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Abstract
In many economic applications it is desirable to make future predictions
about the financial status of a company. The focus of predictions is mainly
if a company will default or not. A support vector machine (SVM) is one
learning method which uses historical data to establish a classification rule
called a score or an SVM. Companies with scores above zero belong to one
group and the rest to another group.

Estimation of the probability of default (PD) values can be calculated from
the scores provided by an SVM. The transformation used in this paper is a
combination of weighting ranks and of smoothing the results using the PAV
algorithm. The conversion is then monotone.

This discussion paper is based on the Creditreform database from 1997
to 2002. The indicator variables were converted to financial ratios; it tran-
spired out that eight of the 25 were useful for the training of the SVM. The
results showed that those ratios belong to activity, profitability, liquidity and
leverage.

Finally, we conclude that SVMs are capable of extracting the necessary
information from financial balance sheets and then to predict the future
solvency or insolvent of a company. Banks in particular will benefit from
these results by allowing them to be more aware of their risk when lending
money.
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1 Introduction

JEL classification: C14; G33; C45

Keywords: Support Vector Machine, Bankruptcy, Default Probabilities Pre-
diction, Profitability

1 Introduction

This work presents one of the more recent and efficient learning systems – support vector
machines (SVMs). SVMs are mainly used to classify various specialized categories such
as object recognition (Schölkopf 1997)), optical character recognition (Vapnik (1995)),
electric load prediction (Eunite (2001)), management fraud detection (Rätsch and Müller
(2004)),and early medical diagnostics. It is also used to predict the solvency or insolvency
of companies or banks, which is the focus of this work. In other words, SVMs are capable
of extracting useful information from financial data and then label companies by giving
them score values. Furthermore, probability of default (PD) values for companies can
be calculated from those score values. The method is explained later.

In the past, discriminant analysis (DA) and logit models were used for classification,
especially in the financial world. The logit model is in a way a generalized DA model
because it does not assume multivariate normality and equal covariance matrices. Over
time, researchers, bankers and others found out that those two models were inefficient
because they cannot classify satisfactorily if the data is non-linear separable. Conse-
quently, the rate of prediction of new companies was low and demand for more accurate
default estimations was developed, thus w ork with artificial neural nets (ANN), deci-
sion trees and SVMs started. The literature (S. Chen (accepted in 2009)) has shown
that SVMs produce better classification results than parametric methods. Additionally,
SVMs have single solutions characterized by the global minimum of the optimized func-
tion and they do not rely heavily on heuristics. SVM are attractive estimators and aree
therefore worth studying.

2 Bankruptcy analysis

Lending money is an act based on trust in the debtors ability to repay a loan. From where
does the lender get this trust? Banks and other institutions rely heavily on statistical
tools that try to predict the financial situation of borrowers. Since those tools are only
estimates of reality, lenders risk losing what they have invested. Therefore, improving
predictions of bankruptcies allow for better lending decisions. The task for statisticians
is to bolster existing methods and to develop new ones.
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2 Bankruptcy analysis

The problem of default and credit risks is not new and the idea of using financial ratios
to analyze companies is more than a century old. Ramser & Foster (1931), Fitzpatrick
(1932) and Winakor & Smith (1935) were one of the first scientists to apply financial ra-
tios for bankruptcy predictions. The systematic application of statistics to bankruptcy
analysis began with the work of Beaver (1966) and Altman (1968). They introduced
the univariate and multivariate discriminant analysis (DA). In 1968, Altman presented
a formula for predicting bankruptcy known as the linear Z-score model. This formula
was widely popular for calculating defaults and even today it is used due to its simplic-
ity. A drawback of the Z-score model is the assumption of equal normal distributions
for both failing and successful companies with the same covariance matrix. In reality,
the distributions may not be normal, therefore, financial institutions required a more
sophisticated method.

The centre of research shifted towards the logit and probit models. In 1977, Martin intro-
duced ’Early warning of bank failure’ and a few years later Ohlson (1980) published ’Fi-
nancial ratios and the probabilistic prediction of bankruptcy.’ Wiginton (1980), Zavgren
(1983) and Zmijewski (1984) continued working on logit and probit models. During that
time, other statisticians proposed different methods such as the gambler’s ruin model
(Wilcox 1971), option pricing theory (Merton 1974), recursive partitioning (Frydman,
Altman & Kao 1985), neural networks (Tam & Kiang 1992) and rough sets (Dimitras,
Slowinski, Susmaga & Zopounidis 1999). Glennon and Nigro (2005) suggested a hazard
or survival analysis.

From a geometrical point of view, SVMs classify solvent and insolvent companies into
two groups by putting a margin of separation between them. For the best classification,
the margin needs to be maximized and the error of misclassification minimized. The
easiest way to classify occurs when the data is linearly separable. However, this is not
always the case. Sometimes two groups cannot be separated linearly in the dimension
they exist but can be in a higher dimensional space. The kernel technique (Hastie,
Tibshirani, and Friedman (2001)) allows us to map the data into a higher dimensional
feature space. For that reason a SVM is a more powerful tool than classical a DA, logit
or probit. (The two later are only linear classifiers.)

The purpose of an SVM is to classify new data x after training a classification function
f . This f needs to be a good approximation of y when x is observed minimizing the
expected risk

R (f) =

∫

|f(x)− y| dP (x, y). (1)

y are the labels of x and |f(x)− y| is known as the loss function. f is an element of the
set of measurable functions F . To avoid overfitting F is restricted to a smaller amount
of functions. This approach is called emprirical risk minimization principle (ERM). In
practice the distribution P (x, y) is unknown. Therefore, R (f) cannot be calculated but
may be approximated.
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2 Bankruptcy analysis

Function class

Risk
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Figure 1: The minimum values fopt and f̂n of the expected (R) and empirical (R̂) risk
functions generally do not coincide.

Because of the unknown distribution P (x, y), the empirical risk needs to be introduced:

R̂ (f) =
1

n

n
∑

i=1

|f(xi)− yi| . (2)

Our loss function is the average value of misclassifications over the training set. Many loss

functions exist such as the least square
(

LLS(y,t)
def
= (1− yt)2

)

, hinge
(

Lhinge (y, t)
def
= max {0, 1− yt}

)

and logistic
(

Llogic(y,t)
def
= log {1 + exp(−yt)}2

)

. These are used according to the problem

posed or user preference.

The minimization of the expected and empirical risk:

fopt = arg min
f∈F

R (f) , (3)

f̂n = arg min
f∈F

R̂ (f) , (4)

do not necessary coincide (Figure 1). Depending on the size of F , fopt and f̂n will become
arbitrarily close as n increases.

From this we conclude that minimizing the expected risk directly is not possible due
to the unknown distribution P (x, y). According to statistical learning theory (Vapnik
1995), it is possible to estimate the Vapnik-Chervonenkis (VC) bound by putting an
upper bound on R(f). With probability 1− η:

R(f) ≤ R̂(f) +

√

√

√

√

h
(

log 2n
h + 1

)

− log(η/4)

n
, (5)
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2 Bankruptcy analysis

Figure 2: Eight possible ways of shattering 3 points on the plane with a linear indicator
function.

where
h ≤ min

{(

r2 ‖w‖
)

+ 1, n+ 1
}

(Vapnik 95). (6)

r is the radius of the smallest sphere containing data and 2
‖w‖ is the width of the margin.

h is the VC dimension.

Next we review the VC dimension and its relation to the SVM. If for some f ∈ F ,

the objects
{

xi ∈ R
d, i = 1, ..., h

}

can be shattered in all 2h possible ways and no set
{

xj ∈ R
d, j = 1, ..., q

}

exists with q > n, then h is called the VC dimension of F in a

d-dimensional space. For instance, x1, x2 and x3 ∈ R
2 can be shattered linearly in 8 = 23

ways. If we add a fourth point x4, we cannot shatter them into 24 = 16 different ways.
Hence, the VC-dimension h is 3 in R

2 as shown in Figure 2.

The expression for the VC bound (5) is a regularized functional where the VC dimension
h is a parameter controlling the complexity of the classifier function. We could find a
function that makes no training error but its performance on new data would be low.
Therefore, it is important to control the complexity. This means we have a trade-off
between the number of classification errors on the training set and the complexity of the
classifier function.

The second goal is to maximize the margin separating the two groups as illustrated in
Figure 3. The separating function generated by a linear SVM is

x⊤w + b = 0, (7)

where w is of dimension d × 1 called the weight or the slope. b is a scalar representing

5



2 Bankruptcy analysis
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Figure 3: The separating hyperplane x⊤w+ b = 0 and the margin in a linearly separable
(left) and non-separable (right) case. Crosses denote solvent companies, zeros
are the insolvent ones. The hyperplanes bounding the margin zone equidistant
from the separating hyperplane are represented as x⊤w+ b = 1 and x⊤w+ b =
−1. The misclassification penalty in the non-separable case is proportional to
the distance ξ/ ‖w‖.

the location parameter. xi is a d × 1 vector of the characteristics of company i, e.g.
financial ratios described in 4. There are d different characteristics.

Figure 3 visualizes the geometrical idea behind the SVM. In both pictures, a margin is
created by straight parallel lines which separate the two groups. Recall that the distance
between the groups needs to be maximized in order to improve classification. If the two
groups are perfect linearly separable, meaning that no observations are in the margin or
the opposite group as shown on the left picture, then all observations will satisfy

x⊤i w + b ≥ 1 for yi = 1,

x⊤i w + b ≤ −1 for yi = −1,

However, if there are observations in the marginal zone or in the opposite group shown
on the right panel of Figure 3, the misclassification needs to be penalized with η. Hence,
the inequalities are adjusted for all observations and we get:

x⊤i w + b ≥ 1− ξi for yi = 1, (8)

x⊤i w + b ≤ −1 + ξi for yi = −1, (9)

ξi ≥ 0, (10)

One of the main advantages of the SVM method is that only the data points on the
margin, in the margin and in the opposite group, are used for classification. These
observations are then called support vectors giving the technique its name. The logit
and DA methods use all observations for classification causing a higher cost of iteration.

From the above inequalities (8) and (9), the primal minimization problem of the SVM

6



2 Bankruptcy analysis

is written as:

min
w

1

2
‖w‖2 + C

n
∑

i=1

ξi, (11)

subject to

yi(x
⊤
i w + b) ≥ 1− ξi (12)

ξi ≥ 0. (13)

C is the complexity or capacity. Smaller C’s lead to larger margins and avoid over-
fitting, but the misclassification rate is potentially higher. Sometimes each group has
a different C. These C’s are only necessary if the sizes of both groups are sufficiently
different when training the SVM. Furthermore, the second term of (11) serves as the
misclassification penalty.

The primal problem above cannot be solved directly. The introduction of Lagrangian
multipliers to (11) - (13) leads to following equations:

min
w,b,ξi

max
αi,µi

LP =
1

2
‖w‖2 + C

n
∑

i=1

ξi −
n
∑

i=1

αi{yi
(

x⊤i w + b
)

− 1 + ξi} −
n
∑

i=1

βiξi,

where αi ≥ 0 and βi ≥ 0 are the Lagrange multipliers. They are non-zero for support
vectors.

Equation (14) needs to be rewritten as a dual problem using the Karush-Kuhn-Tucker
conditions (Gale, Kuhn & Tucker 1951). The dual problem is

max
αi

=
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjx
⊤
i xj , (14)

s.t.0 ≤ αi ≤ C, (15)
n
∑

i=1

αiyi = 0. (16)

Note that this optimization problem is convex; therefore, a unique solution can be found.

This dual optimization problem can be solved by hand or with a statistical computer
program. Its solutions are the n Lagrangian multipliers αi. They determine the degree
of influence of each training observation. The harder an observation is to classify the
higher αi will be. This explains why the αi’s are zero for the observations lying in the
correct area. Once αi’s are calculated the weight w of the d-variables is given:

w =
n
∑

i=1

αiyixi.

Notice the Lagrangian multipliers are directly related to the weights. In logistic regres-
sion this comparison of α and w is not possible.
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2 Bankruptcy analysis
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Figure 4: Mapping from a two-dimensional data space into a three-dimensional space of
features R

2 to R
3

If the data used is non-linear separable we transform it into a higher dimensional space,
called the feature space. The minimization (11) depends only on the scalar product x⊤xi,
not on the original x and xi. Therefore, x⊤xi can be replaced by a function k(x, xi) so
that there is a mapping from a lower dimensional space into higher dimensional space
in which the data is linearly separable. The kernel function k(xi, yj) must satisfy the
Mercer conditions (Mercer (1909)):

1. k(xi, yj) = k(yj , xi) = (symmetric)

2. ∀(x1, . . . , xn), (y1, . . . , yn), kij = k(xi, yj), a
⊤ka ≥ 0 (semi-positive definite)

Hence, the data can be mapped into infinitely dimensional spaces as in the case with
the Gaussian kernels.

Figure 4 visualizes a simple example of the above theory. Let k be the quadratic kernel
function:

k(x, xi) =
(

x⊤xi
)2
,

which maps from R
2 into R

3. The explicit map is:

ψ(x, xi) =
(

x2,
√

2xxi, x
2
i

)2

Fortunately, we do not need to determine the transformation ψ explicitly because

k(x, xi) = ψ(x, xi)
⊤ψ(x, xi).

Non-linear data can be classified into a higher dimensional feature space without chang-
ing the SVM solution. Higher dimensionality of the data and degree of the polynomial

8



2 Bankruptcy analysis

of k results in a larger number of features. The advantage of the ’kernel trick’ becomes
obvious: We train the SVM in a higher dimensional feature space, where the data is
linear separable, but the feature space does not need to be determined explicitly.

Some examples of kernel functions are:

• k(xi, xj) = (xi · xj + c)d (Polynomial)

• k(xi, xj) = exp
{

−‖xi − xj‖2 /
(

2σ2
)

}

(RBF)

• K(xi, xj) = tanh(kx⊤i xj − δ) – the hyperbolic tangent kernel

• K(xi, xj) = e−(xi−xj)
⊤r−2Σ−1(xi−xj)/2 (stationary Gaussian kernel)

The last kernel has an anisotropic radial basis. Later, we will apply this kernel taking
Σ equal to the variance matrix of the training set and r as a constant standing for the
radius of the smallest sphere containing data. The higher r the lower the complexity.

Once, the support vector machine is trained and we have found the values for w we are
able to classify a new company described by variables of x using the classification rule:

g(x) = sign
(

x⊤w + b
)

, (17)

where w =
∑n
i=1 αiyixi and b = 1

2 (x+1 + x−1)w. x+1 and x−1 are any two support
vectors belonging to different classes. They must both lay on the margin boundary. To
reduce numerical errors when training the SVM it is desirable to use averages over all x+

and x− instead of two arbitrarily chosen support vectors. The value of the classification
function, or in our study, the score of a company is computed as:

f(x) = x⊤w + b. (18)

We note that each value of f(x) uniquely corresponds to a default probability (PD).

There are different ways of calculating the PD values for each company. Here, one
solution is presented with two steps. First, we calculate for all i = 1, 2, . . . , n observations
of the training set:

˜PD(z) =

∑n
i=1w(z − zi)I(yi = 1)
∑n
i=1w(z − zi)

,

where w(z − zi) = exp
{

(z − zi)2 /2h2
}

. zi = Rankf(xi) is the rank of the ith company.

Higher scores f(xi) lead to higher ranks. The smoothness of ˜PD(z) is influenced by the
bandwidth h. Smaller h’s give higher smoothness. Using the company rank zi instead of
the score f(xi) we obtain a k−NN smoother with Gaussian weights w(z−zi)

∑n

j=1
w(z−zj

which

decay gradually as |z − zi| grows. After the first step, the PD values are not necessarily
monotone as the thin black line shows in Figure 5. Therefore, a second step is necessary.

9



2 Bankruptcy analysis
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Figure 5: Monotonisation of PD’s with the pool adjacent violator algorithm. The thin
line denotes PD’s estimated with the k − NN method with uniform weights
and k = 3 before monotonisation and the bold red line after monotonisation.
Here y = 1 for insolvencies, y = −1 for solvent companies

In step 2, we monotonise ˜PD(zi) by using the Pool Adjacent Violator (PAV) algo-
rithm (Barlow, Bartholomew, Bremmer, and Brunk (1972)). Figure 5 illustrates how
the previous black line (before monotonisation) changes to the thick red line (PD after
monotonisation). The PD values become monotone. The companies are ordered ac-
cording to their rank on the horizontal axis. The value y = 1 indicates insolvency and
y = −1 indicates solvency. Between the ranking 1 and 2 monotonicity is violated. After
applying the the PAV algorithm, the PD value is corrected.

With the PAV we obtain monotonised probabilities of default, PD(xi), for the observa-
tions of the training set as seen in Figure 6. A PD for any observation x of the testing
set is computed by interpolating PDs for two adjacent observations in terms of the score
from the training set. If the score for x lies beyond the range of the scores of the train-
ing set, then PD(x) is set equal to the score of the first neighbouring observation of the
training set.

Finally, we measure the quality of the rating method for which the accuracy ratio (AR)
is applied. AR values close to one indicate good performances of the method. If the two
groups are the same size then we calculate the AR:

AR ≈ 2

∫ 1

0
y(x)dx− 1.

From the AR, we can draw a receiver operating characteristics (ROC) curve as shown
in Figure 7. The blue line demonstrates the perfect separation. Due to the intermesh

10
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Figure 6: The circles represent the smoothing and monotonisation of default (y = 1) and
non-default (y = 0) companies.
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Figure 7: Receiver Operating Characteristics Curve. An SVM is applied with the radial
basis 2Σ1/2 and capacity C = 1.

of insolvent and solvent companies perfect separation does not exist. Usually the curve
looks like the red line. In the case of a naive model, the ROC curve is simply the bisector.

3 Importance of risk classification and Basel II

When we look back at the history of financial markets, we observe many ups and downs.
The wish to create a stable financial system will always exist. In 1974, one of the largest
post World War II bankruptcies happened, the liquidation of I. D. Herstatt KGaA, a
private bank in Cologne. Consequently, a committee was formed with the intent of set-
ting up regulations for banks. One way to prevent bankruptcies is to correctly assert the
financial situation of the contractor. In 1988, the Basel Committee on Banking Supervi-
sion (BCBS) presented the Basel I Accord. It suggested a minimal capital requirement
for banks to prevent future bank crashes.

This treaty did not prevent the world market from a crisis in 2002. Economists realized

12



4 Description of data

that credit rating systems, which developed in the 1950, did not accurately price risks.
Others said that the solution to market crashes are efficient regulations. The BCBS
established Basel II, which addressed credit and operational risk, and also integrated
supervisory review and market discipline. It gives banks the option to use their own
rating systems, but they must base the validity of their systems on statistical models.
This law came into effect at the end of 2006.

The committee in Basel also decided to require banks to use rating systems with new
particular properties such as statistical empirical justification for the calculation of PD
values. All the additional requirements will be in effect by 2012. Thus the German Bun-
desbank, for example, is working hard adjusting their rating software. Unfortunately,
up until five years ago, only a small percentage of firms and banks were rated so that de-
veloping any classification system brings many challenges. Even today, many companies
are not listed on the database. Often, the premium for credits is not based on models
but on the sole decision of a loan officer. According to Basel II, a company is declared
insolvent if it overdraws its debts 90 days after maturity.

Lending arbitrarily is not safe, and it is better to calculate the default probability (PD)
of the borrower. The PD value can be directly calculated from the score found with
the SVM method as explained in the previous section. Then, one can decide to which
rating class the borrower belongs as shown in Table 1 or in Table 2 Those two tables are
just general examples but do not correspond to each industry because different tables
for different countries and industries exist. Banks and insurances can use tables such
as 1 and 2 to establish the risk premium for each class. Whereas Table 3 displays the
capital requirements according to Basel I and Basel II.

4 Description of data

The dataset used in this work comes from the credit reform database provided by the Re-
search Data Center (RDC) of the Humboldt Universität zu Berlin. It contains financial
information from 20000 solvent and 1000 insolvent German companies. The time period
ranges from 1996 to 2002 and in the case of the insolvent companies the information was
gathered 2 years before the insolvency took place. The last annual report of a company
before it went bankrupt receives the indicator y = 1 and for the rest (solvent) y = −1.

We are given 28 variables, i.e. cash, inventories, equity, EBIT, number of employees
and branch code. From the original data, we create common financial indicators which
are denoted as x1 . . . x25. These ratios can be grouped into four categories such as
profitability, leverage, liquidity and activity. The indicators are presented in Table 4. For
the x9 formula, INGA and LB mean intangible assets and lands & buildings, respectively.

13



4 Description of data

Rating Class (S&P) One year PD (%)

AAA 0.01
AA+ 0.01
AA 0.02
AA- 0.03
A+ 0.05
A 0.08
A- 0.13

BBB+ 0.22
BBB 0.36
BBB- 0.58
BB+ 0.94
BB 1.55
BB- 2.50
B+ 4.08
B 6.75
B- 10.88

CCC+ 17.75
CCC- 29.35

D 100.00

Table 1: Rating classes and PDs. Source:
Henking (2006)

Rating Class (S&P) Five year PD (%)

AAA 0.08
AA 0.32
A 0.91
A 0.08

BBB 3.45
BB 12.28
B 32.57

CCC- 69.75
D 100.00

Table 2: Rating classes and PDs.
Henking (2006)

14



4 Description of data

Rating Class One-year Capital Capital
(S&P) PD (%) Requirements Requirements

(%) (Basel I) (%) (Basel II)

AAA 0.01 8.00 0.63
AA 0.02 – 0.04 8.00 0.93 – 1.40
A+ 0.05 8.00 1.60
A 0.08 8.00 2.12
A- 0.11 8.00 2.55

BBB 0.15 – 0.40 8.00 3.05 – 5.17
BB 0.65 – 1.95 8.00 6.50 – 9.97
B+ 3.20 8.00 11.90
B 7.00 8.00 16.70
B- 13.00 8.00 22.89

CCC > 13 8.00 > 22.89
CC 8.00
C 8.00
D 8.00

Table 3: Rating grades and capital requirements. Source: (Damodaran, 2002) and
(Füser, 2002). The figures in the last column were estimated by the authors
for a loan to an SME with a turnover of 5 million Euros with a maturity of
2.5 years using the data from column 2 and the recommendations of the Basel
Committee on Banking Supervision (BCBS, 2003).
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4 Description of data

Ratio No. Definition Ratio Category

x1 NI/TA Return on assets Profit.
x2 NI/Sales Net profit margin Profit.
x3 OI/TA Operating Inc./Total ass. Profit.
x4 OI/Sales Operating profit margin Profit.
x5 EBIT/TA EBIT/Total assets Profit.

x6 (EBIT+AD)/TA EBITDA Profit.
x7 EBIT/Sales EBIT/Sales Profit.
x8 Equity/TA Own funds ratio (simple) Leverage
x9 (Equity-ITGA)/ Own funds ratio (adj.) Leverage

(TA-ITGA-Cash-LB)
x10 CL/TA Current liab./Total ass. Leverage

x11 (CL-Cash)/TA Net indebtedness Leverage
x12 TL/TA Total liab./Total ass. Leverage
x13 Debt/TA Debt ratio Leverage
x14 EBIT/Interest exp. Interest coverage ratio Leverage
x15 Cash/TA Cash/Total assets Liquidity

x16 Cash/CL Cash ratio Liquidity
x17 QA/CL Quick ratio Liquidity
x18 CA/CL Current ratio Liquidity
x19 WC/TA Working Capital Liquidity
x20 CL/TL Current liab./Total liab. Liquidity

x21 TA/Sales Asset turnover Activity
x22 INV/Sales Inventory turnover Activity
x23 AR/Sales Account receiv. turnover Activity
x24 AP/Sales Account payable turnover Activity
x25 Log(TA) Log(Total assets) Activity

Table 4: Defintions of financial ratios.
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5 Calculations

Ratio q0.05 Med. q0.95 IQR q0.05 Med. q0.05 IQR

x1 -0.19 0.00 0.09 0.04 -0.09 0.02 0.19 0.06
x2 -0.015 0.00 0.06 0.03 -0.07 0.01 0.10 0.03
x3 -0.22 0.00 0.10 0.06 -0.011 0.03 0.27 0.09
x4 -0.16 0.00 0.07 0.04 -0.08 0.02 0.13 0.04
x5 -0.19 0.02 0.13 0.07 -0.09 0.05 0.27 0.09

x6 -0.13 0.07 0.21 0.08 -0.04 0.11 0.35 0.12
x7 -0.14 0.01 0.10 0.04 -0.07 0.02 0.14 0.05
x8 0.00 0.05 0.40 0.13 0.00 0.14 0.60 0.23
x9 -0.01 0.05 0.56 0.17 0.00 0.16 0.95 0.32
x10 0.18 0.52 0.91 0.36 0.09 0.42 0.88 0.39

x11 -0.12 0.49 0.89 0.36 -0.05 0.36 0.83 0.41
x12 0.29 0.76 0.98 0.35 0.16 0.65 0.96 0.40
x13 0.00 0.21 0.61 0.29 0.00 0.15 0.59 0.31
x14 -7.90 1.05 7.20 2.47 -6.78 2.16 73.95 5.69
x15 0.00 0.02 0.16 0.05 0.00 0.03 0.32 0.10

x16 0.00 0.03 0.43 0.11 0.00 0.08 1.40 0.29
x17 0.18 0.68 1.90 0.54 0.25 0.94 4.55 1.00
x18 0.56 1.26 3.73 0.84 0.64 1.58 7.15 1.56
x19 -0.32 0.15 0.63 0.36 -0.22 0.25 0.73 0.41
x20 0.34 0.84 1.00 0.37 0.22 0.85 1.00 0.4

x21 0.43 1.63 4.15 1.41 0.50 2.08 6.19 1.76
x22 0.02 0.16 0.89 0.26 0.01 0.11 0.56 0.16
x23 0.02 0.12 0.33 0.11 0.00 0.09 0.25 0.09
x24 0.03 0.14 0.36 0.10 0.01 0.07 0.24 0.08
x25 13.01 14.87 17.16 1.69 12.82 17.95 1.657 2.37

Table 5: Descriptive statistics for financial ratios.

5 Calculations

In order to reduce the effect of the outliers on the results, all observations that exceeded
the upper limit of Q75+1.5∗IQ (Inter-quartile range) or the lower limit of Q25−1.5∗IQ
were replaced with these values. Table 5 gives an overview of the summary statistics.
In the next table (6), the insolvent and solvent companies for each year are displayed.
Insolvent company data for the year of 1996 are missing, we will therefore exclude them
from further calculations. We are left with 1000 insolvent and 18610 solvent companies.

Not all variables are good predictors for the classification method. The most common
techniques to find the right variables are Mallows’ CP, backward stepwise and forward
stepwise selection. The latter is preferred when dealing with many variables because
the cost of computation is reduced. This method starts with a univariate model and
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6 Computational results

Year Solvent Insolv. Solv. Ratio Insolv. Ratio

1996 1390 0 100.00% 0.00%
1997 1468 146 90.95% 9.05%
1998 1615 1274 92.71% 7.29%
1999 2124 179 92.23% 7.77%
2000 3086 175 94.63% 5.37%
2001 4380 187 95.91% 4.09%
2002 5937 186 96.96% 3.04%

Table 6: The distribution of the data over the years for solvent and insolvent companies.

continues adding variables until all variables are included. At each step the variable is
kept whose addition to the model resulted in the highest median accuracy ratio (AR).
As a result, ratios x24, x3, x15, x12, x25, x22, x5, and x2 generate the model with the
highest AR (60.51%).

6 Computational results

After choosing the best predictors, we start calculating score values for each company.
As mentioned earlier, the results depend on the predefined C, the capacity, and r. To
demonstrate how performance changes, we will use the accounts payable turnover (x24),
which is the best univariate model, and calculate Type I and Type II errors. Type I
errors are those when companies were predicted to stay solvent but turned insolvent.
Type II errors are the mistakes we make by assuming companies will default but they
do not. Keep in mind that different kernels will also influence performance. We use one
of the most common ones, the radial Gaussian kernel.

In Figures 8–11 the triangles represent solvent and circles represent insolvent companies
from a chosen training set. The solid shapes represent the support vectors. We randomly
chose 50 solvent and 50 insolvent companies. The colored background corresponds to
different score values f . The bluer the area, the higher the score and probability of
default. Most successful companies are in the red area and have positive profitability
and reasonable activity.

Figure 8 presents the classification results for an SVM using r = 100 and the fixed
capacity C = 1. With the given priors, the SVM has trouble classifying between solvent
and insolvent companies. The radial base r, which determines the minimum radius of
a group, is too large. Default companies do not seem to exist. Notice that the SVM is
doing a poor job of distinguishing between the groups even though most observations
are used as support vectors.
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6 Computational results

C r Type I error Type II error

0.001 0.600 40.57 23.43
0.100 0.600 38.42 24.45

10.000 0.600 34.43 27.86
100.000 0.600 25.22 34.44

1000.000 0.600 25.76 34.26

10.0 0.002 37.20 32.79
10.0 0.060 31.86 29.25
10.0 6.000 36.97 27.86
10.0 60.000 37.27 25.87
10.0 2000.000 41.09 24.85

Table 7: Misclassification errors (30 randomly selected samples; one predictor x24).

In Figure 9, the minimal radius is reduced to 2 while C remains the same. Clearly, the
SVM starts recognizing the difference between solvent and insolvent companies resulting
in sharper clusters for successful and failing companies. Decreasing r even further, i.e.
to 0.5 as in Figure 10, emphasizes the groups in even more detail. If the radial base is
too small, then the complexity will be too high for a given data set.

If we increase the capacity C, we decrease the distance between the groups. Figure 11
demonstrates this effect on the classification results. The beige area outside the clusters
is associated with score values of around zero. With higher C’s, the SVM localizes only
one cluster of successful companies. It is crucial to use statistical methods, i.e. the
leave-one-out method, to find the optimal priors C and r for classifying companies.

After a SVM classification function f is trained, we can calculate the scores for new
companies, determine their PD values and decide if they belong to the solvent or insolvent
group. Further, a SVM learns the cluster of both groups given that the constants C and
r are chosen appropriately. If the capacity is too high the knowledge of cluster centre
vanishes. If r is too high, the groups might intermesh. The choice of the kernel k also
affects the solution. Often, the most appropriate kernel is one of the Gaussian kernel.

Earlier we introduced one way of converting scores into PDs including a smoothing
technique. However, we can also calibrate the PDs by hand. Consider an example with
r = 2 and C = 1. We choose three rating classes: safe, neutral and risky and give each
class a corresponding score value of f < −0.0115, −0.0115 < f < 0.0115 and f > 0.0115,
respectively. Next we count how many companies belong to each group then calculate
the ratio of failing companies giving us the estimated probability of default for each
rating class.

With a sufficient number of observations in the training set, the rating classes could be
divided up into finer ones. We have seen an example in Table 1. The rating company S
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6 Computational results
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Figure 8: Ratings of companies in two dimensions. The case of a low complexity of
classifier functions, the radial basis is 100, the capacity is fixed at C = 1.
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6 Computational results
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6 Computational results
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6 Computational results
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References

& P uses over a dozen rating classes such as AAA, AA ,. . . Different rating agencies use
a variety of numbers and names for their classifications.

{Conclusions

SVMs are capable of predicting whether a company will be solvent or insolvent based only
on its financial and economic information. Of course, the SVM needs to be provided with
a training data set. Once we have learned the SVM, it divulges the financial situation of
a company, which may not be obvious at first glance. SVMs are easy to implement with
their low number of calculational steps and priors. They often give the best classification
results compared to logit or other methods. Thus, SVMs have become more and more
popular over the last decade.

We have learned that the scores found with SVM models can be used to calculate the
individual PDs for each company. Consequently, credits and other financial instruments
can be adjusted accordingly. Banks and companies will profit from those results because
it helps them to decide with what kind of risk they can carry. This leads hopefully to a
more stable financial market by increasing our ability to predict defaults and accurately
evaluate risk.
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