined to work element-wise. The quadratic expression in St secures

the positive definiteness needed for the scaling matrix of the Wishart distribution.

The stochastic properties of multivariate SV models in general are hard or even impossible to

derive analytically. This also holds for the illustrated Wishart SV model. However, the distribution

of Σ−1
t and its inverse conditional on the lagged covariance matrix is Wishart and inverse Wishart,
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respectively. The according conditional means are therefore easily obtained:

E[Σ−1
t |A, d, ν,Σt−1] = νSt−1 = Σ

−d/2
t−1 AΣ

−d/2
t−1 (5)

E[Σt|A, d, ν,Σt−1] =
1

ν − k − 1
S−1

t−1 =
ν

ν − k − 1
Σ

d/2
t−1A

−1Σ
d/2
t−1. (6)

The model’s dynamics are governed by the parameters A and d which play an important role in the

model’s ability to describe the stylized facts of financial return series. The parameter d describes the

overall persistence of the volatility process and is theoretically bounded between 0 and 1, which can

be seen by rewriting the WMSV model by making use of the properties of the Wishart distribution.

Denoting the k-dimensional identity matrix by Ik and the Cholesky factor of A by L, the inverse of

the covariance matrix in period t is given by

Σ−1
t =

1

ν
Σ

−d/2
t−1 L Wishk(ν, Ik) L′Σ

−d/2
t−1 . (7)

Eq. (7) indicates an autoregressive representation for ln |Σ−1
t | given by

ln |Σ−1
t | = −k ln(ν) + ln |A| + d ln |Σ−1

t−1| + ln |Wishk(ν, Ik)|. (8)

Hence stationarity of the Wishart process is preserved by restricting the parameter d to the interval

between -1 and 1. In practice, however, the parameter d should additionally be restricted to positivity

to rule out stochastic processes for Σ−1
t which alternate between powers of inverses.

Eq. (8) additionally implies a volatility scaling property of the parameter matrix A and the d.o.f

parameter ν, while eq. (6) suggests a MSV model being able to represent volatility spillover effects

by linking contemporaneous and past volatilities by means of the parameter matrix A. Eq. (6)

finally shows that the variance/covariance-related interpretation of inter-temporal effects implied by

A actually has to be based on the latter’s inverse.

While the moments of the covariance matrix Σt conditional on Σt−1 and the model’s parameter

vector θ are easily obtained via the properties of the inverse Wishart distribution, these moments are

actually of limited interest due to the unobservable conditioning information. Since no closed form

analytical expression can be derived, we simulate the corresponding unconditional moments based

on a two-dimensional WMSV model and different parameter sets to assess the influence of certain

parameter constellations on the unconditional distribution of the returns’ covariance matrices.

For each structural model parameter five parameter constellations are considered: In case of the

inverse parameter matrix A−1, the specifications A−1
i , i = 1, . . . , 5, are distinguished by overall

increasing matrix entries in i on each single position in A−1. In case of d and ν the corresponding
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parameter sets are given by [d1 = 0.2, d2 = 0.4, d3 = 0.6, d4 = 0.8, d5 = 0.9] and [ν1 = 20, ν2 =

40, ν3 = 60, ν4 = 80, ν5 = 90].

Figures 1 to 3 illustrate the obtained simulation results with respect to the unconditional mean

and standard deviation of Σt. The findings are summarized by a volatility- and volatility of volatil-

ity scaling property of the inverse parameter matrix A−1 if each element in A−1 is increased or

decreased, a similar but reversed scaling property of ν and finally increasing unconditional means

of volatilities and covariances with increasing persistence parameter d. In case of d, however, the

respective unconditional volatility of the volatility is decreasing with increasing parameter values.

All simulation results are ceteris paribus.

Simulated unconditional expectations of the implied correlation coefficient are presented in figure

4. Unconditional correlation increases with increasing A−1 and d. The effects of varying ν on the

unconditional mean of correlations, however, appear to be insignificant.

Figures 5 to 7 illustrate the influence of the parameter vector on the model’s dynamic properties

by presenting simulated unconditional autocorrelation functions of the first return volatility which

appear to be solely influenced by varying parameters di. The latter finding confirms the notion of d

as a persistence parameter.

2.2 Markov Switching WMSV Model

The Markov Switching (MS) WMSV model specification induces state-dependent volatility scaling

and volatility spillover effects by introducing a hidden Markov chain which allows a state-dependent

parameter matrix Ast to switch between two realizations, A1 and A2, with differing volatility

scaling properties. The conditional probabilities of transition between the two states are given by

the transition matrix

P (st|st−1) =




(1 − e1) e1

e2 (1 − e2)



 , (9)
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where e1 denotes the probability of switching from state 1 to state 2 and e2 the probability of

switching from state 2 to state 1. The resulting MS model is given by

Yt|Σt ∼ N
(

0,Σt

)

(10)

Σ−1
t |ν,St−1 ∼ Wishk(ν,St−1) (11)

St =
1

ν
Σ

−d/2
t AstΣ

−d/2
t (12)

P (st|st−1) =




(1 − e1) e1

e2 (1 − e2)



 . (13)

Identification is achieved by requiring a positive definite matrix difference A1 − A2.

2.3 Bayesian Estimation

As proposed by Philipov & Glickman (2006), inference about the WMSV model’s parameter vector

is based on a Bayesian estimation approach, which becomes especially attractive in case of complex

multivariate models including a large number of parameters. High dimensionality of the parameter

vector involves potential problems regarding the classical likelihood-based estimation scheme due to

the involved numerical maximization of the likelihood function. These complications can be avoided

by making use of tractable Bayesian inference techniques.

The goal of Bayesian inference is to obtain knowledge about the joint posterior distribution of

the model’s parameter vector, whose moments can be used to generate Bayesian point estimates

and to assess the according parameter uncertainty. The posterior distribution is proportional to the

product of the likelihood function and the joint prior distribution of the parameter vector, where

the latter reflects information about the parameter vector prior to the estimation. However, the

likelihood function of the WMSV model constitutes a high-dimensional integral given by

L({Yt}
T
t=1|θ) =

∫

. . .

∫

Σ1,...,ΣT

T∏

t

P (Yt|Σ
−1
t ) × P (Σ−1

t |St−1, ν) dΣ1, . . . , dΣT , (14)

where θ denotes the model’s parameter vector. The integral is not analytically solvable and therefore

simulation-based estimation techniques have to be applied.

The Bayesian Monte Carlo Markov Chain (MCMC) simulation based estimation approach be-

came increasingly popular in the last decades and can be readily applied for parameter inference in

case of the WMSV model. The MCMC scheme intends to generate draws from the joint posterior

distribution of the model’s parameter vector via simulating an irreducible and aperiodic Markov
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chain. Under some mild regularity conditions, the latter converges to the joint posterior distribution

and obtained draws can be used to conduct inference. The construction of the according Markov

chain is based on the famous Gibbs sampling algorithm, which entirely consists of iterative drawing

from the full conditional distribution of each model parameter, where the parameter vector is aug-

mented by the set of latent variables. Bayesian point estimates are obtained by averaging the Gibbs

draws after convergence of the Markov chain4 whereas the according uncertainty is represented by

the Gibbs draws’ standard deviation constituting an approximation to the standard deviation of the

according model parameter’s marginal posterior distribution.

The derivation of the model parameters’ full conditional distributions is illustrated in detail in the

Appendix. If specific distributions are not available in closed form, but known up to an integrating

constant, the Metropolis-Hastings algorithm is applied for drawing issues.

2.4 Model Diagnostics

Model diagnostics intending to check the WMSV model’s dynamic volatility and correlation proper-

ties are based on Pearson residuals which are obtained by estimating the model’s parameter vector

and pre-multiplying the return vector by the inverse Cholesky factor of the conditional expectation

of Σt given all return information up to period t− 1,

e∗t = E[Σt|Yt−1]
− 1

2Yt, (15)

where E[Σt|Yt−1] is called filtered estimate of Σt. Under the null hypothesis of a correctly specified

model the obtained Pearson residuals should have zero mean, unit variance and feature no auto-

correlation in the first and second order moments5, where the latter hypothesis can be tested by

applying e.g. the Ljung-Box test for the null-hypothesis of no correlation within the respective time

series. A rejection of the null hypothesis, however, implies the model’s inability to accommodate the

volatility and correlation dynamics within the data and therefore suggests appropriate extensions of

the model design.

The filtered covariance estimate E[Σt|Yt−1] constitutes a high-dimensional integral, which can

be approximated by the sample mean over draws from the respective conditional distribution of Σt:

e∗t = E[Σt|Yt−1]
− 1

2 Yt
∼=

(

1

M

M∑

j=1

Σ
j
t

)− 1

2

Yt, (16)

4I.e. after a certain number of burn-in iterations of the Gibbs sampler.
5Compare Gallant et al. (1991).
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where Σ
j
t denotes a draw from f(Σt|Yt−1), which is e.g. obtained by applying the standard particle

filter algorithm illustrated by Pitt & Shephard (1999).

Besides their dynamic properties, the distribution of the Pearson residuals is unknown. Model

diagnostics concerned with distributional assumptions regarding the model structure therefore have

to be based on alternative residual data. Kim et al. (1998) propose a specific kind of standardization

which under the null hypothesis of a correctly specified model results in independent and identically

distributed (iid) standard Normal return residuals. The latter can therefore be applied for checking

distributional assumptions. Denoting yi,t the i’th element of the k-dimensional return vector Yt,

the probability Pr(ỹi,t+1 ≤ yi,t+1|Yt) can be approximated by

Pr(ỹi,t+1 ≤ yi,t+1|Yt)
∼= uM

i,t+1 =
1

M

M∑

j=1

Pr(ỹi,t+1 ≤ yi,t+1|σ
2,j
i,t+1), (17)

where σ2,j
i,t+1 denotes the i’th diagonal element of Σ

j
t+1, drawn from f(Σ−1

t+1|Yt), j = 1, . . . ,M , and

a variable with a tilde denotes a random variable. Under the null hypothesis of a correctly specified

model the {uM
i,t}

T
t=1 sequence is iid uniform distributed for all i = 1, . . . , k and can be mapped into the

standard Normal distribution via the inverse of the respective cumulative distribution function (cdf):

eMi,t = F−1
N (uM

i,t). These residuals can thereupon be applied for checking distributional assumptions

with respect to the model under consideration e.g. by applying the Kolmogorov-Smirnov- or Jarque-

Bera test of the null hypothesis of standard Normal distributed residuals.

2.5 Value-at-Risk

An alternative approach for comparing alternative WMSV model specifications with respect to their

ability of accommodating dynamic correlation and volatility structures as well as distributional

properties of the return data is based on the unconditional and conditional coverage of VaR measures

of pre-defined portfolios, and has e.g. been applied by Chib et al. (2006). Given a k-dimensional

vector of portfolio weights w the level α VaR of a portfolio return ypt at time t is computed according

to

VaRp,t(α) =
√

σ̂p,t F
−1(α), (18)

where F−1(α) denotes the α-percentile of the cumulative on-step-ahead distribution assumed for

portfolio returns and σ̂p,t denotes the model-based portfolio variance forecast calculated using return

information up to period t− 1.
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The accuracy of obtained VaR estimates can be checked based on unconditional and conditional

coverage tests as illustrated by Lopez & Walter (2001). Defining an indicator variable

It =







1 if ypt < VaRp,t,

0 if ypt ≥ VaRp,t,
(19)

and denoting the number of out-of-sample observations by T and the ‘’hit-rate” by α̂ the hypothesis

α̂ = (1/T )
∑T

t=1 It = α can be tested using the statistic

LRuc = 2{ ln[ α̂γ(1 − α̂)T−γ ] − log[ αγ(1 − α)T−γ ] }, (20)

which is asymptotically χ2(1) distributed with γ =
∑T

t=1 It. However, the obtained portfolio returns

are heteroscedastic. To accommodate this stylized fact Christoffersen (1998) proposes a test of

conditional coverage by jointly testing for correct unconditional coverage and independence in the

hit-rate series, where the independence hypothesis is tested against the hypothesis of first-order

Markov dependence. Define Tij as the number of observations in state j after having been in state

i in the previous period, π01 = T01/(T00 + T01) and π11 = T11/(T10 + T11). Under the alternative

hypothesis the likelihood function is LA = (1−π01)
T00πT01

01 (1−π11)
T10πT11

11 . Under the null hypothesis

of independence, the likelihood is instead L0 = (1−π)T00+T10πT01+T11 , where π = (T01 +T11)/T and

π01 = π11 = π. The test statistic for independence is then given by

LRind = 2(lnLA − lnL0), (21)

which is also asymptotically χ2(1) distributed. To jointly test the two hypotheses and to test for

correct conditional coverage we apply the test statistic

Lcc = LRuc + LRind, (22)

which is asymptotically χ2(2) distributed.

3 Empirical Results

The current section presents the data-set and the obtained estimation results for the basic WMSV

model and the MS WMSV model specification. The respective model fit is analyzed by the condi-

tional and unconditional coverage of 5% VaR forecasts for the year 2008 as well as model diagnostic

tests based on the stochastic properties of standardized returns under the null hypothesis of correct

model specification.
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The analysis is based on daily AR(p) pre-filtered stock index log-returns6 for France, Germany,

Italy, Switzerland and the UK starting in January 2003 and ending in December 2008 (1565 obser-

vations). The return series are illustrated in figure 8 and descriptive statistics are given in table 1,

where the Box-Pierce test statistic with 10 lags included is adjusted for serial correlation in the sec-

ond moment (the so-called volatility clustering effect). All return series feature the stylized facts of

financial markets given by high leptokurtosis, insignificant autocorrelation in returns and significant

autocorrelation in quadratic returns. The reported sample correlations are quite high and indicate

a huge degree of co-movement for all five stock indices.

3.1 Basic WMSV Model

Table 2 presents the estimation results for the basic WMSV model. The chosen prior distributions are

overall relatively uninformative and reported in the table. All estimation results are based on 50, 000

iterations of the Gibbs sampling algorithm and a burn-in phase of 15,000 iterations. Reported point

estimates are obtained by averaging the Gibbs output after convergence of the generated Markov

chain. The posterior standard deviation and the 95% posterior high density region are estimated by

the standard deviation of the respective Gibbs sequence and the according 2.5% and 97.5% quantiles.

The MC standard errors intend to give an impression of the numerical efficiency of the simulation

based MCMC scheme and are calculated using a correlation consistent Parzen window based spectral

estimator for the variance of a sample mean7 as given by the obtained Bayesian point estimates.

Figure 9 depicts the obtained Gibbs sequences which display fast convergence to the stationary

distribution. Histograms of the former are presented in figure 10 and give an impression of the model

parameters’ marginal posterior distributions.

The reported 95% posterior high density regions imply parameter estimates significantly different

from zero with low MC standard errors. The estimated persistence parameter d = 0.9467 indicates

a pronounced volatility clustering effect and huge dependencies within the dynamic correlation pro-

cess. Estimated off-diagonal elements of the sensitivity matrix A−1 are significantly different from

zero. The estimation results therefore suggest significant volatility spillover effects between the five

European countries considered. Figure 11 illustrates these effects by simulation-based estimates

of cross-country lagged unconditional volatility correlations where France appears to be the driv-

ing force of international transmission of uncertainty, whereas German volatility shows the lowest

6Datastream DS market indices.
7Compare Kim et al. (1998).
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unconditional correlation with the remaining countries’ volatilities.

Smoothed estimates of the dynamic standard deviations and correlations for the whole set of

considered log returns are presented in figure 12 and 13 and obtained by averaging the Gibbs output

of the covariance and correlation matrices after leaving the burn-in period. The results imply a huge

degree of co-movement, i.e. dependence, in volatility, a pronounced pattern of volatility clustering

and highly accentuated peaks in volatility at the beginning of 2003, the middle of 2006 and finally a

large volatility cluster slowly building up from the middle of 2007. The latter effect is clearly due to

the current financial crisis originating from the US subprime market from where uncertainty, reflected

by volatility, spread out around the world through various channels of information transmission. The

average smoothed cross-correlation estimates involving Germany are significantly lower compared

to the remaining cross-correlation estimates and show a pattern of significantly higher cross-country

correlations in periods of high market volatility compared to calm periods. According to Forbes &

Rigobon (2001), this pattern indicates contemporaneous contagion effects in returns.

Table 5 presents model diagnostic results for both model specifications based on Pearson residuals

obtained under the particle filtering scheme. For the basic WMSV framework the presented Ljung-

Box test statistics at 50 lags for autocorrelation in the cross-products of the standardized returns are

highly significant at every common significance level for almost all cases. However, by comparing

the obtained test statistics for the log return series before and after the standardization, a strong

reduction in the autocorrelation is observed. The model is able to accommodate the dynamic

volatility and correlation pattern, but the quality of the respective fit could clearly be improved.

Table 6 presents diagnostic results based on standardized returns according to Kim et al. (1998).

The Kolmogorov-Smirnov and Jarque-Bera test results under the null hypothesis of Normality of the

obtained residuals are overall highly significant. The apparent deviations from the Normal distri-

bution are clearly seen by comparing the reported kurtosis statistics with their expected realization

under a Normal distribution. However, compared to the kurtosis statistics and test results obtained

under the original return data, the significant improvements towards Gaussianity are obvious. Nev-

ertheless the obtained diagnostics imply considerable problems of the model in accommodating the

fat tails of the five-dimensional return series.

The model diagnostic results are additionally reflected by obtained 5% VaR-forecast results for

an equally weighted European portfolio, presented in table 7. The forecast for the first period of

2008 has been generated by estimating the according WMSV model based on data up to the end

of 2007 and forecasting the 5% VaR of the subsequent period’s portfolio return. All remaining
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forecasts are obtained by moving the whole estimation window by one period and again forecasting

the subsequent period’s VaR. The forecasting procedure itself is based on the Gibbs scheme as e.g.

illustrated by Chib et al. (2006). The obtained results based on the ex post observed hit-rates and

according likelihood ratio tests overall indicate significant deviations from the 5% VaR. However it

has to be noticed that the forecasting period includes the most volatile time span within the data

set. A hit rate significantly different from the 5% VaR therefore does not seem astonishing at all.

3.2 Markov Switching WMSV Model

Table 3 presents the obtained estimation results and the according prior distributions for the Markov

Switching (MS) WMSV model. The respective Gibbs sequences presented in figures 14 and 15

show convergence after a burn-in phase of 20,000 iterations. Histograms of the Gibbs output are

additionally given in figures 16 and 17.

Except for one element, all entries of the A
−1
2 matrix are significantly greater than the corre-

sponding elements of the A
−1
1 matrix. According to the simulation results of section 2.1, the latter

finding suggests a more pronounced volatility scaling effect in the second state, which coincides with

periods of exceedingly high volatility as illustrated by figure 18. The induced scaling effect prevents

a potential underestimation of return volatilities in uncertain periods.

The persistence parameter d is estimated to be significantly lower compared to the basic WMSV

model. This effect is due to the volatility scaling by the MS framework, which alleviates the general

overestimation of the persistence parameter.

The significantly higher Bayesian point estimates in case of A
−1
2 linked with the state of high

volatility furthermore suggest the existence of more accentuated volatility spillover effects during

periods of turmoil. The effects of both parameter matrices on volatility scaling and volatility spillover

effects are illustrated by simulation results presented in table 4. The unconditional mean of Σt and

the implied correlation matrix (not presented in the table) are significantly higher in the second state,

and the unconditional correlation between each single asset’s volatility at time t and the remaining

assets’ volatilities at time t− 1 significantly increases from state one to state two. According cross-

correlation functions at different lags are similar to those obtained for the basic WMSV model and

therefore not presented here. The obtained estimation results imply enhanced volatility scaling and

volatility spillover effects in periods of financial turmoil as indicated by high market volatility, where

France again appears to be the driving force of cross-country volatility transmission.

Figure 19 presents smoothed estimates for the time-varying return correlation between France
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and Germany. The apparent correlation scaling does not seem to be directly related to the obtained

smoothed state estimates. Comparing the average smoothed correlations in each of the two states,

however, results in a higher value for the ’volatile’ state two. This result is in line with the simulation

results of section 2.1 where the unconditional mean of correlations is scaled by overall increasing

elements within the parameter matrix A−1. This finding is confirmed by the remaining cross-

correlation estimates not presented here. During periods of high market volatility the latter again

indicate contagion effects in cross-country return correlations driven by Germany.

Pearson residual based model diagnostic results for the MS model specification are presented

in table 5. Conducted Ljung-Box tests for the series of cross-products of standardized returns are

insignificant at the 1% level for almost all considered cross-products of standardized returns. The MS

framework therefore offers a considerable improvement of the WMSV model’s dynamic properties

which can be traced back to the avoided overestimation of the persistence parameter d.

With respect to distributional model assumptions, table 6 additionally indicates superior diag-

nostic results for the Markov Switching WMSV specification. Besides a slight overestimation of the

residuals’ means and standard deviations the kurtosis results are significantly improved compared

to the basic WMSV specification. This effect is due to the accentuated volatility peaks within

the MS framework and is additionally represented (although overall insignificant) by the obtained

Kolmogorov-Smirnov and Jarque-Bera test statistics.

The obtained 5% VaR-forecast results presented in table 7 furthermore underline the necessity of

extending the basic WMSV model by the proposed Markov switching volatility scaling regimes. The

obtained hit rate of 9.89% is significantly lower compared to the hit rate of 15.27% obtained under

the basic WMSV model. However, all test results of conditional and unconditional coverage again

imply a hit rate significantly different from the 5% level. This result is again due to the excessively

high volatility in 2008 which is a result of the current financial crisis.

4 Conclusion

The present paper proposed and analyzed a Markov Switching (MS) extension to the basic Wishart

Multivariate Stochastic Volatility (WMSV) model of Philipov & Glickman (2006). The MS frame-

work is shown to allow for state-dependent volatility scaling and volatility spillover effects. The

additional scaling effects avoid a potential underestimation of return volatilities in uncertain periods

and alleviate the general overestimation of the persistence within the volatility process.
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An empirical application to daily European stock index returns indicates significant spillover and

contagion effects in cross-country return correlations and volatilities related to periods of excessive

market volatility. Under the MS WMSV model, conducted model diagnostic tests reveal an enhanced

quality of the overall model fit with respect to dynamic and distributional properties of the data-

generating process. This result is strongly confirmed by obtained coverage test results based on a

5% VaR forecasting application.
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5 Tables

Table 1: Summary Statistics of Daily Index Log Returns

Statistic France Germany Italy Switzerland UK

Sample correlation 1.00 0.72 0.91 0.89 0.90

· 1.00 0.68 0.66 0.69

· · 1.00 0.83 0.89

· · · 1.00 0.84

· · · · 1.00

Mean 0.00 0.00 0.00 0.00 0.00

Std. dev. 1.26 1.34 1.13 1.11 1.18

Kurtosis 12.48 24.67 14.47 11.84 12.86

Minimum -8.35 -8.64 -9.01 -7.50 -8.54

Maximum 9.60 16.24 9.19 9.68 8.34

BP a
r (10) 4.98 1.34 2.91 7.91 1.56

p-value (0.89) (0.99) (0.98) (0.63) (0.99)

BPr2(30) 2293.70 1137.94 2409.56 2341.55 2583.31

p-value (0) (0) (0) (0) (0)
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Table 2: Estimation Results: Basic WMSV Model

A
−1

0.8775 (7.4644e-04) 0.0241 (4.3517e-04) 0.0393 (1.6301e-04) 0.0381 (6.0392e-04) 0.0363 (3.7437e-04)

[0.0057] [0.0032] [0.0034] [0.0037] [0.0035]

[0.0432; 391.9209] [0.0179; 391.9209] [0.0326; 0.0459] [0.0311; 0.0459] [0.0295; 0.0432]

· 0.9209 (5.3122e-04) 0.0200 (2.6193e-04) 0.0141 (4.9501e-04) 0.0183 (1.8959e-04)

[0.0047] [0.0032] [0.0031] [0.0031]

[0.9119; 0.9301] [0.0138; 0.0263] [0.0081; 0.0204] [0.0122; 0.0244]

· · 0.8759 (8.7461e-04) 0.0211 (4.7998e-04) 0.0311(3.0469e-04)

[0.0057] [0.0031] [0.0033]

[0.8643; 0.8868] [0.0150; 0.0272] [0.0245; 0.0375]

· · · 0.8839 (8.9553e-04) 0.0278 (4.3256e-04)

[0.0054] [0.0033]

[0.8729; 0.8943] [0.0215; 0.0343]

· · · · 0.8775 (7.8650e-04)

[0.0056]

[0.8664; 0.8884]

ν 69.0470 (0.0102) d 0.9467 (5.0902e-04)

[0.4809] [0.0027]

[67.8817; 69.9111] [0.9411; 0.9518]

Burn-in: 15,000; Gibbs sequences: 50,000; bandwidth for spectral estimator: 35,000; Gamma prior for ν: µ = 70,

σ = 10; Wishart prior for A−1: Q0 = I5, γ0 = 6. In parentheses: MC standard deviation. In square brackets:

posterior standard deviation; 95% a posteriori high density region.
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Table 3: Estimation Results: MS WMSV Model

A
−1

1
, A

−1

2

0.7511 (0.0019) 0.0487 (7.9698e-04) 0.0703 (9.8845e-04) 0.0702 (7.8869e-04) 0.0664 (0.0010)

A
−1

1
[0.0090] [0.0046] [0.0051] [0.0044] [0.0046]

[0.7351; 0.7691] [0.0399; 0.0577] [0.0607; 0.0806] [0.0616; 0.0788] [0.0576; 0.0756]

1.2050 (0.0038) 0.1071 (0.0044) 0.2002 (0.0012) 0.1892 (0.0080) 0.1858 (0.0062)

A
−1

2
[0.0303] [0.0246] [0.0201] [0.0272] [0.0320]

[1.1459; 1.2641] [0.0701; 0.1713] [0.1639; 0.2425] [0.1390; 0.2439] [0.1308; 0.2503]

· 0.8388 (0.0026) 0.0374 (5.3089e-04) 0.0252 (2.8740e-04) 0.0380 (0.0014)

A
−1

1
[0.0092] [0.0043] [0.0043] [0.0050]

[0.8224; 0.8583] [0.0292; 0.0459] [0.0171; 0.0341] [0.0284; 0.0475]

· 1.3029 (0.0068) 0.1063 (0.0020) 0.1091 (0.0050) 0.0973 (0.0048)

A
−1

2
[0.0631] [0.0248] [0.0257] [0.0277]

[1.2257; 1.3673] [0.0586; 0.1561] [0.0623; 0.1586] [0.0529; 0.1645]

· · 0.7474 (0.0030) 0.0440 (7.7266e-04) 0.0539 (0.0015)

A
−1

1
[0.0110] [0.0046] [0.0060]

[0.7263; 0.7694] [0.0352; 0.0531] [0.0419; 0.0642]

· · 1.1678 (0.0038) 0.0976 (0.0072) 0.1879 (0.0029)

A
−1

2
[0.0277] [0.0263] [0.0207]

[1.1100; 1.2203] [0.0420; 0.1465] [0.1466; 0.2288]

· · · 0.7598 (0.0016) 0.0506 (0.0011)

A
−1

1
[0.0096] [0.0049]

[0.7418; 0.7794] [0.0378; 0.0587]

· · · 1.2385 (0.0129) 0.1362 (0.0108)

A
−1

2
[0.0374] [0.0365]

[1.1610; 1.3061] [0.0654; 0.1993]

· · · · 0.7462 (0.0018)

A
−1

1
[0.0094]

[0.7286; 0.7642]

· · · · 1.2679 (0.0037)

A
−1

2
[0.0303]

[1.2110; 1.3286]

ν d e1 e2

80.1245 (0.0171) 0.8859 (0.0017) 0.0836 (5.1945e-04) 0.4028 (3.4751e-04)

[0.4941] [0.0061] [0.0070] [0.0098]

[79.1592; 81.0936] [0.8750; 0.8972] [0.0703; 0.0978] [0.3837; 0.4219]

Burn-in: 20,000; Gibbs sequences: 50,000; bandwidth: 30,000; Gamma prior for ν: µ = 80, σ = 0.5; Wishart prior for

A
−1

1
and A

−1

2
: Q0 = I5, γ0 = 6. Beta prior for e1: µ = 0.09, σ = 0.01. Beta prior for e2: µ = 0.4, σ = 0.01. In

parentheses: MC standard deviation. In square brackets: posterior standard deviation; 95% a posteriori high density

region.
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Table 4: Simulation Results, MS WMSV Model: Unconditional Mean and Unconditional (Lagged)

Correlation of Return Volatilities

France Germany Italy Switzerland UK

E[Σt], A1

France 0.3851 0.2889 0.2844 0.2820 0.2845

Germany 0.2889 0.5101 0.2364 0.2143 0.24146

Italy 0.2844 0.2364 0.3057 0.2258 0.2395

Switzerland 0.2820 0.2143 0.2258 0.3163 0.2353

UK 0.2845 0.2414 0.2395 0.2353 0.3093

E[Σt], A2

France 84.6219 63.0729 71.5678 71.6707 81.9901

Germany 63.0729 58.3977 54.3402 54.8291 61.7737

Italy 71.5678 54.3402 63.6885 60.1072 71.3041

Switzerland 71.6707 54.8291 60.1072 65.6259 69.7737

UK 81.9901 61.7737 71.3041 69.7737 85.2218

Corr[σ2
jj,t, σ

2
ii,t−1], A1

France 0.8884 0.3358 0.5269 0.5090 0.4984

Germany 0.3366 0.8878 0.2821 0.2272 0.2689

Italy 0.5325 0.2845 0.8891 0.4107 0.4702

Switzerland 0.5069 0.2218 0.4091 0.8877 0.4261

UK 0.5006 0.2748 0.4740 0.4314 0.8884

Corr[σ2
jj,t, σ

2
ii,t−1], A2

France 0.8892 0.6569 0.7979 0.7778 0.7762

Germany 0.6569 0.8897 0.6474 0.6202 0.6291

Italy 0.7972 0.6467 0.8915 0.7015 0.7822

Switzerland 0.7747 0.6168 0.7000 0.8903 0.7065

UK 0.7736 0.6284 0.7808 0.7062 0.8922

Simulation sample size: T = 20, 000. (i, j)-entries refer to Corr[σ2

jj,t, σ
2

ii,t−1], where i is the line-index and j is the

column-index. ν and d are fixed to the obtained point estimates under the MS framework.
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Table 5: Model Diagnostics Based on Pearson Residuals

Country France Germany Italy Switzerland UK

Ljung-Box (50) test statistic

France 75.1851 37.9128 56.8430 55.5294 88.4370

315.8503 86.3336 84.8437 137.3714 213.1473

{2653.2} {1398.4} {2594.8} {2571.1} {2858.8}

Germany · 44.2132 64.6645 57.9974 48.4857

262.7033 149.5164 146.5622 203.5875

{1220.4} {1229.2} {1353.1} {1804.8}

Italy · · 61.5855 70.5324 63.4851

71.3172 140.1393 76.5845

{2721.3} {2543.0} {2903.6}

Switzerland · · · 41.0514 59.9368

281.4120 115.7524

{2555.7} {3031.2}

UK · · · · 82.5616

308.1207

{3016.1}

Ljung-Box test results for cross-products of standardized returns. First number: MS WMSV model; second number:

basic WMSV model. In curly brackets: realization of test statistic based on original return series. The 1% critical

value of the χ2

50 distributed test statistic is given by 76.15. Number of particles: 100,000.
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Table 6: Diagnostics: e (Kim et al. (1998)): MS WMSV Model

France Germany Italy Switzerland UK

Mean 0.0462 0.0441 0.0668 0.0457 0.0462

0.0173 0.0177 0.0304 0.0214 0.0189

Std 1.0664 1.0492 1.0680 1.0690 1.0642

0.9947 0.9900 0.9945 0.9960 0.9936

Kurtosis 2.9483 3.0495 3.0182 2.9214 2.9520

3.7193 3.9425 3.8131 3.7339 3.6244

{12.4874} {24.6755} {14.4763} {11.8407} {12.8685}

KS-Test 0.0446** 0.0417** 0.0658** 0.0484** 0.0469**

0.0455** 0.0420** 0.0726** 0.0534** 0.0516**

{0.0559∗∗} {0.0459∗∗} {0.0960∗∗} {0.0789∗∗} {0.0780∗∗}

JB-Test 8.1067* 6.2948* 22.2527** 9.8345** 12.1775**

53.8931** 72.1440** 96.1993** 54.4613** 54.3058**

{5870∗∗} {30807∗∗} {8602∗∗} {5099∗∗} {6408∗∗}

First number: MS WMSV model; second number: basic WMSV model. In curly brackets: original return series.

Number of particles: 100,000. *: significant at 5% significance level; **: significant at 1% significance level.

Table 7: 5% VaR Forecasts (2008)

Hit Rate LRuc puc LRcc pcc

WMSV 0.1527 38.5194 5.4212e-010 39.6292 2.4810e-009

MS WMSV 0.0989 10.4196 0.0012 11.8902 0.0026
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6 Figures

Figure 1: Simulated Unconditional Means and Standard Deviations of Σt for Varying A−1 Matrices
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i is the index on the set of considered parameter matrices. Simulation sample size: T = 20, 000. Solid line: E[·];

dashed line: std[·]. All remaining model parameters are kept constant.
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Figure 2: Simulated Unconditional Means and Standard Deviations of Σt for Varying d
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i is the index on the set of considered parameter values. Simulation sample size: T = 20, 000. Solid line: E[·]; dashed

line: std[·]. All remaining model parameters are kept constant.

Figure 3: Simulated Unconditional Means and Standard Deviations of Σt for Varying ν
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i is the index on the set of considered parameter values. Simulation sample size: T = 20, 000. Solid line: E[·]; dashed

line: std[·]. All remaining model parameters are kept constant.
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Figure 4: Simulated Unconditional Means of Return Correlations for Varying Model Parameters
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i is the index on the set of considered parameter values. Simulation sample size: T = 20, 000. All remaining model

parameters are kept constant.

Figure 5: Simulated Unconditional Autocorrelation Functions of the Variance σ2
1 for Varying A−1
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Simulation sample size: T = 20, 000. All remaining model parameters are kept constant.
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Figure 6: Simulated Unconditional Autocorrelation Functions of the Variance σ2
1 for Varying d
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Simulation sample size: T = 20, 000. All remaining model parameters are kept constant.

Figure 7: Simulated Unconditional Autocorrelation Functions of the Variance σ2
1 for Varying ν
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Simulation sample size: T = 20, 000. All remaining model parameters are kept constant.
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Figure 8: Return Series
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Figure 9: Gibbs Sequences: Basic WMSV Model
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Figure 10: Histograms of Gibbs Sequences after Burn-in: Basic WMSV Model
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Figure 11: Simulation Based Estimates of Unconditional (Lagged) Volatility Cross-Correlations:

Basic WMSV Model
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Simulation sample size: T = 20, 000. Each graph shows the cross-correlation of the titled country’s volatility with the

remaining countries’ volatilities at varying lags.

30



Figure 12: Smoothed Volatility Estimates and Corresponding Return Series: Basic WMSV Model
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Figure 13: Smoothed Correlation Estimates: Basic WMSV Model
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Figure 14: Gibbs Sequences: ln |A1|, ln |A2|, d, MS WMSV Model
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Figure 15: Gibbs Sequences: ν, e1, e2, MS WMSV Model
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Figure 16: Histograms of Gibbs Sequences after Burn-in: ln |A1|, ln |A2|, d, MS WMSV Model
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Figure 17: Histograms of Gibbs Sequences after Burn-in: ν, e1, e2, MS WMSV Model
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Figure 18: Smoothed Volatility Estimates: MS WMSV Model
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Figure 19: Smoothed Correlation Estimates: MS WMSV Model, France and Germany
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7 Mathematical Appendix

7.A Full Conditional Distributions: Basic WMSV Model

According to Bayes’ theorem, the full conditional distribution of each element of the model’s aug-

mented parameter vector θ
aug = (A, ν, d, {Σt}

T
t=1)

′ is proportional to the product of the likelihood

function and the parameters’ joint prior distribution, where the latter (by assumption) factors in

the product of the marginal prior distributions:

P (θaug|Y) ∝

T∏

t=1

P (Yt|Σt,θ) × P (Σ−1
t |St−1, ν)

×Wishk(A
−1;Q0, γ0) × p(d; 0, 1) × Gamma(ν − k;α0, β0). (23)

The full conditional distribution of Σ−1
t is therefore derived by

P (Σ−1
t |rest) ∝ Wish(Σ−1

t |ν,St−1) ×N(0,Σt) ×Wish(Σ−1
t+1|ν,St) (24)

∝ |St−1|
−ν/2|Σ−1

t |(ν−k−1)/2 × exp{−0.5 tr[S−1
t−1Σ

−1
t ]}

×|Σt|
−0.5 exp{−0.5Y′

tΣ
−1
t Yt} × |St|

−ν/2 × exp{−0.5 tr[S−1
t Σ−1

t+1]} (25)

∝ |Σ−1
t |(ν−k−1)/2|Σ−1

t |0.5|Σ−1
t |−(dν)/2

× exp{−0.5[ Y′
tΣ

−1
t Yt

︸ ︷︷ ︸

=tr[YtY
′
tΣ

−1

t ]

+tr[S−1
t−1Σ

−1
t ]]} × exp{−0.5 tr[S−1

t Σ−1
t+1]} (26)

= |Σ−1
t |(ν−k−dν)/2 × exp{−0.5 tr[(S−1

t−1 + YtY
′
t)Σ

−1
t ]} (27)

× exp{−0.5 tr[S−1
t Σ−1

t+1]} (28)

= Wish(Σ−1
t |ν̃, S̃t−1) × f(Σ−1

t ), (29)

where

ν̃ = ν(1 − d) + 1; S̃t−1 = (S−1
t−1 + YtY

′
t)
−1, (30)

f(Σ−1
t ) = exp{−0.5 tr[S−1

t Σ−1
t+1]}, (31)

St =
1

ν
Σ
−d/2
t AΣ

−d/2
t , (32)

and the notion ’rest’ denotes short-hand notation for the remaining elements of the model’s aug-

mented parameter vector θ
aug.

Hence the full conditional distribution of Σ−1
t is only known up to an integrating constant.

Samples from P (Σ−1
t |rest) can therefore be obtained via the Metropolis-Hastings algorithm with
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acceptance probability α given by

α =
P (θ∗)

Q(θ∗)
×
Q(θ[m−1])

P (θ[m−1])
=

|(Σ∗
t )

−1|(1−νd)/2f(Σ−1∗
t )

|(Σ
[m−1]
t )−1|(1−νd)/2f(Σ

−1,[m−1]
t )

, (33)

where

Q: Proposal density given by Wishk(Σ
−1
t |ν, S̃t−1),

P: Target density P (Σ−1
t |rest).

The full conditional distribution of A−1 is given by a Wishart distribution and can therefore be

sampled directly within the Gibbs scheme:

P (A−1|rest) ∝ Wishk(γ0,Q0)

T∏

t=1

P (Σ−1
t |St−1, ν) (34)

∝ Wishk(γ0,Q0)
T∏

t=1

∣
∣
∣(1/ν)(Σ

−d/2
t−1 )A(Σ

−d/2
t−1 )

∣
∣
∣

−ν/2
|Σ−1

t |(ν−k−1)/2

× exp
{

− 0.5 tr
[(

(1/ν)(Σ
−d/2
t−1 )A(Σ

−d/2
t−1 )

)−1
Σ−1

t

]}

(35)

∝ Wishk(γ0,Q0)|A
−1|(Tν)/2 × exp

{

− 0.5tr
[

ν
T∑

t=1

Σ
d/2
t−1Σ

−1
t Σ

d/2
t−1A

−1
]}

(36)

∝ Wishk(γ0,Q0) × Wishk(γ,Q), (37)

where

Q−1 = ν

T∑

t=1

Σ
d/2
t−1Σ

−1
t Σ

d/2
t−1, (38)

γ = Tν + k + 1, (39)

and hence

P (A−1|rest) ∝ Wishk(γ0,Q0) × Wishk(γ,Q) (40)

∝ |Q0|
−γ0/2|A−1|(γ0−k−1)/2 exp{−0.5 tr[Q−1

0 A−1]}

|Q|−γ/2|A−1|(γ−k−1)/2 exp{−0.5 tr[Q−1A−1]} (41)

∝ |A−1|(γ0+γ−2k−2)/2 exp{−0.5 tr[(Q−1
0 + Q−1)A−1]} (42)

∝ Wishk(A
−1|Q̃, γ̃), (43)

where

Q̃−1 = Q−1
0 + Q−1, (44)

γ̃ = γ0 + γ − k − 1. (45)
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The full conditional distributions of the parameters ν and d are not obtained in closed form.

Hence again the Metropolis-Hastings sampling scheme is applied by making use of a truncated

normal proposal density. The mean and standard deviation of the latter are given by the optimum

and the corresponding Hessian obtained after numerically optimizing the posterior distribution’s

kernel over the respective parameter space.

P (d|rest) ∝ p(d)
T∏

t=1

|Σ−1
t−1|

−dν/2 exp
{

− 0.5 tr
[(

(1/ν)Σ
−d/2
t−1 AΣ

−d/2
t−1

)−1
Σ−1

t

]}

(46)

∝ exp
{

dψ − 0.5 tr
[

Q(d)A−1
]}

, (47)

where

ψ = −
ν

2

T∑

t=1

ln(|Σ−1
t−1|), (48)

Q(d) =

T∑

t=1

νΣ
d/2
t−1Σ

−1
t Σ

d/2
t−1, (49)
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and

p(ν|rest) ∝ Gamma(ν − k|α, β) ×
T∏

t=1

P (Σ−1
t |St−1, ν) (50)

∝ exp{(α− 1) ln(ν − k) − β(ν − k)}

×

T∏

t=1

(∣
∣(1/ν)Σ

−d/2
t−1 AΣ

−d/2
t−1

∣
∣−ν/2

|Σ−1
t |(ν−k−1)/2

2νk/2
∏k

j=1 Γ
(

(ν − j + 1)/2
)

× exp
{

− 0.5 tr
[(

(1/ν)Σ
−d/2
t−1 AΣ

−d/2
t−1

)−1
Σ−1

t

]}
)

(51)

∝ exp{(α− 1) ln(ν − k) − β(ν − k)}

×

T∏

t=1

(

|νA−1|ν/2|(Σ−1
t−1)

d|−ν/2|Σ−1
t |(ν−k−1)/2

2νk/2
∏k

j=1 Γ
(

(ν − j + 1)/2
)

× exp
{

− 0.5 tr
[(

(1/ν)Σ
−d/2
t−1 AΣ

−d/2
t−1

)−1
Σ−1

t

]}
)

(52)

∝ exp{(α− 1) ln(ν − k) − β(ν − k)}

×

T∏

t=1

(

|νA−1|ν/2|(Σ−1
t−1)

d|−ν/2|Σ−1
t |ν/2

2νk/2
∏k

j=1 Γ
(

(ν − j + 1)/2
)

)

× exp{−0.5 tr
[

Q−1A−1
]

} (53)

∝ exp{(α− 1) ln(ν − k) − β(ν − k)}

×

(

|νA−1|ν/2

2νk/2
∏k

j=1 Γ
(

(ν − j + 1)/2
)

)T

×
T∏

t=1

|Q−1
t |ν/2 exp{−0.5 tr

[

Q−1A−1
]

}, (54)

where

Q−1
t = Σ

d/2
t−1Σ

−1
t Σ

d/2
t−1, (55)

Q−1 = ν

T∑

t=1

Σ
d/2
t−1Σ

−1
t Σ

d/2
t−1. (56)
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7.B Full Conditional Distributions: Markov Switching MWSV Model

The joint sampling of the whole state sequence {st}
T
t=1 becomes possible by rewriting the full con-

ditional density of the state vector s according to

P (s|rest) = P (s|Σ−1
T ,θ) (57)

= P (sT |Σ
−1
T ,θ) × P (sT−1|sT ,Σ

−1
T ,θ) × · · · × P (s1|s2,Σ

−1
T ,θ) (58)

= P (sT |Σ
−1
T ,θ) × P (sT−1|sT ,Σ

−1
T−1,θ) × · · · × P (s1|s2,Σ

−1
1 ,θ), (59)

where eq. (59) follows from the Markov property of st. The according conditional probabilities given

by

P (st|st+1,Σ
−1
t ,θ) =

P (st+1|st) × P (st|Σ
−1
t ,θ)

P (st+1|Σ
−1
t ,θ)

(60)

are obtained via the Hamilton filter which - given a starting value for P (st−1|Σ
−1
t−1,θ) (e.g. the

according stationary probabilities) - proceeds recursively in five steps:

I P (st, st−1|Σ
−1
t−1,θ) = P (st|st−1) × P (st−1|Σ

−1
t−1,θ) (61)

II P (st|Σ
−1
t−1,θ) =

∑

st−1

P (st, st−1|Σ
−1
t−1,θ) (62)

III f(Σ−1
t , st|Σ

−1
t−1,θ) = f(Σ−1

t |st,Σ
−1
t−1,θ) × P (st|Σ

−1
t−1,θ) (63)

IV f(Σ−1
t |Σ−1

t−1,θ) =
∑

st

f(Σ−1
t , st|Σ

−1
t−1,θ) (64)

V P (st|Σ
−1
t ,θ) =

f(Σ−1
t , st|Σ

−1
t−1,θ)

f(Σ−1
t |Σ−1

t−1,θ)
. (65)

By making use of conjugate Beta prior distributions {P (ei;αi, βi)}
2
i=1, the full conditional distri-

butions of the Markov probabilities ei, i ∈ {1, 2}, are given by

P (ei|rest) ∝ P (ei;αi, βi) ×

gi∏

j=1

ei

hi∏

j=1

(1 − ei) (66)

∝ eαi−1
i (1 − ei)

βi−1 × egi

i (1 − ei)
hi , (67)

where gi denotes the number of switches from state i to state i− (not state i) and hi denotes the

number of periods where the state does not differ from i in the subsequent period. The full conditional

distribution of ei is therefore given by a Beta distribution with hyper-parameters αi,0 = αi + gi and

βi,0 = βi + hi.

All remaining model parameters are sampled in the same way as presented in the previous ap-

pendix while taking the state-dependent parameter matrices Ai into account.
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